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Abstract

Pixel wise image labeling is an interesting and challeng-
ing problem with great significance in the computer vision
community. In order for a dense labeling algorithm to be
able to achieve accurate and precise results, it has to con-
sider the dependencies that exist in the joint space of both
the input and the output variables. An implicit approach
for modeling those dependencies is by training a deep neu-
ral network that, given as input an initial estimate of the
output labels and the input image, it will be able to predict
a new refined estimate for the labels. In this context, our
work is concerned with what is the optimal architecture for
performing the label improvement task. We argue that the
prior approaches of either directly predicting new label esti-
mates or predicting residual corrections w.r.t. the initial la-
bels with feed-forward deep network architectures are sub-
optimal. Instead, we propose a generic architecture that
decomposes the label improvement task to three steps: 1)
detecting the initial label estimates that are incorrect, 2) re-
placing the incorrect labels with new ones, and finally 3) re-
fining the renewed labels by predicting residual corrections
w.r.t. them. Furthermore, we explore and compare vari-
ous other alternative architectures that consist of the afore-
mentioned Detection, Replace, and Refine components. We
extensively evaluate the examined architectures in the chal-
lenging task of dense disparity estimation (stereo matching)
and we report both quantitative and qualitative results on
three different datasets. Finally, our dense disparity estima-
tion network that implements the proposed generic archi-
tecture, achieves state-of-the-art results in the KITTI 2015
test surpassing prior approaches by a significant margin.
We also provide preliminary results of our approach in two
semantic segmentation tasks, the Cityscapes and the ECP
facade parsing tasks, and we obtain some very encouraging
results.

1. Introduction
Dense image labeling is a problem of paramount impor-

tance in the computer vision community as it encompasses
many low or high level vision tasks including stereo match-
ing [42], optical flow [13], surface normals estimation [6],
and semantic segmentation [21], to mention a few charac-
teristic examples. In all these cases the goal is to assign
a discrete or continuous value for each pixel in the image.
Due to its importance, there is a vast amount of work on this
problem. Recent methods can be roughly divided into three
main classes of approaches.

The first class focuses on developing independent patch
classifiers/regressors [35, 33, 34, 21, 8, 24, 28] that would
directly predict the pixel label given as input an image patch
centered on it or, in cases like stereo matching and op-
tical flow, would be used for comparing patches between
different images in order to pick pairs of best matching
pixels [22, 41, 42, 43]. Deep convolutional neural net-
works (DCNNs) [19] have demonstrated excellent perfor-
mance in the aforementioned tasks thanks to their ability
to learn complex image representations by harnessing vast
amount of training data [17, 36, 11]. However, despite their
great representational power, just applying DCNNs on im-
age patches, does not capture the structure of output labels,
which is an important aspect of dense image labeling tasks.
For instance, independent feed-forward DCNN patch pre-
dictors do not take into consideration the correlations that
exist between nearby pixel labels. In addition, feed-forward
DCNNs have the extra disadvantages that they usually in-
volve multiple consecutive down-sampling operations (i.e.
max-pooling or strided convolutions) and that the top most
convolutional layers do not capture factors such as image
edges or other fine image structures. Both of the above
properties may prevent such methods from achieving pre-
cise and accurate results in dense image labeling tasks.

Another class of methods tries to model the joint depen-
dencies of both the input and output variables by use of
probabilistic graphical models such as Conditional Random
Fields (CRFs) [18]. In CRFs, the dense image labeling task
is performed through maximum a posteriori (MAP) infer-
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ence in a graphical model that incorporates prior knowledge
about the nature of the task in hand with pairwise edge po-
tential between the graph nodes of the label variables. For
example, in the case of semantic segmentation, those pair-
wise potentials enforce label consistency among similar or
spatially adjacent pixels. Thanks to their ability to jointly
model the input-output variables, CRFs have been exten-
sively used in pixel-wise image labelling tasks [16, 29]. Re-
cently, a number of methods has attempted to combine them
with the representational power of DCNNs by getting the
former (CRFs) to refine and disambiguate the predictions
of the later one [31, 2, 44, 3]. Particularly, in semantic seg-
mentation, DeepLab [2] uses a fully connected CRF to post-
process the pixel-wise predictions of a convolutional neural
network while in CRF-RNN [44], they unify the training of
both the DCNN and the CRF by formulating the approxi-
mate mean-field inference of fully connected CRFs as Re-
current Neural Networks (RNN). However, a major draw-
back of most CRF based approaches is that the pairwise po-
tentials have to be carefully hand designed in order to incor-
porate simple human assumptions about the structure of the
output labels Y and at the same time to allow for tractable
inference.

A third class of methods relies on a more data-driven ap-
proach for learning the joint space of both the input and the
output variables. More specifically, in this case a deep neu-
ral network gets as input an initial estimate of the output
labels and (optionally) the input image and it is trained to
predict a new refined estimate for the labels, thus being im-
plicitly enforced to learn the joint space of both the input
and the output variables. The network can learn either to
predict new estimates for all pixel labels (transform-based
approaches) [40, 10, 20], or alternatively, to predict residual
corrections w.r.t. the initial label estimates (residual-based
approaches) [1]. We will hereafter refer to these methods as
deep joint input-output models. These are, loosely speak-
ing, related to the CRF models in the sense that the deep
neural network is enforced to learn the joint dependencies
of both the input image and output labels, but with the ad-
vantage of being less constrained about the complexity of
the input-output dependencies that it can capture.

Our work belongs to this last category of dense image
labeling approaches, thus it is not constrained on the com-
plexity of the input-output dependencies that it can capture.
However, here we argue that prior approaches in this cate-
gory use a sub-optimal strategy. For instance, the transform-
based approaches (that always learn to predict new label es-
timates) often have to learn something more difficult than
necessary since they must often simply learn to operate as
identity transforms in case of correct initial labels, yielding
the same label in their output. On the other hand, for the
residual based approaches it is easier to learn to predict zero
residuals in the case of correct initial labels, but it is more

Figure 1: In this figure we visualize two different type of erro-
neously labeled image regions. On the left hand are the ground
truth labels and on the right hand are some initial label estimates.
With the red rectangle we indicate a dense concentration of ”hard”
mistakes in the initial labels that it is very difficult to be corrected
by a residual refinement component. Instead, the most suitable ac-
tion for such a region is to replace them by predicting entirely new
labels for them. In contrast, the blue eclipse indicates an image
region with ”soft” label mistakes. Those image regions are easier
to be handled by a residual refinement components.

difficult for them to refine “hard” mistakes that deviate a
lot from the initial labels (see figure 1). Due to the above
reasons, in our work we propose a deep joint input-output
model that decomposes the label estimation/refinement pro-
cess as a sequence of the following easier to execute op-
erations: 1) detection of errors in the input labels, 2) re-
placement of the erroneous labels with new ones, and finally
3) an overall refinement of all output labels in the form of
residual corrections. Each of the described operations in
our framework is executed by a different component im-
plemented with a deep neural network. Even more, those
components are embedded in a unified architecture that is
fully differentiable thus allowing for an end-to-end learning
of the dense image labeling task by only applying the ob-
jective function on the final output. As a result of this, we
are also able to explore a variety of novel deep network ar-
chitectures by considering different ways of combining the
above components, including the possibility of performing
the above operations iteratively, as it is done in [20], thus
enabling our model to correct even large, in area, regions
of incorrect labels. It is also worth noting that the error de-
tection component in the proposed architecture, by being
forced to detect the erroneous pixel labels (given both the
input and the initial estimates of the output labels), it im-
plicitly learns the joint structure of the input-output space,
which is an important requirement for a successful applica-
tion of any type of structured prediction model.

To summarize, our contributions are as follows:

• We propose a deep structured prediction framework
for the dense image labeling task, which we call De-
tect, Replace, Refine, that relies on three main building
blocks: 1) recognizing errors in the input label maps,
2) replacing the erroneous labels, and 3) performing a



final refinement of the output label map. We show that
all of the aforementioned steps can be embedded in a
unified deep neural network architecture that is end-to-
end trainable.

• In the context of the above framework, we also explore
a variety of other network architectures for deep joint
input-output models that result from utilizing different
combinations of the above building blocks.

• We implemented and evaluated our framework on the
disparity prediction (stereo matching) and semantic
segmentation tasks and we provide both qualitative and
quantitative evidence about the advantages of the pro-
posed approach.

• We show that our disparity estimation model that im-
plements the proposed Detect, Replace, Refine archi-
tecture achieves state of the art results in the KITTI
2015 test set outperforming all prior published work
by a significant margin.

The remainder of the paper is structured as follows: We
first describe our structured dense label prediction frame-
work in §2 and its implementation w.r.t. the dense disparity
estimation task (stereo matching) in §3. Then, we provide
experimental results for the disparity estimation and seman-
tic segmentation tasks in §4 and §5 respectively and we fi-
nally conclude the paper in §6.

2. Methodology
Let X = {xi}H×Wi=1 be the input image1 of size H ×W ,

where xi are the image pixels, and Y = {yi}H×Wi=1 be some
initial label estimates for this image, where yi is the label
for the i-th pixel. Our dense image labeling methodology
belongs on the broader category of approaches that consist
of a deep joint input-output model model F (.) that given as
input the image X and the initial labels Y , it learns to pre-
dict new, more accurate labels Y ′ = F (X,Y ). Note that
in this setting the initial labels Y could come from another
model F0(.) that depends only on the image X . Also, in
the general case, the pixel labels Y can be of either discrete
or continuous nature. In this work, we focus mostly on the
continuous case where greater variety of architectures can
be explored. Note that in the discrete case (e.g., in the se-
mantic segmentation task), in label map Y = {yi}H×Wi=1

the label yi of the i-th pixel, instead of being a continuous
value as in the continues case, is defined as a probability
vector with the probability distribution of each possible dis-
crete value. For example, in the semantic segmentation task,
yi is the probability distribution over the available semantic
categories for the i-th pixel.

1Here, for simplicity, we consider images defined on a 2D domain, but
our framework can be readily applied to images defined on any domain.

The crucial question is what is the most effective way
of implementing the deep joint input-output model F (.).
The two most common approaches in the literature in-
volve a feed-forward deep convolutional neural network,
FDCNN (.), that either directly predicts new labels Y ′ =
FDCNN (X,Y ) or it predicts the residual correction w.r.t.
the input labels: Y ′ = Y + FDCNN (X,Y ). We argue that
both of them are sub-optimal solutions for implementing
the F (.) model. Instead, in our work we opt for a decompo-
sition of the task of model F (.) (i.e. predicting new, more
accurate labels Y ′) in three different sub-tasks that are exe-
cuted in sequence.

In the remainder of this section, we first describe the pro-
posed architecture in §2.1, then we discuss the intuition be-
hind it and its advantages in §2.2, and finally we describe
other alternative architectures that we explored in §2.3.

2.1. Detect, Replace, Refine architecture

The generic dense image labeling architecture that we
propose decomposes task of the deep joint input-output
model in three sub-tasks each of them handled by a differ-
ent learn-able network component (see Figure 2). Those
network components are: the error detection component
Fe(.), the label replacement component Fu(.), and the la-
bel refinement component Fr(.). The sub-tasks that they
perform, are:

Detect: The first sub-task in our generic pipeline is to de-
tect the erroneously labeled pixels of Y by discovering
which pixel labels are inconsistent with the remain-
ing labels of Y and the input image X . This sub-
task is performed by the error detection component
Fe(.) that basically needs to yield a probability map
E = Fe(X,Y ) of the same size as the input labels
Y that will have high probabilities for the ”hard” mis-
takes in Y . These mistakes should ideally be forgotten
and replaced with entirely new label values in the pro-
cessing step that follows (see Figures 3a, 3b, and 3c).
As we will see below, the topology of our generic ar-
chitecture allows the error detection component Fe(.)
to learn its assigned task (i.e. detecting the incorrect
pixel labels) without explicitly being trained for this,
e.g., through the use of an auxiliary loss. The error
detection function Fe(.) can be implemented with any
deep (or shallow) neural network with the only con-
straint being that its output map E must take values in
the range [0, 1].

Replace: In the second sub-task, a new label field U is pro-
duced by the convex combination of the initial label
field Y and the output of the label replacement compo-
nent Fu(.): U = E�Fu(X,Y,E)+(1−E)�Y (see
Figures 3e and 3f). We observe that the error prob-
abilities generated by the error detection component
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Figure 2: In this figure we demonstrate the generic architecture that we propose for the dense image labeling task. In this architecture the
task of the deep joint input-output model is decomposed into three different sub-tasks that are: 1) detection of the erroneous initial labels
(based on an estimated error map E) , 2) replacement of the erroneous labels with new ones (leading to a renewed label map U ), and then
3) refinement Y ′ of the renewed label map. The illustrated example is coming from the dense disparity labeling task (stereo matching).

Fe(.) now act as gates that control which pixel labels
of Y will be forgotten and replaced by the outputs of
Fu(.), which will be all pixel labels that are assigned
high probability of being incorrect. In this context, the
task of the Replace component Fu(.) is to replace the
erroneous pixel labels with new ones that will be in
accordance both w.r.t. the input image X and w.r.t.
the non-erroneous labels of Y . Note that for this task
the Replace component Fu(.) gets as input also the er-
ror probability map E. The reason for doing this is to
help the Replace component to focus its attention only
on those image regions that their labels need to be re-
placed. The component Fu(.) can be implemented by
any neural network that its output has the same size as
the input labels Y .

Refine: The purpose of the erroneous label detection and
label replacement steps so far was to perform a crude
“fix” of the “hard” mistakes in the label map Y . In
contrast, the purpose of the current step is to do a final
refinement of the entire output label map U , which is
produced by the previous steps, in the form of residual
corrections: Y ′ = U + Fr(X,Y,E, U) (see Figures
3g and 3h). Intuitively, the purpose of this step is to
correct the “soft” mistakes of the label map U and to
better align the output labels Y ′ with the fine structures
in the image X . The Refine component Fr(.) can be
implemented by any neural network that its output has
the same size as the input labels U .

The above three steps can be applied for more than one iter-
ations which, as we will see later, allows our generic frame-
work to recover a good estimate of the ground truth labels
or, in worst case, to yield more plausible results even when
the initial labels Y are severely corrupted (see Figure 10 in
the experiments section §4.3.6).

To summarize, the workings of our dense labeling
generic architecture can be concisely described by the it-

erative application of the following three equations:

E = Fe(X,Y ), (1)

U = E � Fu(X,Y,E) + (1− E)� Y, (2)

Y ′ = U + Fr(X,Y,E, U). (3)

We observe that the above generic architecture is fully dif-
ferentiable as long as the function components Fe(.), Fu(.),
and Fr(.) are also differentiable. Due to this fact, the over-
all proposed architecture is end-to-end learnable by directly
applying an objective function (e.g. Absolute Difference or
Mean Square Error loss functions) on the final output label
maps Y ′.

2.2. Discussion

Role of the Detection component Fe(.) and its syn-
ergy with the Replace component Fu(.): The error detec-
tion component Fe(.) is a key element in our generic archi-
tecture and its purpose is to indicate which are the image
regions that their labels are incorrect. This type of infor-
mation is exploited in the next step of label replacement in
two ways. Firstly, the Replace component Fu(.) that gets as
input the error map E, which is generated by Fe(.), is able
to know which are the image regions that their labels needs
to be replaced and thus it is able to focus its attention only
on those image regions. At this point note that, in equation
7, the error maps E, apart from being given as input atten-
tion maps to the Replace component Fu(.), they also act as
gates that control which way the information will flow both
during the forward propagation and during the backward
propagation. Specifically, during the forward propagation
case, in the cases that the error map probabilities are either
0 or 1, it holds that:

U =

{
Y, if Fe(X,Y ) = 0,

Fu(X,Y,E), if Fe(X,Y ) = 1,
(4)



which basically means that the Replace component Fu(.)
is being utilized mainly for the erroneously labelled image
regions. Also, during the backward propagation, it is easy
to see that the gradients of the replace function w.r.t. the
loss L (in the cases that the error probabilities are either 0
or 1) are:

dL

dFu(.)
=

{
0, if Fe(X,Y ) = 0,
dL
dU , if Fe(X,Y ) = 1,

(5)

which means that gradients are back-propagated through the
Replace component Fu(.) only for the erroneously labelled
image regions. So, in a nutshell, during the learning pro-
cedure the Replace component Fu(.) is explicitly trained to
predict new values mainly for the erroneously labelled im-
age regions. The second advantage of giving the error maps
E as input to the Replace component Fu(.), is that this al-
lows the Replace component to know which image regions
contain “trusted” labels that can be used for providing in-
formation on how to fill the erroneously labelled regions.

Estimated error probability maps by the Detection
component Fe(.): Thanks to the topology of our generic
architecture, by optimizing the reconstruction of the ground
truth labels Ŷ , the error detection component Fe(.) implic-
itly learns to act as a joint probability model for patches
of X and Y centered on each pixel of the input image, as-
signing a high probability of error for patches that do not
appear to belong to the joint input-output space (X,Y ). In
Figures 3c and 3d we visualize the estimated by the Detec-
tion component Fe(.) error maps and the ground truth error
maps in the context of the disparity estimation task (more
visualizations are provided in Figure 6). It is interesting to
note that the estimated error probability maps are very sim-
ilar to the ground truth error maps despite the fact that we
are not explicitly enforcing this behaviour, e.g., through the
use of an auxiliary loss.

Error detection component and Highway Networks:
Note that the way the Detection component Fe(.) and Re-
place component Fu(.) interact bears some resemblance to
the basic building blocks of the Highway Networks [37] that
are being utilized for training extremely deep neural net-
work architectures. Briefly, each highway building block
gets as input some hidden feature maps and then predicts
transform gates that control which feature values will be
carried on the next layer as is and which will be trans-
formed by a non-linear function. There are however some
important differences. For instance, in our case the error
gate prediction and the label replacement steps are exe-
cuted in sequence with the latter one getting as input the
output of the former one. Instead, in Highway Networks
the gate prediction and the non-linear transform of the in-
put feature maps are performed in parallel. Furthermore, in
Highway Networks the components of each building block
are implemented by simple affine transforms followed by

non-linearities and the purpose is to have multiple building
blocks stacked one on top of the other in order to learn ex-
tremely deep image representations. In contrast, the compo-
nents of our generic architecture are them selves deep neural
networks and the purpose is to learn to reconstruct the input
labels Y .

Two stage refinement approach: Another key element
in our architecture is that the step of predicting new, more
accurate labels Y ′, given the initial labels Y , is broken in
two stages. The first stage is handled by the error detec-
tion component Fe(.) and the label replacement component
Fu(.). Their job is to correct only the ”hard” mistakes of the
input labels Y . They are not meant to correct ”soft” mis-
takes (i.e. errors in the label values of small magnitude). In
order to learn to correct those ”soft” mistakes, it is more ap-
propriate to use a component that yields residual corrections
w.r.t. its input. This is the purpose of our Refine component
Fr(.), in the second stage of our architecture, from which
we expect to improve the ”details” of the output labels U
by better aligning them with the fine structures of the input
images. This separation of roles between the first and the
second refinement stages (i.e. coarse refinement and then
fine-detail refinement) has the potential advantage, which
is exploited in our work, to perform the actions of the first
stage in lower resolution thus speeding up the processing
and reducing the memory footprint of the network. Also,
the end-to-end training procedure allows the components in
the first stage (i.e. Fe(.) and Fu(.)) to make mistakes as long
as those are corrected by the second stage. This aspect of
our architecture has the advantage that each component can
more efficiently exploit its available capacity.

2.3. Explored architectures

In order to evaluate the proposed architecture we also
devised and tested various others architectures that consist
of the same core components as those that we propose. In
total, the architectures that are explored in our work are:

Detect + Replace + Refine architecture: This is the ar-
chitecture that we proposed in section 2.1.

Replace baseline architecture: In this case the model
directly replaces the old labels with new ones: Y ′ =
Fu(X,Y ).

Refine baseline architecture: In this case the model
predicts residual corrections w.r.t. the input labels: Y ′ =
Y + Fr(X,Y ).

Replace + Refine architecture: Here the model first
replaces the entire label map Y with new values U =
Fu(X,Y ) and then residual corrections are predicted w.r.t.
the updated values U , Y ′ = U + Fr(X,Y, U).

Detect + Replace architecture: Here the model first
detects errors on the input label maps E = Fe(X,Y )
and then replace those erroneous pixel labels Y ′ = E �
Fu(X,Y,E) + (1− E)� Y .



(a) Image X (b) Initial labels Y (c) Predicted error map E (d) Ground truth errors

(e) Fu(.) predictions (f) Renewed labels U (g) Fr(.) residuals (h) Final labels Y ′

Figure 3: Here we provide an example that illustrates the functions performed by the Detect, Replace, and Refine steps in our proposed
architecture. The example is coming from the dense disparity labeling task (stereo matching). Specifically, subfigures (a), (b), and (c)
depict respectively the input image X , the initial disparity label estimates Y , and the error probability map E that the detection component
Fe(.) yields for the initial labels Y . Notice the high similarity of map E with the ground truth error map of the initial labels Y depicted
in subfigure (d), where the ground truth error map has been computed by thresholding the absolute difference of the initial labels Y from
the ground truth labels with a threshold of 3 pixels (red are the erroneous pixel labels). In subfigure (e) we depict the label predictions of
the Replace component Fu(.). For visualization purposes we only depict the Fu(.) pixel predictions that will replace the initial labels that
are incorrect (according to the detection component) by drawing the remaining ones (i.e. those that their error probability is less than 0.5)
with black color. In subfigure (f) we depict the renewed labels U = E � Fu(X,Y,E) + (1 − E) � Y . In subfigure (g) we depict the
residual corrections that the Refine component Fr(.) yields for the renewed labels U . Finally, in the last subfigure (h) we depict the final
label estimates Y ′ = U + Fr(X,Y,E, U) that the Refine step yields.

Detect + Refine architecture: In this case, after the de-
tection of the errors E = Fe(X,Y ), the erroneous pixel
labels are masked out by setting them to the mean label
value lmu, U = E � lmu + (1 − E) � Y . Then the
masked label maps are given as input to a residual refine-
ment model Y ′ = U + Fr(X,Y,E, U). Note that this ar-
chitecture can also be considered as a specific instance of
the general Detect + Replace + Refine architecture where
the Replace component Fu(.) does not have any learnable
parameters and constantly returns the mean label value, i.e.,
Fu(.) = lmu.

Parallel architecture: Here, after the detection of the er-
rors, the erroneous labels are replaced by the Replace com-
ponent Fu(.) while the rest labels are refined by the Re-
fine component Fr(.). More specifically, the operations per-
formed by this architecture are described by the following
equations:

E = Fe(X,Y ), (6)

U1 = Fu(X,Y,E), U2 = Y + Fr(X,Y,E), (7)

Y ′ = E � U1 + (1− E)� U2. (8)

Basically, in this architecture the components Fu(.) and
Fr(.) are applied in parallel instead of the sequential topol-
ogy that is chosen in the Detect + Replace + Refine archi-
tecture.

Detect + Replace + Refine×T : This is basically the De-
tect + Replace + Refine architecture but applied iteratively

for T iterations. Note that the model implementing this ar-
chitecture is trained in a multi-iteration manner.

X-Blind Detect + Replace + Refine architecture: This
is a ”blind” w.r.t. the image X version of the Detect + Re-
place + Refine architecture. Specifically, the ”X-Blind” ar-
chitecture is exactly the same as the proposed Detect + Re-
place + Refine architecture with the only difference being
that it gets as input only the initial labels Y and not the im-
age X (i.e. none of the Fe(.), Fu(.), and Fr(.) components
depends on the image X). Hence, the model implemented
by the ”X-Blind” architecture must learn to reconstruct the
ground truth labels by only ”seeing” a corrupted version of
them.

3. Detect, Replace, Refine for disparity estima-
tion

In order to evaluate the proposed dense image labeling
architecture, as well as the other alternative architectures
that are explored in our work, we use the dense disparity es-
timation (stereo matching) task, according to which, given
a left and right image, one needs to assign to each pixel
of the left image a continuous label that indicates its hor-
izontal displacement in the right image (disparity). Such
a task forms a very interesting and challenging testbed for
the evaluation of dense labeling algorithms since it requires
dealing with several challenges such as accurately preserv-
ing disparity discontinuities across object boundaries, deal-



ing with occlusions, as well as recovering the fine details
of disparity maps. At the same time it has many practical
applications on various autonomous driving and robot nav-
igation or grasping tasks.

3.1. Initial disparities

Generating initial disparity field: In all the examined
architectures, in order to generate the initial disparity la-
bels Y we used the deep patch matching approach that was
proposed by W. Luo et al. [22] and specifically their archi-
tecture with id 37. We then train our models to reconstruct
the ground truth labels given as input only the left image X
and the initial disparity labels Y . We would like to stress
out that the right image of the stereo pair is not provided to
our models. This practically means that the trained models
cannot rely only on the image evidence for performing the
dense disparity labelling task – since disparity prediction
from a single image is an ill-posed problem – but they have
to learn the joint space of both input X and output labels Y
in order to perform the task.

Image & disparity field normalization: Before we
feed an image and its initial disparity field to any of our ex-
amined architectures, we normalize them to zero mean and
unit variance (i.e. mean subtraction and division by the stan-
dard deviation). The mean and standard deviation values of
the RGB colors and disparity labels are computed on the
entire training set. The disparity target labels are also nor-
malized with the same mean and standard deviation values
and during inference the normalization effect is inverted on
the disparity fields predicted by the examined architectures.

3.2. Deep neural network architectures

Each component of our generic architecture can be im-
plemented by a deep neural network. For our disparity es-
timation experiments we chose the following implementa-
tions:

Error detection component: It is implemented by 5
convolutional layers of which the last one yields the error
probability map E. All the convolutional layers, apart from
the last one, are followed by batch normalization [14] plus
ReLU [23] units. Instead, the last convolutional layer is
followed by a sigmoid unit. The first two convolutions are
followed by max-pooling layers of kernel size 2 that in total
reduce the input resolution by a factor of 4. To compensate,
a bi-linear up-sampling layer is placed on top of the last
convolution layer in order the output probability map E to
have the same resolution as the input image. The number of
output feature planes of each of the 5 convolutional layers
is 32, 64, 128, 256, and 1 correspondingly.

Replace component: It is implemented with a convo-
lutional architecture that first ”compress” the resolution of
the feature maps to 1

64 of the input resolution and then ”de-
compress” the resolution to 1

4 of the input resolution. For

its implementation we follow the guidelines of A. Newel et
al. [27] which are to use residual blocks [11] on each layer
and parametrized (by residual blocks) skip connection be-
tween the symmetric layers in the ”compressing” and the
”decompressing” parts of the architecture. The ”compress-
ing” part of the architecture uses max-pooling layers with
kernel size 2 to down-sample the resolution while the ”de-
compressing” part uses nearest-neighbor up-sampling (by a
factor of 2). We refer for more details to A. Newel et al.
[27]. In our case, during the ”compression” part there are in
total 6 down-sampling convolutional blocks and during the
”decompression” part 4 up-sampling convolutional blocks.
The number of output feature planes in the first layer is 32
and each time the resolution is down-sampled the number
of feature planes is increased by a factor of 2. For GPU
memory efficiency reasons, we do not allow the number of
output feature planes of any layer to exceed that of 512.
During the ”decompression” part, each time we up-sample
the resolution we also decrease by a factor of 2 the number
of feature planes. The last convolution layer yields a sin-
gle feature plane with the new disparity labels (without any
non-linearity). As already explained, during the ”decom-
pressing” part the resolution is increased till that of 1

4 of the
input resolution. The reason for early-stopping the ”decom-
pression” is that the Replace component is needed to only
perform crude ”fixes” of the initial labels and thus further
”decompression” steps are not necessary. Before the dis-
parity labels are fed to the next processing steps, bi-linear
up-sampling by a factor of 4 (without any learn-able param-
eter) is being used in order to restore the resolution to that
of the input resolution.

Refine component: It follows the same architecture as
the replace component with the exception that during the
”compressing” part the resolution of the feature maps is re-
duced till 1

16 of the input resolution and then during the ”de-
compressing” part the resolution is restored to that of the
input resolution.

Alternative architectures: In case the alternative archi-
tectures have missing components, then the number of lay-
ers and/or the number of feature planes per layer of the re-
maining components is being increased such that the total
capacity (i.e. number of learn-able parameters) remains the
same. For the architectures that include only the Replace or
Refine components (i.e. Replace, Refine, Detect+Replace,
and Detect+Refine architectures) the ”compression” - ”de-
compression” architecture of this component ”compresses”
the resolution till 1

64 of the input resolution and then ”de-
compresses” it to the same resolution as the input image.

Weight initialization: In order to initialize the weights
of each convolutional layer we use the initialization scheme
proposed by K. He et al. [12].



3.3. Training details

We used the L1 loss as objective function and the net-
works were optimized using the Adam [15] method with
β1 = 0.9 and β2 = 0.99. The learning rate lr was set to
10−3 and was decreased after 20 epochs to 10−4 and then
after 15 epochs to 10−5. We then continued optimizing for
another 5 epochs. Each epoch lasted approximately 2000
batch iterations where each batch consisted of 24 training
samples. Each training sample consists of patches with spa-
tial size 256× 256 and 4 channels (3 RGB color channels +
1 initial disparity label channel). The patches are generated
by randomly cropping with uniform distribution an image
and its corresponding initial disparity labels.

Augmentation: During training we used horizontal flip
augmentation and chromatic transformations such as color,
contrast, and brightness transformations.

4. Experimental results on disparity estimation
In this section we present an exhaustive experimental

evaluation of the proposed architecture as well as of the
other explored architectures in the task of dense disparity
estimation. Specifically, we first describe the evaluation set-
tings used in our experiments (section 4.1), then we report
detailed quantitative results w.r.t. the examined architec-
tures (section 4.2), and finally we provide qualitative results
of the proposed Detect, Replace, Refine architecture and all
of its components, trying in this way to more clearly illus-
trate their role (section 4.3).

4.1. Experimental settings

Training set: In order to train the explored architectures
we used the large scale synthetic dataset for disparity esti-
mation that was recently introduced by N. Mayer et al. [24].
We call this dataset the Synthetic dataset. It consists of three
different type of synthetic image sequences and includes
around 34k stereo images. Also, we enriched this training
set with 160 images from the training set of the KITTI 2015
dataset [25, 26]2.

Evaluation sets: We evaluated our architectures on three
different datasets. On 2000 images from the test split of
the Synthetic dataset, on 40 validation images coming from
KITTI 2015 training dataset, and on 15 images from the
training set of the Middlebury dataset [30]. Prior to evaluat-
ing the explored architectures in the KITTI 2015 validation
set, we fine-tuned the models that implement them only on
the 160 image of the KITTI 2015 training split. In this case,
we start training for 20 epochs with a learning rate of 10−4,
we then reduce the learning rate to 10−5 and continue train-
ing for 15 epochs, and then reduce again the learning rate

2The entire training set of KITTI 2015 includes 200 images. In our
case we split those 200 images in 160 images that were used for training
purposes and 40 images that were used for validation purposes

> 2 pixel > 3 pixel > 4 pixel > 5 pixel EPE
Architectures All All All All All
Initial labels Y 24.3175 22.9004 21.9140 21.1680 12.0218

Single-iteration results
Replace (baseline) 12.8007 10.4512 8.8966 7.7467 2.4456
Refine (baseline) 14.5996 12.2246 10.3046 8.7873 2.1235
Replace + Refine 11.1152 9.1821 7.8430 6.8550 2.2356
Detect + Replace 11.6970 9.2419 7.6812 6.6018 2.1504
Detect + Refine 10.5309 8.5565 7.2154 6.2186 1.8210
Parallel 11.0146 8.9261 7.5029 6.4742 2.0241
Detect + Replace + Refine 9.5981 7.9764 6.7895 5.9074 1.8569

Multi-iteration results
Detect + Replace + Refine x2 8.8411 7.2187 6.0987 5.2853 1.6899

Table 1: Stereo matching results on the Synthetic dataset.

to 10−6 and continue training for 5 more epochs (in total 40
epochs). The epoch size is set to 400 batch iterations.

Evaluation metrics: For evaluation we used the end-
point-error (EPE), which is the averaged euclidean dis-
tance from the ground truth disparity, and the percentage of
disparity estimates that their absolute difference from the
ground truth disparity is more than t pixels (> t pixel).
Those metrics are reported for the non-occluded pixels
(Non-Occ), all the pixels (All), and only the occluded pixels
(Occ).

4.2. Quantitative results

4.2.1 Disparity estimation performance

In Tables 1, 2, and 3 we report the stereo matching perfor-
mance of the examined architectures in the Synthetic, Mid-
dlebury, and KITTI 2015 evaluation sets correspondingly.

Single-iteration results: We first evaluate all the exam-
ined architectures when they are applied for a single iter-
ation. We observe that all of them are able to improve
the initial label estimates Y . However, they do not all of
them achieve it with the same success. For instance, the
baseline models Replace and Refine tend to be less accu-
rate than the rest models. Compared to them, the Detect
+ Replace and the Detect + Refine architectures perform
considerably better in two out of three datasets, the Syn-
thetic and the Middlebury datasets. This improvement can
only be attributed to the error detection step, which is what
it distinguishes them from the baselines, and indicates the
importance of having an error detection component in the
dense labelling task. Overall, the best single-iteration per-
formance is achieved by the Detect + Replace + Refine ar-
chitecture that we propose in this paper and combines both
the merits of the error detection component and the two
stage refinement strategy. Compared to it, the Parallel ar-
chitecture has considerably worse performance, which indi-
cates that the sequential order in the proposed architecture
is important for achieving accurate results.

Multi-iteration results: We also evaluated our best per-
forming architecture, which is the Detect + Replace + Re-
fine architecture that we propose, in the multiple iteration
case. Specifically, the last entry Detect + Replace + Refine



> 2 pixel > 3 pixel > 4 pixel > 5 pixel EPE
Architectures Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ
Initial labels Y 18.243 26.714 86.125 15.664 23.986 82.330 14.208 22.282 78.758 13.237 21.044 75.579 6.058 8.709 25.598

Single-iteration results
Replace (baseline) 15.767 21.089 57.197 12.323 16.793 46.303 10.312 14.020 37.922 9.032 12.147 31.770 2.731 3.221 5.818
Refine (baseline) 13.981 19.742 58.039 11.110 16.042 47.732 9.266 13.406 39.218 7.889 11.392 32.467 1.953 2.551 5.665
Replace + Refine 14.262 19.257 52.036 11.297 15.701 43.905 9.552 13.459 37.910 8.408 11.891 33.125 2.292 2.908 6.216
Detect + Replace 15.368 20.984 58.745 11.243 16.169 48.568 8.957 13.176 40.663 7.571 11.179 34.482 2.013 2.676 6.462
Detect + Refine 13.732 19.375 56.383 10.718 15.552 46.281 8.893 12.975 38.197 7.600 11.012 31.478 2.105 2.626 5.389
Parallel 14.917 20.345 57.459 11.363 15.907 46.221 9.234 12.941 37.218 7.840 10.940 30.854 2.012 2.552 5.607
Detect + Replace + Refine 12.845 17.825 50.407 10.096 14.379 41.704 8.285 11.957 34.801 7.057 10.253 29.560 1.774 2.368 5.457

Multi-iteration results
Detect + Replace + Refine x2 11.529 16.414 47.922 8.757 12.874 37.977 6.997 10.482 30.634 5.911 8.916 25.514 1.789 2.321 4.971

Table 2: Stereo matching results on Middlebury.

> 2 pixel > 3 pixel > 4 pixel > 5 pixel EPE
Architectures Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ
Initial labels Y 8.831 10.649 98.098 6.412 8.253 96.559 5.222 7.059 94.742 4.514 6.339 93.139 1.700 2.457 31.214

Single-iteration results
Replace (Baseline) 4.997 5.668 37.327 3.329 3.888 27.890 2.452 2.892 19.643 1.924 2.292 15.226 0.858 0.923 3.165
Refine (Baseline) 4.429 5.165 33.028 3.075 3.714 25.107 2.370 2.924 19.610 1.933 2.404 15.978 0.867 0.953 3.384
Replace + Refine 3.963 4.529 27.411 2.712 3.209 21.465 2.082 2.507 16.481 1.735 2.098 13.611 0.802 0.865 2.859
Detect + Replace 5.126 5.751 35.554 3.469 4.005 27.656 2.517 2.953 20.519 1.911 2.269 15.947 0.886 0.943 3.108
Detect + Refine 4.482 5.169 34.992 3.054 3.634 26.453 2.328 2.799 19.004 1.865 2.258 14.686 0.863 0.926 2.952
Parallel 5.239 5.952 38.392 3.530 4.139 29.436 2.522 3.017 21.208 1.943 2.338 15.748 0.904 0.962 3.095
Detect + Replace + Refine 3.919 4.610 33.947 2.708 3.294 25.697 2.082 2.570 19.123 1.699 2.112 15.140 0.790 0.858 3.056

Multi-iteration results
Detect + Replace + Refine x2 3.685 4.277 28.164 2.577 3.075 20.762 2.001 2.424 16.086 1.652 2.004 13.056 0.779 0.835 2.723

Table 3: Stereo matching results on KITTI 2015 validation set.

x2 in Tables 1, 2, and 3 indicates the results of the proposed
architecture for 2 iterations and we observe that it further
improves the performance w.r.t. the single iteration case.
For more than 2 iterations we did not see any further im-
provement and for this reason we chose not to include those
results. Note that in order to train this two iterations model,
we first pre-train the single iteration version and then fine-
tune the two iterations version by adding the generated dis-
parity labels from the first iteration in the training set.

4.2.2 Label prediction accuracy Vs initial labels qual-
ity

In Figure 4 we evaluate the ability of each architecture to
predict the correct disparity label for each pixel x as a func-
tion of the ”quality” of the initial disparity labels in a w×w
neighborhood of that pixel. To that end, we plot for each ar-
chitecture the percentage of erroneously estimated disparity
labels as a function of the percentage of erroneous initial
disparity labels that exist in the patch of size w × w cen-
tered on the pixel of interest x. In our case, the size of the
neighborhood w is set to 65. An estimated pixel label y′ for
the pixel x is considered erroneous if its absolute difference
from the ground truth label is more than τ0 = 3 pixels. For
the initial disparity labels in the patch centered on x, the
threshold τ of considering them incorrect is set to τ = 3
(Fig. 4.a), τ = 5 (Fig. 4.b), τ = 8 (Fig. 4.c), or τ = 15
(Fig. 4.d). We make the following observations (that are
more clearly illustrated from sub-figures 4.c and 4.d):

• In the case of the Replace and Refine architectures,
when the percentage of erroneous initial labels is low
(e.g. less than 10%) then the Refine architecture (which
predicts residual corrections) is considerably more ac-
curate than the Replace architecture (which directly
predicts new label values). However, when the per-
centage of erroneous initial labels is high (e.g. more
than 20%) then the Replace architecture is more ac-
curate than the Refine one. This observation supports
our argument that residual corrections are more suit-
able for “soft” mistakes in the initial labels while pre-
dicting an entirely new label value is a better choice
for the “hard” mistakes.

• By introducing the error detection component, both the
Refine and the Replace architectures manage to signifi-
cantly improve their predictions. In the Detect+Refine
case, the improvement is due to the fact that the er-
ror detection component sets the “hard” mistakes to
the mean label values (see the description of the De-
tect+Refine architecture in the main paper) thus allow-
ing the Refine component to ignore the values of the
“hard” mistakes of the initial labels and instead make
residual predictions w.r.t. the mean label values (these
mean values are fixed and known in advance and thus
it is easier for the network to learn to make resid-
ual predictions w.r.t. them). In the case of the De-
tect+Replace architecture, the error detection compo-
nent “dictates” the Replace component to predict new



(a) Error threshold τ = 3 pixels (b) Error threshold τ = 5 pixels

(c) Error threshold τ = 8 pixels (d) Error threshold τ = 15 pixels

Figure 4: Percentage of erroneously estimated disparity labels for a pixel x as a function of the percentage of erroneous initial disparity
labels in the patch of size w×w centered on the pixel of interest x. The patch size w is set to 65. An estimated pixel label y′ is considered
erroneous if its absolute difference from the ground truth label is more than τ0 = 3 pixels. For the initial disparity labels in each patch, the
threshold τ of considering them incorrect is set to (a) 3 pixels, (b) 5 pixels, (c) 8 pixels, and (d) 15 pixels. The evaluation is performed on
50 images of the Synthetic test set.

label values for the incorrect initial labels while allow-
ing the propagation of the correct ones in the output.

• Finally, the best ”label prediction accuracy Vs initial
labels quality” behavior is achieved by the proposed
Detect + Replace + Refine architecture, which effi-
ciently combines the error detection component with
the two-stage label improvement approach. Interest-
ingly, the improvement margins w.r.t. the rest archi-
tectures is increased as the quality of the initial labels
is decreased.

4.2.3 KITTI 2015 test set results

We submitted our best solution, which is the proposed De-
tect + Replace + Refine architecture applied for two iter-
ations, on the KITTI 2015 test set evaluation server and
we achieved state-of-the-art results in the main evaluation
metric, D1-all, surpassing all prior work by a significant

margin. The results of our submission, as well as of other
competing methods, are reported in Table 43. Note that our
improvement w.r.t. the best prior approach corresponds to
a more than 10% relative reduction of the error rate. Our
total execution time is 0.4 secs, of which around 0.37 secs
is used by the patch matching algorithm for generating the
initial disparity labels and the rest 0.03 by our Detect + Re-
place + Refine x2 architecture (measured in a Titan X GPU).
For this submission, after having train the Detect + Replace
+ Refine x2 model on the training split (160 images), we
further fine-tuned it on both the training and the validation
splits (in which we divided the 200 images of KITTI 2015
training dataset).

3The link to our KITTI 2015 submission that contains more thorough
test set results – both qualitative and quantitative – is:
http://www.cvlibs.net/datasets/kitti/eval_
scene_flow_detail.php?benchmark=stereo&result=
365eacbf1effa761ed07aaa674a9b61c60fe9300

http://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=365eacbf1effa761ed07aaa674a9b61c60fe9300
http://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=365eacbf1effa761ed07aaa674a9b61c60fe9300
http://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=365eacbf1effa761ed07aaa674a9b61c60fe9300


All / All All / Est Noc / All Noc / Est Runtime
Architectures D1-bg D1-fg D1-all D1-bg D1-fg D1-all D1-bg D1-fg D1-all D1-bg D1-fg D1-all (secs)
Ours 2.58 6.04 3.16 2.58 6.04 3.16 2.34 4.87 2.76 2.34 4.87 2.76 0.4
DispNetC [24] 4.32 4.41 4.34 4.32 4.41 4.34 4.11 3.72 4.05 4.11 3.72 4.05 0.06
PBCB [32] 2.58 8.74 3.61 2.58 8.74 3.6 2.27 7.71 3.17 2.27 7.71 3.17 68
Displets v2 [9] 3.00 5.56 3.43 3.00 5.56 3.43 2.73 4.95 3.09 2.73 4.95 3.09 265
MC-CNN [43] 2.89 8.88 3.89 2.89 8.88 3.88 2.48 7.64 3.33 2.48 7.64 3.33 67
SPS-St [39] 3.84 12.67 5.31 3.84 12.67 5.31 3.50 11.61 4.84 3.50 11.61 4.84 2
MBM [7] 4.69 13.05 6.08 4.69 13.05 6.08 4.33 12.12 5.61 4.33 12.12 5.61 0.13

Table 4: Stereo matching results on KITTI 2015 test set.

4.2.4 ”X-Blind” Detect + Replace + Refine architecture

Here we evaluate the ”X-Blind” architecture that, as already
explained, it is exactly the same as the proposed Detect +
Replace + Refine architecture with the only difference be-
ing that as input gets only the initial labels Y and not the
image X . The purpose of evaluating such an architecture
is not to examine a competitive variant of the main Detect
+ Replace + Refine architecture, but rather to explore the
capabilities of the latter one in such a scenario. In Table 5
we provide the stereo matching results of the ”X-Blind” ar-
chitecture. We observe that it might not be able to com-
pete the original Detect + Replace + Refine architecture but
it still can significantly improve the initial disparity label
estimates. In Figure 5 we illustrate some disparity predic-
tion examples generated by the ”X-Blind” architecture. We
observe that the ”X-Blind” architecture manages to consid-
erably improve the quality of the initial disparity label esti-
mates, however, since it does not have the imageX to guide
it, it is not able to accurately reconstruct the disparity field
on the borders of the objects.

4.3. Qualitative results

This section includes qualitative examples that help illus-
trating the role of the various components of our proposed
architecture.

4.3.1 Error Detection step

In Figure 6 we provide additional examples of error proba-
bility mapsE (that the error detection component Fe(X,Y )
generated w.r.t. the initial labels Y ) and compare them with
the ground truth error maps of the initial labels. The ground
truth error maps are computed by thresholding the absolute
difference of the initial labels Y from the ground truth la-
bels with a threshold of 3 pixels (red are the erroneous pixel
labels in the figure). Note that this is the logic that is usually
followed in the disparity task for considering a pixel label
erroneous. We observe that, despite the fact the error de-
tection component Fe(.) is not explicitly trained to produce
such ground truth error maps, its predictions still highly cor-
relate with them. This implies that the error detection com-
ponent Fe(.) seems to have learnt to recognize the areas

that look abnormal/atypical with respect to the joint input-
output space {X,Y } (i.e., it has learnt the “structure” of
that space).

4.3.2 Replace step

In Figure 7 we provide several examples that more clearly
illustrate the function performed by the Replace step in our
proposed architecture. Specifically, in sub-figures 7a, 7b,
and 7c we depict the input image X , the initial disparity
label estimates Y , and the error probability map E that
the detection component Fe(.) yields for the initial labels
Y . In sub-figure 7d we depict the label predictions of the
replace component Fu(.). For visualization purposes we
only depict the Fu(.) pixel predictions that will replace the
initial labels that are incorrect (according to the detection
component) by drawing the remaining ones (i.e. those that
their error probability is less than 0.5) with black color. Fi-
nally, in the last sub-figure 7e we depict the renewed labels
U = E � Fu(X,Y,E) + (1−E)� Y . We can readily ob-
serve that most of the “hard” mistakes of the initial labels Y
have now been crudely “fixed” by the Replace component.

4.3.3 Refine step

In Figure 8 we provide several examples that more clearly
illustrate the function performed by the Refine step in our
proposed architecture. Specifically, in sub-figures 8a, 8b,
and 8c we depict the input image X , the initial disparity la-
bel estimates Y , and the renewed labels U that the Replace
step yields. In sub-figure 8d we depict the residual correc-
tions that the Refine componentFr(.) yields for the renewed
labels U . Finally, in last sub-figure 8e we depict the final la-
bel estimates Y ′ = U+Fr(X,Y,E, U) that the Refine step
yields. We observe that most of residual corrections that the
Refine component Fr(.) yields are concentrated on the bor-
ders of the objects. Furthermore, by adding those residuals
on the renewed labels U , the Refine step manages to refine
the renewed labels U and align the estimated labels Y ′ with
the fine image structures in X .



(a) Image X (b) Initial labels Y (c) Final labels Y ′ (d) Ground truth labels
Figure 5: Here we illustrate some examples of the disparity predictions that the ”X-Blind” architecture performs. The illustrated examples
are from the Synthetic and the Middlebury datasets.

> 2 pixel > 3 pixel > 4 pixel > 5 pixel EPE
Architectures Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ

Synthetic dataset
Initial labels Y 24.3175 22.9004 21.9140 21.1680 12.0218
Detect + Replace + Refine 9.5981 7.9764 6.7895 5.9074 1.8569
”X-Blind” 16.0014 14.0196 12.5170 11.3758 3.8810

Middlebury dataset
Initial labels Y 18.243 26.714 86.125 15.664 23.986 82.330 14.208 22.282 78.758 13.237 21.044 75.579 6.058 8.709 25.598
Detect + Replace + Refine 12.845 17.825 50.407 10.096 14.379 41.704 8.285 11.957 34.801 7.057 10.253 29.560 1.774 2.368 5.457
”X-Blind” 16.845 22.037 57.324 14.038 18.562 48.356 12.212 16.217 41.941 10.914 14.509 37.022 2.878 3.656 7.945

KITTI 2015 dataset
Initial labels Y 8.831 10.649 98.098 6.412 8.253 96.559 5.222 7.059 94.742 4.514 6.339 93.139 1.700 2.457 31.214
Detect + Replace + Refine 3.919 4.610 33.947 2.708 3.294 25.697 2.082 2.570 19.123 1.699 2.112 15.140 0.790 0.858 3.056
”X-Blind” 5.040 5.602 32.575 3.671 4.135 24.566 2.722 3.099 18.069 2.191 2.505 14.359 0.910 0.966 2.997

Table 5: Stereo matching results for the ”X-Blind” architecture. We also include the corresponding results of the proposed Detect +
Replace + Refine architecture to facilitate their comparison.

4.3.4 Detect, Replace, Refine pipeline

In Figure 9 we illustrate the entire work-flow of the Detect
+ Replace + Refine architecture that we propose and we
compare its predictions Y ′ with the ground truth disparity
labels.

4.3.5 Multi-iteration architecture

In Figure 10, we illustrate the estimated disparity labels af-
ter each iteration of our multi-iteration architecture Detect
+ Replace + Refine x2 that in our experiments achieved the
most accurate results. We observe that the 2nd iteration fur-
ther improves the fine details of the estimated disparity la-
bels delivering a higher fidelity disparity field. Furthermore,
applying the model for a 2nd iteration results in a disparity
field that looks more “natural”, i.e., visually plausible.

4.3.6 KITTI 2015 qualititive results

We provide qualitative results from KITTI 2015 validation
set in Figure 11. In order to generate them we used the
Detect + Replace + Refine x2 architecture that gave the best
quantitative results. We observe that our model is able to
recover a good estimate of the actual disparity map even
when the initial label estimates are severely corrupted.

5. Experiments on semantic segmentation

In this section we provide some preliminary results ob-
tained by applying the proposed dense image labeling ar-
chitecture to two semantic segmentation tasks. Note that
in semantic segmentation, each pixel of an image must be
labeled with a semantic category (e.g., road, building, win-
dow, door, fence, etc.).



5.1. Implementation details for the semantic seg-
mentation case

In order to generate the initial labels Y in the semantic
segmentation case we used an FCN like architecture [21]
based on the ResNet50 [11] network backbone. The pro-
posed deep joint input-output model, apart from the image
X and the initial labels Y , also takes as input feature maps
generated by the FCN model during the label initialization
step. We found that this modification improves the qual-
ity of the generated labels. We also found advantageous
to apply a binary cross entropy loss on the error detection
outputs using ground truth error maps (defined from the ini-
tial label maps and the ground truth label maps) in order
to better force the network to learn the error detection step.
Finally, in order to speed-up inference time, the Detect, Re-
place, Refine steps are implemented with a single network
that predicts all those three outputs simultaneously.

5.2. Cityscape results

We applied the proposed dense image labeling algorithm
in the Cityscapes dataset [5] and our algorithm manages
to improve the segmentation accuracy (measured with the
mean Intersection-over-Union metric) from 70.09% (the
Initial labels Y case) to 73.23% (the Detect + Replace +
Refine case). In Figure 12 we visualize the initial labels
and the labels estimated by our Detect + Replace + Refine
architecture. We observe that the proposed dense labeling
algorithm has managed to improve the labeling accuracy on
the borders of the objects and also to recover objects with
thin elongated structures (e.g., poles) that were lost in the
initial labels.

5.3. Facade Parsing results

We applied the proposed Detect + Replace + Refine la-
beling algorithm on the facade parsing ECP dataset [38] and
we provide visualizations in Figure 13. We observe again
that our dense labeling algorithms manages to significantly
improve the labeling accuracy on the borders of the objects.

6. Conclusions
In our work we explored a family of architectures that

performs the structured prediction problem of dense image
labeling by learning a deep joint input-output model that
(iteratively) improves some initial estimates of the output
labels. In this context our main focus was on what is the
optimal architecture for implementing this deep model. We
argued that the prior approaches of directly predicting the
new labels with a feed-forward deep neural networks are
sub-optimal and we proposed to decompose the label im-
provement step in three sub-tasks: 1) detection of the incor-
rect input labels, 2) their replacement with new labels, and
3) the overall refinement of the output labels in the form

of residual corrections. All three steps are embedded in a
unified architecture, which we call Detect + Replace + Re-
fine, that is end-to-end trainable. We evaluated our architec-
ture in the disparity estimation (stereo matching) task and
we report state-of-the-art results in the KITTI 2015 test set.
We also performed preliminary experiments in the seman-
tic segmentation tasks and we report some very encouraging
results.
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Middlebury dataset

Synthetic Dataset

KITTI 2015 Dataset

(a) Image X (b) Initial labels Y (c) Predicted error map E (d) Ground truth errors
Figure 6: Illustration of the error probability maps E that the error detection component Fe(X,Y ) yields. The ground truth error maps
are computed by thresholding the absolute difference of the initial labels Y from the ground truth labels with a threshold of 3 pixels (red
are the erroneous pixel labels). Note that in the case of the KITTI 2015 dataset, the available ground truth labels are sparse and do not
cover the entire image (e.g. usually there is no annotation for the sky), which is why some obviously erroneous initial label estimates are
not coloured as incorrect (with red color) in the ground truth error maps.



Middlebury dataset

Synthetic Dataset

KITTI 2015 Dataset

(a) Image X (b) Initial labels Y (c) Error map E (d) Fu(.) predictions (e) Renewed labels U

Figure 7: Here we provide more examples that illustrate the function performed by the Replace step in our proposed architecture. Specifi-
cally, sub-figures (a), (b), and (c) depict the input image X , the initial disparity label estimates Y , and the error probability map E that the
detection component Fe(.) yields for the initial labels Y . In sub-figure (d) we depict the label predictions of the replace component Fu(.).
For visualization purposes we only depict the Fu(.) pixel predictions that will replace the initial labels that are incorrect (according to the
detection component) by drawing the remaining ones (i.e. those that their error probability is less than 0.5) with black color. Finally, in the
last sub-figure (e) we depict the renewed labels U = E � Fu(X,Y,E) + (1 − E) � Y . We can readily observe that most of the “hard”
mistakes of the initial labels Y have now been crudely “fixed” by the Replace component.



Middlebury dataset

Synthetic Dataset

KITTI 2015 Dataset

(a) Image X (b) Initial labels Y (c) Renewed labels U (d) Fr(.) residuals (e) Final labels Y ′

Figure 8: Here we provide more examples that illustrate the function performed by the Refine step in our proposed architecture. Specifi-
cally, in sub-figures (a), (b), and (c) we depict the input image X , the initial disparity label estimates Y , and the renewed labels U that the
Replace step yields. In sub-figure (d) we depict the residual corrections that the Refine component Fr(.) yields for the renewed labels U .
Finally, in the last sub-figure (e) we depict the final label estimates Y ′ = U + Fr(X,Y,E, U) that the Refine step yields.



Middlebury dataset

Synthetic Dataset

KITTI 2015 Dataset

(a) Image X (b) Initial labels Y (c) Error map E (d) Labels U (e) Final labels Y ′ (f) Ground truth

Figure 9: Illustration of the intermediate steps of the Detect + Replace + Refine work-flow. We observe that the final Refine component
Fr(.), by predicting residual corrections, manages to refine the renewed labels U and align the output labels Y ′ with the fine image
structures in image X . Note that in the case of the KITTI 2015 dataset, the available ground truth labels are sparse and do not cover the
entire image.



Middlebury Dataset

Synthetic Dataset

(a) Image X (b) Initial labels Y (c) 1st iteration labels (d) 2nd iteration labels (e) Ground truth labels

Figure 10: Illustration of the estimated labels on each iteration of the Detect, Replace, Refine x2 multi-iteration architecture. The visualised
examples are from zoomed-in patches from the Middlebury and the Synthetic datasets.



Figure 11: Qualitative results in the validation set of KITTI 2015. From left to right, we depict the left image X , the initial labels Y , the
labels Y ′ that our model estimates, and finally the errors of our estimates w.r.t. ground truth.



Figure 12: Qualitative results in the validation set of Cityscapes dataset. From left to right, we depict the input image X , the initial labels
Y , the refined labels Y ′ that our model estimates, and finally the ground truth labels. Note that the black image regions in the ground
truth labels correspond to the unknown category. Those “unknown” image regions are ignored during the evaluation of the segmentation
performance.



Figure 13: Qualitative results in the Facade parsing dataset. From left to right, we depict the input imageX , the initial labels Y , the refined
labels Y ′ that our model estimates, and finally the ground truth labels.
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N. Nešić, X. Wang, and P. Westling. High-resolution stereo
datasets with subpixel-accurate ground truth. In German
Conference on Pattern Recognition, pages 31–42. Springer,
2014. 8

[31] A. G. Schwing and R. Urtasun. Fully connected deep struc-
tured networks. arXiv preprint arXiv:1503.02351, 2015. 2

[32] A. Seki and M. Pollefeys. Patch based confidence prediction
for dense disparity map. In British Machine Vision Confer-
ence (BMVC), 2016. 11

[33] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton
forests for image categorization and segmentation. In Com-
puter vision and pattern recognition, 2008. CVPR 2008.
IEEE Conference on, pages 1–8. IEEE, 2008. 1



[34] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finoc-
chio, A. Blake, M. Cook, and R. Moore. Real-time human
pose recognition in parts from single depth images. Commu-
nications of the ACM, 56(1):116–124, 2013. 1

[35] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost
for image understanding: Multi-class object recognition and
segmentation by jointly modeling texture, layout, and con-
text. International Journal of Computer Vision, 81(1):2–23,
2009. 1

[36] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 1

[37] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway
networks. arXiv preprint arXiv:1505.00387, 2015. 5

[38] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and
N. Paragios. Shape grammar parsing via reinforcement
learning. In Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pages 2273–2280.
IEEE, 2011. 13

[39] K. Yamaguchi, D. McAllester, and R. Urtasun. Efficient joint
segmentation, occlusion labeling, stereo and flow estimation.
In European Conference on Computer Vision, pages 756–
771. Springer, 2014. 11

[40] F. Yu and V. Koltun. Multi-scale context aggregation by di-
lated convolutions. arXiv preprint arXiv:1511.07122, 2015.
2

[41] S. Zagoruyko and N. Komodakis. Learning to compare im-
age patches via convolutional neural networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4353–4361, 2015. 1

[42] J. Zbontar and Y. LeCun. Computing the stereo matching
cost with a convolutional neural network. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1592–1599, 2015. 1
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