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Fault Diagnosis for HEX/ Reactor System via Invertibility 

Mei ZHANG, Ze-tao LI*, Boutaïeb. DAHHOU, Michel. CABASSUD 

Abstract-A fault diagnosis approach is developed for 
pneumatic valve used in intensified HEX/reactor system. The 
pneumatic valve is viewed as an actuator subsystem 

interconnected with process subsystem in series. A condition of 

invertibility of the cascade system bas been derived in [18], 
characterizing that effects of faults occurred in actuator 

subsystem are distinguishable by the global output uniquely. 

Using this idea, the fault diagnosis scheme proposed in this paper 
is based on local fault filtering, each subsystem is assigned to 
monitor one subsystem and provided a decision regarding its 

health. In particular, the connection point between the two 

subsystems is not accessible to measurements. An input 
estimator is then developed to estimate this unknown connection 

point only rely on the global system output. Different from [18], 

any information of the derivatives of the output vectors is not 

involved in the input estimation stage. For that, a high-gain 
second-order sliding mode observer is considered to exactly 
estimate the derivatives of the output vectors in a finite time. 

Numerical simulation examples are given to illustrate the 

effectiveness of the proposed methods. 

Key words: Cascade nonlinear system; Invertibility; Input 
estimator; Sliding mode observer; Local fault diagnosis; 

1. INTRODUCTION

The fault detection and diagnosis (FDD) of actuator in 
intensified process industry is strategically important because 
of its various implications (see in [1], e.g., avoiding major 
plant breakdowns, safety problems, fast and appropriate 
response to emergency situations and plant maintenance). 

Over the past decades, the topic of FDD for nonlinear 
system has been extensively studied in the literature, see for 
instance survey [2] and book [3]. The literature on actuator 
safety related issues in process industries is mainly classified 
into two categories: a) actuator is treated as a component and 
b) actuator is treated as a nonlinear system.

Actuator is generally viewed as constants in the input
matrix function of the model in the process system. Varying 
failure signatures are denoted by the changes of elements of 
the input matrix function. One major aspect is to check 
whether the outputs of the system monitored are consistent 
with the inputs given the model, using state estimation or 
parameter estimation techniques. Such as extended high gain 
approaches in [4], adaptive observers in [5,6,7] and interval 
parameter filters in [8]. Another main aspect is inversion­
based FD I, which uses the system inverse to check whether the 
expected inputs are consistent with the measured outputs, such 
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as [9]. System inversion is also used to estimate fault 
dynamics, popular techniques include sliding mode observer 
[10], differential-geometric [11] , unknown input observer in 
[12]. Since internai dynamics ofactuator is not accessible, the 
applications of these FDD methodologies mainly limit to the 
existence and the isolation of an actuator fault at a global level. 

In order to examine potential relationship from causes to 
effect of an actuator fault, actuator is treated as an individual 
nonlinear system by different scientific communities. Like 
passive fault detection method in [13], literatures also focus on 
development of fuzzy logic and neural network based 
approaches for fault diagnosis of pneumatic valve, like in [ 14]. 
With the help of above FDD algorithms, we can realize the 
root cause of an actuator fault, however, without having the 
capability to recognize effects of the fault on the global system. 

Recent literatures focus on the problem of monitoring and 
FDD of interconnected complex system. Like distributed fault 
detection schemes developed in[15][16], a local fault detection 
scheme is designed for each subsystem by utilizing local 
measurements. However, one major difficulty lies in the 
availability of the local measurement. Papers consider the 
issues of state and unknown information reconstruction by 
means of sliding modes observer like in [ 17]. 

This paper focuses on developing intelligent fault 
diagnosis system for pneumatic valve used in intensified 
Hex/reactor. We consider the actuator as an individual 
subsystem connected with process subsystem in series. The 
objective is to explain how the behavior of global output can 
be interpreted to identify root cause of actuator faults in 
actuator subsystem. A condition of invertibility of the cascade 
system has been developed in [18], it guarantees that faults 
occurred in the actuator subsystem affect the measured output 
of the global system distinguishably. Using this characteristic, 
a local fault diagnosis method is developed, aimed at filtering 
the root cause of an actuator fault. An input estimator is 
developed to estimate the inaccessible output of the actuator 
subsystem. Different from [18], system inverse is not directly 
used for unknown input reconstruction. Instead, a high-gain 
second-order sliding mode observer is considered to exactly 
estimate the derivatives of the output. Based on this, a kind of 
algebraic unknown input estimation method is proposed. 
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II. PROBLEM FORMULATION

Fault diagnosis will be applied on a pilot HEX/reactor
system depicted in [1]. It is considered as a cascade system E
modeled by two nonlinear subsystems connected in series:
actuator La and process Lp subsystems, as shown in Fig 1. 

:Ea 
Actuator

:E 

Lp 
Process

Fig. l the cascade system structure 

A. System modelling

1. Process subsystem modelling
The heat exchanger can be modeled as N ideally mixed

interconnected tanks, the modelling of a given cell k is based
on the mass and energy balances which describe the evolution
of the characteristic values: temperature, mass, composition,
pressure, etc. 

Heat balance of the process fluid: 

tk = � (T} - Tk) + � (Tk-l - Tk)Fp PpCppVp 
p Vp 

p p P 

Heat balance of the utility fluid: 

tk = �(Tk-Tk) +�('rk+l_Tk)F u PuCpuVu p u Vu u u u 

where Pp, Pu are density of the process fluid and utility 
fluid (in kg. m-3 ), Vp, Vu are volume of the process fluid and 
utility fluid (in m3 ), Cpp, Cpu are specific heat of the process 
fluid and utility fluid (in J. kg-1 . K-1) , U is the overall heat 
transfer coefficient (in J. m-2 . K-1 . ç1 ). A is the reaction area 
(in m2 ). Fp, Fu are mass flowrate of process fluid and utility 
fluid (in kg. ç1 ). T�-1 is the process fluid temperature of 
previous cell, for the cell l, it is the inlet temperature of process 
fluid TJn. T}+1 is the utility fluid temperature of previous cell, 
for the cell N, it is the inlet temperature ofutility fluid TJn. 

For simplicity, we consider one cell model. Define the state 
vector as x T = [xi , x2]T = [Tp, Tu]T , the control input u/ = 
[uav Ua2F = [Fp, FuF, the output vector of measurable 
variables y T = [y i , y 2]T = [ Tp, Tuf, then above two the 
equations can be rewritten in the following state-space form: 

2. Actuator subsystem modelling
Actuator used in the studied intensified HEX/reactor

system is pneumatic valve. By application of Bemoulli's
continuous flow law of incompressible fluids, we have: 

F = Cvf(X)� 

where F is flow rate ( m 3 ç 1 ), dP is the fluid pressure drop
across the valve (Pa), sg is specific gravity offluid and equals
1 for pure water, X is the valve opening or valve "lift" (X=l
for max flow), Cv is valve coefficient (given by manufacture),
f(X) is flow characteristic which is defined as the relationship
between valve capacity and fluid travel through the valve.
There are three flow characteristics to choose from: linear
valve control; quick opening valve control; equal percentage
valve control. For linear valve, f(X) = X, the valve opening is
related to stem displacement. In [13] , a pneumatic control
valve has a dynamic model of the type: 

d2X dX 
PcAa = m dt + µ dt + kX 

where Aa is the diaphragm area on which the pneumatic
pressure acts, Pc is the pneumatic pressure, m is the mass of
the control valve stem, µ is the friction of the valve stem,
k is the spring compliance, and X is the stem displacement or
percentage opening of the valve. 

Define subscript 1, 2 to denote the actuator ofprocess fluid
and utility fluid, then we have twelve parameters Xi , Pcv 
dPv kv µi , Fi , X2 , Pc2 , dP2 , k2 , µ2 , F2 for both fluid, they
represent the percentage opening of the valve, the pneumatic
pressure, and the fluid pressure drop across the valve, the
spring compliance, the friction of the valve stem and flowrate
of the fluid. Linear valve is used, so f(X1 ) = Xi , f(X2 ) = X2 . 

The candidate root causes of an actuator fault could be
valve clogging, stop of utility fluid pump or leakage, which 
may influenced Po µ, k, dP respectively. In order to obtain a
model for the sake of diagnosis requirements, define the vector
state Xa, input u, and output Ua as: 

Xa 
T 

= [Xa1 

[x1 d:i1 X2 

Ua 
T = [Ual 

[C �X 
V✓ sg 1

Xa2 Xa3 Xa4 Xas 
dX2 C �X 
dt v✓ sg 1

Xa6] = 

C �X] V✓ sg 2 

v4 v5 v6 v7 v8]T 
= 

Pel Pc2 dP1 dP2JT 

C = [O o 0 0 1 1] 
Then, the actuator subsystem is with six states, eight

unknown inputs and two outputs. These two outputs are
unmeasured which need to be constructed by the global
measured outputs. The actuator subsystem is : 

{Xa =
_
f.(x.) + tg.(x.)V 

Ua= Cxa 

(2) 



0 1 0 0 0 0 
0 0 0 0 0 0 

Where fa (xa) = 0 0 0 1 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
Xa1 Xa2 

0 0 
Aa 

0 0 0 m m m 
0 0 0 0 0 0 0 0 

0 0 
Xa3 x •• 0 

Aa 
0 0 g.(x.) = m m m 
1 

0 0 0 0 0 0 Cv-Xa1 0 
sg 

1 
0 0 0 0 0 0 0 Cv-Xa2 sg 

B architecture of the proposed FDD 

As shown in Fig.2, the objective is to identify the 
occurrence of the fault V = ( vi , ... ) in (2) independently from 
each other using global outputs y in ( 1 ). The fault diagnosis is 
based on local fault filtering schemes carried out in actuator 
subsystem, each subsystem is assigned to monitor its own 
dynamics and provide a decision regarding its health. 

V 

_....,__. La(u, x.,V) 

Fault decision i 
� 

Actuator 

Local fault filter i 

L Physical system 

Lp (Ua, x) 
Process 

l •.�. , .... , l 
Input estimator 

i y 

Fig. 2 architecture of proposed algorithm 
In order to accomplish the aims, there are three steps: 
a-) provide condition for guaranteeing that effects offaults 

V = ( vü ... ) occurred in actuator subsystems are 
distinguishable by the global output y uniquely. 

b-) estimate the unknown outputs ua of actuator 
subsystem through measured outputs y ofprocess subsystem 

c-) propose local fault filter for recognizing faults V = 
( vi, ... ) occurred in actuator subsystems. 

III. SYSTEM FAULT DIAGNOSIS METHOD

A Invertibility analysis 

In previous paper [ 18], it has proved that faults occurred in 
actuator subsystem will affect the measured output of the 
global system distinguishably if the interconnected system is 
invertible. While invertibility of individual subsystem is a 
necessity and sufficient condition for guaranteeing 
invertibility of the interconnected system. 

In this section, invertibility of individual and the cascade 
system is derived. Define the input-output map of process 
subsystem Hp : Ua ➔ Y for input function space Ua and the 
corresponding output function space generated by Y. HP maps 

an input ua (.) to the output y(.) generated by the system 
driven by Ua (.) with an initial condition x0 • 

Theorem 1: Fix an output set Y, the system (1) is invertible 
at a point x0 := x(t0), if for every y E Y, the equality 
Hp(Ua1) = Hp(Ua2) = y implies that Ua1 = Uaz· 
Theorem 2: Consider the interconnected system L which 
consists of two subsystems: actuator La and process Lp 
subsytems, and an output set( U a, Y). The interconnected 
system is invertible at (x0 , Xao) over ( Ua, Y). If and only if 
each subsystem actuator La and process Lp is invertible at 
Xao over U a, and x0 over Y respectively. 

Proof: For the sake of space limitation, the proof of the 
above theorems is omitted. Interested readers can contact the 
corresponding author for details [18]. 

Unlike [18], in this paper, system inverse is only used for 
guaranteeing effectiveness of local fault filter. While in order 
to avoid using any information of the derivatives of the output, 
a high-gain second-order sliding mode observer is considered 
to exactly estimate the derivatives of the output. A kind of 
algebraic unknown input estimation method is then proposed. 

B Input Estimator 

If a system is differentially left-invertible, the input can be 
recovered from the output by means of a finite number of 
ordinary differential equations. 

Step 1: Obtain a differential algebraic polynomial of the 
input vector Ua by means of the output vector y through 
system inverse. 

For invertible nonlinear system described by (1), the 
relative order ri of the output Yi , is the smallest integer for 
which: 

Given finite relative order ri , ... , rm for (1) with respect to 
the output y, calculating expressions for their derivatives, we 
get: 

1 L? h1 (x) l 
I 

Lg1 q-1h1 (x)

L�mh:m(x) + Lg1 
L�m:_:ihm(x)

Let the matrix: 

Lgm 
L?_�_1h1 (x) l Ua 

Lgm 
L�m-lhm (x) 

-1 Lg1 L?-1 h1 (x) Lgm 
L?_-__ 1 h1 (x) l 

A(x) - ... 
Lg1

L�m-lhm(x) Lgm
L�m-lhm(x) 

Define the following change of the coordinates: 
_ [ 1 2 ri] _ [ 1 2 ri ]�i - �i , �i, ... , �i - <l>i (x), <l>i (x), ... , cf\ (x) 

= [h/x), Lfhh), ... , LT1 h/x)] i = 1, ... , m



� = [�i , �2, •··, �ml = [ cJ>1 (x), cJ>2 (x), ... , cJ>m (x) ] 
T] = [ cJ>r+1 (x), cJ>r+2 (x), ... , cJ>n (x) ] 

Y = [�L �t ... , �inl 

By application new local coordinates transformation 
proposed in [19], it is always possible to find the function 
cJ>r+l (x), cJ>r+2 (x), ... , cJ>n (x), thus 

ct>(x) = [ q>1 (x), q>2 (x), ... , cJ>m (x), cJ>r+1 (x), ... , cJ>n (x)] 
X= cp-1(�, TJ)

Then input vector ua can be obtained by means of the 
output vector y and its derivatives. 

_1 ([�ir,J] [ L?h1(<!>-1(ç, TJ)
]) Ua = A( cp-l (�, T])) : - : (3) 

��ml L�mhm(<!>-1(ç, TJ)
The inversion based algebraic polynomial (3), however, 

requires the computation of successive derivatives of outputs, 
which might be unrealistic in practical applications where 
measurements suffer noise and disturbances. 

Step 2: estirnate the derivatives of the output vectors 

To avoid use any derivative information �(, 1 � i � 
m, 1 � j � ri of measurement output directly, a high-gain 
second-order sliding mode observer is considered to exactly 
estimate them in a finite time. 

By construction: 

Yi
= �f 

i:i =ii+l. 1 < . < 1 '>1 '>1 1 -J - ri -

��i 
= qhi(cl>-1(�, T]) + L� 1 Lgi LT

1 hi(cl>-1(�, TJ)) Uaj; i = ri 

Following is structure of the observer: 

Yi
= �t 

�- �·+1 
.

�( =�( + À\IYi -yd 112sgn(yi -ya; 1 � i � ri - 1 

ti
=�i IYi -yd 112sgn(yi -yi); i = ri
Step 3: by using the estimates of output derivatives, a kind 

of algebraic unknown input reconstruction method is 
proposed. 

C Local fault fi/ter design 

In order to recognize V(vi, . .  vi , ... ), four possible 
candidates in each actuator, we construct two banks of four 
observers as follows (5): 

1 � j � 2, 1 � i � 4 

where j denotes jth actuator, i is ith observer corresponding 
to the ith fault resources candidates. x� is the estimated state 
vector of ith observer for jth actuator, v/ is the fault 
estimation ofvi ofjth actuator, and û� is the estimated output 
vector of the ith observer for jth actuator. fi� is reconstructed 
output ofjth actuator from y, uj is the input ofjth actuator. el 
is the nominal value of parameters in jth actuator, subscript 
1 =f:. i. f�, g� are analytic functions of jth actuator. Hi . is a 

J 

Hurwitz matrix that can be chosen freely with a goal to 
increase as much as possible the dynamic of the observer, Yi ­J 
is a design constant and Pi . is a positive definite matrix. We 

J 

can calculate the matrix Pi_with the help of(6); where Qi - is a 
J J 

positive definite matrix that can be chosen freely. 
H½Pii + PiiHii = -Qii (6) 

i· Denote e� (t) as the tracking error of the ith observer for jth 
i· . i· actuator that: e�(t) = fi� -û1 

We define the root cause analysis (RCA) residuals as: 

si/t) = lle�(t)II , 1�j�2, 1�i�4 
The above observers aim at generating two banks of four 

residuals for those above mentioned fault causes. One bank of 
residuals are s11 ,si2 , s13 , s14 , aimed at identifying fault 
causes (Pcv µi, t.Pi, k1) in actuator of process fluid, the other 
bank are s21 ,s22 ,s23 , s24 for fault causes (Pc2, µ2 , t.P2, k2) in
actuator of utility fluid respectively. If any of those residuals 
exceeds its threshold, the fault is caused by the corresponding 
fault causes. 

IV. SIMULATION RESULTS AND DISCUSSION 

In this section, we consider a numerical example to 
illustrate the effectiveness of the proposed fault diagnosis 
method. The constants and physical data used in the pilot are 
given in TABLE I. More detail information about the studied 
system could find in [ 1]. 

TABLE I PHYSICAL DATA USED IN THE PILOT 

Constant description Value units 

hA overall heat transfer 214.8 W.K-1
coefficient*reaction area 

A Reaction area 4e-6 m3 

VD process fluid volume 2.68se-5 m3 

V,, utility fluid volume l.14le-• m3 

Po,Pu fluid density 1000 kg.m-3 
C

Po'
C

Pu 
specific heat of the fluid 4180 J.kg-1.k-1

T,,; utility fluid input 15.6 oc 

Toi process fluid input 76 oc 

The input of the inlet flow rate of the utility fluid Fu is 
4.2ze-5 m3 ç1 , and inlet flow rate of the process fluid Fp is 
constant 4.1 7e-6 m3

Ç
1 , Parameters in actuator subsystem 
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Fig. 7 diagnosis residual for fault in process fluid 

Fig. 7 aims at recognizing root causes of the unexpected 
increase at actuator of process fluid as shown in Fig. 6. 
Diagnosis residuals s11 ,s12 , s13, s14 are designed to 
recognize four possible parameters: Pcv µi , LlPi , k1 It is 
obviously in Fig. 7 that only s14 breaks through and remains 
above the threshold, which means that fault in actuator of 
process fluid is caused by fault k1 . Simulation result is 
consistent with the assumption, which confirms the 
effectiveness of the developed scheme. 

-5 -5 f "''=r ,.,;��·1 f RCAreT ill '•-�·1 

0 20 40 60 80 100 0 20 40 60 80 100 
Time [s] Time [s] 

-5 -5 

· """ _ .... ,. ""·· ,.. :r RCA=r •, .. · �,,, �10
o 20 40 60 80 100 °o 

Time [s] 
20 �o 60 

Tnne [s] 
80 

Fig.8 diagnosis residual for fault in utility fluid 

100 

Fig.8 aims at recognizing root cause of the fault at actuator 
of process fluid in Fig. 6. Diagnosis residuals s21, s22 , s23, 

s24 are designed to recognize four possible parameters in the 
model of process fluid: Pez, µ2, LlP2, k2. Thanks to the 
diagnosis residuals, we can determine the cause of the sudden 
change in the utility fluid flowrate in Fig. 6. It can be seen from 
Fig.5 that only s23 exceeds and remains above the threshold, 
this illustrates that fault in actuator of process fluid is caused 
by parameter LlP2 • Encouraging results are obtained through 
the robustness performance of the proposed scheme. All the 
simulated faults have been correctly detected and diagnosed, 
leading to a desired fault diagnosis results. 

V. CONCLUSION

In this paper, a fault diagnosis approach for an invertible 
cascade nonlinear systems is presented. The main contribution 
of this paper is the combination of local fault filtering 
capability with global system monitoring capability. It is 
accomplished since output of the local subsystem is estimated 
by the output of global outputs and its derivatives. A high gain 
sliding mode observer is proposed for the purpose exactly 
estimate derivatives of outputs which is used to substitute the 
successive outputs derivatives in the differential algebraic 
polynomial obtained via system inverse. Results show that the 

approach achieves satisfactory performances m terms of 
detection and diagnosis capabilities. 
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