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Semi-linear cooperative elliptic systems
involving Schrödinger operators:

Groundstate positivity or negativity.

B.Alziary - J.Fleckinger

Classification 35J61, 35J10

Abstract

We study here the behavior of the solutions to a 2×2 semi-linear cooperative
system involving Schrödinger operators (considered in its variational form):

LU := (−∆+ q(x))U = AU + µU + F (x,U) in R
N

U(x)|x|→∞ → 0

where q is a continuous positive potential tending to +∞ at infinity; µ is
a real parameter varying near the principal eigenvalue of the system; U is
a column vector with components u1 and u2 and A is a square cooperative
matrix with constant coefficient. F is a column vector with components f1
and f2 depending eventually on U .

1 Introduction

We study here the behaviour of the solutions to a 2× 2 semi-linear cooper-
ative system involving Schrödinger operators (considered in its variational
form):

LU := (−∆+ q(x))U = AU + µU + F (x,U) in R
N

U(x)|x|→∞ → 0

where q is a continuous positive potential tending to +∞ at infinity; U is
a column vector with components u1 and u2 and A is a square matrix with
constant coefficients; moreover A is a cooperative matrix (which means that
its coefficients outside the diagonal are non negative). F is a column vector
with components f1 and f2 depending eventually on U . The real parameter
µ varies near the principal eigenvalue of the system and plays a key role.
According to its position it determines not only the sign of the solutions but
also their position w.r.t. the groundstate.
Such systems have been intensively studied (very often for µ = 0) and mainly
for Dirichlet problems defined on bounded domains ( [16], [17], [18],[21],[20],
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[25],[12], [4]). When the whole R
N is considered, as here, 2 cases are gen-

erally studied: either ”Schrödinger systems” ([1],[2],[3], [7]), that is system
involving Schrödinger operators, as here, or systems with a weight tending to
0 ([23],[6]). It is also possible to consider a combination of these 2 problems
with a potential q and a weight g :

LU := (−∆+ q(x))U = g(x)AU + µg(x)U + F (x,U) in R
N

as far as
g

q
tends to 0 at infinity which is the condition for having some

compactness and therefore a discrete spectrum.
The first results on Schrödinger systems, when F does not depend on U (lin-
ear systems) deal with cooperative systems and with the Maximum Principle
(MP) that is:
”If the data F is non negative, 6= 0, then, any solution U is non negative”.
As for the case of one equation, this Maximum Principle holds for a parame-
ter µ < Λ∗, where Λ∗ is the principal eigenvalue of the system, which means
that LU − AU − Λ∗U = 0 has a non zero solution which does not change
sign.
For the classical case of an equation defined on a bounded domain with
zero boundary conditions, −∆u = µu+ f(x), f > 0 , Clément and Peletier
[14] have shown that the solution u changes sign as soon as µ goes over
λ1, the first eigenvalue of the Dirichlet Laplacian defined on Ω. More pre-
cisely there exists a small positive δ, depending on f , such that for all
µ ∈ (λ1, λ1 + δ), u < 0. This phenomenon is known as ”Anti-maximum
Principle” (AMP).
In our present case, where we have no boundary, we have improved these
results giving not only the sign of the solutions but also comparing the
solutions with the groundstate (principal eigenfunction); it is what we call
”groundstate positivity”(GSP) (resp. negativity) (resp. GSN). We extend
in particular previous results established in [5] for linear systems to some
semi-linear cooperative systems. For being not excessively technical, we
limit our study to radial potentials and cooperative systems. Extensions to
more general cases will appear somewhere else.

Our paper is organized as follows:
We recall first some previous results of the linear case that we use. Then
we study a semi-linear equation. Finally we study a cooperative semi-linear
system.
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2 Linear Case: one equation

We shortly recall the case of a linear equation with a parameter µ varying
near the principal eigenvalue of the operator.

(E) Lu := (−∆+ q(x))u = µu+ f(x) in R
N ,

lim
|x|→+∞

u(x) = 0.

(Hq) q is a positive continuous potential tending to +∞ at infinity.

We seek u in V where

V := {u ∈ L2(RN ) s.t. ‖u‖V =
(

∫

|∇u|2 + q(x)u2
)1/2

< ∞}.

If (Hq) is satisfied, the embedding of V into L2(RN ) is compact (see e.g.
[19],[15]). Hence L possesses an infinity of eigenvalues tending to +∞:

0 < λ1 < λ2 ≤ .... ≤ λk ≤ ... , λk → +∞ as k → ∞.

Notation : (Λ, φ) We set from now on Λ := λ1 the smallest one (which is
positive and simple) and φ the associated eigenfunction, positive and with
L2-norm ‖φ‖ = 1.
It is classical (see e.g. [24]) that if f ≥ 0, 6= 0, and µ < Λ, there exists
exactly one solution which is positive: the positivity is ”improved”, or in
other words, the (strong) maximum principle (MP) is satisfied:

(MP ) f ≥ 0, 6≡ 0 ⇒ u > 0.

Lately, as said above, another notion has been defined ([8],[10], [22]) the
”groundstate positivity” (GSP) (resp. ” negativity” (GSN)) which means
that, there exists k > 0 such that the solution u > kφ (GSP) (resp. u < −kφ
(GSN)).
We also say shortly ”fundamental positivity” or” negativity”, or also ”φ-
positivity” or ”negativity”. Indeed these properties are more precise than
MP or AMP. But for proving them, it is necessary to have a potential
growing fast enough, a potential with a super quadratic growth.
In [10] a class P of radial potentials is defined:

P := {Q ∈ C(R+,R
∗
+)/∃R0 > 0, Q′ > 0 a.e. on [R0,∞),

∫ ∞

R0

Q(r)−1/2 < ∞}.
(1)
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The last inequality holds precisely if Q is growing sufficiently fast, indeed
faster than r2 (the harmonic oscillator). In this paper we consider only
a radial potential q ∈ P. Note that our proof is valid for more general
potentials, in particular for perturbations of radial potential [9] or [10] . We
assume here

(H ′
q) q is radial and is in P

Remark 1 : Note that since q is in P it satisfies (Hq).

On f we assume

(H∗
f ) f ∈ L2(RN ), f1 =

∫

fφ > 0.

For having more precise estimates on u, in particular the ”groundstate neg-
ativity” (GSN) , we have to define another set X in which f varies, the set
of ”groundstate bounded functions”:

X := {h ∈ L2(RN ) : |h|/φ ∈ L∞(RN )}, (2)

equipped with the norm ‖h‖X = ess supRn(|h|/φ).

Theorem 1 : Assume (H ′
q) and (H∗

f ), f ∈ X. For µ < Λ or Λ < µ < λ2

there exists δ > 0 (defined below) depending on f and a positive constant C,
depending on f such that if 0 < |Λ− µ| < δ,

Λ− δ < µ < Λ ⇒ u ≥ C

Λ− µ
φ > 0,

Λ < µ < Λ+ δ ⇒ u ≤ C

Λ− µ
φ < 0.

Proof of Theorem 1: Decompose now u and f in (E) on φ and its
orthogonal:

u = u1φ+ u⊥ ; f = f1φ+ f⊥; u1 =

∫

uφ,

∫

u⊥φ =

∫

f⊥φ, = 0;

we derive from Equation (E)

(L− µ)u1φ = (Λ− µ)u1φ = f1φ , Lu⊥ = µu⊥ + f⊥. (3)

Choose µ < Λ or Λ < µ < λ2 . From the first equation we derive

u1 =
f1

(Λ− µ)
→ ±∞ as (Λ− µ) → 0.
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By use of Theorem 3.2 (c) in [9] or [10], we know that the restriction of
the resolvent (L − µ)−1 to X is bounded from X into itself. The following
lemma is a direct consequence of this result as it is shown in the proof of
the Theorem 3.4 in [9].

Lemma 1 : There exists δ0 small enough and there exists a constant c0
(depending on δ0) such that for all µ with Λ − δ0 < µ < Λ or Λ < µ <
Λ + δ0 < λ2,

−c0‖f⊥‖X ≤ ‖u⊥‖X ≤ c0‖f⊥‖X .

Finally we take in account Lemma 1 and (3):

‖u⊥‖X ≤ c0‖f⊥‖X and u =
f1

Λ− µ
φ+ u⊥;

for |Λ − µ| → 0, f1

Λ−µφ → ±∞ when u⊥ stays bounded. Hence, for |Λ − µ|
small enough, more precisely for |Λ− µ| < δ1(f) :=

f1

c0‖f⊥‖X
, we have

f1

|Λ− µ| > c0‖f⊥‖X .

We deduce that Theorem 1 is valid for δ := min{δ0, δ1(f)}.

3 Semi-linear Schrödinger equation

We study now the case of a semi-linear equation. We first obtain bounds for
the solutions, if they exist and then we show their existence via the method
of ”sub-super solutions”. Finally, with additional assumptions, we prove the
uniqueness of them.
Consider the semi-linear Schrödinger equation (SLSE)

(SLSE) Lu := (−∆+ q(x))u = µu+ f(x, u) in R
N ,

lim
|x|→+∞

u(x) = 0.

We assume that the potential q satisfies (H ′
q) and we denote as above by

(Λ, φ) the principal eigenpair with φ > 0.
We work in L2(RN ) and we consider the problem in its variational formula-
tion. We seek u in V for a suitable f .
We assume that f satisfies :
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(Hf ) f : RN ×R → R is a Caratheodory function i.e. the function f(•, u) is
Lebesgue measurable in R

N , for every u(x) ∈ R and the function f(x, •) is
continuous in R for almost every x ∈ R

N . Moreover, f is such that

(i) ∀u ∈ L2(RN ), f(., u) ∈ L2(RN ),

(ii) ∃κ > 0 s.t. ∀u ∈ V, f(x, u) ≥ κφ(x) > 0

(iii) ∃K > κ > 0 s.t. ∀u ∈ V, f(x, u) ≤ Kφ(x).

Later we also suppose

(H ′
f ) ∀x ∈ R

N , u → f(x, u)

|u| is strictly decreasing

Remark 2 : Note that, by (ii) and (iii), for any u ∈ V , f(., u) ∈ X and
hence the solutions, if they exist, are in X.

Let a parameter µ be given, with |µ−Λ| “small enough”. In this section we
prove groundstate positivity and negativity for the semi-linear Schrödinger
equation.

Theorem 2 : If (H ′
q) and (Hf ) are satisfied , then there exists δ(f) > 0

(δ = δ(f) := min{δ0, δ′1(f) := κ
c0K

} where δ0 and c0 are given in Lemma 1)
such that, for 0 < |µ−Λ| < δ there exists a solution u to (SLES) such that

‖u‖X ≤ K

|Λ− µ| + 2c0K.

Also
- for Λ− δ < µ < Λ, u > κ

Λ−µφ > 0,

- for Λ < µ < Λ+ δ < λ2, u < K
Λ−µφ < 0.

Moreover if (H ′
f ) is satisfied, the solution to (SLSE) is unique.

Remark 3 If (ii) does not hold, for µ < Λ, there exists a solution u such
that

‖u‖X ≤ K

|Λ− µ| + 2c0K.

The existence is classical (e.g. [3]) and the estimate follows from the proof
below.
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Proof of Theorem 2:
We do the proof in 3 steps: first maximun and anti-maximum principles,
secondly existence of the solution such that u > κ

Λ−µφ > 0 for Λ−δ < µ < Λ

and such that u < K
Λ−µφ < 0, for Λ < µ < Λ+δ, and thirdly the uniqueness.

Step 1. Maximun and anti-maximum principles
We prove the positivity or negativity of the solutions exactly as for the linear
case, but, since f depends on u we have to show that δ (which depends on
f in the linear case) is now uniform. This follows from hypotheses (ii) and
(iii).
Let u be a solution to Lu = µu+ f(x, u). For this u, set

f1(u) =

∫

f(x, u)φ(x)dx , f⊥(x, u) = f(x, u)− f1(u)φ(x).

Also u1 =
∫

uφ(x)dx and u⊥ = u− u1φ.
Note that, always by (ii) and (iii), 0 < κ ≤ f1(u) ≤ K.
With this decomposition, reporting in (SLSE), we obtain 2 equations:

(L− µ)u1φ = (Λ− µ)u1φ = f1φ , Lu⊥ = µu⊥ + f⊥.

Choose µ < Λ or Λ < µ < λ2 . From the first equation we derive

u1 =
f1

(Λ− µ)
→ ±∞ as (Λ− µ) → 0.

Now we proceed exactly as for the linear case. By use of Theorem 3.2 (c)
in [9] or [10], we know that the restriction of the resolvent (L − µ)−1 to X
is bounded from X into itself. So by (iii) and by Lemma 1 there exists a δ0
small enough and there exists a constant c0 (depending on δ0) such that for
all µ with |Λ− µ| < δ0,

‖u⊥‖X ≤ c0‖f⊥(x, u)‖X ≤ c0‖f(x, u)− f1(u)φ(x)‖X ≤ 2c0K.

Write now

u =
f1(u)

Λ− µ
φ+ u⊥

Hence ‖u‖X ≤ f1(u)
|Λ−µ|+‖u⊥‖X ≤ K

|Λ−µ|+2c0K. For |Λ−µ| → 0, f1

Λ−µφ → ±∞
when u⊥ stays bounded. For |Λ − µ| small enough, that is here |Λ − µ| <
δ′1(f) :=

κ
2c0K

, we get (since f1 > 0)

f1

|Λ− µ| ≥
κ

|Λ− µ| > 2c0K ≥ c0‖f⊥‖X .
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Finally Maximum and anti-maximum principles are valid for
δ(f) := min{δ0, δ′1(f)}.
Step 2. Existence of solutions
We prove the existence of solutions by Schauder fixed point theory; for this
purpose we need some classical elements: a set K± constructed with the
help of sub-super solutions and a compact operator T acting in K± such
that K± stays invariant by T : T (K±) ⊂ K±.

1: ”Sub-super solution” :
• Case Λ− δ < µ < Λ.

Obviously, by (ii), u0 =
κ

Λ−µφ > 0 is a subsolution:

L(u− u0) = µ(u− u0) + f − (Λ− µ)u0 = µ(u− u0) + f − κφ

and by (ii) and GSP, u− u0 ≥ 0.
Analogously u0 = K

Λ−µφ > 0 ( K given in (iii)) is a supersolution :

Lu0 =
Λ

Λ− µ
Kφ = Λu0 = µu0 + (Λ− µ)u0.

Remark 4 : The sub- and supersolutions tend to +∞ as µ ր Λ.

• Case Λ < µ < Λ + δ < λ2. v
0 = κ

Λ−µφ < 0 is a supersolution. Indeed

L(v0 − u) = µ(v0 − u) + κφ− f

and by (Hf ) and the anti-maximum 0 > v0 ≥ u.
Analogously, v0 =

K
Λ−µφ < 0 is a subsolution.

Remark 5 : The sub- and supersolutions tend to −∞ as µ ց Λ.

Remark 6 : Obviously, u0 < u0 for Λ − δ < µ < Λ (resp. v0 < v0 for
Λ < µ < Λ+ δ).

2: The operator T
We define T : u ∈ L2 −→ w = Tu ∈ V, where w ∈ X is the unique solution
to Lw = µw + f(x, u).

3: The invariant set K+ := [u0, u
0] for Λ−δ < µ < Λ (resp. K− := [v0, v

0]
for Λ < µ < Λ+ δ).
If µ < Λ, by the maximum principle and the hypothesis (iii) , u ≤ u0 implies
w ≤ u0. Indeed,

L(u0 − w) = µ(u0 − w) + (Λ− µ)u0 − f(x, u) = µ(u0 − w) +Kφ− f(x, u);
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since, by (iii), Kφ−f(x, u) ≥ 0, we apply the maximum principle and hence
w ≤ u0. The 3 other cases lead to analogous calculation.

4: T is compact in X.
First note that K+ ⊂ X (resp. K− ⊂ X). Lw − µw = f(x, u) can also
be written w = (L − µI)−1f(x, u) = T (u). Since by [10] ,[9], the resolvent
R(µ) := (L − µI)−1 is compact in X for µ ∈ (Λ − δ,Λ) or (Λ,Λ + δ), and
since F : u → f(x, u) is continuous, T = R(µ)F is compact.

We deduce from Schauder fixed point theory that there exists a solution to
(SLSE) in K+, (resp. in K− ).

Step 3. Uniqueness
For proving uniqueness we follow [13], p.57. First we assume not only

(Hf ) but also (H ′
f ). Assume that u and v are two solutions:

Lu = µu+ f(x, u) , Lv = µv + f(x, v)

The solutions are in X and we have shown that u, v > u0 > 0 for Λ − δ <
µ < Λ (resp. u, v < v0 < 0 for Λ < µ < Λ + δ). Hence we can write

Lu

u
= µ+

f(x, u)

u
;
Lv

v
= µ+

f(x, v)

v
.

By subtraction q(x) and µ disappear. Multiply by u2 − v2 and integrate.

∫

[
−∆u

u
+

∆v

v
][u2 − v2] =

∫

[
f(x, u)

u
− f(x, v)

v
][u2 − v2];

the last term is non positive by (H ′
f ).

We transform exactly as in [13] the first term.

∫

[
−∆u

u
+

∆v

v
][u2 − v2] =

∫

|∇u− u

v
∇v|2 + |∇v − v

u
∇u|2 =

∫

|v∇
(u

v

)

|2 + |u∇
(v

u

)

|2 ≥ 0; (4)

therefore both terms are equal to 0 and

u2 − v2 = 0 ⇒ u = v a.e.;

by regularity, u = v.
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4 Semi-linear cooperative system

We extend here to a class of semi-linear systems previous results shown in
[5] where linear systems of the form LU = µU +AU + F (x) are studied.
We study for a > 0, b > 0, c > 0

(S)

{

Lu1 = (µ+ a)u1 + bu2 + f1(x, u1)
Lu2 = cu1 + (µ+ d)u2 + f2(x, u2)

in R
N , .

u1(x), u2(x)|x|→∞ → 0.

We write shortly LU = µU + AU + F (x,U), where A is the cooperative
matrix with components a, b, c, d:

A =

(

a b
c d

)

.

Notation (ξ1, Y ): Denote ξ1 the largest eigenvalue of A (the other one
being denoted by ξ2); Y is the eigenvector associated with ξ1:

AY = ξ1Y.

ξ1 =
a+ d+

√

(a− d)2 + 4bc

2
.

An easy calculation shows that (L−A)(Y φ) = (Λ−ξ1)Y φ; moreover here Y φ
is with components which do not change sign: we choose both components
of Y positive:

y1 = b > 0 , y2 =
d− a+

√

(a− d)2 + 4bc

2
> 0.

Notation Λ∗: Λ∗ := Λ− ξ1 is the principal eigenvalue of System (S) with
associated eigenvector Y φ:

(L−A)(Y φ) = (Λ− ξ1)Y φ = Λ∗Y φ.

Hypotheses: We assume
(HA) A is a 2× 2 cooperative matrix with positive coefficients outside the
diagonal.
(HF ) : f1, f2 : RN × R → R are Caratheodory function i.e. the functions
f1(•, u1) or f2(•, u2) are Lebesgue measurable in R

N , for every u1(x) or
u2(x) in R and the functions f1(x, •), f2(x, •) are continuous in R for almost
every x ∈ R

N . Moreover, f1, f2 are such that

(i) ∀u1, u2 ∈ L2(RN ), f1(x, u1), f2(x, u2) ∈ L2(RN ),
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(ii) ∃κ > 0 s.t. f1(x, u1), f2(x, u2) ≥ κφ(x) ∀u1, u2 ∈ L2(RN ),

(iii) ∃K > κ > 0 s.t. f1(x, u1), f2(x, u2) ≤ Kφ(x) ∀u1, u2 ∈ L2(RN ).

(H ′
F ) :

f1(x,u1)
|u1|

and f2(x,u2)
|u2|

are decreasing w.r.t. u1 and u2.

We introduce 2 sets :

KS
+ := {(u1, u2) ∈ X2 / u1 ∈

( κy1φ

max(y1, y2)(Λ∗ − µ)
,

Ky1φ

min(y1, y2)(Λ∗ − µ)

)

,

u2 ∈
( κy2φ

max(y1, y2)(Λ∗ − µ)
,

Ky2φ

min(y1, y2)(Λ∗ − µ)

)

}

for µ < Λ∗, and

KS
− := {(u1, u2) ∈ X2 / u1 ∈

( Ky1φ

min(y1, y2)(Λ∗ − µ)
,

κy1φ

max(y1, y2)(Λ∗ − µ)

)

,

u2 ∈
( Ky2φ

min(y1, y2)(Λ∗ − µ)
,

κy2φ

max(y1, y2)(Λ∗ − µ)

)

}

for Λ∗ < µ.

Theorem 3 If (HA) and (HF ) are satisfied there exists δ > 0, depending
on f1 and f2 such that if Λ∗ − δ < µ < Λ∗ (resp. Λ∗ < µ < Λ∗ + δ), (with
δ < min{ ξ2−ξ1

2 , λ2 − Λ}) System (S) has a solution which is in K+
S , (resp.

in K−
S ). Moreover, if (H ′

F ) is satisfied, the solution is unique.

Proof of Theorem 3: We use of course the results above as well as
previous results for linear systems obtained in [5] where Theorem 3 is shown
for suitable assumptions on f1 and f2 ( independent on u).

1. Maximun and anti-maximum principles
We diagonalize System(S) thanks to the change of basis matrix P , and we
get a system of 2 equations. Here

P =

(

b b
ξ1 − a ξ2 − a

)

, P−1 =
1

b(ξ1 − ξ2)

(

a− ξ2 b
ξ1 − a −b

)

,

Set

D := P−1AP =

(

ξ1 0
0 ξ2

)

; U = PV ; G := P−1F. (5)

We obtain
LV = DV + µV +G (6)
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which is a system of 2 equations (with obvious notation):

Lv1 = (ξ1 + µ)v1 + g1(u1, u2);

Lv2 = (ξ2 + µ)v2 + g2(u1, u2).

Note that g1 and g2 are in X.
The second equation, where the parameter ξ2 + µ stays away (below) from
Λ, has a φ bounded solution v2. Concerning the first equation, we apply
Theorem 2 above. We compute g1, g2 and get

(ii′) ∃κ′ > 0 s.t. g1(x, u1, u2) ≥ κ′φ(x) ∀u1, u2 ∈ L2(RN ),

(iii′)
∃K ′ > κ′ > 0 s.t. g1(x, u1, u2), |g2(x, u1, u2)| ≤ K ′φ(x) ∀u1, u2 ∈ L2(RN ),

where κ′ and K ′ are 2 positive constants depending on κ, K and on the
coefficients of A. This follows from ξ1 − ξ2 > 0 and (a − ξ2) = a−d

2 +√
(a−d)2+4bc

2 with (a− d)2 + 4bc > (a− d)2, so that

g1 =
1

ξ1 − ξ2
[(a− ξ2)f1 + bf2] > κ′φ > 0.

Analoguously we have g1 < K ′φ. Therefore Theorem 2 holds here with
δ = min(δ0,

κ′

c0K ′ ,
ξ1−ξ2

2 ). Finally we deduce from the maximum principle for

Λ∗ − δ < µ < Λ∗ that v1 >
κ′

Λ∗−µφ > 0.

If Λ∗ < µ < Λ∗ + δ, reasoning similarly, we deduce v1 < K ′

Λ∗−µφ < 0. As
µ → Λ∗, v1 tends to ∞ when v2 stays bounded. Indeed, by Remark 3,

‖v2‖X ≤ K ′

|Λ− ξ2 − µ| + 2c0K
′ <

2K ′

ξ1 − ξ2
+ 2c0K

′;

the last inequality follows from δ < ξ1−ξ2
2 .

Now we go back to U = PV .

u1 = av1 + bv2 , u2 = (ξ1 − a)v1 + (ξ2 − a)v2.

Combining the estimates above on v1 and v2, we conclude that, as |Λ∗−µ| →
0, there exists δ∗, depending only on L,A, κ,K such that as µ ր Λ∗, u1 has
the sign of a > 0 and u2 > 0. If µ ց Λ∗, u1 has the sign of −a < 0 and
u2 < 0.

2. Existence of the solution in K+
S , (resp. in K−

S )
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Sub-supersolutions:
1. Case Λ∗ − δ∗ < µ < Λ∗. Recall that Y has positive components y1 and
y2, and the principal eigenvector Φ = Y φ satisfies

LΦ− µΦ−AΦ = (Λ∗ − µ)Φ.

Inspired by the case of one equation, we seek a subsolution U0 of the form
cY Φ.

L(U − U0) = A(U − U0) + µ(U − U0) + (F (x,U) − (Λ∗ − µ)cΦ).

For c such that F (x,U)−(Λ∗−µ)cY φ(x) > 0, for µ < Λ∗, we get U−U0 > 0

by the maximum principle. Finally, since F (x,U) − κ

max(y1, y2)
Y φ > 0, a

subsolution is

U0 =
κ

max(y1, y2)

1

(Λ∗ − µ)
Y φ.

Analogously U0 =
K

min(y1, y2)(Λ∗ − µ)
Y φ is a supersolution.

2. Case Λ∗ < µ < Λ∗+ δ∗. We have similar results with change of sign and
replacing K by κ.

V0 =
K

min(y1, y2)(Λ∗ − µ)
Y φ

V 0 =
κ

max(y1, y2)

1

(Λ∗ − µ)
Y φ

The operator T : We define T : (u1, u2) −→ (w1, w2) where (w1, w2) is the
solution to the linear system

(S′)

{

Lw1 = (a+ µ)w1 + bw2 + f1(x, u1)
Lw2 = cw1 + (d+ µ)w2 + f2(x, u2)

in R
N , .

w1(x), w2(x)|x|→∞ → 0.

The rectangle: If (u1, u2) ∈ K+
S for Λ∗−δ∗ < µ < Λ∗ (resp. (u1, u2) ∈ K−

S for

Λ∗ < µ < Λ∗+δ∗) then (w1, w2) ∈ K+
S (resp K−

S ). Indeed, for Λ
∗−δ∗µ < Λ∗,

this can be written with obvious notations

L(W − U0) = (µ+A)(W − U0) + F ;

for µ < Λ∗, since F has non negative components, F 6≡ 0, then W −U0 > 0.
Analogously, we obtain the supersolution U0 −W > 0.

13



We argue exactly as for one equation: K+
S or K−

S is invariant by T and

LW = (A + µ)W + F (x,U) can be written W = (L − A− µI)−1F̂ (x, u) =
T (U). Since by [10] ,[9], the resolvent R(µ) := (L − µI)−1 is compact in
X for µ ∈ (Λ∗ − δ∗,Λ∗) or (Λ∗,Λ∗ + δ∗), and since F̂ : u → F (x, u) is
continuous, T = R(µ)F̂ is compact.

We apply the fixed point theorem. There exists a solution U .

3. Uniqueness
We assume now (H ′

F ). assume there are 2 positive solutions (u1, u2) and
(v1, v2) to (S); for the first equation we have Lu1 = (µ+a)u1+bu2+f1(x, u1)
and Lv1 = (µ+a)v1+ bv2+f1(x, v2). Since we are in K+ (resp. K−), divide
by bu1 the first equation and by bv1 the second one and subtract:

−∆u1
bu1

+
∆v1
bv1

=
u2
u1

− v2
v1

+
f1(x, u1)

bu1
− f1(x, v1)

bv1
. (7)

Exactly as in [13] multiply by (u21 − v21) and integrate; hence
∫

(
−∆u1
bu1

+
∆v1
bv1

)(u21 − v21) =

∫

(
u2
u1

− v2
v1

+
f1(x, u1)

bu1
− f1(x, v1)

bv1
)(u21 − v21).

The first terme is non-negative by ( 4):
∫

(
−∆u1
bu1

+
∆v1
bv1

)(u21 − v21) > 0.

Then do exactly the same calculus with the second equation in (S) and add
these two lines: we derive from (7) that T1 = T2 with

T1 =

∫

(
−∆u1
bu1

+
∆v1
bv1

)(u21 − v21) +

∫

(
−∆u2
cu2

+
∆v2
cv2

)(u22 − v22).

T2 =

∫

(
u2
u1

− v2
v1

+
f1(x, u1)

bu1
− f1(x, v1)

bv1
)(u21 − v21)+

∫

(
u1
u2

− v1
v2

+
f2(x, u2)

cu2
− f2(x, v2)

cv2
)(u22 − v22).

Of course the 1st term T1 is non-negative by (4). By (H ′
F ),

∫

(
f(x, u1)

bu1
− f1(x, v1)

bv1
)(u21 − v21) +

∫

(
f2(x, u2)

cu1
− f2(x, v2)

cv1
)(u22 − v22) < 0.

We develop what is left and get
∫

(
u2
u1

− v2
v1

)(u21 − v21) +

∫

(
u1
u2

− v1
v2

)(u22 − v22) =

−
∫

(

√

u2v
2
1

u1
−

√

u1v
2
2

u2
)2 −

∫

(

√

v2u
2
1

v1
−

√

v1u
2
2

v2
)2 < 0

14



Hence T1 = T2 = 0 and u1 = v1,u2 = v2. The solution is unique.
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