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SIMULATION OF MCKEAN-VLASOV BSDES BY WIENER CHAOS
EXPANSION

CÉLINE ACARY-ROBERT, PHILIPPE BRIAND, ABIR GHANNOUM, AND CÉLINE LABART

Abstract. We present an algorithm to solve McKean-Vlasov BSDEs based on Wiener chaos
expansion and Picard’s iterations and study its convergence. This paper extends the results
obtained by Briand and Labart in [BL14] when standard BSDEs were considered. Here we are
faced with the problem of the approximation of the law of (Y,Z) in the driver, that we solve
by using a particle system. In order to avoid solving a system of BSDEs, which would not be
feasible in practice, we use the same particles to approximate the law of (Y,Z) and to compute
Monte Carlo approximations. This leads to an algorithm which doesn’t cost more than the
standard one.

1. Introduction

Backward stochastic differential equations were introduced by Bismut in [Bis73] for the linear
case, and by Pardoux and Peng in [PP90] for the general case. These works consisted in finding
a pair (Yt, Zt) of Ft-adapted processes such that

Yt = ξ +

∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
Zs · dBs, 0 ≤ t ≤ T, (1.1)

where B is a d-dimensional standard Brownian motion, the terminal condition ξ is a real-valued
FT -measurable random variable where {Ft}0≤t≤T stands for the augmented filtration of the
Brownian motion B, the generator f is a map from [0, T ]× R× Rd into R.

First results on the numerical approximation of (1.1) date from the end of the 90’s. The case
of a generator f independent of z has been studied in [Che97] and in [CMM99]. The authors
introduce a time and space discretization of the BSDE, which is somewhat reminiscent of the
dynamic programming equation, introduced a couple of years later. The case of a generator de-
pendent of z has first been done in [Bal97], where the author introduces a random discretization.
In [BDM01], the authors generalize the scheme proposed in [Che97] to the case of f depending
on z and prove the weak convergence of their scheme. In [BDM02], an approach for the case
of path-dependent terminal condition ξ has been presented. The rate of the convergence of this
method was left as an open problem. To deal with this question, an approach based on the dy-
namic programming equation has been introduced by Bouchard and Touzi in [BT04] and Zhang
in [Zha04]. Both papers deal with the Markovian case, i.e. ξ = g(XT ) where X is a solution
of a stochastic differential equation. To be fully implementable, this algorithm requires to have
a good approximation of its associated conditional expectation. Various methods have been
developed (see [GLW05], [CMT10], [CT17]). Forward methods have also been introduced to ap-
proximate (1.1) : branching diffusion method (see [HLTT14]), multilevel Picard approximation
(see [WHJK17]) and Wiener chaos expansion (see [BL14]).

Many extensions of (1.1) have also been considered : high order schemes (see [Cha14], [CC14]),
schemes for reflected BSDEs (see [BP03], [CR16]), for fully-coupled BSDEs (see [DM06], [BZ08]),
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for quadratic BSDEs (see [CR15]), for BSDEs with jumps (see [GL16]) and for McKean-Vlasov
BSDEs (see [Ala15], [CdRGT15], [CCD17]).

The aim of this paper is to extend the results of [BL14] to the case of McKean-Vlasov BSDEs,
i.e. to provide an algorithm based on Wiener chaos expansion to solve BSDEs of the following
type

Yt = ξ +

∫ T

t
f(s, Ys, Zs, [Ys], [Zs])ds−

∫ T

t
Zs · dBs, 0 ≤ t ≤ T, (1.2)

where [θ] is the notation for the law of a random variable θ and f is a map from [0, T ] × R ×
Rd × P2(R) × P2(Rd) into R. The set P2(Rd) is the set of probability measures with a finite
second-order moment, endowed with the Wasserstein distance i.e.

W2(µ, µ′) := inf
π

(∫
Rd×Rd

|x− x′|2dπ(x, x′)

)1/2

,

for (µ, µ′) ∈ P2(Rd) × P2(Rd), the infimum being taken over the probability distributions π on
Rd × Rd whose marginals on Rd are respectively µ and µ′. Notice that if X and X ′ are random
variables of order 2 with values in Rd, then by definition we have

W2([X], [X ′]) ≤
[
E|X −X ′|2

]1/2
. (1.3)

Such type of BSDEs have been introduced in [BDLP09] and [BLP09] in a more particular
framework: in [BDLP09], the authors study the mean field problem in a Markovian setting and
prove the existence and the uniqueness of the solution when the terminal condition is of type
ξ = E

[
g(x,XT )

]
|x=XT

where X is a driving adapted stochastic process, and the generator is
defined by E

[
f(s, λ,Λs)

]
|λ=Λs

where Λs = (Xs, Ys, Zs). In [BLP09], the authors extend the
result of existence and uniqueness to a more general framework and link the mean-field BSDE
to non local partial differential equation.

The study of numerical methods for McKean-Vlasov BSDEs goes back to a few years (see
[Ala15], [CdRGT15], [CCD17]). Usually, forward McKean-Vlasov SDEs are solved by using par-
ticle algorithms (see [AKH02], [TV03], [Bos05]) in which the McKean term is approximated by
the empirical measure of a large number of interacting particles with independent noise. Adapt-
ing such algorithms to the backward problem is not obvious as the high dimension of the involved
Brownian motion (given by the number of particles) induces, a priori, a high dimension backward
problem with bad consequences for the numerical implementation. The above mentioned papers
on numerical methods for McKean-Vlasov BSDEs do not use particle systems. In [CdRGT15],
the authors present a method based on cubature for decoupled McKean-Vlasov forward back-
ward SDE. In [CCD17], the authors consider the case of strongly coupled forward-backward SDE
of McKean-Vlasov type. They propose a scheme whose principle is to implement recursively Pi-
card iterations on small time intervals, since Picard Theorem only applies in small time for fully
coupled problems.

In this paper we propose a method based on Wiener chaos expansion and particle system
approximation which is neither more complex nor more costly than solving a standard BSDE of
type (1.1). The method based on Wiener chaos expansion to solve standard BSDEs has been
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introduced in [BL14] and consists in writing the Picard scheme of (1.1) in a forward way

Y q+1
t = E

(
ξ +

∫ T

0
f (s, Y q

s , Z
q
s ) ds

∣∣∣ Ft)− ∫ t

0
f (s, Y q

s , Z
q
s ) ds,

Zq+1
t = DtY

q+1
t = DtE

(
ξ +

∫ T

0
f (s, Y q

s , Z
q
s ) ds

∣∣∣ Ft) ,
(where DtX stands for the Malliavin derivative of the random variable X) and to use Wiener
chaos expansion to easily compute conditional expectations and their Malliavin derivatives. More
precisely, all r.v. F in L2 can be written

F = E (F ) +
∑

k≥1

∑
|n|=k

dnk
∏

i≥1
Kni

(∫ T

0
gi(s)dBs

)
,

where Kl denotes the Hermite polynomial of degree l, (gi)i≥1 is an orthonormal basis of L2(0, T )
and, if n = (ni)i≥1 is a sequence of integers, |n| =

∑
i≥1 ni. (dnk)k≥1,|n|=k is the sequence of

coefficients ensuing from the decomposition of F . The numerical method consists in working
with a finite number of chaos, a finite number of functions (gi)i and in using Monte-Carlo ap-
proximation to compute the coefficients (dnk)k,n. In case of McKean-Vlasov BSDE, the generator
depends on the laws of the processes. The idea is to use M particles which will serve both to
approximate the law of (Y, Z) and to compute the coefficients (dnk)k,n by Monte Carlo. By doing
this, we manage to get a computational cost which is of the same order as the one obtained in
case of standard BSDEs. However, this pooling of particles costs the independance in the Monte
Carlo approximation, making the proof of the convergence more difficult and leading to a slower
speed of convergence in M .

The outline of this paper is as follows. Section 2 state the notations and recall the main results
of [BL14] in order to make the paper as self-contained as possible. In Section 3 we generalize
the existence and uniqueness results stated by Pardoux and Peng [PP90] to the case of BSDEs
of type (1.2). Section 4 describes precisely the algorithm, Section 5 is devoted to the study of
the convergence of the algorithm and finally Section 6 contains some numerical experiments.

2. Preliminaries.

2.1. Definitions and notations. Given a probability space (Ω,F ,P) and an Rd-valued Brow-
nian motion B, we consider:

• {(Ft); t ∈ [0, T ]}, the filtration generated by the Brownian motion B and augmented.
• Lp(FT ) := Lp(Ω,FT ,P), p ∈ N∗, the space of all FT -measurable random variables (r.v.
in the following) X : Ω −→ Rd satisfying ‖X‖pp := E(|X|p) <∞.
• Et(X) := E(X|Ft), the conditional expectation of X (in L1(FT )) w.r.t. Ft.
• Spα,T (Rd), p ∈ N, p ≥ 2, α ≥ 0, the space of all càdlàg predictable processes φ : Ω ×

[0, T ] −→ Rd such that ‖φ‖p
Spα,T

= E(supt∈[0,T ] e
αt|φt|p) < ∞. Note that SpT (Rd) =

Sp0,T (Rd).
• Hp

α,T (Rd), p ∈ N, p ≥ 2, α ≥ 0, the space of all predictable processes φ : Ω× [0, T ] −→ Rd

such that ‖φ‖p
Hp
α,T

= E
∫ T

0 eαt|φt|pdt <∞. Note that Hp
T (Rd) = Hp

0,T (Rd).

• L2(0, T ), the space of all square integrable functions in [0, T ].
• Ck,l, the set of continuously differentiable functions φ : (t, x) ∈ [0, T ]×Rd with continuous
derivatives w.r.t. t (resp. w.r.t. x) up to order k (resp. up to order l).
• Ck,lb , the set of continuously differentiable functions φ : (t, x) ∈ [0, T ]×Rd with continuous
and uniformly bounded derivatives w.r.t. t (resp. w.r.t. x) up to order k (resp. up to
order l). The function φ is also bounded.
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• ‖∂jspf‖2∞, the norm of the derivatives of f([0, T ]×R×Rd×P(R)×P(Rd),R) w.r.t. the sec-
ond and the third component which sum equals j: ‖∂jspf‖2∞ :=

∑
|k|=j ‖∂k0y ∂k1z1 · · · ∂

kd
zd
f‖2∞,

where |k| = k0 + · · ·+ kd.
• C∞p , the set of smooth functions f : Rn −→ R with partial derivatives of polynomial
growth.
• ‖(., .)‖pLp , p ∈ N, p ≥ 2, the norm on the space SpT (R)×Hp

T (Rd) defined by

‖(Y,Z)‖pLp := E
(

sup
t∈[0,T ]

|Yt|p
)

+

∫ T

0
E
(
|Zt|p

)
dt. (2.1)

Note that this norm is different from the usual Lp norm for BSDE.

We also recall some useful definitions related to Malliavin calculus. We use the notations of
[Nua06].

• S denotes the class of random variables of the form F = f(W (h1), · · · ,W (hn)), where
f ∈ C∞p (Rn×d,R), for all j ≤ n, hj = (h1

j , · · · , hdj ) ∈ L2([0, T ];Rd) and for all i ≤ d,
W i(hj) =

∫ T
0 hij(t)dW

i
t .

• Dr,2 denotes the closure of S w.r.t. the following norm on S

‖F‖2Dr,2 := E|F |2 +
r∑
q=1

∑
|α|1=q

E
(∫ T

0
· · ·
∫ T

0
|Dα

(t1,··· ,tq)F |
2dt1 · · · dtq

)
,

where α is a multi-index (α1, · · · , αq) ∈ {1, · · · , d}q, |α|1 :=
∑q

i=1 αi = q, and Dα

represent the multi-index Malliavin derivative operator. We recall D∞,2 =
⋂∞
r=1 Dr,2.

Remark 1. When d = 1, ‖F‖2Dr,2 := E|F |2 +
∑r

q=1 E(
∫ T

0 · · ·
∫ T

0 |D
(q)
(t1,··· ,tq)F |

2dt1 · · · dtq) =

E|F |2 +
∑r

q=1 ‖D(q)F‖2L2(Ω×[0,T ]q).

Let m ∈ N∗ and j ∈ N, j ≥ 2. We also introduce the following notation:

• Dm,j denotes the space of all FT -measurable r.v. such that

‖F‖jm,j :=
∑

1≤l≤m

∑
|α|1=l

sup
t1≤···≤tl

E(|Dα
t1,··· ,tlF |

j) <∞,

where supt1≤···≤tl means sup(t1,··· ,tl):t1≤···≤tl .
• Sm,j denotes the space of all couple of processes (Y, Z) belonging to SjT (R) × Hj

T (Rd)
and such that

‖(Y,Z)‖jm,j :=
∑

1≤l≤m

∑
|α|1=l

sup
t1≤···≤tl

‖(Dα
t1,··· ,tlY,D

α
t1,··· ,tlZ)‖j

Lj
<∞,

i.e.

‖(Y,Z)‖jm,j =
∑

1≤l≤m

∑
|α|1=l

sup
t1≤···≤tl

{
E
(

sup
t1≤r≤T

|Dα
t1,··· ,tlYr|

j
)

+

∫ T

t1

E
(
|Dα

t1,··· ,tlZr|
j
)
dr

}
.

We also denote Sm,∞ :=
⋂
j≥2 Sm,j .
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2.2. Chaos decomposition formulas. We refer to the book [Nua06] for more details on this
Section. The notations we use are the ones of [BL14]. Every square integrable random variable
F , measurable w.r.t. FT , admits the following orthogonal decomposition

F = d0 +
∑
k≥1

∑
|n|=k

dnk
∏
i≥1

Kni

(∫ T

0
gi(s)dBs

)
, (2.2)

where (gi)i≥1 is an orthonormal basis of L2(0, T ), Kn is the Hermite polynomial of order n
defined by the expansion

ext−t
2/2 =

∑
n≥0

Kn(x)tn

with the convention K−1 ≡ 0, n = (ni)i≥1 is a sequence of positive integers and |n| stands for∑
i≥1 ni. Taking into account the normalization of the Hermite polynomials we use gives

d0 = E(F ), dnk = n!E
(
F ×

∏
i≥1

Kni

(∫ T

0
gi(s)dBs

))
,

where n! =
∏
i≥1 ni!.

To get tractable formulas, we consider a finite number of chaos and a finite number of functions
(g1, · · · , gN ). The (gi)1≤i≤N functions are chosen such that we can quickly compute E(F |Ft) and
DtE(F |Ft) (see Section 4.1). We develop in this section the case d = 1, and we refer to [BL14,
Section B.2] when d > 1.
The first step consists in considering a finite number of chaos. In order to approximate the
random variable F , we consider its projection Cp(F ) onto the first p chaos, namely

Cp(F ) = d0 +
∑

1≤k≤p

∑
|n|=k

dnk
∏
i≥1

Kni

(∫ T

0
gi(s)dBs

)
. (2.3)

The following two Lemmas give some useful properties of the operator Cp.

Lemma 1. Let 1 ≤ m ≤ p+ 1 and F ∈ Dm,2. We have

E[|F − Cp(F )|2] ≤
||DmF ||2L2(Ω×[0,T ]m)

(p+ 2−m) · · · (p+ 1)
.

We refer to [GL16, Lemma 2.4] for a proof.

Lemma 2. text

• Let F be r.v. in L2(FT ). ∀p ≥ 1, we have E(|Cp(F )|2) ≤ E(|F |2). If F belongs to
Lj(FT ), ∀j > 2, E(|Cp(F )|j) ≤ (1 + p(j − 1)p/2)jE(|F |2).
• Let H be in H2

T (R). We have Cp(
∫ T

0 Hsds) =
∫ T

0 Cp(Hs)ds.
• ∀F ∈ D1,2 and ∀t ≤ r, DtEr[Cp(F )] = Er[Cp−1(DtF )].

Of course, we still have an infinite number of terms in the sum in (2.3) and the second step
consists in working with only the first N functions g1, · · · , gN of an orthonormal basis of L2(0, T ).
Let us consider a regular mesh grid of N time steps T = {t̃i = i TN , i = 0, · · · , N} and the N step
functions

gi(t) = 1]t̃i−1,t̃i]
(t)/
√
h, i = 1, · · · , N, where h :=

T

N
. (2.4)
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We complete these N functions g1, · · · , gN into an orthonormal basis of L2(0, T ), (gi)i≥1. For
instance, one can consider the Haar basis on each interval (t̃i−1, t̃i), i = 1, · · · , N . We implicitly
assume that N ≥ p. This leads to the following approximation:

CNp (F ) = d0 +
∑

1≤k≤p

∑
|n|=k

dnk
∏

1≤i≤N
Kni

(∫ T

0
gi(s)dBs

)
. (2.5)

Due to the simplicity of the functions gi, i = 1, · · · , N , we can compute explicitly∫ T

0
gi(s)dBs = Gi where Gi =

Bt̃i −Bt̃i−1√
h

.

Roughly speaking this means that Pk, the kth chaos, is generated by

{Kn1(G1) · · ·KnN (GN ) : n1 + · · ·+ nN = k}.
Thus the approximation we use for the random variable F is

CNp (F ) = d0 +

p∑
k=1

∑
|n|=k

dnkKn1(G1) · · ·KnN (GN )

= d0 +

p∑
k=1

∑
|n|=k

dnk
∏

1≤i≤N
Kni(Gi),

(2.6)

where the coefficients d0 and dnk are given by

d0 = E(F ), dnk = n!E(FKn1(G1) · · ·KnN (GN )). (2.7)

The following Lemma, similar to Lemma 2, gives some useful properties of the operator CNp .

Lemma 3. Let F be r.v. in L2(FT ) and H be in H2
T (R). Then:

• ∀(p,N) ∈ (N∗)2, E(|CNp (F )|2) ≤ E(|Cp(F )|2) ≤ E(|F |2).
• CNp (

∫ T
0 Hsds) =

∫ T
0 CNp (Hs)ds.

• ∀t ≤ r, DtEr[CNp (F )] = Er[CNp−1(DtF )].

From (2.6), we deduce the expressions of Et(CNp F ) and DtEt(CNp (F )), useful for the approxi-
mation of (Y, Z) by the chaos decomposition (see Section 4.1).

Proposition 1 (Proposition 2.7, [BL14]). Let F be a real random variable in L2(FT ), and let r
be an integer in {1, · · · , N}. For all t̃r−1 < t ≤ t̃r, we have

Et(CNp F ) = d0 +

p∑
k=1

∑
|n(r)|=k

dnk
∏
i<r

Kni(Gi)×
(
t− t̃r−1

h

)(nr)/2

Knr

(
Bt −Bt̃r−1√
t− t̃r−1

)
,

DtEt(CNp (F )) = h−1/2
p∑

k=1

∑
|n(r)|=k
n(r)>0

dnk
∏
i<r

Kni(Gi)×
(
t− t̃r−1

h

)(nr−1)/2

Knr−1

(
Bt −Bt̃r−1√
t− t̃r−1

)
,

where, if r ≤ N and n = (n1, · · · , nN ), n(r) stands for (n1, · · · , nr).

Remark 2 (Remark 1, [BL14]). For t = t̃r and r ≥ 1, Proposition 1 leads to

Et̃r(C
N
p F ) = d0 +

p∑
k=1

∑
|n(r)|=k

dnk
∏
i≤r

Kni(Gi),

Dt̃r
Et̃r(C

N
p F ) = h−1/2

p∑
k=1

∑
|n(r)|=k
n(r)>0

dnk
∏
i<r

Kni(Gi)×Knr−1(Gr),



SIMULATION OF MCKEAN-VLASOV BSDES BY WIENER CHAOS EXPANSION 7

When r = 0, we get Et̃0(CNp F ) = d0, and we define Dt̃0
Et̃0(CNp F ) = 1√

h
de11 (which is the limit

of DtEt(CNp F ) when t tends to 0).

Let us end this subsection by some examples.

Example 1 (Case p = 2). From (2.6)-(2.7), we have

CN2 (F ) = d0 +
N∑
j=1

d
ej
1 K1(Gj) +

N∑
j=1

j−1∑
i=1

d
eij
2 K1(Gi)K1(Gj) +

N∑
j=1

d
2ej
2 K2(Gj),

where ej denotes the unit vector whose jth component is one, and eij = ei + ej.
For j = 1, · · · , N and i = 1, · · · , j − 1, it holds

d
ej
1 = E

(
FK1(Gj)

)
, d

eij
2 = E

(
FK1(Gi)K1(Gj)

)
d

2ej
2 = 2E

(
FK2(Gj)

)
.

Remark 2 leads to

Et̃r(C
N
2 F ) = d0 +

r∑
j=1

d
ej
1 K1(Gj) +

r∑
j=1

j−1∑
i=1

d
eij
2 K1(Gi)K1(Gj) +

r∑
j=1

d
2ej
2 K2(Gj),

Dt̃r
Et̃r(C

N
2 F ) = h−1/2

(
der1 + d2er

2 K1(Gr) +
r−1∑
i=1

deir2 K1(Gi)

)
.

3. Existence, uniqueness and properties of the solution.

Note that the existence and the uniqueness of the solution of (1.2) have been proved in [BLP09]
in the case f(t, Yt, Zt, [Yt], [Zt]) = E[g(t, λ, Yt, Zt)]|λ=(Yt,Zt).

Hypothesis 1. We assume:

• the generator f : R+ × R × Rd × P2(R) × P2(Rd) −→ R is Lipschitz continuous: there
exists a constant Lf such that for all t ∈ R+, y1, y2 ∈ R ,z1, z2 ∈ Rd, µ1, µ2 ∈ P2(R) and
ν1, ν2 ∈ P2(Rd)

|f(t, y1, z1, µ1, ν1)− f(t, y2, z2, µ2, ν2)| ≤ Lf
(
|y1 − y2|+ |z1 − z2|+W2(µ1, µ2) +W2(ν1, ν2)

)
.

• E(|ξ|2 +
∫ T

0 |f(s, 0, 0, [δ0], [δ0])|2ds) <∞.

Theorem 1. Given standard parameters (f, ξ), there exists a unique pair (Y, Z) ∈ S2
T (R) ×

H2
T (Rd) which solves (1.2).

Let us start with a priori estimates that will be useful for our proof.

A Priori Estimates.

Proposition 2. Let ((f i, ξi); i = 1, 2) be two standard parameters of the BSDE and ((Y i, Zi); i =
1, 2) be two square-integrable solutions. Let Lf1 be a Lipschitz constant for f1, and put δYt =

Y 1
t − Y 2

t and δ2ft = f1(t, Y 2
t , Z

2
t , [Y

2
t ], [Z2

t ]) − f2(t, Y 2
t , Z

2
t , [Y

2
t ], [Z2

t ]). For any α, λ > 0 such
that α ≥ 8L2

f1 + 4Lf1 + λ+ 1
2 , it follows that

‖δY ‖2S2
α,T

+ ‖δZ‖2H2
α,T
≤ (8Lf1 + 8C2 + 5)

[
eαTE(|δYT |2) +

1

λ
E
(∫ T

0
eαs|δ2fs|2ds

)]
,

where C is a universal constant.
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Proof. By applying Itô’s formula from s = t to s = T on the semimartingale eαs|δYs|2, we get

eαt|δYt|2 + α

∫ T

t
eαs|δYs|2ds+

∫ T

t
eαs|δZs|2ds

= eαT |δYT |2 + 2

∫ T

t
eαsδYs

(
f1(s, Y 1

s , Z
1
s , [Y

1
s ], [Z1

s ])− f2(s, Y 2
s , Z

2
s , [Y

2
s ], [Z2

s ])
)
ds

− 2

∫ T

t
eαsδYsδZsdBs.

(3.1)
Moreover,

|f1(s,Y 1
s , Z

1
s , [Y

1
s ], [Z1

s ])− f2(s, Y 2
s , Z

2
s , [Y

2
s ], [Z2

s ])|
≤ |f1(s, Y 1

s , Z
1
s , [Y

1
s ], [Z1

s ])− f1(s, Y 2
s , Z

2
s , [Y

2
s ], [Z2

s ])|+ |δ2fs|

≤ L1
f

(
|δYs|+ |δZs|+W2([Y 1

s ], [Y 2
s ]) +W2([Z1

s ], [Z2
s ])
)

+ |δ2fs|,

where Lf1 ≥ 0. By using (1.3), we obtain that

2|δYs| · |f1(s,Y 1
s , Z

1
s , [Y

1
s ], [Z1

s ])− f2(s, Y 2
s , Z

2
s , [Y

2
s ], [Z2

s ])|

≤ 2Lf1

(
|δYs|2 + |δYs||δZs|+ |δYs|

(
E(|δYs|2)

)1/2
+ |δYs|

(
E(|δZs|2)

)1/2)
+ 2|δYs||δ2fs|.

(3.2)

Therefore, by Young’s inequality with λ > 0, we have

2|δYs| · |f1(s,Y 1
s , Z

1
s , [Y

1
s ], [Z1

s ])− f2(s, Y 2
s , Z

2
s , [Y

2
s ], [Z2

s ])|

≤ 2Lf1 |δYs|2 + 4L2
f1 |δYs|

2 +
1

4
|δZs|2 + 2Lf1 |δYs|

(
E(|δYs|2)

)1/2
+ 4L2

f1 |δYs|
2 +

1

4
E(|δZs|2) + λ|δYs|2 +

1

λ
|δ2fs|2

≤ (8L2
f1 + 2Lf1 + λ)|δYs|2 + 2Lf1 |δYs|

(
E(|δYs|2)

)1/2
+

1

4
|δZs|2 +

1

4
E(|δZs|2) +

1

λ
|δ2fs|2.

(3.3)

On the one hand, it follows from (3.1) and (3.3) that for t = 0,

E(|δY0|2) + αE
(∫ T

0
eαs|δYs|2ds

)
+ E

(∫ T

0
eαs|δZs|2ds

)
≤ eαTE(|δYT |2) +

(
8L2

f1 + 4Lf1 + λ
)
E
(∫ T

0
eαs|δYs|2ds

)
+

1

2
E
(∫ T

0
eαs|δZs|2ds

)
+

1

λ
E
(∫ T

0
eαs|δ2fs|2ds

)
.

(3.4)
Choosing α ≥ 8L2

f1 + 4Lf1 + λ+ 1
2 , this inequality implies

E
(∫ T

0
eαs|δYs|2ds

)
+E
(∫ T

0
eαs|δZs|2ds

)
≤ 2

[
eαTE(|δYT |2)+

1

λ
E
(∫ T

0
eαs|δ2fs|2ds

)]
. (3.5)
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On the other hand, by combining equation (3.1) and inequality (3.3), and by using the fact that
α ≥ 8L2

f1 + 2Lf1 + λ, we can also obtain

eαt|δYt|2 ≤ eαT |δYT |2 +

∫ T

t
eαs
(

2Lf1 |δYs|E(|δYs|2) +
1

4
E(|δZs|2) +

1

λ
|δ2fs|2

)
ds

+ 2

∣∣∣∣ ∫ T

t
eαsδYsδZsdBs

∣∣∣∣,
which leads to

E( sup
0≤t≤T

eαt|δYt|2) ≤ eαTE(|δYT |2) + 2Lf1E
(∫ T

0
eαs|δYs|2ds

)
+

1

4
E
(∫ T

0
eαs|δZs|2ds

)
+

1

λ
E
(∫ T

0
eαs|δ2fs|2ds

)
+ 2E

(
sup

0≤t≤T

∣∣∣∣ ∫ T

t
eαsδYsδZsdBs

∣∣∣∣). (3.6)

By the Burkholder-Davis-Gundy inequality, there exists a universal constant C such that

E
(

sup
0≤t≤T

∣∣∣∣ ∫ T

t
eαsδYsδZsdBs

∣∣∣∣) ≤ CE
[(∫ T

0
e2αs|δYs|2|δZs|2ds

)1/2
]

≤ CE

[(
sup

0≤t≤T
eαt|δYt|2

)1/2(∫ T

0
eαs|δZs|2ds

)1/2
]
,

and since ab ≤ a2/2 + b2/2,

2E
(

sup
0≤t≤T

∣∣∣∣ ∫ T

t
eαsδYsδZsdBs

∣∣∣∣) ≤ 1

2
E
(

sup
0≤t≤T

eαt|δYt|2
)

+ 2C2E
(∫ T

0
eαs|δZs|2ds

)
. (3.7)

Finally, by combining the inequalities (3.6)-(3.7) and by using (3.5), we derive that

E( sup
0≤t≤T

eαt|δYt|2) ≤ 2eαTE(|δYT |2) + 4Lf1E
(∫ T

0
eαs|δYs|2ds

)
+

2

λ
E
(∫ T

0
eαs|δ2fs|2ds

)
+

(8C2 + 1)

2
E
(∫ T

0
eαs|δZs|2ds

)
≤ (8Lf1 + 8C2 + 3)

[
eαTE(|δYT |2) +

1

λ
E
(∫ T

0
eαs|δ2fs|2ds

)]
,

then, we can conclude that

E( sup
0≤t≤T

eαt|δYt|2) + E
(∫ T

0
eαs|δZs|2ds

)
≤ (8Lf1 + 8C2 + 5)

[
eαTE(|δYT |2) +

1

λ
E
(∫ T

0
eαs|δ2fs|2ds

)]
.

(3.8)

�

Proof of Theorem 1. We use a fixed-point theorem for the mapping φ from S2
α,T (R)×H2

α,T (Rd)
into S2

α,T (R)×H2
α,T (Rd), which maps (y, z) onto the solution (Y,Z) of the BSDE with generator

f(t, yt, zt, [yt], [zt]), i.e.,

Yt = ξ +

∫ T

t
f(s, ys, zs, [ys], [zs])ds−

∫ T

t
Zs · dBs.

Let us remark that the solution (Y,Z) ∈ S2
T (R) × H2

T (Rd) is defined by [PP90], when (y, z) ∈
S2
T (R)×H2

T (Rd).
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Let (y1, z1), (y2, z2) be two elements of S2
α,T (R)×H2

α,T (Rd), and let (Y 1, Z1) and (Y 2, Z2) be
the associated solutions. By applying Proposition 2 with Lf1 = 0 and α = λ+ 1

2 , we obtain

‖δY ‖2S2
α,T

+ ‖δZ‖2H2
α,T
≤ (8C2 + 5)

λ
E
(∫ T

0
eαt|f(t, y1

t , z
1
t , [y

1
t ], [z

1
t ])− f(t, y2

t , z
2
t , [y

2
t ], [z

2
t ])|2dt

)
.

Now since f is Lipschitz with constant Lf , we have

‖δY ‖2S2
α,T

+ ‖δZ‖2H2
α,T
≤

4(8C2 + 5)L2
f

λ
E
(∫ T

0
eαt
(
|δyt|2 + |δzt|2 +W2([y1

t ], [y
2
t ])

2 +W2([z1
t ], [z2

t ])2
)
dt

)
≤

4(8C2 + 5)L2
f

λ
E
(∫ T

0
eαt
(
|δyt|2 + |δzt|2 + E(|δyt|2) + E(|δzt|2)

)
dt

)
≤

8(8C2 + 5)L2
f

λ

∫ T

0

(
E(eαt|δyt|2) + E(eαt|δzt|2)

)
dt

≤
8(8C2 + 5)(T + 1)L2

f

λ

(
E( sup

0≤t≤T
eαt|δyt|2) + E

∫ T

0
eαt|δzt|2dt

)
≤

8(8C2 + 5)(T + 1)L2
f

λ

(
‖δy‖2S2

α,T
+ ‖δz‖2H2

α,T

)
.

(3.9)
Choosing λ ≥ 16(8C2 +5)(T +1)L2

f , we see that this mapping φ is a contraction from S2
α,T (R)×

H2
α,T (Rd) onto itself and that there exists a fixed point, which is the unique continuous solution

of the BSDE. �

From the proof of Proposition 2 (and more precisely from estimate (3.9)), we derive that the
Picard iterative sequence converges almost surely to the solution of the BSDE.

Remark 3. Let α be such that α ≥ 16(8C2 + 5)(T + 1)L2
f + 1

2 . Let (Y q, Zq) be the sequence
defined recursively by (Y 0 = 0, Z0 = 0) and

Y q+1
t = ξ +

∫ T

t
f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])ds−

∫ T

t
Zq+1
s · dBs, 0 ≤ t ≤ T, (3.10)

Then the sequence (Y q, Zq) converges to (Y,Z), dP× dt a.s. and in S2
T (R)×H2

T (Rd) as q goes
to +∞.

Proof. Let (Y q, Zq) be the sequence defined recursively by (3.10). Then, by (3.9),

‖Y q+1 − Y q‖2S2
T

+ ‖Zq+1 − Zq‖2H2
T
≤ CT 2−q,

and the result follows easily. �

4. Description of the algorithm.

The algorithm is based on five types of approximations: Picard’s iterations, a Wiener chaos
expansion up to a finite order, the truncation of an L2(0, T ) basis in order to apply formulas of
Proposition 1, a Monte Carlo method to approximate the coefficients d0 and dnk defined in (2.7)
and the particle system. We present these five steps of the approximation procedure in Section
4.1. The practical implementation is presented in Section 4.2.

4.1. Approximation procedure.
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4.1.1. Picard’s iterations. The first step consists in approximating (Y,Z)—the solution to (1.2)—by
Picard’s sequence (Y q, Zq)q, built as follows: (Y 0 = 0, Z0 = 0) and for all q ≥ 1

Y q+1
t = ξ +

∫ T

t
f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])ds−

∫ T

t
Zq+1
s · dBs, 0 ≤ t ≤ T. (4.1)

From (4.1), under the assumptions that ξ ∈ D1,2 and f ∈ C0,1,1,0,0
b , we express (Y q+1, Zq+1) as

a function of the processes (Y q, Zq),

Y q+1
t = Et

(
ξ +

∫ T

t
f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])ds

)
, Zq+1

t = DtY
q+1
t , (4.2)

which can also be written

Y q+1
t = Et

(
ξ +

∫ T

0
f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])ds

)
−
∫ t

0
f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])ds,

Zq+1
t = DtY

q+1
t ,

(4.3)

As recalled in the Introduction, the computation of the conditional expectation is the cornerstone
in the numerical resolution of BSDEs. Chaos decomposition formulas enable us to circumvent
this problem.

4.1.2. Wiener Chaos expansion. Computing the chaos decomposition of the r.v. F = ξ +∫ T
t f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])ds (appearing in (4.2)) in order to compute Y q+1

t is not judicious. F
depends on t, and then the computation of Y q+1 on the grid T = {t̃i = i TN , i = 0, · · · , N}
would require N + 1 calls to the chaos decomposition function. To build an efficient algorithm,
we need to call the chaos decomposition function as infrequently as possible, since each call is
computationally demanding and brings an approximation error due to the truncation, the Monte
Carlo approximation and to the particle approximation (see next sections). Then we look for
a r.v. F q independent of t such that Y q+1

t and Zq+1
t can be expressed as functions of Et(F q),

DtEt(F q) and of Yq and Zq. Equation (4.3) gives a more tractable expression of Y q+1. Let F q

be defined by F q := ξ +
∫ T

0 f(s, Y q
s , Z

q
s , [Y

q
s ], [Zqs ])ds. Then

Y q+1
t = Et(F q)−

∫ t

0
f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])ds, Zq+1

t = DtEt(F q). (4.4)

The second type of approximation consists in computing the chaos decomposition of F q up to
order p. Since F q does not depend on t, the chaos decomposition function Cp is called only once
per Picard’s iteration.

Let (Y q,p, Zq,p) denote the approximation of (Y q, Zq) built at step q using a chaos decompo-
sition with order p: (Y 0,p, Z0,p) = (0, 0) and

Y q+1,p
t = Et

(
Cp(F

q,p)
)
−
∫ t

0
f(s, Y q,p

s , Zq,ps , [Y q,p
s ], [Zq,ps ])ds,

Zq+1,p
t = DtEt

(
Cp(F

q,p)
)
,

(4.5)

where F q,p = ξ +
∫ T

0 f(s, Y q,p
s , Zq,ps , [Y q,p

s ], [Zq,ps ])ds. In the sequel, we also use the following
equality:

Zq+1,p
t = Et

(
DtCp(F

q,p)
)
. (4.6)
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4.1.3. Truncation of the basis. The third type of approximation comes from the truncation of
the orthonormal L2(0, T ) basis used in the definition of Cp (2.3). Instead of considering a basis
of L2(0, T ), we only keep the first N functions (g1, · · · , gN ) defined by (2.4) to build the chaos
decomposition function CNp (2.5). Proposition 1 gives us explicit formulas for Et(CNp F ) and
DtEt(CNp F ). From (4.5), we build (Y q,p,N , Zq,p,N )q in the following way: (Y 0,p,N , Z0,p,N ) = (0, 0)
and

Y q+1,p,N
t = Et

(
CNp (F q,p,N )

)
−
∫ t

0
f(s, Y q,p,N

s , Zq,p,Ns , [Y q,p,N
s ], [Zq,p,Ns ])ds,

Zq+1,p,N
t = DtEt

(
CNp (F q,p,N )

)
,

(4.7)

where F q,p,N = ξ +
∫ T

0 f(s, Y q,p,N
s , Zq,p,Ns , [Y q,p,N

s ], [Zq,p,Ns ])ds.

Equation (4.7) is tractable as soon as we know closed formulas for the coefficients dnk of the
chaos decomposition of Et

(
CNp (F q,p,N )

)
and DtEt

(
CNp (F q,p,N )

)
(see Proposition 1). When it is

not the case, we need to use a Monte Carlo method to approximate these coefficients. The next
section is devoted to this method.

4.1.4. Monte Carlo simulations of the chaos decomposition. Let F denote a r.v. of L2(FT ).
Practically, when we are not able to compute exactly d0 = E(F ) and/or the coefficients dkn =
n!E(FKn1(G1) · · ·KnN (GN )) of the chaos decomposition (2.6)-(2.7) of F , we use Monte Carlo
simulations to approximate them. Let (Fm)1≤m≤M be aM i.i.d. sample of F and (Gm1 , · · · , GmN )1≤m≤M
be a M i.i.d. sample of (G1, · · · , GN ). We propose a method which consists in approximating
the expectations d := (d0, (d

n
k)1≤k≤p,|n|=k) by empirical means d̂M := (d̂0, (d̂

n
k)1≤k≤p,|n|=k) where

d̂0 :=
1

M

M∑
m=1

Fm, d̂nk :=
n!

M

M∑
m=1

FmKn1(Gm1 ) · · ·KnN (GmN ). (4.8)

Definition 1. Let F be a r.v. of L2(FT ) and (F 1, · · · , FM ) be M identically distributed r.v.
with the law of F . We denote CN,Mp ((Fm)1≤m≤M ) the following approximation of CNp (F )

CN,Mp ((Fm)1≤m≤M ) = d̂0 +

p∑
k=1

∑
|n|=k

d̂nk
∏

1≤i≤N
Kni(Gi). (4.9)

where (d̂0, (d̂
n
k)1≤k≤p,|n|=k) are defined by (4.8).

Remark 4. When (F 1, · · · , FM ) is an independent and identically distributed sample of F , we
adopt the short notation CN,Mp (F ) to refer to CN,Mp ((Fm)1≤m≤M ). The notation CN,Mp ((Fm)1≤m≤M )
will only be used when the r.v. F 1, · · · , FM are not independent. This will be the case in the next
paragraph, when we introduce the particle system to approximate the law of (Y,Z) (see (4.12)).

Before introducing the processes (Y q+1,p,N,M , Zq+1,p,N,M ), we define Et(CN,Mp ((Fm)m)) and
DtEt(CN,Mp ((Fm)m)), the conditional expectations obtained in Proposition 1 when (d0, d

n
k)1≤k≤p,|n|=k

are replaced by (d̂0, d̂
n
k)1≤k≤p,|n|=k, i.e.

Et(CN,Mp ((Fm)m)) = d̂0 +

p∑
k=1

∑
|n(r)|=k

d̂nk
∏
i<r

Kni(Gi)×
(
t− t̃r−1

h

)(nr)/2

Knr

(
Bt −Bt̃r−1√
t− t̃r−1

)
,

DtEt(CN,Mp ((Fm)m)) = h−1/2
p∑

k=1

∑
|n(r)|=k
n(r)>0

d̂nk
∏
i<r

Kni(Gi)×
(
t− t̃r−1

h

)(nr−1)/2

Knr−1

(
Bt −Bt̃r−1√
t− t̃r−1

)
.
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Remark 5. As said in [BL14, Remark 3.2], when M samples of CN,Mp ((Fm)m) are needed, we
can either use the same samples as the ones used to compute d̂0 and d̂nk : (CN,Mp ((Fm)m))m =

d̂0 +
∑p

k=1

∑
|n|=k d̂

n
k

∏
1≤i≤N Kni(G

m
i ), or use new ones. In the first case, we only require M

samples (G1, · · · , GN ). We built F 1, · · · , FM from these samples. The coefficients d̂nk and d̂0

are not independent of
∏

1≤i≤N Kni(G
m
i ). The notation Et(CN,Mp ((Fm)m)) introduced above

cannot be linked to E
(
CN,Mp ((Fm)m)|Ft

)
. In the second case, the coefficients d̂nk and d̂0 are

independent of
∏

1≤i≤N Kni(G
m
i ) and we have Et

(
CN,Mp ((Fm)m)

)
= E

(
CN,Mp ((Fm)m)|Ft

)
.

This second approach requires 2M samples of F and (G1, · · · , GN ) and its variance increases
with N . Practically, we use the first technique.

Let us now introduce the couple of processes (Y q+1,p,N,M , Zq+1,p,N,M ), which corresponds to
the approximation of (Y q+1,p,N , Zq+1,p,N ) when we use CN,Mp instead of CNp , that is, when we
use a Monte Carlo procedure to compute the coefficients dnk .

Y q+1,p,N,M
t = Et

(
CN,Mp (F q,p,N,M )

)
−
∫ t

0
f(θq,p,N,Ms )ds,

Zq+1,p,N,M
t = DtEt

(
CN,Mp (F q,p,N,M )

)
,

(4.10)

where F q,p,N,M := ξ+
∫ T

0 f(θq,p,N,Ms )ds and θq,p,N,Ms := (s, Y q,p,N,M
s , Zq,p,N,Ms , [Y q,p,N,M

s ], [Zq,p,N,Ms ]).

4.1.5. Particle system. In this section, we introduce an interacting particle system associated
to (4.10) to approximate the law of Y q,p,N,M

s and Zq,p,N,Ms . Indeed we replace a one single
stochastic differential equation with unknown processes Y q,p,N,M

s and Zq,p,N,Ms , with a system
of M ordinary stochastic differential equations, whose solution consists in a system of particles
(Y q,p,N,M,m
s ,Zq,p,N,M,m

s )1≤m≤M , replacing the law of the processes Y q,p,N,M
s and Zq,p,N,Ms by the

empirical mean law

[Y q,p,N,M,m
s ]M =

1

M

M∑
m=1

δ
Y q,p,N,M,ms

,

[Zq,p,N,M,m
s ]M =

1

M

M∑
m=1

δ
Zq,p,N,M,ms

.

Our candidates are the particles:

Y q+1,p,N,M,m
t = Et

(
CN,Mp ((F q,p,N,M,m)m)

)
−
∫ t

0
f(s, Y q,p,N,M,m

s , Zq,p,N,M,m
s , [Y q,p,N,M,m

s ]M , [Zq,p,N,M,m
s ]M )ds,

Zq+1,p,N,M,m
t = DtEt

(
CN,Mp ((F q,p,N,M,m)m)

)
,

(4.11)

where, for all m ∈ {1, · · · ,M},

F q,p,N,M,m = ξ +

∫ T

0
f(s, Y q,p,N,M,m

s , Zq,p,N,M,m
s , [Y q,p,N,M,m

s ]M , [Zq,p,N,M,m
s ]M )ds. (4.12)

Remark 6. Looking at (4.11) and (4.12), we notice that we use the M particles to compute
(d̂0, (d̂

n
k)1≤k≤p,|n|=k). Taking the same M drawings for the Monte Carlo simulations and the

particle system has two impacts, one positive and one negative :

• the algorithm is not more costly than the one solving standard BSDEs,
• the samples (F q,p,N,M,m)1≤m≤M being not independant, the speed of convergence of the
algorithm will be badly impacted (see Remark (9)).
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4.2. Pseudo-code of the algorithm. We aim at computing M trajectories of an approxima-
tion of (Y,Z) on the grid T = {t̃i = i TN , i = 0, · · · , N}. Starting from (Y 0,p,N,M,m, Z0,p,N,M,m) =

(0, 0), (4.11) enables to get (Y q,p,N,M,m, Zq,p,N,M,m) for each Picard’s iteration q on T . Practi-
cally, we discretize the integral

∫ t
0 f(θq,p,N,M,m

s )ds which leads to approximated values of
(Y q,p,N,M,m, Zq,p,N,M,m) computed on a grid.

Let us introduce (Ỹ q+1,p,N,M,m

t̃i
, Z̃q+1,p,N,M,m

t̃i
)1≤i≤N , defined by (Ỹ 0,p,N,M,m, Z̃0,p,N,M,m) =

(0, 0) and for all q ≥ 0

Ỹ q+1,p,N,M,m

t̃i
= Et̃i

(
CN,Mp ((F̃ q,p,N,M,m)m)

)
− h

i∑
j=1

f(t̃j , Ỹ
q,p,N,M,m

t̃j
, Z̃q,p,N,M,m

t̃j
, [Ỹ q,p,N,M,m

t̃j
]M ,

[Z̃q,p,N,M,m

t̃j
]M ),

Z̃q+1,p,N,M,m

t̃i
= Dt̃i

Et̃i
(
CN,Mp ((F̃ q,p,N,M,m)m)

)
,

(4.13)
where F̃ q,p,N,M,m := ξ+ h

∑N
i=1 f(t̃i, Ỹ

q,p,N,M,m

t̃i
, Z̃q,p,N,M,m

t̃i
, [Ỹ q,p,N,M,m

t̃i
]M , [Z̃q,p,N,M,m

t̃i
]M ). Here

is the notation we use in the algorithm:

• d: dimension of the Brownian motion;
• q: index of Picard’s iteration;
• Kit : number of Picard’s iterations;
• M : number of Monte Carlo samples;
• N : number of time steps used for the discretization of Y and Z;
• p: order of the chaos decomposition;
• Yq ∈MN+1,M (R) represents M paths of Ỹ q,p,N,M,m computed on the grid T ;
• for all l ∈ {1, · · · , d}, (Zq)l ∈MN+1,M (R) representsM paths of (Z̃q,p,N,M,m)l computed
on the grid T .

Since ξ in L2(FT ), ξ can be written as a measurable function of the Brownian path. Then one

gets one sample of ξ from one sample of (G1, · · · , GN ) (where Gi represents
Bt̃i
−Bt̃i−1√
h

).
For the sake of clarity, we detail the algorithm for d = 1.
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Algorithm 1 Iterative algorithm
1: Pick at random N ×M values of standard Gaussian r.v. stored in G.
2: Using G, compute (ξm)0≤m≤M−1.
3: Y0 ≡ 0, Z0 ≡ 0.
4: for q = 0 : Kit − 1 do
5: for m = 0 : M − 1 do
6: Compute F q,m = ξm + h

∑N
i=1 f(t̃i, (Yq)i,m, (Zq)i,m, [(Yq)i]

M , [(Zq)i]M )
7: end for
8: Compute the vector d := (d̂0, (d̂

n
k)1≤k≤p,|n|=k) of the chaos decomposition of (F q,m)m

9: d̂0 := 1
M

∑M−1
m=0 F

q,m, d̂nk := n!
M

∑M−1
m=0 F

q,mKn1(Gm1 ) · · ·KnN (GmN )
10: for j = 1 : N do
11: for m = 0 : M − 1 do
12: Compute (Et̃j (C

N,M
p ((F q,m)m)))m, (Dt̃j

(Et̃j (C
N,M
p ((F q,m)m))))m

13: (Yq+1)j,m = (Et̃j (C
N,M
p ((F q,m)m)))m−h

∑j
i=1 f(t̃i, (Yq)i,m, (Zq)i,m, [(Yq)i]

M , [(Zq)i]M )

14: (Zq+1)j,m = (Dt̃j
(Et̃j (C

N,M
p ((F q,m)m))))m

15: end for
16: Compute the empirical distribution of the particles (Yq+1):,m and (Zq+1):,m

17: [(Yq+1)j ]
M = M−1

∑M
m=1 δ(Yq+1)j,m

, [(Zq+1)j ]
M = M−1

∑M
m=1 δ(Zq+1)j,m

18: end for
19: end for
20: Return (YKit)0,: = d̂0 and (ZKit)0,: = 1√

h
d̂e11

5. Convergence results

We aim at bounding the error between (Y, Z) — the solution of (1.2) — and (Y q,p,N,M,m, Zq,p,N,M,m)
defined by (4.11). Before stating the main result of the paper, we recall some hypotheses intro-
duced in [BL14].
In the following, (t1, · · · , tn) and (s1, · · · , sn) denote two vectors such that

0 ≤ t1 ≤ · · · ≤ tn ≤ T, 0 ≤ s1 ≤ · · · ≤ sn ≤ T and ∀i, si ≤ ti.

Hypothesis 2. (Hypothesis Hm). Let m ∈ N∗. We say that F satisfies Hypothesis Hm if F
satisfies the two following hypotheses:

• H1
m: ∀j ≥ 2, F ∈ Dm,j, that is ‖F‖jm,j <∞;

• H2
m: ∀j ≥ 2, ∀i ∈ {1, · · · ,m}, ∀l0 ≤ i − 1, ∀l1 ≤ m − i, ∀l ∈ {1, · · · , d} and for all

multi-indices α0 and α1 such that |α0| = l0 and |α1| = l1 + 1, there exist two positive
constants βF and kFl such that

sup
t1≤···≤tl0

sup
si+1≤···≤si+l1

E
(
|Dα0

t1,··· ,tl0
(Dα1

ti,si+1,··· ,si+l1
F −Dα1

si,··· ,si+l1
F )|j

)
≤ kFl (j)(ti − si)jβF ,

where l = l0 + l1 + 1. In the following, we denote KF
m(j) = supl≤m k

F
l (j).

Remark 7. If F satisfies H2
m, for all multi-index α such that |α| = l, we have

|E(Dα
t1,··· ,tlF )− E(Dα

s1,··· ,slF )| ≤ KF
l

(
(t1 − s1)βF + · · ·+ (tl − sl)βF

)
, (5.1)

where KF
l is a constant.

Hypothesis 3. (Hypothesis H3
p,N ). Let (p,N) ∈ N2. We say that an r.v. F satisfies H3

p,N if

Vp,N (F ) := V(F ) +

p∑
k=1

∑
|n|=k

n!V

(
F

N∏
i=1

Kni(Gi)

)
<∞.
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Remark 8. If F is bounded by K, we get Vp,N (F ) ≤ K2
∑p

k=0

(
k
N

)
. Then every bounded r.v.

satisfies H3
p,N .

This remark ensues from E(
∏N
i=1K

2
ni(Gi)) = 1

n! .

Theorem 2. Assume that ξ satisfies Hp+q and there exists a real r > 4 s.t. ξ ∈ (Lr ∩ D1,r) ⊂
H3
p,N and f ∈ C0,p+q,p+q,0,0

b . We have

‖(Y − Y q,p,N,M,m, Z − Zq,p,N,M,m)‖2L2

≤ A0

2q
+
A1(q, p)

(p+ 1)!
+A2(q, p)

(
T

N

)2βξ∧1

+
A3(q, p,N)

M
+
A4(q, p,N)

M (1/2(q+2))
,

where A0 is given in Section 5.1, A1 is given in Proposition 3, A2 is given in Proposition 4, A3

is given in Proposition 5 and A4 is given in Proposition 6.
If f ∈ C0,∞,∞

b and ξ satisfies H∞ and H3
∞,∞, we obtain that, for each m ∈ 1, · · · ,M ,

lim
q→∞

lim
p→∞

lim
N→∞

lim
M→∞

‖(Y − Y q,p,N,M,m, Z − Zq,p,N,M,m)‖2L2 = 0.

Remark 9. Compared to [BL14, Theorem 4.6] we notice that the additional term A4(q,p,N)

M(1/2(q+2))

appears in the error bound. This term corresponds to the error approximation due to the particle
system. It is clearly worse that A3(q,p,N)

M which corresponds to the error due to the Monte Carlo
approximation. As we will see in Lemma 7, introducing some dependency between M identically
distributed r.v. gives a worse control of the error CNp − CN,Mp than the one obtained when
considering i.i.d. r.v. (see Lemma 6).

Proof of Theorem 2. We split the error into 5 terms:

(1) Picard’s iterations: εq = ‖(Y − Y q, Z − Zq)‖2L2 , where (Yq, Zq) is defined by (4.1);
(2) the truncation of the chaos decomposition: εq,p = ‖(Y q − Y q,p, Zq − Zq,p)‖2L2 , where

(Yq,p, Zq,p) is defined by (4.5);
(3) the truncation of the L2(0, T ) basis: εq,p,N = ‖(Y q,p − Y q,p,N , Zq,p − Zq,p,N )‖2L2 , where

(Yq,p,N , Zq,p,N ) is defined by (4.7);
(4) the Monte Carlo approximation to compute the expectations: εq,p,N,M = ‖(Y q,p,N −

Y q,p,N,M , Zq,p,N − Zq,p,N,M )‖2L2 , where (Yq,p,N,M , Zq,p,N,M ) is defined by (4.10).
(5) the particle system: εq,p,N,M,m = ‖(Y q,p,N,M − Y q,p,N,M,m, Zq,p,N,M − Zq,p,N,M,m)‖2L2 ,

where (Yq,p,N,M,m, Zq,p,N,M,m) is defined by (4.11).

We have

‖(Y − Y q,p,N,M,m, Z − Zq,p,N,M,m)‖2L2 ≤ 5(εq + εq,p + εq,p,N + εq,p,N,M + εq,p,N,M,m).

It remains to combine (5.2), Propositions 3, 4, 5 and 6 to get the first result. The second one is
straightforward. �

5.1. Picard’s iterations. From Remark 3, we know that under Hypothesis 1, the sequence
(Y q, Zq)q defined by (4.1) converges to (Y,Z) dP × dt a.s. and in S2

T (R) ×H2
T (Rd). Moreover,

we have

εq := ‖(Y − Y q, Z − Zq)‖2L2 ≤
A0

2q
, (5.2)

where A0 depends on T , ‖ξ‖2 and on ‖f(., 0, 0, [0], [0])‖2
L2
(0,T )

.
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5.2. Error due to the truncation of the chaos decomposition. We assume that the inte-
grals are computed exactly, as well as expectations. The error is only due to the truncation of
the chaos decomposition Cp introduced in [Equation(2.3),[BL14]].
For the sequel, we also need the following Lemma. We refer to [BL14, Appendix A.2] for a proof.

Lemma 4. Assume that ξ satisfies H1
m+q and f ∈ C0,m+q,m+q,0,0

b . Then ∀q′ ≤ q, ∀p ∈ N,
(Y q′ , Zq

′
) and (Y q′,p, Zq

′,p) belong to Sm,∞. Moreover

‖(Y q, Zq)‖jm,j + ‖(Y q,p, Zq,p)‖jm,j ≤ C(‖ξ‖m+q,((m+q−1)!/m!)j , (‖∂kspf‖∞)k≤m+q),

where C is a constant depending on ‖ξ‖m+q,((m+q−1)!/m!)j and on (‖∂kspf‖∞)k≤m+q.

Proposition 3. Let m ≤ p+1. Assume that ξ satisfies H1
m+q and f ∈ C

0,m+q,m+q,0,0
b . We recall

εq,p = ‖(Y q − Y q,p, Zq − Zq,p)‖2L2. We get

εq+1,p ≤ C1T (T + 1)L2
fε
q,p +

K1(q,m)

(p+ 1) · · · (p+ 2−m)
, (5.3)

where C1 is a scalar andK1(q,m) depends on T , m, ‖ξ‖m+q,2(m+q−1)!/(m−1)! and on (‖∂kspf‖∞)1≤k≤m+q.

Since ε0,p = 0, we deduce from (5.3) that εq,p ≤ A1(q,m)
(p+1)···(p+2−m) where A1(q,m) :=

(C1T (T+1)L2
f )q−1

C1T (T+1)L2
f−1

K1(q,m).

Then, (Y q,p, Zq,p) converges to (Y q, Zq) when p tends to ∞ in ‖(., .)‖L2.

Remark 10. We deduce from Proposition 3 that for all T and Lf , we have limq→∞ ε
q,p = 0.

When C1T (T + 1)L2
f < 1, that is, for T small enough, we also get limp→∞ limq→∞ ε

q,p = 0.

Proof of Proposition 3. For the sake of clearness, we assume d = 1. In the following, one
notes ∆Y q,p

t := Y q,p
t − Y q

t , ∆Zq,pt := Zq,pt − Zqt and ∆f q,pt := f(t, Y q,p
t , Zq,pt , [Y q,p

t ], [Zq,pt ]) −
f(t, Y q

t , Z
q
t , [Y

q
t ], [Zqt ]). First, we deal with E(sup0≤t≤T |∆Y

q+1,p
t |2). From (4.4) and (4.5) we get

∆Y q+1,p
t = Et

(
Cp(F

q,p)− F q
)
−
∫ t

0
∆f q,ps ds

= Et
(
Cp(ξ)− ξ

)
+ Et

(
Cp

(∫ T

0
f(s, Y q,p

s , Zq,ps , [Y q,p
s ], [Zq,ps ])ds

)
−
∫ T

0
f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])ds

)
−
∫ t

0
∆f q,ps ds.

We introduce ±Cp(
∫ T

0 f(s, Y q
s , Z

q
s , [Y

q
s ], [Zqs ])ds) in the second conditional expectation.

This leads to

∆Y q+1,p
t = Et

(
Cp(ξ)− ξ

)
+ Et

(
Cp

(∫ T

0
∆f q,ps ds

))
+ Et

(∫ T

0
Cp(f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ]))− f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])ds

)
−
∫ t

0
∆f q,ps ds.

where we have used the second property of Lemma 2 to rewrite the third term.
From the previous equation, we bound E(sup0≤t≤T |∆Y

q+1,p
t |2) by using Doob’s inequality, the
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property of the Wasserstein-2 distance (see (1.3)) and the fact that f is Lipschitz:

E
(

sup
0≤t≤T

|∆Y q+1,p
t |2

)
≤ 16E

(
|Cp(ξ)− ξ|2

)
+ 16E

(∣∣∣∣Cp(∫ T

0
∆f q,ps ds

)∣∣∣∣2∣∣∣∣)
+ 16T

∫ T

0
E(|Cp(f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ]))− f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])|2)ds

+ 16TL2
f

∫ T

0
E
(
|∆Y q,p

s |2 + |∆Zq,ps |2 +W2([Y q,p
s ], [Y q

s ])2 +W2([Zq,ps ], [Zqs ])2
)
ds

≤ 16E
(
|Cp(ξ)− ξ|2

)
+ 16E

(∣∣∣∣Cp(∫ T

0
∆f q,ps ds

)∣∣∣∣2)
+ 16T

∫ T

0
E(|Cp(f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ]))− f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])|2)ds

+ 32TL2
f

∫ T

0
E
(
|∆Y q,p

s |2 + |∆Zq,ps |2
)
ds.

To bound the second expectation of the previous inequality, we use the first property of Lemma
2 and the Lipschitz property of f . Then we bring together this term with the last one to get

E
(

sup
0≤t≤T

|∆Y q+1,p
t |2

)
≤ 16E

(
|Cp(ξ)− ξ|2

)
+ 16T

∫ T

0
E(|Cp(f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ]))− f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])|2)ds

+ 160TL2
f

∫ T

0
E
(
|∆Y q,p

s |2 + |∆Zq,ps |2
)
ds.

(5.4)
Let us now study the upper bound E(

∫ T
0 |∆Z

q+1,p
t |2ds). To do so, we use the Itô isome-

try E(
∫ T

0 |∆Z
q+1,p
t |2ds) = E((

∫ T
0 ∆Zq+1,p

t dBs)
2). Using the definitions (4.4)–(4.6) and the

Clark–Ocone Theorem leads to∫ T

0
∆Zq+1,p

s dBs = F q − E
(
F q
)
−
(
Cp(F

q,p)− E
(
Cp(F

q,p)
))

= Y q+1
T +

∫ T

0
f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])ds− Y q+1

0

−
(
Y q+1,p
T +

∫ T

0
f(s, Y q,p

s , Zq,ps , [Y q,p
s ], [Zq,ps ])ds− Y q+1,p

0

)
.

Rearranging this summation makes ∆Y q+1,p
T − (∆Y q+1,p

0 ) appear. We get

E
(∫ T

0
|∆Zq+1,p

s |2ds
)
≤ 6E

(
sup

0≤t≤T
|∆Y q+1,p

t |2
)

+ 24TL2
f

∫ T

0
E
(
|∆Y q,p

s |2 + |∆Zq,ps |2
)
ds.

(5.5)

Since
∫ T

0 E
(
|∆Y q,p

s |2 + |∆Zq,ps |2
)
ds ≤ (T + 1)εq,p, by computing 7× (5.4) + (5.5) we obtain

εq+1,p ≤ 112E
(
|Cp(ξ)− ξ|2

)
+ 112T

∫ T

0
E(|Cp(f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ]))− f(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])|2)ds

+ 1144T (T + 1)L2
fε
q,p.
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Since ξ and f(s, Y q
s , Z

q
s , [Y

q
s ], [Zqs ]) belong to Dm,2 (ξ satisfies H1

m+q, f ∈ C0,m+q,m+q
b and

(Y q, Zq) ∈ Sm,∞ (see Lemma 4)), Lemma 1 gives

εq+1,p ≤ 112

(p+ 1) · · · (p+ 2−m)
‖Dmξ‖2L2(Ω×[0,T ]m)

+
112T

(p+ 1) · · · (p+ 2−m)

(∫ T

0
‖Dmf(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])‖2L2(Ω×[0,T ]m)ds

)
+ 1144T (T + 1)L2

fε
q,p.

Since
∫ T

0 ‖D
mf(s, Y q

s , Z
q
s , [Y

q
s ], [Zqs ])‖2L2(Ω×[0,T ]m)ds is bounded by C

(
T,m, (‖∂kspf‖∞)k≤m,

‖(Y q, Zq)‖2mm,2m
)
, Lemma 4 gives the result. �

5.3. Error due to the truncation of the basis. We are now interested in bounding the error
between (Y q,p, Zq,p) (defined by (4.5)) and (Y q,p,N , Zq,p,N ) (defined by (4.7)).
Before giving an upper bound for the error, we measure the error between Cp and CNp for a r.v.
satisfying (5.1) when m = p.

Remark 11 (Remark 4.13, [BL14]). Let ξ satisfy Hp and f ∈ C0,p,p,0,0
b . Then, for all integer

q ≥ 0, Iq,p :=
∫ T

0 f(s, Y q,p
s , Zq,ps , [Y q,p

s ], [Zq,ps ])ds satisfies (5.1); that is for all multi-index α such
that |α| = r, we have

|E(Dα
t1,··· ,trIq,p)− E(Dα

s1,··· ,srIq,p)| ≤ K
Iq,p
r

(
(t1 − s1)βIq,p + · · ·+ (tr − sr)βIq,p

)
,

where βIq,p = 1
2 ∧ βξ and KIq,p

r depends on Kξ
r , ‖ξ‖p,1 T and on (‖∂ksp‖∞)1≤k≤p.

Lemma 5 (Lemma 4.14, [BL14]). Let F denote a r.v. in L2(FT ) satisfying (5.1) for m = p.
We have

E(|(CNp − Cp)(F )|2) ≤ (KF
p )2

(
T

N

)2βF p∑
i=1

i2
T i

i!
≤ (KF

p )2

(
T

N

)2βF

T (1 + T )eT ,

where KF
p and βF are defined in Hypothesis 2.

Proposition 4. Assume that ξ satisfies Hp and f ∈ C0,p,p,0,0
b . We recall

εq,p,N := ‖(Y q,p − Y q,p,N , Zq,p − Zq,p,N )‖2L2. We get

εq+1,p,N ≤ C2T (T + 1)L2
fε
q,p,N +K2(q, p)T (T + 1)eT

(
T

N

)1∧2βξ

, (5.6)

where C2 is a scalar and K2(q, p) depends on Kξ
p , T , ‖ξ‖p,1 and on (‖∂kspf‖∞)1≤k≤p.

Since ε0,p,N = 0, we deduce from (5.6) that εq,p,N ≤ A2(q, p)( TN )1∧2βξ where

A2(q, p) := K2(q, p)T (T + 1)eT
(C2T (T+1)L2

f )q−1

C2T (T+1)L2
f−1

. Then, (Y q,p,N , Zq,p,N ) converges to (Y q,p, Zq,p)

when N tends to ∞ in ‖(., .)‖L2.

Proof of Proposition 4. For the sake of clarity, we assume d = 1. In the following, one notes
∆Y q,p,N

t := Y q,p,N
t −Y q,p

t , ∆Zq,p,Nt := Zq,p,Nt −Zq,pt and ∆f q,p,Nt := f(t, Y q,p,N
t , Zq,p,Nt , [Y q,p,N

t ], [Zq,p,Nt ])−
f(t, Y q,p

t , Zq,pt , [Y q,p
t ], [Zq,pt ]). First, we deal with E(sup0≤t≤T |∆Y

q+1,p,N
t |2). From (4.5) and (4.7)

we get

∆Y q+1,p,N
t = Et

(
Cp(F

q,p,N )− F q,p
)
−
∫ t

0
∆f q,p,Ns ds.

Following the same steps as in the proof of Proposition 3, we get
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E
(

sup
0≤t≤T

|∆Y q+1,p,N
t |2

)
≤ 16E

(
|CNp (ξ)− Cp(ξ)|2

)
+ 16E

(∣∣∣∣(CNp − Cp)(∫ T

0
f(s, Y q,p

s , Zq,ps , [Y q,p
s ], [Zq,ps ])ds

)∣∣∣∣2)
+ 160L2

f

∫ T

0
E
(
|∆Y q,p,N

s |2 + |∆Zq,p,Ns |2
)
ds.

(5.7)

Let us now study the upper bound E(
∫ T

0 |∆Z
q+1,p,N
s |2ds). Following the same steps as in the

proof of Proposition 3, we get

E
(∫ T

0
|∆Zq+1,p,N

s |2ds
)
≤ 6E

(
sup

0≤t≤T
|∆Y q+1,p,N

t |2
)

+ 24TL2
f

∫ T

0
E
(
|∆Y q,p,N

s |2 + |∆Zq,p,Ns |2
)
ds.

(5.8)

Adding 7× (5.7) and (5.8) we obtain

εq+1,p,N ≤ 112E
(
|(CNp − Cp)(ξ)|2

)
+ 112E

(∣∣∣∣(CNp − Cp)(∫ T

0
f(s, Y q,p

s , Zq,ps , [Y q,p
s ], [Zq,ps ])ds

)∣∣∣∣2)
+ 1144T (T + 1)L2

fε
q,p,N .

Since ξ and Iq,p := f(s, Y q,p
s , Zq,ps , [Y q,p

s ], [Zq,ps ]) satisfy (5.1) (see Remarks 8 and 11), Lemma 5
gives

εq+1,p,N ≤ 112

(
T

N

)1∧2βξ

T (T + 1)eT ((Kξ
p)2 + (K

Iq,p
p )2)

+ 1144T (T + 1)L2
fε
q,p,N .

and (5.6) follows. �

5.4. Error due to the Monte Carlo approximation. We are now interested in bounding
the error between (Y q,p,N , Zq,p,N ) (defined by (4.7)) and (Y q,p,N,M , Zq,p,N,M ) (defined by (4.10)).
In this section, we assume that the coefficients d̂nk are independent of the vector (G1, · · · , GN ),
which corresponds to the second approach proposed in (Remark 3.2,[BL14]).
Before giving an upper bound for the error, we measure the error between CNp and CN,Mp for a
r.v. satisfying H3

p,N (see Hypothesis (3)). The following Lemma deals with CN,Mp (F ), i.e. the
case of i.i.d. samples of F (see Definition 1). The general case will be stated in Lemma 7.

Lemma 6. Let F be a r.v. satisfying Hypothesis H3
p,N . We have

E(|(CNp − CN,Mp )(F )|2) =
1

M
Vp,N (F ),

and

E(|CN,Mp (F )|2) ≤ E(|F |2) +
1

M
Vp,N (F ).

We refer to [BL14, Appendix A.5] for the proof of the lemma.
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Proposition 5. Let ξ satisfy Hypothesis H3
p,N and f is a bounded function. Let εq,p,N,M :=

‖(Y q,p,N − Y q,p,N,M , Zq,p,N − Zq,p,N,M )‖2L2 . We get

εq+1,p,N,M ≤ C3T (T + 1)L2
fε
q,p,N,M +

K3(p,N)

M
, (5.9)

where C3 is a scalar and K3(p,N) := 724(Vp,N (ξ) + T 2‖f‖2∞
∑p

k=0

(
k
N

)
).

Since ε0,p,N,M = 0, we deduce from the previous inequality that εq,p,N,M ≤ A3(q,p,N)
M where

A3(q, p,N) := K3(p,N)
(C3T (T+1)L2

f )q−1

C3T (T+1)L2
f−1

. Then, (Y q,p,N,M , Zq,p,N,M ) converges to (Y q,p,N , Zq,p,N )

when M tends to ∞ in ‖(., .)‖L2.

Proof of Proposition 5. For the sake of clarity, we assume d = 1. In the following, note that
∆Y q,p,N,M

t := Y q,p,N,M
t − Y q,p,N

t , ∆Zq,p,N,Mt := Zq,p,N,Mt − Zq,p,Nt and ∆f q,p,N,Mt :=

f(t, Y q,p,N,M
t , Zq,p,N,Mt , [Y q,p,N,M

t ], [Zq,p,N,Mt ]) − f(t, Y q,p,N
t , Zq,p,Nt , [Y q,p,N

t ], [Zq,p,Nt ]). First, we
deal with E(sup0≤t≤T |∆Y

q+1,p,N,M
t |2). From (4.7) and (4.10) we get

∆Y q+1,p,N,M
t = Et

(
CN,Mp (F q,p,N,M )− CNp (F q,p,N )

)
−
∫ t

0
∆f q,p,N,Ms ds.

By introducing ±CNp (F q,p,N,M ) and by using Lemma 3, Doob’s inequality, and the Lipschitz
property of f , we obtain

E
(

sup
0≤t≤T

|∆Y q+1,p,N,M
t |2

)
≤ 12E

(
|(CN,Mp − CNp )(F q,p,N,M )|2

)
+ 12E

(
|CNp (F q,p,N,M − F q,p,N )|2

)
+ 12TL2

f

∫ T

0
E
(
|∆Y q,p,N,M

s |2 + |∆Zq,p,N,Ms |2

+W2([Y q,p,N,M
s ], [Y q,p,N

s ])2 +W2([Zq,p,N,Ms ], [Zq,p,Ns ])2
)
ds

≤ 12E
(
|(CN,Mp − CNp )(F q,p,N,M )|2

)
+ 12E

(
|F q,p,N,M − F q,p,N |2

)
+ 24TL2

f

∫ T

0
E
(
|∆Y q,p,N,M

s |2 + |∆Zq,p,N,Ms |2
)
ds.

From Lemma 6, we get E(|(CN,Mp − CNp )(F q,p,N,M )|2) ≤ 2
M (Vp,N (ξ) + Vp,N (

∫ t
0 f(θq,p,N,Ms )ds)).

Then, from Remark 8,

E
(

sup
0≤t≤T

|∆Y q+1,p,N,M
t |2

)
≤ 24

M

(
Vp,N (ξ) + T 2‖f‖2∞

p∑
k=0

(
k

N

))

+ 120TL2
f

∫ T

0
E
(
|∆Y q,p,N,M

s |2 + |∆Zq,p,N,Ms |2
)
ds.

(5.10)

Let us now bound E
( ∫ T

0 |∆Z
q+1,p,N,M
s |2ds

)
. Following the same steps as in the proof of Propo-

sition 4, we get
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E
(∫ T

0
|∆Zq+1,p,N,M

s |2ds
)
≤ 6E

(
sup

0≤t≤T
|∆Y q+1,p,N,M

t |2
)

+ 24TL2
f

∫ T

0
E
(
|∆Y q,p,N,M

s |2 + |∆Zq,p,N,Ms |2
)
ds.

(5.11)

Adding 7× (5.10) and (5.11) gives the result. �

5.5. Error due to the Particle approximation. In order to prove the error between (Y q,p,N,M , Zq,p,N,M )
(defined by (4.10)) and (Y q,p,N,M,m, Zq,p,N,M,m) (defined by (4.11)) for all 1 ≤ m ≤ M , we in-
troduce the following independent copies of (Y q,p,N,M , Zq,p,N,M ),

Ȳ q+1,p,N,M,m
t =Et

(
CN,Mp ((F̄ q,p,N,M,m)m)

)
−
∫ t

0
f(s, Ȳ q,p,N,M,m

s , Z̄q,p,N,M,m
s , [Ȳ q,p,N,M,m

s ], [Z̄q,p,N,M,m
s ])ds,

Z̄q+1,p,N,M,m
t =DtEt

(
CN,Mp ((F̄ q,p,N,M,m)m)

)
,

(5.12)

where F̄ q,p,N,M,m = ξ +
∫ T

0 f(s, Ȳ q,p,N,M,m
s , Z̄q,p,N,M,m

s , [Ȳ q,p,N,M,m
s ], [Z̄q,p,N,M,m

s ])ds.
Note that [Ȳ q,p,N,M,m

s ]M (resp. [Z̄q,p,N,M,m
s ]M ) is the empirical distribution of the particles

Ȳ q,p,N,M,m
s (resp. Z̄q,p,N,M,m

s ).
We are now interested in bounding the error between (Ȳ q,p,N,M,m, Z̄q,p,N,M,m) (defined by (5.12))
and (Y q,p,N,M,m, Zq,p,N,M,m) (defined by (4.11)), for all 1 ≤ m ≤ M . Before giving an upper
bound for the error, we measure the error between CNp and CN,Mp for a r.v. F satisfying H3

p,N

(see Hypothesis (3)) when (Fm)1≤m≤M are identically distributed r.v., but not necessarily inde-
pendant.

Lemma 7. Let F be a r.v. satisfying Hypothesis H3
p,N and let (Fm)1≤m≤M be M identically

distributed r.v. with law F . We get

E(|(CNp − CN,Mp )((Fm)m)|2) ≤ E(|F |2) +

p∑
k=1

∑
|n|=k

n!

2
E

(
|F |2

N∏
i=1

K2
ni(Gi)

)
,

and so, we obtain

E(|CN,Mp ((Fm)m)|2) ≤ 2E(|F |2) +

p∑
k=1

∑
|n|=k

n!

2
E

(
|F |2

N∏
i=1

K2
ni(Gi)

)
.

Proof of Lemma 7. Using definitions (2.6) and (4.9), we have

(CNp − CN,Mp )((Fm)m) = d0 − d̂0 +

p∑
k=1

∑
|n|=k

(dnk − d̂nk)
N∏
i=1

Kni(Gi).

Since d̂nk is independent of (Gi)i, it implies that

E(|(CNp − CN,Mp )((Fm)m)|2) = E(|d0 − d̂0|2) +

p∑
k=1

∑
|n|=k

1

n!
E(|dnk − d̂nk |2).
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The definition of the coefficients d0 and dnk given in (2.7) leads to

E(|(CNp − CN,Mp )((Fm)m)|2) = V(d̂0) +

p∑
k=1

∑
|n|=k

1

n!
V(d̂nk)

≤ E(|d̂0|2) +

p∑
k=1

∑
|n|=k

1

n!
E(|d̂nk |2).

From the representation (4.8) of the coefficients d̂0 and d̂nk , we can prove for the first term of the
previous inequality that

E(|d̂0|2) = E
(∣∣∣∣ 1

M

M∑
m=1

Fm
∣∣∣∣2) =

1

M2
E
(∣∣∣∣ M∑

m=1

Fm
∣∣∣∣2) ≤ 1

M
E
( M∑
m=1

|Fm|2
)

= E(|F |2),

and for the second term E(|d̂nk |2), we obtain that

E(|d̂nk |2) = E
(∣∣∣∣ n!

M

M∑
m=1

Fm
N∏
i=1

Kni(G
m
i )

∣∣∣∣2)

=
n!2

M2
E
(∣∣∣∣ M∑

m=1

Fm
N∏
i=1

Kni(G
m
i )

∣∣∣∣2)

=
n!2

M2

[
E
( M∑
m=1

|Fm|2
N∏
i=1

K2
ni(G

m
i )

)
+
M(M − 1)

2
E
(∣∣∣∣F 1

N∏
i=1

Kni(G
1
i ).F

2
N∏
i=1

Kni(G
2
i )

∣∣∣∣)
]

≤ n!2

M
E
(
|F |2

N∏
i=1

K2
ni(Gi)

)
+
M(M − 1)n!2

2M2
E
(
|F |2

N∏
i=1

K2
ni(Gi)

)

≤ n!2
(

1

2
+

1

M

)
E
(
|F |2

N∏
i=1

K2
ni(Gi)

)
.

Then, the first result follows. To get the second result, we write CN,Mp ((Fm)m) = (CN,Mp −
CNp )((Fm)m) + CNp (F ). Since E((CN,Mp − CNp )((Fm)m)CNp (F )) = 0, we get

E(|CN,Mp ((Fm)m)|2) = E(|(CN,Mp − CNp )((Fm)m)|2) + E(|CNp (F )|2),

and Lemma 3 completes the proof.
�

Proposition 6. Assume that there exists a real r > 4 s.t. ξ ∈ (Lr ∩ D1,r) ⊂ H3
p,N and f is a

bounded function. Let εq,p,N,M,m := ‖(Ȳ q,p,N,M,m − Y q,p,N,M,m, Z̄q,p,N,M,m −Zq,p,N,M,m)‖2L2 . We
get

εq+1,p,N,M,m ≤ C4(p,N)
(
εq,p,N,M,m

)1/2
+
K4(p,N)

M1/4
, (5.13)

where C4(p,N) and K4(p,N) depends on p, N , T and ‖f‖∞. Since ε0,p,N,M,m = 0, we deduce
from (5.13) that εq,p,N,M,m ≤ A4(q,p,N)

M(1/2(q+2))
where A4(q, p,N)depends on q, p, N , T and ‖f‖∞.Then,

∀ 1 ≤ m ≤ M , (Y q,p,N,M,m, Zq,p,N,M,m) converges to (Ȳ q,p,N,M,m, Z̄q,p,N,M,m) when M tends to
∞ in ‖(., .)‖L2.

Lemma 8. Assume that f is a bounded function and ξ ∈ Lr ∩ D1,r. Then, for all r ≥ 1 and
1 ≤ m ≤M , there exist a positive constant Kr, depending on f, r and T such that

E(|Ȳ q,p,N,M,m
t |r) + E(|Z̄q,p,N,M,m

t |r) ≤ Kr

(
1 + E(|ξ|r) + E(|Dtξ|r)

)
.
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Proof of Lemma 8. Let r ≥ 1 and t ∈ [0, T ]. From (5.12) and by using Cauchy-Schwartz inequal-
ity, we obtain

E(|Ȳ q,p,N,M,m
t |r) = E

(∣∣∣∣Et(CNp (F̄ q,p,N,M,m)
)

−
∫ t

0
f(s, Ȳ q,p,N,M,m

s , Z̄q,p,N,M,m
s , [Ȳ q,p,N,M,m

s ], [Z̄q,p,N,M,m
s ])ds

∣∣∣∣r)
≤ 2r−1E

(∣∣∣∣Et(CNp (F̄ q,p,N,M,m)
)∣∣∣∣r

+

∣∣∣∣ ∫ t

0
f(s, Ȳ q,p,N,M,m

s , Z̄q,p,N,M,m
s , [Ȳ q,p,N,M,m

s ], [Z̄q,p,N,M,m
s ])ds

∣∣∣∣r),
where F̄ q,p,N,M,m = ξ +

∫ T
0 f(s, Ȳ q,p,N,M,m

s , Z̄q,p,N,M,m
s , [Ȳ q,p,N,M,m

s ], [Z̄q,p,N,M,m
s ])ds.

Then, since f is a bounded function, there exists a positive constant K1, depending on f , r and
T such that

E(|Ȳ q,p,N,M,m
t |r) ≤ K1(1 + E(|ξ|r)).

In the same way, we can obtain that

E(|Z̄q,p,N,M,m
t |r) = E

(∣∣∣∣DtEt
(
CNp (F̄ q,p,N,M,m)

)∣∣∣∣r)
≤ K2(1 + E(|Dtξ|r)),

and the result follows. �

Proof of Proposition 6. For the sake of clarity, we assume d = 1. In the following, consider that
∆Y q,p,N,M,m

t := Y q,p,N,M,m
t −Ȳ q,p,N,M,m

t , ∆Zq,p,N,M,m
t := Zq,p,N,M,m

t −Z̄q,p,N,M,m
t , ∆f q,p,N,M,m

t :=

f(t, Y q,p,N,M,m
t , Zq,p,N,M,m

t , [Y q,p,N,M,m
t ]M , [Zq,p,N,M,m

t ]M )−f(t, Ȳ q,p,N,M,m
t , Z̄q,p,N,M,m

t , [Ȳ q,p,N,M,m
t ],

[Z̄q,p,N,M,m
t ]) and ∆F q,p,N,M,m := F q,p,N,M,m−F̄ q,p,N,M,m. First, we deal with E(sup0≤t≤T |∆Y

q+1,p,N,M,m
t |2).

From (5.12) and (4.11) we get

∆Y q+1,p,N,M,m
t = Et

(
CN,Mp ((∆F q,p,N,M,m)m)

)
−
∫ t

0
∆f q,p,N,M,m

s ds.

By using Doob and Cauchy-Schwartz inequalities, we obtain

E
(

sup
0≤t≤T

|∆Y q+1,p,N,M,m
t |2

)
≤ 2E

(
sup

0≤t≤T

∣∣∣∣Et(CN,Mp ((∆F q,p,N,M,m)m)
)∣∣∣∣2)+ 2E

(
sup

0≤t≤T

∣∣∣∣ ∫ t

0
∆f q,p,N,M,m

s ds

∣∣∣∣2)
≤ 8E

(∣∣∣∣CN,Mp ((∆F q,p,N,M,m)m)

∣∣∣∣2)+ 2TE
(∫ T

0

∣∣∣∣∆f q,p,N,M,m
s

∣∣∣∣2ds).
From Lemma 7, we have

E(|CN,Mp ((∆F q,p,N,M,m)m)|2) ≤ 2E(|∆F q,p,N,M,m|2) +

p∑
k=1

∑
|n|=k

n!

2
E

(
|∆F q,p,N,M,m|2

N∏
i=1

K2
ni(Gi)

)
,

and by using Cauchy-Schwartz inequality and the bounded property of the function f , we get
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E(|CN,Mp ((∆F q,p,N,M,m)m)|2) ≤ 2E(|∆F q,p,N,M,m|2)

+

p∑
k=1

∑
|n|=k

n!

2
E
(
|∆F q,p,N,M,m|2

)1/2
E
(
|∆F q,p,N,M,m|2

N∏
i=1

K4
ni(Gi)

)1/2

≤ 2E(|∆F q,p,N,M,m|2) + C(p,N)E
(
|∆F q,p,N,M,m|2

)1/2

≤
(
C(p,N) + 4T‖f‖∞

)
E
(
|∆F q,p,N,M,m|2

)1/2
,

where C(p,N) =

p∑
k=1

∑
|n|=k

n!T‖f‖∞E
( N∏
i=1

K4
ni(Gi)

)1/2

. Then, we can conclude that

E
(

sup
0≤t≤T

|∆Y q+1,p,N,M,m
t |2

)
≤ 8
√
T
(
C(p,N) + 4T‖f‖∞

)
E
(∫ T

0

∣∣∣∣∆f q,p,N,M,m
s

∣∣∣∣2ds)1/2

+ 2TE
(∫ T

0

∣∣∣∣∆f q,p,N,M,m
s

∣∣∣∣2ds)
≤
(

8
√
T
(
C(p,N) + 4T‖f‖∞

)
+ 4T

√
T‖f‖∞

)
E
(∫ T

0

∣∣∣∣∆f q,p,N,M,m
s

∣∣∣∣2ds)1/2

≤ C1(p,N)E
(∫ T

0

∣∣∣∣∆f q,p,N,M,m
s

∣∣∣∣2ds)1/2

,

where C1(p,N) = 4
√
T
(

2C(p,N) + 9T‖f‖∞
)
.

Moreover, the Lipschitz property of f gives

E
(

sup
0≤t≤T

|∆Y q+1,p,N,M,m
t |2

)
≤ 2C1(p,N)Lf

(∫ T

0
E
(
|∆Y q,p,N,M,m

s |2 + |∆Zq,p,N,M,m
s |2

+W2([Y q,p,N,M,m
s ]M , [Ȳ q,p,N,M,m

s ])2 +W2([Zq,p,N,M,m
s ]M , [Z̄q,p,N,M,m

s ])2
)
ds

)1/2

,

where
E
(
W2([Y q,p,N,M,m

s ]M , [Ȳ q,p,N,M,m
s ])2

)
≤ 2E

(
W2([Y q,p,N,M,m

s ]M , [Ȳ q,p,N,M,m
s ]M )2

)
+ 2E

(
W2([Ȳ q,p,N,M,m

s ]M , [Ȳ q,p,N,M,m
s ])2

)
,

and
E
(
W2([Zq,p,N,M,m

s ]M , [Z̄q,p,N,M,m
s ])2

)
≤ 2E

(
W2([Zq,p,N,M,m

s ]M , [Z̄q,p,N,M,m
s ]M )2

)
+ 2E

(
W2([Z̄q,p,N,M,m

s ]M , [Z̄q,p,N,M,m
s ])2

)
.

On the one hand, by using the property of the Wasserstein distance W2, we get

E
(
W2([Y q,p,N,M,m

s ]M , [Ȳ q,p,N,M,m
s ]M )2

)
≤ E

(
W2

(
1

M

M∑
m=1

δ
Y q,p,N,M,ms

,
1

M

M∑
m=1

δ
Ȳ q,p,N,M,ms

)2)

≤ 1

M

M∑
m=1

E
(∣∣Y q,p,N,M,m

s − Ȳ q,p,N,M,m
s

∣∣2)
= E

(∣∣∆Y q,p,N,M,m
s

∣∣2).
On the other hand, thanks to Lemma 8 and to the assumption on ξ, we apply [FG15, Theorem
1] to obtain
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E
(
W2([Ȳ q,p,N,M,m

s ]M , [Ȳ q,p,N,M,m
s ])2

)
≤ sup

0≤s≤T
E
(
W2([Ȳ q,p,N,M,m

s ]M , [Ȳ q,p,N,M,m
s ])2

)
≤ CT√

M
,

where CT is a positive constant.
In the same way, we have

E
(
W2([Zq,p,N,M,m

s ]M , [Z̄q,p,N,M,m
s ]M )2

)
≤ E

(∣∣∆Zq,p,N,M,m
s

∣∣2),
and

E
(
W2([Z̄q,p,N,M,m

s ]M , [Z̄q,p,N,M,m
s ])2

)
≤

C ′T√
M
.

Finally, we can derive the inequality

E
(

sup
0≤t≤T

|∆Y q+1,p,N,M,m
t |2

)
≤ 2C1(p,N)Lf

[∫ T

0
E
(

3|∆Y q,p,N,M,m
s |2 + 3|∆Zq,p,N,M,m

s |2 + 2
CT√
M

+ 2
C ′T√
M

)
ds

]1/2

≤ K(p,N)

M1/4
+ C2(p,N)

(∫ T

0
E
(
|∆Y q,p,N,M,m

s |2 + |∆Zq,p,N,M,m
s |2

)
ds

)1/2

,

(5.14)

where K(p,N) and C2(p,N) = 6C1(p,N)Lf are two constants depending on p, N , T and ‖f‖∞.
Let us now study the upper bound E(

∫ T
0 |∆Z

q+1,p,N,M,m
s |2ds). Following the same steps as in

the proof of Proposition 3, we get

E
(∫ T

0
|∆Zq+1,p,N,M,m

s |2ds
)
≤ 6E

(
sup

0≤t≤T
|∆Y q+1,p,N,M,m

t |2
)

+ 3TE
(∫ T

0
|∆f q,p,N,M,m

s |2
)
ds,

and by using the same previous majoration for the second term of the right hand side, we deduce

E
(∫ T

0
|∆Zq+1,p,N,M,m

s |2ds
)
≤ 6E

(
sup

0≤t≤T
|∆Y q+1,p,N,M,m

t |2
)

+
K1(p,N)

M1/4

+ C3(p,N)

(∫ T

0
E
(
|∆Y q,p,N,M,m

s |2 + |∆Zq,p,N,M,m
s |2

)
ds

)1/2

.

(5.15)
By adding 7× (5.14) and (5.15), the result can follows easily. �

6. Numerical illustrations

In this section, we will illustrate the algorithm by presenting some explicit computations.
We consider on [0, T ] the following sort of processes

Yt = ξ +

∫ T

t

(
αYs + βE(Ys) + γE(Zs)

)
ds−

∫ T

t
Zs · dBs, 0 ≤ t ≤ T, (6.1)

where α, β and γ ∈ R. First, we study the solution of (6.1) when γ = 0. Then, we study the
solution of (6.1) in the general case.
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Case (1) γ = 0. We have

Yt = eα(T−t)
(
Et(ξ) + E(ξ)(eβ(T−t) − 1)

)
,

and
Zt = eα(T−t)Et(Dtξ).

Now, if ξ = BT , we obtain

(Yt, Zt) =
(
eα(T−t)Bt, e

α(T−t)
)
,

and if ξ = B2
T , we get

(Yt, Zt) =
(
eα(T−t)(B2

t − t+ Teβ(T−t)), 2eα(T−t)Bt

)
.

Case (2) γ 6= 0. We consider two different values of ξ:
If ξ = BT and β 6= 0, we have

(Yt, Zt) =
(
eα(T−t)

(
Bt +

γ

β
(eβ(T−t) − 1)

)
, eα(T−t)

)
.

If ξ = B2
T , we have

(Yt, Zt) =
(
eα(T−t)(B2

t − t+ Teβ(T−t)), 2eα(T−t)Bt

)
.

6.1. Proofs of the numerical illustrations.

Proof of case (1). In this case, we have

E(Yt) = E(ξ) +

∫ T

t
(α+ β)E(Ys)ds,

from which we derive
E(Yt) = E(ξ)e(α+β)(T−t),

and taking into account (6.1), we get

Yt = ξ +

∫ T

t

(
αYs + βE(ξ)e(α+β)(T−s)

)
ds−

∫ T

t
ZsdBs.

Applying Itô’s formula on eαtYt, we get

eαtYt = eαT ξ + βE(ξ)

∫ T

t
eαse(α+β)(T−s)ds−

∫ T

t
eαsZsdBs

= eαT ξ + E(ξ)eαT
(
eβ(T−t) − 1

)
−
∫ T

t
eαsZsdBs,

which leads

Yt = eα(T−t)ξ + E(ξ)eα(T−t)
(
eβ(T−t) − 1

)
− e−αt

∫ T

t
eαsZsdBs.

Finally, by taking the conditional expectation of Yt, we get the explicit form of (Yt, Zt) as follows

Yt = eα(T−t)
(
Et(ξ) + E(ξ)(eβ(T−t) − 1)

)
,

and
Zt = eα(T−t)Et(Dtξ).

When the terminal condition is equal to BT or B2
T , we easily get the results. �
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Proof of case (2). From (6.1), we have

Yt = Et(ξ) + Et
(∫ T

t

(
αYs + βE(Ys) + γE(Zs)

)
ds

)
.

By applying the Malliavin derivative on Yt, we obtain that for all s ∈ [0, T ],

E(DsYt) = E(Dsξ) + α

∫ T

t
E(DsYs)ds,

and obviously when s −→ t, we get

E(Zt) = E(DtYt)

= eα(T−t)E(Dtξ).

Therefore,

E(Zt) =

{
eα(T−t) if ξ = BT ,

0 if ξ = B2
T .

When ξ = B2
T , we obtain the same equation as in the case (1), and therefore, the same result.

Now, when ξ = BT , we get the following form of the process Yt

Yt = ξ +

∫ T

t

(
αYs + βE(Ys) + γeα(T−s)

)
ds−

∫ T

t
ZsdBs. (6.2)

Since

E(Yt) =

∫ T

t

(
(α+ β)E(Ys) + γeα(T−s)

)
ds,

it implies that

E(Yt) = γe(α+β)(T−t)
∫ T

t
e−(α+β)(T−s)eα(T−s)ds

=
γ

β
eα(T−t)(eβ(T−t) − 1

)
,

and from (6.2), we deduce that

Yt = ξ +

∫ T

t

(
αYs + γe(α+β)(T−s)

)
ds−

∫ T

t
ZsdBs.

Finally, by applying Itô’s formula and by taking the conditional expectation of eαtYt, we conclude
that

(Yt, Zt) =
(
eα(T−t)

(
Bt +

γ

β
(eβ(T−t) − 1)

)
, eα(T−t)

)
.

�

6.2. Illustrations. The computations of this section have been done on the following computers

• Dell precision tower 3620 4 cores Intel(R) Xeon(R) CPU E3-1240 v6 @3.7 Ghz with 16
Go of memory for M varying from 104 to 107

• Dell precision T7920 with 2 Intel Xeon Gold 6128 with 6 cores @3.7 Ghz and 128 Go of
memory for M = 108

Let 0 = t0 < t1 < · · · < tN = T be a subdivision of [0, T ] of step size h = T/N , N being a
positive integer, let (Y, Z) be the unique solution of McKean-Vlasov BSDE (1.2) and let, for a
given q, p and m, (Ỹ q,p,m

tk
, Z̃q,p,mtk

)0≤k≤N be its numerical approximation given by Algorithm 1.
For a given integer L, we draw (Ȳ l, Z̄ l)0≤l≤L and (Ỹ q,p,m,l, Z̃q,p,m,l)0≤l≤L, L independent copies
of (Y,Z). Then we approximate the L2-error of Theorem 2 by:
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error =
1

L

L∑
l=1

(
max

0≤k≤N

∣∣∣Ȳ l
tk
− Ỹ q,p,m,l

tk

∣∣∣2 + h
N∑
k=0

∣∣∣Z̄ ltk − Z̃q,p,m,ltk

∣∣∣2). (6.3)

• Convergence in p. Table 1 represents the evolution of Ỹ q,p,N,M
0 w.r.t q (Picard’s itera-

tion index), when p = 2 and p = 3. We also give the CPU time needed to get Ỹ 8,p,N,M
0

and Z̃8,p,N,M
0 . We fixM = 107, N = 20, ξ =

√
|BT | and f(t, Y, Z) = Y +E(Z). The seed

of the generator is also fixed. Note that the difference between the values of Ỹ 8,2,N,M
0 and

Ỹ 8,3,N,M
0 does not exceed 0.12%. This is due to the fast convergence of the algorithm in
p. CPU time is 5 times higher when p = 3 than when p = 2.

Iterations 1 2 3 4 5 6 7 8 Real time

p=2 0.822301 1.644047 2.033746 2.150164 2.174622 2.178412 2.178843 2.178874 49.596

p=3 0.822236 1.644453 2.035001 2.152181 2.177102 2.181102 2.181609 2.181662 284.947

Table 1. Evolution of Ỹ q,p,N,M
0 (p = 2 and p = 3) w.r.t. Picard’s iterations,

M = 107, N = 20, ξ =
√
|BT |, f(t, Y, Z) = Y + E(Z) and the real time of

calculation.

• Convergence in M . Figure 1 (resp. Figure 2) represents the evolution of Ỹ q,p,N,M
0 and

Z̃q,p,N,M0 w.r.t. q when p = 3 (resp. when p = 2), N = 20, f(t, Y, Z) = Y + E(Z) and
ξ =

√
|BT | (resp. ξ = B2

T ) for different values ofM . For this set of parameters, the exact
solutions are Y0 = 2.2352 (resp. Y0 = 2.7183) and Z0 = 0. The exact solution depicted
in Figure 1 is obtained by applying a lot of drawings. Concerning Figure 1, we notice
that Ỹ q,p,N,M

0 (resp. Z̃q,p,N,M0 ) converges to the exact solution when M ≥ 105 (resp.
M ≥ 106). Concerning Figure 2, we notice that Ỹ q,p,N,M

0 (resp. Z̃q,p,N,M0 ) converges to
the exact solution whenM ≥ 105 (resp. M ≥ 107). In both cases the algorithm stabilizes
after very few iterations.

Figure 1. Evolution of Ỹ q,p,N,M
0 and Z̃q,p,N,M0 w.r.t. q for different values of M

when N = 20, p = 3, ξ =
√
|BT |, f(t, Y, Z) = Y + E(Z).

• Convergence in N . Figure 3 represents the evolution of Ỹ q,p,N,M
0 and Z̃q,p,N,M0 w.r.t. q

when p = 2, M = 106, f(t, Y, Z) = Y +E(Y ) +E(Z) and ξ = BT for different values of
N . For this set of parameters, the exact solutions are Y0 = 4.6708 and Z0 = 2.7183. The
algorithm converges even when N = 10, but Ỹ 8,p,10,M

0 (resp. Z̃8,p,10,M
0 ) is quite below
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Figure 2. Evolution of Ỹ q,p,N,M
0 and Z̃q,p,N,M0 w.r.t. q for different values of M

when N = 20, p = 2, ξ = B2
T , f(t, Y, Z) = Y + E(Z).

Ỹ 8,p,40,M
0 (resp. Z̃8,p,40,M

0 ). Notice that for N = 40 the approximation values are very
close to the exact values.

Figure 3. Evolution of Ỹ q,p,N,M
0 and Z̃q,p,N,M0 w.r.t. q for different values of N

when M = 106, p = 3, ξ = BT , f(t, Y, Z) = Y + E(Y ) + E(Z).

• Convergence inM of the error (6.3). Figure 4 illustrates the error (6.3) (i.e. the error
made on the whole path) for the case p = 2, N = 20, q = 6, ξ = B2

T , f(t, Y, Z) = Y +E(Z)
for different values of M . We notice that the convergence in M is much faster than the
theoretical one, which is 1

M1/2q+2 .
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Figure 4. Regression of log(error) w.r.t. log(M). Data: error when M =
(103, 104, 105, 106). Parameters: N = 20, p = 2, q = 6, ξ = B2

T , f(t, Y, Z) =
Y + E(Z).
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