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The purpose of this paper is to describe an initial value problem for a weakly nonlinear wave equation with nonclassical boundary conditions. In constructing an approximation of the solution a multiple time-scales perturbation in combination with eigenfunction expansion method will be used. A semi-group approach will be used to show the asymptotic validity of formal approximations of the solution on long time-scales. It will also be shown that all solution tend to zero for a sufficiently large value of damping parameter.

Introduction

Overhead transmission lines, suspension bridges, dynamically loaded helical springs and many other objects known as flexible structures can be subject of oscillations due to different cause. A simple model of galloping oscillations of overhead transmission lines is derived and analyzed in (DHC 2003) for the nonlinear vibrations of a string which is fixed at x = 0 and is attached to a dashpot system at x = π, where the damping generated by the dashpot is assumed to be small. Galloping is described as low frequency, large vertical amplitude, self-excited oscillations of electrical transmission lines. In a number of physical systems oscillations can be described by one or more weakly nonlinear second order partial differential equations of the hyperbolic type, as can be seen for example in (Horssen 1988). In (Horssen 1988), (SVE 1987), (KK 1970), (Lardner 1977) and references therein these problems were studied using a two-timescales perturbation method or a Galerkin averaging method to construct approximations. Asymptotic theories which support these approximations can be found in (DHC 2003), (DHC 2001), (SVE 1987), (KK 1970), (Horssen 1992) and references therein. The problem we consider is an initial boundary value problem for a nonlinear partial differential equation in which the nonlinearity is proportional to a parameter and one of the boundary conditions is of non-classical type. We wish to determine the asymptotic behavior of the solution when is small and t → ∞. To achieve this a multiple time-scales perturbation method will be used.

Formulation

We seek a solution u(x, t, ) of the initial boundary value problem

∂ tt u -∂ xx u + 1 3 ∂ t u 3 -∂ t u = 0, 0 < x < π, t > 0 (1) u(0, t) = 0, t ≥ 0 ∂ x u(π, t) = -α∂ t u(π, t), t ≥ 0 u(x, 0) = ψ(x), 0 < x < π ∂ t u(x, 0) = φ(x), 0 < x < π
Here is a small positive parameter 0 < 1 and α a pozitive constant.

Remark 1. Equation ∂ x u(π, t) = -α∂ t u(π, t), t ≥ 0 says negative velocity is fedback to force at x = π.

In the above equation the van der Pol nonlinearity is assumed to be distributed, where the bracketed terms have a self-regulation effect. A solution to this problem has previously been obtained by Van Horssen,W.T. (DHC 2003) using a two-timescales perturbation method in combination with the method of characteristic coordinates1 . Also, the well-posedness of the problem can be found in (DHC 2003). We recall the following existence theorem:

Theorem 1. Let (ψ(x), φ(x)) ∈ H 1 0 ([0, π])×L 2 ([0, π]) the problem (1) has a unique solution u ∈ C [0, ∞) , H 1 0 ([0, π]) × C 1 [0, ∞) , L 2 ([0, π]) . Moreover, for all (ψ(x), φ(x)) ∈ H 2 ∩ H 1 0 ([0, π]) × H 1 0 ([0, π]) the solution live on L ∞ [0, ∞) ; H 2 ∩ H 1 0 ([0, π]) ∩ W 1,∞ [0, ∞) , H 1 0 ([0, π]) ∩ W 2,∞ [0, ∞) , L 2 ([0, π]
) and its energy defined by:

E(t) := 1 2 |∂ t u(x, t)| 2 L 2 ([0,π]) + |∂ x u(x, t)| 2 L 2 ([0,π])
(2)

satisfies the following dissipation relation dE(t) dt = -α∂ t u 2 (π, t) + π 0 ∂ t u 2 (x, t) 1 -β∂ t u 2 (x, t) dx ≤ 0 (3)
The proof is based on semigroup theory. We define the unbounded operator (see §4)

Ay(t) := η(t) ξ xx (t) + (η(t) -δ(η)) (4) with domain D(A) := = (ξ, η) ∈ H 2 ∩ H 1 0 ([0, π]) × H 1 0 ([0, π]) ; ∂ x ξ(π) + αη(π)
= 0 in the energy space H equipped with the natural product norm. Then A is m-dissipative and generates a continuous semigroup (T (t)) t≥0 on H. As previously mentioned, this paper parallels the paper presented by Van Horssen,W.T.(DHC 2003). By an appropriate interpretation, most of the theorems and their proofs in that case apply directly to the present work. One aim of this paper is contribute to the asymptotic methods for initial-boundary value problems for weakly nonlinear second order partial differential equation. In this paper to construct formal asymptotic approximations for the solution of the initial-boundary value problem a multiple time-scales perturbation in combination with eigenfunction expansion method will be used. The outline of this paper is as follows. In § 2 of this paper a boundedness property of the solution is studied. In § 3 we apply a two-timescales peturbation method in combination with eigenfunction expansion method to construct formal approximations for the solution of the initial-boundary value problem (1) and we analyze this solution. It will also be shown in §3 that for α > π 2 all solution tend to zero. In §4 the asymptotic validity of the constructed approximations will be studied.

The energy of the string

In this section we shall prove that the solution u(x, t) of problem (1) remains bounded if the initial energy is bounded. First, let us suppose that δ(∂ t u) := β∂ t u 3 is an increasing function. By multiplying the partial differential equation (1) with ∂ t u and integrating the so-obtained equation over x ∈ [0, π], we easly derived that

dE(t) dt = -α∂ t u 2 (π, t) + π 0 ∂ t u 2 (x, t) 1 -β∂ t u 2 (x, t) dx ≤ 0 (5)
where the energy of the solution is defined by

E(t) := 1 2 |∂ t u(x, t)| 2 L 2 ([0,π]) + |∂ x u(x, t)| 2 L 2 ([0,π]) (6) integrating over t ∈ [0, T ] E(t) + α T 0 ∂ t u 2 (π, ζ)dζ ≤ E(0) + 2 T 0 E k (ζ)dζ (7)
where

E k (t) = 1 2 π 0 ∂ t u 2 (x, t)dx (8) 
Using Gronwall inequality and the fact that δ(∂ t u) is increasing, we obtain the following energy estimate

E(t) ≤ E(0) exp(2 t) (9) 
So, u(x, t) is bounded if the initial energy is bounded. The contribution -α∂ t u 2 (π, t) above, is always nonpositive. Thus, the effect of -α∂ t u 2 (π, t) to ( 5) is to cause energy to decrease. In the case of ∂ t u 2 (π, t) ≡ 0 the expression under the integral sign has a self-regulation effect, we have

∂ t u 2 (x, t) 1 -β∂ t u 2 (x, t) :=        ≥ 0, if |∂ t u(x, t)| ≤ (β) -1 2 < 0, if |∂ t u(x, t)| > (β) -1 2 (10)
i.e., energy will increase when |∂ t u(x, t)| is small and energy will decrease when |∂ t u(x, t)| is large.

The construction of asymptotic approximations

In this section, an asymptotic approximation of the solution to the initial-boundary value problem (1) will be analyzed by using a two-timescale perturbation method. This approximation is a formal approximation, i.e, a function which satisfies the partial differential equation ( 1) and the initial conditions up to some order depending on the small parameter . Since an approximations in the form of an infinite series will be constructed, we require that the initial data ψ(x) and φ(x) are sufficiently smooth to get a convergent series representation for which summation and differentiation may be interchanged. The additional conditions on the initial values are

ψ(0) = ψ (π) = ψ (0) = ψ"(π) = φ(0) = φ (π) = φ (0), ψ ∈ C 3 ([0, π] , R) , φ ∈ C 2 ([0, π] , R)
In the sense of theorem 2.3.1 in (Horssen 1988) a function v(x, t) will be construcetd. That satisfies

u(0, t) = 0, t ≥ 0 (11) ∂ x u(π, t) = -α∂ t u(π, t), t ≥ 0 exactly and ∂ tt u -∂ xx u + 1 3 ∂ t u 3 -∂ t u = 0, 0 < x < π, t > 0 (12) ∂ t u(x, 0) = φ(x), 0 < x < π
up to order 2 . From theorems 2.2.1 and 2.3.1 in (Horssen 1988), it then follows

|u(x, t) -v(x, t)| = O(| |), 0 ≤ x ≤ π, 0 ≤ t ≤ C| | -1 (13)
in which C is a sufficiently small, positive constant independent of . Since the straightforward expansion

v(x, t) = u 0 (x, t) + u 1 (x, t) + 2 . . . (14) 
will cause secular terms. However, from the energy estimate in § 2 we know that secular terms can be avoided. For that reason we shall use a two-timescales perturbation method. Using such a method the function u(x, t) is supposed to be a function of x, t and τ, where τ = t. Now let

u(x, t) = v(x, t, τ; ) (15) 
By substituting (15) into the initial-boundary value problem (1) we have

∂ tt v -∂ xx v = -2 ∂ tτ v + ∂ t v + ∂ τ v - 1 3 (∂ t v + ∂ ττ v) 3 -3 ∂ ττ , 0 < x < π, t > 0 v(0, t, τ; ) = 0, t ≥ 0 (16) ∂ x v(π, t, τ; ) = -α(∂ t v(π, t, τ) + ∂ τ v(π, t)), t ≥ 0 v(x, 0, 0; ) = ψ(x), 0 < x < π v(x, 0, 0; ) + ∂ τ v(x, 0, 0; ) = φ(x), 0 < x < π
By expanding v into a power series with respet to around = 0

v(x, t, τ; ) = v 0 (x, t, τ) + v 1 (x, t, τ) + 2 . . . (17) 
We substitute Equation ( 17) into Equation ( 16) and collect equal powers in .

The O 0 -problem becomes:

∂ tt v 0 -∂ xx v 0 = 0, 0 < x < π, t > 0 v 0 (0, t, τ) = 0, t ≥ 0 (18) ∂ x v 0 (π, t, τ) = 0, t ≥ 0 v 0 (x, 0, 0) = ψ(x), 0 < x < π ∂ t v 0 (x, 0, 0) = φ(x), 0 < x < π
The O 1 -problem becomes:

∂ tt v 1 -∂ xx v 1 = ∂ t v 0 -2∂ tτ v 0 - 1 3 ∂ t v 3 0 , 0 < x < π, t > 0 v 1 (0, t, τ) = 0, t ≥ 0 (19) ∂ x v 1 (π, t, τ) = -α(∂ t v 0 (π, t, τ), t ≥ 0 v 1 (x, 0, 0; ) = 0, 0 < x < π ∂ t v 1 (x, 0, 0) + ∂ τ v 0 (x, 0, 0) = 0, 0 < x < π
The general solutiono of ( 18) is given by

v 0 (x, t, τ) = ∞ n=1 a n (τ) cos( λ n t) + b n (τ) sin( λ n t) sin ( λ n )x ( 20 
)
where λ n = (n ± 1 2 ) 2 . Using inital conditions of (18) we found that a n (0) and b n (0) have to satisfy

a n (0) = 2 π π 0 ψ(x) sin ( λ n )x dx n = 1, 2, 3 . . . (21) b n (0) = 2 π π 0 φ(x) sin ( λ n )x dx n = 1, 2, 3 . . . (22) 
In order to solve the initial-boundary value problem ( 19) it is convenient to make the boundary condition at x = π2 homogeneous by introducing follow transformation.

v 1 (x, t, τ) = ϑ(x, t, τ) -α f (x)∂ t v 0 (π, t, τ) (23) 
The initial-boundary value problem ( 19), then becomes

∂ tt ϑ -∂ xx ϑ = ∂ t v 0 -2∂ tτ v 0 - 1 3 ∂ t v 3 0 + α f (x)(∂ ttt v 0 (π, t, τ), 0 < x < π, t > 0 ϑ(0, t, τ) = 0, t ≥ 0 (24) ∂ x ϑ(π, t, τ) = 0, t ≥ 0 ϑ((x, 0, 0) = α f (x)∂ t v 0 (π, 0, 0), 0 < x < π ∂ t ϑ(x, 0, 0) + ∂ τ v 0 (x, 0, 0) = α f (x)∂ t v 0 (π, 0, 0), 0 < x < π
where the function f (x), defined on R, is given by

f (x) =        x, if 0 < x < π 0, otherwise (25) 
The function f (x) can then be written as a Fourier sine-series:

f (x) = 2 π ∞ n=1 (-1) n λ n sin( λ n x) (26) 
To solve the initial-boundary value problem(24) we shall use the eigenfunction expansion method. The Fourier series of ϑ(x, t, τ) is given by

ϑ(x, t, τ) = ∞ n=1 ϑ n (t, τ) sin ( λ n )x (27) 
The function ( 27) satisfies the boundary conditions at x = 0 and x = π. By substituting ( 27) into (24), we obtain

∂ tt ϑ -∂ xx ϑ = ∞ n=1 (∂ tt ϑ n (t, τ) + λ n ϑ n (t, τ)) sin ( λ n )x (28) 
After multiplying (24) with 2 π sin ( √ λ n )x and integration with respect to x from 0 to π, it follows that ϑ n (t, τ) has to satisfy

∂ tt ϑ n (t, τ) + λ n ϑ n (t, τ) = ∞ n=1 λ n 2a n (τ) -a n (τ) sin( λ n t) + b n (τ) -2b n (τ) cos( λ n t) - 1 4         ∞ k,l,m=1, k+l-m=n - ∞ k,l,m=1, k-l-m=n - 1 3 ∞ k,l,m=1, k+l+m=n         B k B l B m (29) + 2(-1) n πλ n ∞ k=1 (-1) k λ k -α λ k b k (τ) cos( λ k t) + α λ k a k (τ) sin( λ k t)
where

B n = √ λ n -a n (τ) sin( √ λ n t) + b n (τ)cos( √ λ n t) .
The second terms in the right-hand side of (29) contain products of trigonometric functions. These products of trigonometric functions can be equal to sin( √ λ n t) or cos( √ λ n t)

which are solutions of the homogeneous equation ∂ tt ϑ n (t, τ) + λ n ϑ n (t, τ) = 0. This will give us equations for a n (τ) and b n (τ) (see Appendix ). To determine the terms in the products of the trigonometric functions that give rise to secular terms the following Diophantine-like problems will be solved.

k + l -m = n, k -l -m = n, (30) 
k + l + m = n ± λ n = λ k + λ l -λ m ± λ n = λ k -λ l -λ m λ n = λ k + λ l + λ m
To solve this problem we use a technique similar to the one used in (KK 1970). By substituting (30). By squaring the so obtained equation two times, by rearrange terms and by using some algebraic manipulations we find that Diophantine-like problems (30) only have solution if

n = k + l -m, n = k -l -m, n = k + l + m into
• λ n = λ k + λ l -λ m , n = k + l -m (31) 
In this case the solution is given by l = m, n = k or m = k, n = l.

• λ n = λ k + λ l -λ m , n = k + l -m (32) 
In this case the solution is given by l = m, n = k.

• λ n = -λ k + λ l + λ m , n = k + l -m (33) 
In this case the solution is given by k = m, n = l.

In order to avoid secular terms a n (τ) and b n (τ) have to satisfy

2ã n (τ) -ãn (τ) = - 2 π αã n (τ) + 1 4        1 4 ãn (τ) ã2 n (τ) + b2 n (τ) -ãn (τ) ∞ k=1 ã2 k (τ) + b2 k (τ)        2 b n (τ) -bn (τ) = - 2 π α bn (τ) + 1 4        1 4 bn (τ) ã2 n (τ) + b2 n (τ) -bn (τ) ∞ k=1 ã2 k (τ) + b2 k (τ)        for n = 1, 2, 3 . . ., where ãn (τ) = √ λ n a n (τ), bn (τ) = √ λ n b n (τ). By substituting ãn (τ) = F n (τ) cos(ω n (τ)) (34) bn (τ) = F n (τ) sin(ω n (τ))
the secular terms in ϑ 1 can be avoided if F n (τ), ω n (τ) satisfy

dF n (τ) dτ = F n (τ) 2        1 - 2 π α + 1 16 F 2 n (τ) - 1 4 ∞ k=1 F 2 k (τ)        , n = 1, 2, . . . ( 35 
)
dω n (τ) dτ = 0, n = 1, 2, . . .

From (35) it is clear that dF n (τ) dτ < 0 for α > π 2 . So for all α > π 2 all solution of (1) will tend to zeros for increasing time t. From equation ( 35) we see that if we start with zero initial energy in the n-th mode, then will be no energy present up to O( ) on timescales of order -1 . This implies that truncation is allowed to those modes that have non-zero initial energy up to O( ). Below we perform a phase-plane analysis, when the energy is initially present in the first two modes, namely F 1 (0) 0, F 2 (0) 0 and F n≥3 (0) = 0. From (35) the equations for F 1 and F 2 are given by

dF 1 (0) dτ = F 1 (0) 2 1 - 2 π α - 3 16 F 2 1 (0) - 1 4 F 2 2 (0) , ( 36 
)
dF 2 (0) dτ = F 2 (0) 2 1 - 2 π α - 3 16 F 2 2 (0) - 1 4 F 2 1 (0) , (37) 
The critical points of the equation ( 36) and ( 37) are

The Behaviour of the critical points

α critical point Behaviour α > π 2 (0, 0) stable node 0 < α < π 2 (0, 0) unstable node 0, 4 3 3 π (π -2α) stable node 4 3 3 π (π -2α), 0 stable node 4 7 7 π (π -2α), 4 7 7 π (π -2α) saddle node
From the table above we can see that if damping parameter α is increasing then all critical points will move to the stable node. Also, for α > π 2 it can be seen that the string vibrations will finally come to rest up as t → ∞. For 0 < α < π 2 we see that the solution (usually) will finally tend to a single mode vibration as t → ∞ figure 1(b). For α > π 2 we see that the string vibrations will finally come to rest up to O( ) as t → ∞ figure 1(a). After removing secular terms in (29) we can determine ϑ n from (29).

ϑ n = G n (t, τ) + 2 π (-1) k+n λ n -λ k λ k λ n ∞ k=1, k n -α λ k b k (τ) cos( λ k t) + α λ k a k (τ) sin( λ k t) - 1 4         ∞ k,l,m=1, k+l-m=n - ∞ k,l,m=1, k-l-m=n - 1 3 ∞ k,l,m=1, k+l+m=n         S klm 4 i=1 cos T i klm t + δ i klm λ n -(T i klm ) 2 where G n (t, τ) = c n (τ) cos( λ n t) + d n (τ) sin( λ n t) (38) T 1 klm = λ k + λ l + λ m , T 2 klm = λ k + λ l -λ m , T 3 klm = T 2 klm , T 4 klm = λ k -λ l -λ m (39) S klm = λ k λ l λ m i=k,lm a 2 i + b 2 i , (40) 
δ 1 klm = π k + π l + π m , δ 2 klm = π k + π l -π m , δ 3 klm = δ 2 klm , δ 4 klm = π k -π l -π m (41)
where π n is defined as follows

π n =            arccos b n √ a 2 n +b 2 n , arcsin a n √ a 2 n +b 2 n , for a 2 n + b 2 n 0 0, for a 2 n + b 2 n = 0 (42)
So far we constructed a formal approximation ṽ(x, t) = v 0 (x, t, τ) + v 1 (x, t, τ) for u that satisfies the partial differential equation, the boundary conditions, and the initial values up to order 2 . In the next section we shall prove that the differences between the approximations and the exact solutions are of order on timescales of order | | -1 as → 0. 

On the validity of formal approximations

To show the asymptotic validity of formal approximation we shall use a semigroup approach. First, let us define

ξ(t) := u(•, t), η(t) := ∂ t u(•, t) (43) 
We also define some function space

H 1 0 = ξ ∈ H 1 [0, π] ; ξ(0) = 0 (44) 
H := = (ξ, η) ∈ H 1 0 ([0, π]) × L 2 ([0, π])
The space H is equipped with the inner product

, ˜ := π 0 ξ x ξx + η η dx •, • : H × H -→ R (45) 
Notice that this is essentially the total energy of the system. For that reason we call the space, the energy space. The space H together with the inner product •, • is a Hilbert space. Let us introduce a nonlinear operator

Ay(t) := η(t) ξ xx (t) + (η(t) -δ(η)) (46) 
where

ỹ(t) := ξ(t) η(t) (47) 
and

D(A) := = (ξ, η) ∈ H 2 ∩ H 1 0 ([0, π]) × H 1 0 ([0, π]) ; ∂ x ξ(π) + αη(π) = 0 (48)
In section §3 we have constructed the function ṽ(x, t) = v 0 (x, t, τ) + v 1 (x, t, τ)

The approximation ṽ(x, t) satisfies

∂ tt ṽ -∂ xx ṽ + 1 3 ∂ t ṽ3 -∂ t ṽ = 2 c 1 (x, t, ), 0 < x < π, t > 0 (49) ṽ(0, t) = 0, t ≥ 0 ∂ x ṽ(π, t) + α∂ t ṽ(π, t) = 2 c 2 (π, t, ), t ≥ 0 ṽ(x, 0) = ψ(x), 0 < x < π ∂ t ṽ(x, 0) -φ(x) = 2 ∂ τ ṽ1 (x, 0, 0), 0 < x < π where c 1 (x, t, ) := ∂ ττ v 0 + ∂ ττ v 1 +2∂ tτ v 1 (∂ t v 1 + ∂ τ v 0 ∂ τ v 1 )(∂ t v 2 0 -2 )+ (∂ τ v 0 +∂ t v 1 + ∂ τ v 1 ) 2 + 2 3 (∂ τ v 0 +∂ t v 1 + ∂ τ v 1 ) 3 (50) c 2 (t, ) := α(∂ τ v 0 (π, t) + ∂ τ v 1 (π, t) + ∂ t v 1 (π, t)) (51) 
Next, we move the term c 2 (x, t, ) in the boundary condition to the partial differential equation. For that purpose we use the following transformation: w(x, t) = ṽ(x, t)

+ sin(x)c 2 (t, ) (52) 
Next, the approximation w(x, t) satisfies

∂ tt w -∂ xx w + 1 3 ∂ t w3 -∂ t w = 2 c(∂ t w, x, t, ), 0 < x < π, t > 0 (53) w(0, t) = 0, t ≥ 0 ∂ x w(π, t) + α∂ t w(π, t) = 0 t ≥ 0 w(x, 0) = ψ(x) + 2 sin(x)c 2 (0, ), 0 < x < π ∂ t w(x, 0) -φ(x) = 2 sin(x)c 2 (0, ) + ∂ τ ṽ1 (x, 0, 0) , 0 < x < π where c(∂ t w, x, t, ) := c 1 (x, t, ) + sin(x) c 2 (t, ) + c 2 (t, ) (54) 
-(sin(x)c 2 (t, )) 1 -3∂ t w2 -3∂ t w sin(x)c 2 (t, ) + sin(x)c 2 (t, ) 2 
To prove the asymptotic validity of w(x, t, τ) we define some auxiliary functions. Setting

ξ(t) := w(•, t), η(t) := ∂ t w(•, t), (55) 
We obtain an equation of the form

d ỹ dt = Aỹ(t) + 2 Ψ(t), ỹ(0) = Θ (56) 
where ỹ(t) := ξ(t) η(t) (57)

Aỹ(t) := η(t) ξ xx (t) + 1 3 η(t) 3 -η(t) (58) 
Ψ(t) := 2 0 c(x, t, ) and Θ = ψ(x) φ(x) + 2 sin(x)c 2 (0, ) -ψ 2 (x) -ψ 3 (x) sin(x)c 2 (0, ) + ∂ τ ṽ1 (x, 0, 0) -φ 2 (x) -φ 3 (x)
,

In order to use the theory of semigroups we are interested in showing that the nonlinear operator A is the infinitesimal generator of a C 0 semigroup of operators in some appropriately chosen space of functions. It turns out that the right space is the Hilbert space H.

In the succeeding theorem, we show that, the operator A : D(A) ⊂ H -→ H defined by ( 58) generates a C 0 semigroup of contractions T (t) on the space H according to the Lummer Phillips Theorem. This requires to prove the m-dissipativity of A, namely A , ˜ ≤ 0 and the range condition R(λI -A) = H for some λ > 0. First, we have to show that for any (ξ, η) ∈ D(A), A , ˜ ≤ 0.

A , ˜ = π 0 η x ξx + (ξ xx + (η -δ(η))) η = -αη(π) 2 + π 0 (η -δ(η) η ≤ 0 (59)
and this shows that A is m-dissipative. Secondly for any (ξ * , η * ) ∈ H we need to find a unique (ξ, η) ∈ D(A) such that

A(ξ * , η * ) = (ξ, η) and (ξ, η) H ≤ C (ξ * , η * ) H (60) 
for some C > 0 independent on (ξ, η), (ξ * , η * ). Assuming ξ * ∈ H 2 ∩ H 1 0 ([0, π]) the equation to be solved is equivalent in solving the following boundary-value problem

Y = 1 1 + (Y xx -δ(Y) + F ) (61) 
Y(0) = 0, Y x (π) + αY x (π) = -ξ * x (π) where F = η * + ξ *
xx and Y = ξξ * . To show the solvability of the boundary value problem (61) a variational method will be used. Associated with (61) is the functional I : H 1 0 ([0, π]) → R defined by

I(Y) := π 0 1 2 Y 2 x + Y 2 -F Ydx + J(Y) (62) 
where 

J(Y) := π 0 f (Y)dx + α 2 αY(π) + 1 α ξ * x (π) 2 , f ( 
Then by taking derivative of I( Ȳ + tY) at t = 0 it follows that Ȳ ∈ H 2 ([0, π]) and satisfies

π 0 Ȳ -Ȳxx + δ( Ȳ) -f Ydx + Ȳx (π) + α Ȳx (π) + ξ * x (π) Y(π) (64) 
Using some work in (DHC 2003) one can prove that for any

x * n = (ξ * n , η * ) where ξ * n → ξ * on H 1 ([0, π]) there is a unique x n = (ξ n , η n ) ∈ D(A) for all n ∈ N such that (I -A)x * n = x n (65) It is not difficult to prove that ξ * n → ξ * ∈ H 2 ∩ H 1 0 ([0, π]) (66) η * n → η * ∈ H 1 0 ([0, π]) (67) 
where ξ * , η * satisfy the boundary conditions of the boundary value problem (61).

Theorem 2. Operator A : D(A) ⊂ H -→ H defined by (58) generates a C 0 semigroup of contractions T (t) on the space H.

From the convergence and differentiability properties of the infinite series representations for v 0 and v 1 it follows that Ψ and Θ -Θ 0 are continuously differentiable and uniformly bounded, so there are two constants C 1 and C 2 such that

Ψ H ≤ C 1 (68) Θ -Θ 0 H ≤ 2 C 2 (69)
The solution of the initial value problem ( 56) is given by ỹ

(t) = T (t) Θ + 2 t 0 T (t -τ)Ψ(τ)dτ (70) 
For 0 ≤ t ≤ C| | -1 (in which C is a positive constant independent of ) and 0 ≤ x ≤ π, we can now estimate the differences between the approximations and the exact solutions

y(t) -ỹ(t) H = T (t) Θ 0 -Θ -2 t 0 T (t -τ)Ψ(τ)dτ H ≤ ( C 2 + CC 1 ) (71) 
From ( 71) it follows that

y(t) -ỹ(t) = O( ), 0 ≤ x ≤ π, 0 ≤ t ≤ C| | -1 (72) 
implying that u(x, t) -(v 0 (x, t, τ) + v 1 (x, t, τ)) = O( ), u(x, t)v 0 (x, t, τ) = O( ), 0 ≤ x ≤ π, 0 ≤ t ≤ C| | -1 (73)

Appendix

In this Appendix we show that to find the equations for a n (τ); b n (τ), we have to determine the terms in (29) that give rise to secular terms in the approximations by solving the Diophantine like equations. To determine ϑ (and v 1 ) it is assumed that ϑ my be writen ϑ(x, t, τ) = for n = 1, 2, 3 . . ., where ãn (τ) = √ λ n a n (τ), bn (τ) = √ λ n b n (τ). We rewrite system (79) as follow

                     ãn (τ) dτ = ãn (τ) 2        1 - 2 π α + 1 4        1 4 ã2 n (τ) + b2 n (τ) - ∞ k=1 ã2 k (τ) + b2 k (τ)               bn (τ) dτ = bn (τ) 2        1 - 2 π α + 1 4        1 4 ã2 n (τ) + b2 n (τ) - ∞ k=1 ã2 k (τ) + b2 k (τ)               (80) 
To study system (80) in more detail we introduce polar coordinates as defined by (34), after some elementary calculations we obtain Equation ( 35).

Figure 1 :

 1 Figure 1: Qualitative behavior of the solution of the system (36) and (37) on F 1 -F 0 plane.

  Y) := s 0 δ(χ)dχ From continuity, convexity, and coercivity of I(Y) it follows that there exists a unique Ȳ ∈ H 1 0 ([0, π]) such that I( Ȳ) ≤ I(Y), ∀Y ∈ H 1 0 ([0, π]). Next we define Λ : R → R, Λ(t) := I( Ȳ + tY)

B

  t, τ) sin ( λ n )x (74) By substituting (74) and (20) into (24), we obtain∞ n=1 (∂ tt ϑ n (t, τ) + λ n ϑ n (t, τ)) sin ( λ n )x = ∞ n=1 λ n 2a n (τ)a n (τ) sin( λ n t) + b n (τ) -2b n (τ) cos( λ n t) k B l B m sin( λ k x) sin( λ l x) sin( λ m x) k λ k -α λ k b k (τ) cos( λ k t) + α λ k a k (τ) sin( λ k t) where B n = √ λ n -a n (τ) sin( √ λ n t) + b n (τ)cos( √ λ n t) .The second terms in the right-hand side of (75) can be written using the trigonometric formulasin( λ k x) sin( λ l x) sin( λ m x) = 1 4 sin( λ k + λ l + λ m )xsin( λ k + λ l -λ m )x sin( λ k -λ l + λ m )x + sin( λ k -λ l -λ m )x(79)

In his paper (DHC

2003) W.T.van Horssen also dealt with this problem, but on some points there are difference between his paper and our paper.

To solve the initial-boundary value problem(24) the eigenfunction expansion method will be used. Using such a method we have to pay attention to the non-classical boundary condition at x = π.

λ n 2a n (τ)a n (τ) sin( λ n t) + b n (τ) -2b n (τ) cos( λ n t)

After multiplying (76) with 2 π sin ( √ λ n )x , integrating with respect to x from 0 to π and using orthogonality properties of the sine-functions on [0, π], it follows that ϑ n (t, τ) has to satisfy

By symmetry it is clear that, the second, fourth and sixth sums in (77) are equal, and the third, fifth and seventh are also equal. Therefore (77) can be simplified to

The second terms in the right-hand side of (78) contain products of trigonometric functions. These products of trigonometric functions can be equal to sin( √ λ n t) or cos( √ λ n t) which are solutions of the homogeneous equation ∂ tt ϑ n (t, τ) + λ n ϑ n (t, τ) = 0. This will give us equations for a n (τ) and b n (τ).

(-1) k λ k -α λ k b k (τ) cos( λ k t) + α λ k a k (τ) sin( λ k t)

In order to avoid secular terms a n (τ) and b n (τ) have to satisfy