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SIMULATION OF MCKEAN-VLASOV BSDES BY WIENER CHAOS
EXPANSION

CELINE ACARY-ROBERT, PHILIPPE BRIAND, ABIR GHANNOUM, AND CELINE LABART

ABSTRACT. We present an algorithm to solve McKean-Vlasov BSDEs based on Wiener chaos
expansion and Picard’s iterations and study its convergence. This paper extends the results
obtained by Briand and Labart in [BL14] when standard BSDEs were considered. Here we are
faced with the problem of the approximation of the law of (Y, Z) in the driver, that we solve
by using a particle system. In order to avoid solving a system of BSDEs, which would not be
feasible in practice, we use the same particles to approximate the law of (Y, Z) and to compute
Monte Carlo approximations. This leads to an algorithm which doesn’t cost more than the
standard one.

1. INTRODUCTION

Backward stochastic differential equations were introduced by Bismut in [Bis73] for the linear
case, and by Pardoux and Peng in [PP90| for the general case. These works consisted in finding
a pair (Y, Z;) of Fi-adapted processes such that

T T
Yt:§+/ f(s,Ys,Zs)ds—/ Z,-dBs, 0<t<T, (1.1)
t t

where B is a d-dimensional standard Brownian motion, the terminal condition £ is a real-valued
Fr-measurable random variable where {F;}o<i<7 stands for the augmented filtration of the
Brownian motion B, the generator f is a map from [0, 7] x R x R? into R.

First results on the numerical approximation of (1.1) date from the end of the 90’s. The case
of a generator f independent of z has been studied in [Che97| and in [CMM99|. The authors
introduce a time and space discretization of the BSDE, which is somewhat reminiscent of the
dynamic programming equation, introduced a couple of years later. The case of a generator de-
pendent of z has first been done in [Bal97|, where the author introduces a random discretization.
In [BDMO1], the authors generalize the scheme proposed in [Che97] to the case of f depending
on z and prove the weak convergence of their scheme. In [BDMO02|, an approach for the case
of path-dependent terminal condition £ has been presented. The rate of the convergence of this
method was left as an open problem. To deal with this question, an approach based on the dy-
namic programming equation has been introduced by Bouchard and Touzi in [BT04| and Zhang
in [ZhaO4]. Both papers deal with the Markovian case, i.e. {& = g(Xr) where X is a solution
of a stochastic differential equation. To be fully implementable, this algorithm requires to have
a good approximation of its associated conditional expectation. Various methods have been
developed (see [GLWO05], [CMT10], [CT17]). Forward methods have also been introduced to ap-
proximate (1.1) : branching diffusion method (see [HLTT14]), multilevel Picard approximation
(see [WHJK17]) and Wiener chaos expansion (see [BL14]).

Many extensions of (1.1) have also been considered : high order schemes (see [Chal4]|, [CC14]),
schemes for reflected BSDEs (see [BP03], [CR16]), for fully-coupled BSDEs (see [DM06], [BZ08]),
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for quadratic BSDEs (see [CR15]), for BSDEs with jumps (see [GL16]) and for McKean-Vlasov
BSDEs (see [Alal5], [CARGT15], [CCD17]).

The aim of this paper is to extend the results of [BL14] to the case of McKean-Vlasov BSDEs,
i.e. to provide an algorithm based on Wiener chaos expansion to solve BSDEs of the following

type

T T
n=f+/’ﬂ&nﬁth¢amm—/ Z,-dB,, 0<t<T, (1.2)
t t

where [0] is the notation for the law of a random variable § and f is a map from [0,7] x R x
RY x Py(R) x P2(R?) into R. The set P2(R?) is the set of probability measures with a finite
second-order moment, endowed with the Wasserstein distance i.e.

1/2
»%mwwzm(/ M—fWﬂ%ﬂ>,
u RexR4

for (i, 1') € Pa(RY) x Po(R?), the infimum being taken over the probability distributions m on
R? x R? whose marginals on R? are respectively p and z/. Notice that if X and X’ are random
variables of order 2 with values in R?, then by definition we have

1/2

Wa([X], (X)) < [BIX - X'P] (1.3)

Such type of BSDEs have been introduced in [BDLP09| and [BLP09] in a more particular
framework: in [BDLP09|, the authors study the mean field problem in a Markovian setting and
prove the existence and the uniqueness of the solution when the terminal condition is of type
£ = E[g(a:,XT)} =X where X is a driving adapted stochastic process, and the generator is

defined by E[f(57)\,As)]|)\:A where A; = (X;,Y5, Zs). In [BLP09], the authors extend the

result of existence and uniqueness to a more general framework and link the mean-field BSDE
to non local partial differential equation.

The study of numerical methods for McKean-Vlasov BSDEs goes back to a few years (see
[Alal5], [CARGT15], [CCD17]). Usually, forward McKean-Vlasov SDEs are solved by using par-
ticle algorithms (see [AKHO02|, [TV03], [Bos05]) in which the McKean term is approximated by
the empirical measure of a large number of interacting particles with independent noise. Adapt-
ing such algorithms to the backward problem is not obvious as the high dimension of the involved
Brownian motion (given by the number of particles) induces, a priori, a high dimension backward
problem with bad consequences for the numerical implementation. The above mentioned papers
on numerical methods for McKean-Vlasov BSDEs do not use particle systems. In [CARGT15],
the authors present a method based on cubature for decoupled McKean-Vlasov forward back-
ward SDE. In [CCD17], the authors consider the case of strongly coupled forward-backward SDE
of McKean-Vlasov type. They propose a scheme whose principle is to implement recursively Pi-
card iterations on small time intervals, since Picard Theorem only applies in small time for fully
coupled problems.

In this paper we propose a method based on Wiener chaos expansion and particle system
approximation which is neither more complex nor more costly than solving a standard BSDE of
type (1.1). The method based on Wiener chaos expansion to solve standard BSDEs has been
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introduced in [BL14] and consists in writing the Picard scheme of (1.1) in a forward way
T t
v =g (e [ revnzas|a) - [ ez
0 0

T
Zf+1 — Dthq+1 = D;E <§ +/O f(s, Y3 Z)ds ‘ .7-"1;) ,

(where DX stands for the Malliavin derivative of the random variable X)) and to use Wiener
chaos expansion to easily compute conditional expectations and their Malliavin derivatives. More
precisely, all r.v. F in L? can be written

F=EF)+Y, > d [, K < /O ' gAs)st) ,

where K denotes the Hermite polynomial of degree I, (g;);>1 is an orthonormal basis of L2(0,T')
and, if n = (n;);>1 is a sequence of integers, |n| = > ;51 ni. (d)r>1n)=k is the sequence of
coefficients ensuing from the decomposition of F. The numerical method consists in working
with a finite number of chaos, a finite number of functions (g;); and in using Monte-Carlo ap-
proximation to compute the coefficients (d}})x . In case of McKean-Vlasov BSDE, the generator
depends on the laws of the processes. The idea is to use M particles which will serve both to
approximate the law of (Y, Z) and to compute the coefficients (d}})s., by Monte Carlo. By doing
this, we manage to get a computational cost which is of the same order as the one obtained in
case of standard BSDEs. However, this pooling of particles costs the independance in the Monte
Carlo approximation, making the proof of the convergence more difficult and leading to a slower
speed of convergence in M.

The outline of this paper is as follows. Section 2 state the notations and recall the main results
of [BL14| in order to make the paper as self-contained as possible. In Section 3 we generalize
the existence and uniqueness results stated by Pardoux and Peng [PP90] to the case of BSDEs
of type (1.2). Section 4 describes precisely the algorithm, Section 5 is devoted to the study of
the convergence of the algorithm and finally Section 6 contains some numerical experiments.

2. PRELIMINARIES.

2.1. Definitions and notations. Given a probability space (£, F,P) and an R?-valued Brow-
nian motion B, we consider:

{(F1);t € [0,T]}, the filtration generated by the Brownian motion B and augmented.

o LP(Fr) = LP(Q, Fr,P), p € N*, the space of all Fp-measurable random variables (r.v.
in the following) X : Q — R? satisfying || X |5 := E(|X|P) < oo.

o Ei(X) :=E(X|F), the conditional expectation of X (in L'(Fr)) w.r.t. F.

° SZT(Rd), p €N, p>2 a>0, the space of all cadlag predictable processes ¢ : ) x
[0,7] — R? such that H(ZSHZZ,T = E(sup;epo ) €*|¢el’) < oo. Note that S7(R?) =
S&T(Rd).

. HQT(Rd), p €N, p>2 a>0, the space of all predictable processes ¢ : Qx [0,T] — R
such that |||, = EfOT e|¢gy|Pdt < co. Note that HP.(R?) = HY ,(R?).

a,T ’

e L2(0,T), the space of all square integrable functions in [0, 7.

e C*! the set of continuously differentiable functions ¢ : (£, z) € [0, 7] xR? with continuous
derivatives w.r.t. t (resp. w.r.t. z) up to order k (resp. up to order 1).

o C’f ! the set of continuously differentiable functions ¢ : (¢, z) € [0, T] x R? with continuous
and uniformly bounded derivatives w.r.t. ¢ (resp. w.r.t. =) up to order k (resp. up to
order ). The function ¢ is also bounded.
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e |04, f]|%, the norm of the derivatives of f([0,T] xR xR%xP(R)xP(R%), R) w.r.t. the sec-
ond and the third component which sum equals j: |82, f||2, := > kl=j ”850 o ... 3§ij!§0
where |k| = ko + - - + kq.

e (77, the set of smooth functions f : R"™ — R with partial derivatives of polynomial

growth.
e |(,)|7,, p €N, p>2, the norm on the space S7.(R) x HF.(R?) defined by

T
1.2 = swp ) + [ B(zp) 1)
t€[0,T) 0

Note that this norm is different from the usual LP norm for BSDE.

We also recall some useful definitions related to Malliavin calculus. We use the notations of
[Nua06].

e S denotes the class of random variables of the form F = f(W(hy),---,W(hy)), where
f € C‘X’(R"Xd R), for all j < n, hj = (hj,--- ,h?) € L2([0,T];R?) and for all i < d,

fo hZ (t)dw;.
ID)T 2 denotes the closure of § w.r.t. the following norm on &

11 o= EJFP + 3 ZE( / / Dl Pty )

=1 |aj1=¢

where « is a multi-index (aq, -+, aq) € {1,---,d}, |al; == YL, = ¢, and D*
represent the multi-index Malliavin derivative operator We recall D2 =, D" 2,

Remark 1. When d = 1, |[F|]3,. = E|F> + X, B(Jy - [y D), Fdty---dty) =

EIF|* + 0o, |D@ F”L?(Qx [0,T]9)"

Let m € N* and j € N, j > 2. We also introduce the following notation:

e D™J denotes the space of all Fr-measurable r.v. such that

IFN, = > Y, suw E(D}.,FF)<oo,
1<I<m |a|1= lt1< <t

Whel“e Suptlg,,,gtl means Sup(tly",tl)2t1§'"§t1'

e S™J denotes the space of all couple of processes (Y, Z) belonging to S%(R) X H%(]Rd)
and such that

IV, 20, = > > sup [(Df. Y, Di 2, <o
1<I<m |l =1 1S <tl
i.e.
Y, 7) su (su D YJ)+/IEDO‘,,, Zﬂdr}.
0Dl = Y S0 s {B( s 105, )+ [ BODR,20)

1<i<m |a|1 =1

We also denote S™ := (1,5, Smid,
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2.2. Chaos decomposition formulas. We refer to the book [Nua06] for more details on this
Section. The notations we use are the ones of [BL14]. Every square integrable random variable
F', measurable w.r.t. Fr, admits the following orthogonal decomposition

F=do+) ). d”HKm</ )dB> (2.2)

k>1|nj=k  i>1

where (g;);>1 is an orthonormal basis of L?(0,T), K, is the Hermite polynomial of order n
defined by the expansion
Tt t2/2 _ Z K

n>0

with the convention K_; = 0, n = (n;);>1 is a sequence of positive integers and |n| stands for
> ;>1 1. Taking into account the normalization of the Hermite polynomials we use gives

dy = E(F), " — plE (F X HKn (/OT gi(s)st)),

i>1

where n! = [[,~; n;!.

To get tractable formulas, we consider a finite number of chaos and a finite number of functions
(g1, ,gn). The (gi)1<i<n functions are chosen such that we can quickly compute E(F'|F;) and
DE(F|F;) (see Section 4.1). We develop in this section the case d = 1, and we refer to [BL14,
Section B.2| when d > 1.

The first step consists in considering a finite number of chaos. In order to approximate the
random variable F', we consider its projection Cy,(F') onto the first p chaos, namely

=do+ > > d"HKnl</ (s)dBs ) (2.3)
1<k<p |n|=k i>1
The following two Lemmas give some useful properties of the operator C),.
Lemma 1. Let 1 <m < p+1 and F € D™?. We have

D™ F1 sy

E[|F_Cp(F)|2] (p+2_m)...(p—|—l).

IN

We refer to |GL16, Lemma 2.4| for a proof.

Lemma 2.

o Let F be rov. in L?(Fr). Vp > 1, we have E(|Cp(F)|2) < E(|F|?). If F belongs to
LI (Fr), Vi > 2, E(|Cp(F)J7) < (1+ p(j — DP2)TE(|FP?).

e Let H be in HA(R). We have Cp(fOT Hgds) = fOT Cp(Hy)ds

o VE € D2 and Vt < r, DiE,[Cp(F)] = E,[Cp_1(D:F)].

Of course, we still have an infinite number of terms in the sum in (2.3) and the second step
consists in working with only the first N functions gy, - - - , gx of an orthonormal basis of L2(0,T).
Let us consider a regular mesh grid of IV time steps 7 = {fz- = i%,i =0,---, N} and the N step
functions

T
9i(t) = 1y, 1,t]()/\f i=1,---,N, where h := N (2.4)
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We complete these N functions g1, -+ , gy into an orthonormal basis of L?(0,T), (g;)i>1. For
instance, one can consider the Haar ba81s on each interval (¢;_1,%;), i =1,---, N. We implicitly
assume that N > p. This leads to the following approximation:

CNF)=do+ > > dp ] Kn</0 (s)st>. (2.5)

1<k<p |n|=k 1<i<N

Due to the simplicity of the functions ¢;, i = 1,--- , N, we can compute explicitly
/T (s)dBs = G h G Th b
gi(s =G; where G; =
0 1 S 1 1 \/E

Roughly speaking this means that Py, the kth chaos, is generated by
(Ko, (G1) Ky (Gn) iny+ - +nn =k}

Thus the approximation we use for the random variable F' is

F) :do-f-z Z di K, (G1) -+ Kny (GN)

k=1 |n|=k
P
ey Y a1l
k=1|n|=k 1<i<N
where the coefficients do and d}} are given by
do =E(F), d}=nlE(FK,, (G1)---Kuy(Gn)). (2.7)
The following Lemma, similar to Lemma 2, gives some useful properties of the operator C’I]}V .

Lemma 3. Let F be r.v. in L>(Fr) and H be in HA(R). Then:

o V(p,N) € (N*)?, E(|C)Y(F)*) < E(|Cy(F)[*) <E(|FP).
o CN([] Hyds) = [ CN(H,)ds.
o Vi <7, D{E[CY(F)] = E.[CN | (D¢F)].

From (2.6), we deduce the expressions of Et(CéV F) and DtIEt(CIf,V (F)), useful for the approxi-
mation of (Y, Z) by the chaos decomposition (see Section 4.1).

Proposition 1 (Proposition 2.7, [BL14]). Let F be a real random variable in L*(Fr), and let v

be an integer in {1, - N} For all t,_ <t < t,, we have
g (nr)/2 B B
—tr_1 t tr—1
E(CYF) —d0+§: > d}}HKm ) ( ) Kn<>
k= 1|nr <r h Vt—tr—l

7 (nr—1)/2 B, — B:
DECYEN) =1 2Y S @ [ Ku(G) <t ,?*) Kn1<tt>
t

k=1|n(r)|=k i<r —tr—1
n(r)>0
where, if r < N and n = (ny,--- ,ny), n(r) stands for (ny,--- ,n,).

Remark 2 (Remark 1, [BL14]). Fort =t, and r > 1, Proposition 1 leads to

E; (C)F) _d0+z > ar[[ En(G

k=1 |n(r)|=k i<r

E; (C)'F) = 1/22 > G [ Eni(Gi) x Kn,-1(G),

k=1|n(r)|=k  i<r
n(r)>0
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When r = 0, we get EEO(CIJ,VF) = do, and we define Dy Eg (CI])VF) = -Ld* (which is the limit

Vh
of DtEt(CéVF) when t tends to 0).
Let us end this subsection by some examples.
Example 1 (Case p = 2). From (2.6)-(2.7), we have
N N j-1 N )
Co(F)=do+ Y dYKi(Gy) + Y ) dy’ Ki(G)EL(G)) + ) dy7 Ka(G)),
j=1 j=1i=1 j=1

where e; denotes the unit vector whose jth component is one, and e;; = e; + €;.
Forj=1,--- Nandi=1,---,5—1, it holds

di =E(FK\(Gy)), dy? =E(FK\(G)K\(Gy)) dy = 2E(FKs(Gy)).
Remark 2 leads to

r r j—1 r
E; (CYF) =do+ Y dYKi(Gy) + Y > dyVK1(Gi)Ki(Gy) + Y dy” Ka(Gy),
j=1 J=1 i=1 =1

r—1
D; E; (CJ'F) =h™1/2 <d§" + A3 K (Gr) + ) d;WKl(Gi)> .
=1

3. EXISTENCE, UNIQUENESS AND PROPERTIES OF THE SOLUTION.
Note that the existence and the uniqueness of the solution of (1.2) have been proved in [BLP09]
in the case f(t7 }/;57 Zt7 [Yt]v [Zt]) = ]E[g(tv )‘7 )/;fu Zt)h)\:(Yt,Zt)'
Hypothesis 1. We assume:

e the generator f : RT x R x R x Po(R) x Po(RY) — R is Lipschitz continuous: there
exists a constant Ly such that for allt € RT, y1,y2 € R 21,20 € R%, p1, 2 € P2(R) and
v,V € PQ(Rd)

|f(t,y1, 21, pr, v1) — f(t, Y2, 22, o, v2)] < Lf<|2/1 —ya| + |21 — 22| + Walpr, p2) + W2(V17V2))-

o E(I€1% + [ 1£(5,0,0, [5o], [60])|?ds) < oo.

Theorem 1. Given standard parameters (f,&), there exists a unique pair (Y,Z) € SH(R) x
HZ(RY) which solves (1.2).

Let us start with a priori estimates that will be useful for our proof.

A Priort Estimates.

Proposition 2. Let ((fi,¢%);i = 1,2) be two standard parameters of the BSDE and (Y, Z);i =
1,2) be two square-integrable solutions. Let Ly be a Lipschitz constant for fL, and put 6Y; =
Y' - Y2 and Sof = fU(t, Y2, Z2, Y2, [Z2]) — f2(t, Y2, 22, (Y2, [Z2]). For any o, A\ > 0 such

that o > 8L%, + 4L g + X+ g, it follows that

1 T
1915, + 16215, < (SLp +5C%+5) [ B0 + 5B [ eloafiPas)|.

where C' 1s a universal constant.



8 C. ACARY-ROBERT, PH. BRIAND, A. GHANNOUM, AND C. LABART

Proof. By applying It&’s formula from s =t to s = T on the semimartingale e®*|§Y;|?, we get

T T
eat|5m?+a/ 6“5\51@]2d8+/ e*|6 Z,|%ds
t t

T
=TVl 2 [ e sV (£ s Y 2L L 2E) - £ Y2 22,V 22) ) ds
t
T
2/ e**8Y,0ZdBs.
t

(3.1)

Moreover,

|f1(8,Y;1, Zsl> [Y:sl]v [Zsl]) - f2(S¢Y927 Zga [Yf}v [Zs2])|
< IfM s, Y ZL Y (22) = (s Y2 22, (V2 122) | + 16a |
< L (10Ya] +1024] + Wal[YL, [YZ]) + Wa(122), 122))) + 12,

where L1 > 0. By using (1.3), we obtain that
20Ys] - [ (,YS, 23, V], [20)) — f2(s, Y2, 22, 1Y 2, 122))]

< 2Ly (9.2 + 5Y.1192,  + SV (BISK) Y 4+ Vil (552.2) ) (32)
L 2USVa62 ]

Therefore, by Young’s inequality with A > 0, we have
200 [fH (s S 25, V), [25) — £2(s. Y2, 22, 1Y), [22))]
<DLy SVi[? 4 AL OSP4 212, + 2L o [0V, (E(Y, ) 2
+4L5 |0V + %E(yazﬁ) + A\|0Y5)? + %@fsy? (3.3)
< (8L% + 2L s + N)|OYi[? + 2L |3Y; | (E(10Y, )

1 2 1 2 1 2

On the one hand, it follows from (3.1) and (3.3) that for ¢t =0,

T T
E(ymy2)+aE(/ eaﬂ(sysy?ds) +E</ easwzs\?ds)
0 0

T T
1
< e®TE(|6Y7|?) + (8L§1 +4Lp +)\>E</O ea5|5Y5|2ds> + 21@(/0 ea8\525|2d5>

1 T
+E(/ ea$|62fs|2ds>.
A \Jo

Choosing o > 8Lfc1 +4Lp + A + %, this inequality implies

T T 1 T
E(/ eaﬂam?ds) +]E</ ea5]5Z3]2d5> < 2[@0‘TIE(|6YT2)+/\IE</ ea5|52fs\2ds>} (3.5)
0 0 0

(3.4)
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On the other hand, by combining equation (3.1) and inequality (3.3), and by using the fact that
o> SL?I +2Lp + A, we can also obtain

T 1 1
e“|0Y;|? < e?T|oY7|? +/ e <2Lf1|5YSIE(|5YS\2) + ZE(|<SZS|2) + A|52fs|2>ds
t

+2

i

T
/ e*®0Y,0Z,dBy
t

which leads to

T T
1
E( sup e*|6Y;]?) < e“TE(|6Y7|?) + 2Lf1E</ eo‘S]éYs|2d8> + 4E(/ eas|(5ZS|2ds>
0 0

0<t<T
1 g as 2
+-E e*®|dafs|“ds | +2E| sup .
A 0 0<t<T

By the Burkholder-Davis-Gundy inequality, there exists a universal constant C' such that

T 1/2
IE( sup </ 62a5|6Y;\2](5Z5]2ds> ]
0<t<T 0

12 ;T 1/2
< sup eat](SY}P) (/ ea3|5Zs|2ds> ],
0<t<T 0

T
) < 38( sup cvowi) oo [ evozpas).
0

0<t<T

. (3.6)
/ O58Y,0Z,d B,
t

T
/ e**0Y0ZsdBs
t

) <ce

<CE

and since ab < a?/2 + b?/2,

T
2E< sup /easéY;cSstBs
t

0<t<T

Finally, by combining the inequalities (3.6)-(3.7) and by using (3.5), we derive that

T 9 T
E( sup e™|0Y;|*) < 2e*TE(|6Yr|?) +4Lf1E</ eo‘5|(5YS|2ds> + /\E(/
0 0

€“S|52f3|2d8>
0<t<T
2 T
+(80+1)E</ eas‘ézS‘st)
0

2

1 T
< (8L +8C? +3) [eaTE(\éYﬂz) - AE(/ ea3|52f5|2d3>} ,
0

then, we can conclude that

T 1 T
E( sup e*|6Y;]?) +E(/ eas|5Z5|2ds> < (8Lj1 +8C?* +5) [e"‘TIE(|6YT|2) + IE(/ eas|62fs\2ds>].
0<t<T 0 A 0
(3.8)
O
Proof of Theorem 1. We use a fixed-point theorem for the mapping ¢ from Si’T(R) X Hi’T(Rd)

into S2 1-(R) x H2 7(R%), which maps (y, z) onto the solution (Y, Z) of the BSDE with generator
f(ta Yty 2t [yt]7 [Zt])7 i'e'7

T T
Yt=£+/t f(s,ys,zs,[ys],[zs])ds—/t Zs - dBs.

Let us remark that the solution (Y, Z) € SA(R) x H2(R?) is defined by [PP90|, when (y, z) €
S2(R) x HA(RY).
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Let (y',21), (y?, 2%) be two elements of Sg’T(R) X HC%’T(]R”Z), and let (Y1, Z!) and (Y2, Z2) be
the associated solutions. By applying Proposition 2 with Ly1 =0 and = A + %, we obtain

2 T
CEEn( [ eiptenb b WL D - Fled, 2 2L D).

Now since f is Lipschitz with constant Ly, we have

4(8C? + 5) L2 T
1Y%, + 11213, < AJ‘E( /0 e (18w l? + 102 + Wa(l): 7)) + Wa((=), [z§]>2)dt)

2 2
16V | + 116712 <

4(8C? + 5)L* T
< A"E</ e (Joyl? + 18211 + E(loyil?) + E(\éztl2>)dt>
0

8(8C* +5)L3 T
< S [ (e o) + B3 ) a
0

_ 8(8C% +5)(T +1)L>

T
< ! <]E( sup e“|8y:|?) —I-E/ eo‘tlézt\gdt>
0<t<T 0

~—

>

8(8C? + 5)(T + 1)L?
< (ol + 101, ).
(3.9)

Choosing A > 16(8C? +5)(T + 1)L3£7 we see that this mapping ¢ is a contraction from SiT(R) X

HO%’T(Rd) onto itself and that there exists a fixed point, which is the unique continuous solution
of the BSDE. U

~—

From the proof of Proposition 2 (and more precisely from estimate (3.9)), we derive that the
Picard iterative sequence converges almost surely to the solution of the BSDE.

Remark 3. Let o be such that o > 16(8C? + 5)(T + 1)L? + 1. Let (Y9,Z9) be the sequence
defined recursively by (Y = 0,2° = 0) and

T T
Yot — ¢ 4 / F(s, Y9, 29, 1Y), [29])ds — / 209 B, 0<t<T,  (3.10)

Then the sequence (Y4, Z9) converges to (Y,Z), dP x dt a.s. and in S2(R) x HA(RY) as q goes
to +00.
Proof. Let (Y9, Z%) be the sequence defined recursively by (3.10). Then, by (3.9),

qu+l _ Yq”%% 4 HZQH - Zq”%% < CTqu’

and the result follows easily. O

4. DESCRIPTION OF THE ALGORITHM.

The algorithm is based on five types of approximations: Picard’s iterations, a Wiener chaos
expansion up to a finite order, the truncation of an L?(0,T) basis in order to apply formulas of
Proposition 1, a Monte Carlo method to approximate the coefficients dy and d} defined in (2.7)
and the particle system. We present these five steps of the approximation procedure in Section
4.1. The practical implementation is presented in Section 4.2.

4.1. Approximation procedure.
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4.1.1. Picard’s iterations. The first step consists in approximating (Y, Z)—the solution to (1.2)—by
Picard’s sequence (Y7, Z4),, built as follows: (Y9 =0,2° = 0) and for all ¢ > 1

T T
Y}qH =&+ / f(s, Y, Z2 [V, [Z1])ds — / Zit .dB,, 0<t<T. (4.1)
t t

From (4.1), under the assumptions that ¢ € D2 and f € 05,1,1,0,07 we express (Yt Z4+1) as
a function of the processes (Y4, Z%),

T
Ytq+1 —E, (5 +/ f(s, Y8, 29, [Y9], [Zg])d.;), Zfﬂ = DthqH’ (4.2)
t

which can also be written

T
Yﬂ“=l&:<f+ | svazva ) / F(s, Y8, 20, V3], [20))ds,
0

g+l _ g+1
Z¢t = Dy,

(4.3)

As recalled in the Introduction, the computation of the conditional expectation is the cornerstone
in the numerical resolution of BSDEs. Chaos decomposition formulas enable us to circumvent
this problem.

4.1.2. Wiener Chaos expansion. Computing the chaos decomposition of the r.v. F = & +
ftT f(s, Y, Z Y], [Z1])ds (appearing in (4.2)) in order to compute Y;qH is not judicious. F
depends on ¢, and then the computation of Y9*! on the grid 7 = {t; = i%,i =0,---,N}
would require N + 1 calls to the chaos decomposition function. To build an efficient algorithm,
we need to call the chaos decomposition function as infrequently as possible, since each call is
computationally demanding and brings an approximation error due to the truncation, the Monte
Carlo approximation and to the particle approximation (see next sections). Then we look for
a r.v. F? independent of ¢ such that Y;/™ and ZI™" can be expressed as functions of E,(F7),
DyE;(F?) and of Y, and Z,. Equation (4.3) gives a more tractable expression of Y4+, Let F¢

be defined by F9:=¢ + [ f(s,Yd, 24, (Y], [Z4])ds. Then

t
Y = By(F7) - / flo, Y, 28, VA [Z0)ds,  Z8 = DiE(F9). (4.4)
0

The second type of approximation consists in computing the chaos decomposition of F'? up to
order p. Since F'9 does not depend on ¢, the chaos decomposition function C, is called only once
per Picard’s iteration.

Let (Y%P Z%P) denote the approximation of (Y9, Z?) built at step ¢ using a chaos decompo-
sition with order p: (Y%, Z%P) = (0,0) and

t
VP < B (Co(F ) — [ 5, Y8, 207, V27, [207])ds, )
i |

ZITP = DR, (Cp(FTP)),

where F'9P = £ + fOTf(S,qu’p,Zg’p, [YSP), [ZEP])ds. In the sequel, we also use the following
equality:

Zerl’p —E, (Dtcp(qup)) ) (4.6)
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4.1.3. Truncation of the basis. The third type of approximation comes from the truncation of
the orthonormal L?(0,T) basis used in the definition of C}, (2.3). Instead of considering a basis
of L?(0,T), we only keep the first N functions (g1,--- ,gn) defined by (2.4) to build the chaos
decomposition function C’[],V (2.5). Proposition 1 gives us explicit formulas for Et(CN F) and

DEy(CY F). From (4.5), we build (YN 24PN in the following way: (Y0PN, Z0P: V) ) = (0,0)
and

t
yHeN _ g, (ON (Fop)) - / Flo,Yprd, Zgr %, [ae ), (25 s,
i .

Zéﬂrl,p,N = D,E, (CéV(Fq,p,N)),
where FopN — £+ foT f(s, YS‘LP7N7 ng,N’ D/;L:D,N]7 [Z?p’N])ds.
Equation (4.7) is tractable as soon as we know closed formulas for the coefficients d}} of the
chaos decomposition of E;(CY (F4PN)) and DyE,(CY (F4#PN)) (see Proposition 1). When it is

not the case, we need to use a Monte Carlo method to approximate these coeflicients. The next
section is devoted to this method.

4.1.4. Monte Carlo simulations of the chaos decomposition. Let F denote a r.v. of L?(Fr).
Practically, when we are not able to compute exactly dy = E(F) and/or the coefficients d¥ =
nE(FK,, (Gy1)---Kpy(Gn)) of the chaos decomposition (2.6)-(2.7) of F', we use Monte Carlo
simulations to approximate them. Let (F")i<m<a be a M i.i.d. sample of Fand (GT*,--- , G} )i<m<m
be a M i.i.d. sample of (G1,---,Gy). We propose a method which consists in approximating

the expectations d := (do, (d}})1<k<p,n|=k) by empirical means d/l\\/[ = (czo, (dZ)lngp,\n\:k) where

M M
m=1

m=1

Definition 1. Let F be a r.v. of L*(Fr) and (F',--- ,FM) be M identically distributed r.v.
with the law of F. We denote Co ™ (F™)1<m<nr) the following approzimation of CN(F)

ClM(F™1emens) =do+ Y > di J[ Kni(Ga). (4.9)

k=1|n|=k 1<i<N
where (do, (d Ji<k<p,|n|=k) are defined by (4.8).

Remark 4. When (F',--- | FM) is an independent and identically distributed sample of F, we
adopt the short notation Cp ™ (F) to refer to Co"M (F™)1<m<nr). The notation Cp ™ ((F™)1<m<nr)
will only be used when the r.v. F' --- | FM are not independent. This will be the case in the next
paragraph, when we introduce the particle system to approximate the law of (Y, Z) (see (4.12)).

Before introducing the processes (Y 3+1»N.M - 7a+1p,N.My e define Et(C ((Fm) )) and
DtIEt(CI],V’M((Fm)m)) the conditional expectations obtained in Proposition 1 when (do, d}})1<k<p,n|=k
are replaced by (do, dr W) 1<k<p,|n|=k> 1-€

i\ /2 B, — B;
t—t,— t
CNM Fm d E E dnlllin Z ( ) 1> n <4/ "tr1>a

k=1 |n(r)|=k i<r

_ (nr—=1)/2 B, — B:
DY) =SS S dg[[anten x () (D),
t

k=1|n(r)|=k i<r —tr1
n(r)>0
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Remark 5. As said in [BL14, Remark 3.2|, when M samples ofC ((Fm)m) are needed, we
can either use the same samples as the ones used to compute dy and d” ' (CI])V’M((Fm)m))m =
do + Dy Z\n|=k d,C ngigN K, (GT"), or use new ones. In the first case, we only require M
samples (G, ,Gn). We built F',--- | FM from these samples. The coefficients 32 and dAo
are not independent of [[<;<n Kn;(G]"). The notation Et(C’IJ,V’M((Fm)m)) introduced above

cannot be linked to E (CNM((Fm)m)]]-}) In the second case, the coefficients @ and dy are
independent of [[,<;<n Kn;(G}") and we have Eq (CéV’M((Fm)m)) =E (CI];V’M((Fm)m)\.Ft)

This second approach requires 2M samples of F and (Gy,--- ,Gyn) and its variance increases
with N. Practically, we use the first technique.

Let us now introduce the couple of processes (Y 4+1»N:-M 7a+Lp.N.MY “which corresponds to
the approximation of (Y4TLPN 7a+1LpN) when we use C’;)V M instead of C’I])V , that is, when we
use a Monte Carlo procedure to compute the coefficients df’.

Yq+1,p,N M _ (CN M(Fq,p,N M / f gq,p,N M)d
17 7N7M 9 bl ol b
ZgT PN = DRy (O M (FrpNATY)

where FapsN.M . §+f0T f(@g’p’N’M)ds and 927P7N7M — (s, Y—Sq,zml\ﬂl\/l7 Zg=p7N=M7 [qu’p’N’M], [Zg,p,N,M]).

(4.10)

4.1.5. Particle system. In this section, we introduce an interacting particle system associated
to (4.10) to approximate the law of Yi* NMand z2PNM - Indeed we replace a one single
stochastic differential equation with unknown processes Yi'* NMand zr ’N’M, with a system
of M ordinary stochastic differential equations, whose solution consists in a system of particles
(qu’p’N’M’m ,qu’p’N’M’m)lngM, replacing the law of the processes yaPNM ang z4vNM by the

empirical mean law

[quyp’NyMzm]M —

SIS
M=

Oy-a.p.N.M.m.,

m=1

[Zg,p,N,M,m]M _

SIS
NE

6Zq,p,N,M,m .
S
1

3
Il

Our candidates are the particles:
Y'tq+17p7N1M7m — Et (CéV,M((FqJ)’N’M’m)m))

_ / f(S’y;q,zD,N,M,m7 Z;M),N,M,m, [ysq,p,N,M,m]M, [Zg’p’N’M’m]M)ds, (4.11)
0
ZEH'LP,N,M,m = D,E, (CI])V,M((Fq,p,N,M,m)m))’
where, for all m € {1,--- , M},
T
FapNMm _ ¢ +/ f(S, Kq,p,N,M,m7 Z;],p,N,M,m, [qu,p,N,M,m]M7 [Zg,p,N,M,m]M)dS' (4_12)
0

Remark 6. Looking at (4.11) and (4.12), we notice that we use the M particles to compute
(do, (d}})1<k<p,jn|=k)- Taking the same M drawings for the Monte Carlo simulations and the
particle system has two impacts, one positive and one negative :

e the algorithm is not more costly than the one solving standard BSDEs,
e the samples (Fq’p’N’M’m)lngM being not independant, the speed of convergence of the
algorithm will be badly impacted (see Remark (9)).
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4.2. Pseudo-code of the algorithm. We aim at computing M trajectories of an approxima-
tion of (Y, Z) on the grid T = {t; = i%,i =0,---,N}. Starting from (YO,P,N,M,m’ ZO,P,N,M,m) _

(0,0), (4.11) enables to get (YaPN-Mm 7apN.Mm) for each Picard’s iteration ¢ on 7. Practi-

92>p7N7M9m)

cally, we discretize the integral f(f f( ds which leads to approximated values of

(yapN.Mm - 7a,p,N.Mm) computed on a grid.
Let us introduce ( f/OvPvaMvm’ZOvPvaMvm) -
(0,0) and for all ¢ > 0

q+1,p,N,Mm Zq+1,p,N,M,m
Yf P aZg b Ji<i<n, defined by (
1 1

i

v-a+1,p,N,M, N,M (( f2q,p,N,M,  CanNMam SapNMm <N, Moani M
YN _ g (ON(FarNAm) )y § 7 p(d, Yo, gan MmN

)
Jj=1

~q,0,N,M,m1 M

(Zm A,

Zngl,p,N,M,m _ DEiEfi (CZJ)V,M((Fq,p,N,M,m)m))’
(4.13)

where Fq,p,N,M,m =¢+ hzfil f(tha }7{?7P,N,M,m7 Zg,p,N,M,m, [Y/tg,nN,M,m]M’ [Zg,p,N,M,m]M). Here

is the notation we use in the algorithmzz ' ' '

e d: dimension of the Brownian motion;

q: index of Picard’s iteration;

K;; : number of Picard’s iterations;

M: number of Monte Carlo samples;

N: number of time steps used for the discretization of Y and Z;

p: order of the chaos decomposition;

Y? € Mpyy1,m(R) represents M paths of yepN-Mm computed on the grid 7

foralll € {1,---,d}, (Z9); € M1 (R) represents M paths of (Z¢PN:Mm), computed

on the grid 7.

Since ¢ in L?(Fr), & can be written as a measurable function of the Brownian path. Then one

B; —B;.
gets one sample of £ from one sample of (G1,---,Gx) (where G; represents M)

Vh
For the sake of clarity, we detail the algorithm for d = 1.
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Algorithm 1 Iterative algorithm

1: Pick at random N x M values of standard Gaussian r.v. stored in G.
2: Using G, compute (§™)o<m<m—1-
32 Y'=0,Z°=0.

4: forq=0: K;; —1do

5: form=0: M —1do

6: Compute F™ = &™ +h 331 f(Ei, (Y9)ims (Z9)sm, (Y™, [(Z29)i]M)

7: end for

8 Compute the vector d := (do, (d )i<k<p,|n|=k) Of the chaos decomposition of (F™),,
0 do = g Yoo PO df 1= 17 0000 FU K (GT) - K (GRY)

10: for j=1: Ndo

11: forsz:M—ld]\?M Ny

12 Compute (7, (Cp ™ (F3) ), (Dy, Bz, (CH™M (F9) )

13: (Y9 jn = (g, (Cp ™ (FO™)m) =l 0y £ (Eiy (YD) i (Z9)im, (Y], (23]
14 (27 )jam = (D, (B, (G (F*™ )

15: end for

16: Compute the empirical distribution of the particles (Y?T). ,, and (Z7).

17 (YN = MY Sy (2SI = MY Sy,

18: end for

19: end for A R

20: Return (YK”)Q: = dp and (ZK“)Q: = %df{l

5. CONVERGENCE RESULTS

We aim at bounding the error between (Y, Z) — the solution of (1.2) — and (Y 9P-N:-Mm 74N, Mm)

defined by (4.11). Before stating the main result of the paper, we recall some hypotheses intro-
duced in [BL14].
In the following, (t1,--- ,t,) and (s1,- -, $p) denote two vectors such that

0<t1 < <ty <T, 0<s1 <+ <sp <T and Vi,s; <.

Hypothesis 2. (Hypothesis Hy,). Let m € N*. We say that F satisfies Hypothesis Hy, if F
satisfies the two following hypotheses:

o Ml:Vj>2 FeD™, thatis |F||, ; < oo;
o H2: Vi >2 Vie{l,---,m}, Vlp<i—1,Vl; <m—i, VI € {1,---,d} and for all

multi-indices ag and oy such that |ag| = lo and |a1| = 11 + 1, there exist two positive
constants Br and k‘lF such that
s s E(D (D P~ DS ) < K — 5

11 <<ty Si41 < <Sitiy
where | = lo + 1y + 1. In the following, we denote K} (j) = sup;<,, ki (j).
Remark 7. If F satisfies H2,, for all multi-index o such that || = I, we have
[E(D} . F) = E(DS, o ) < K (= s1) 4+ (= s0)7F), (5.1)
where KZF s a constant.

Hypothesis 3. (Hypothesis H3 ~)- Let (p,N) € N2. We say that an r.v. F satisfies HE)N if

Vp,n (F) +ZZn'V< [1x (Gi)><oo.

k=1 |n|=k i=1

M)
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Remark 8. If F' is bounded by K, we get V, n(F) < K? £=0 (]lf,) Then every bounded r.v.
satisfies H;N.
This remark ensues from E(szil K2 (Gy)) = 1.

n!

Theorem 2. Assume that £ satisfies Hprq and there exists a real v > 4 s.t. £ € (L" NDY") C
’HE;N and f € C’g’erq’erq’o’O. We have

(Y — yaorNMm 7 Zq,p7N7M7m)||%2
c Ao Alep) (.7) T 2B§M+ As(g,p,N) | Aalg,p,N)
=20 (pt1) RPN M M (1/2+2)

where Ag is given in Section 5.1, Ay is given in Proposition 3, As is given in Proposition 4, As
s given in Proposition 5 and A4 is given in Proposition 6.
If f e C’l?’oo’oo and € satisfies Hoo and H2 we obtain that, for each m € 1,--- , M,

00,007

lim lim lim lim [|(V —Yo»NMm 7 zapNMmy 2
q—00 p—00 N—o0 M —00

Remark 9. Compared to |BL14, Theorem 4.6] we notice that the additional term %
M (1/2897T2))

appears in the error bound. This term corresponds to the error approrimation due to the particle
system. It is clearly worse that % which corresponds to the error due to the Monte Carlo
approzimation. As we will see in Lemma 7, introducing some dependency between M identically
distributed T.v. gives a worse control of the error Cév — CéV’M than the one obtained when
considering i.i.d. T.v. (see Lemma 6).

Proof of Theorem 2. We split the error into 5 terms:

(1) Picard’s iterations: e? = ||[(Y — Y4, Z — Z9)||2,, where (Y, Z,) is defined by (4.1);

(2) the truncation of the chaos decomposition: %P = [|(Y? — Y9, Z9 — Z%F)|2,, where
(Yyp, Zqp) is defined by (4.5);

(3) the truncation of the L?(0,T) basis: e?PV = ||(Y%P — Y9P:N 74P — 74PN |2, where

(Ygp,N+ Zgp,N) is defined by (4.7);

(4) the Monte Carlo approximation to compute the expectations: e#PN:M = |(YerN —
yopNM - zapN _ Zq,p,N,M)”%% where (Y, N.M s Zgp,n,ar) is defined by (4.10).
(5) the partlcle SyStemZ €q7p7N7M7m — H(YqvaVvM — Yq7p7N7M»m’Zq7p7N7M — Zq7p7N7M7m)H%2,

where (Y; , N.Mm, Zgp,N,M,m) is defined by (4.11).

We have
||(Y . Y(va:NvM,m7 Z _ ZQ:P,N:M7m)H%2 S 5(6(1 + 5‘1:}7 + 5q7P7N + 6Q:P,N7M + 8Q:P,N7M7m).

It remains to combine (5.2), Propositions 3, 4, 5 and 6 to get the first result. The second one is
straightforward. O

5.1. Picard’s iterations. From Remark 3, we know that under Hypothesis 1, the sequence
(Y9,7%), defined by (4.1) converges to (Y, Z) dP x dt a.s. and in SZ(R) x HZ(R?). Moreover,

we have

A
=Y =Y, Z - 2|7 < 5 (5:2)

where Ay depends on T, [|€]|* and on || f(.,0,0,[0], [0])]|7,

©0,1)
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5.2. Error due to the truncation of the chaos decomposition. We assume that the inte-
grals are computed exactly, as well as expectations. The error is only due to the truncation of
the chaos decomposition C), introduced in [Equation(2.3),[BL14]|.

For the sequel, we also need the following Lemma. We refer to [BL14, Appendix A.2] for a proof.

Lemma 4. Assume thatf satisfies H},\, and f € C’,?’erq’mﬂ’O’o, Then V¢ < q, Vp € N,
(Y9, Z9) and (YOP, Z9P) belong to S™>. Moreover

1Y, 2|7, ; + 122, Z2P)|, o+ < CUElmtg,(mtg—1yr/ms (105F loo)k<me+q),
where C is a constant depending on ||§||y4q,((m-+q—1)t/m1); and on (||8§pf\|oo)k§m+q.

Proposition 3. Let m < p+1. Assume that & satisfies H1
el = ||(Y? —YOP 79 — Z‘“’)H%Q. We get

mtq and f € Cl?’erq’erq’o’O. We recall

Kl(qvm)
(p+1)---(p+2—-m)’

et P < O\T(T + 1) L3e% + (5.3)

where C1 is a scalar and K1(q, m) depends onT', m, ||€lm4q.2(m+q—1)1/(m—1)1 and on (||8§pf||oo)1§k§m+q.

. m C1T(T+1)L%)7-1
Since €% = 0, we deduce from (5.3) that e%P < % where A1(gq,m) := (CllT((T+1))Lf§)—1 Ki(g,m).

Then, (Y9P Z9P) converges to (Y4, Z9) when p tends to oo in ||(.,.)||r2-

Remark 10. We deduce from Proposition 3 that for all T and Ly, we have limg_,, 9P = 0.
When C1T(T + l)L? < 1, that is, for T small enough, we also get limy_ oo limg_,o0 9P = 0.

Proof of Proposition 3. For the sake of clearness, we assume d = 1. In the following, one
notes Aytq,P = }/t%P _ Ytqv AZ;LP = Zg’p _ Z;] and Aft‘Lp = f(t,Ytq’p,Zg’p, D/t%PL[ZgaPD _
f@, Y4,z Y], [Z]]). First, we deal with E(supg<;<7 |AY,71P)2) From (4.4) and (4.5) we get

AYITP = B (Cp(FOP) — F7) — /0 t AfIPds
=E(Cp(€) — €)
+Et< </ f(s,Y3P Z9P [YIP), [Z9P]) > / f(s, Y3 Z9 [YV¢ }[Zg])ds>

- / AfIPds.
0

We introduce iCp(fOT (s, Y, Z2 Y], [Z])ds) in the second conditional expectation.
This leads to

AV Byl - €) + B G / agsras))

+Et</0 Co(f(s, Y, Z9 [YA),[29) — f(s, Y1, Z2 [V, [Zg])ds>

¢
- / AfIPds.
0

where we have used the second property of Lemma 2 to rewrite the third term.
From the previous equation, we bound E(supy<,<y |AY;Y7'7|?) by using Doob’s inequality, the
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property of the Wasserstein-2 distance (see (1.3)) and the fact that f is Lipschitz:

T
& (/0 Afsq’pd5>

T
+ 16T/0 E(|Cp(f(s. Y, 28, [V, [20])) — f(s, Y, 28, [Y1), [Z20)) %) ds

2
E( sup |AYt‘1+1’p12) < 16E(|C,(€) — &%) +16E<

0<t<T

T
+ 16TL?/ E(JAYIPP + [AZIPP + Wa([YIP), [YI)? + Wal([Z27], [24))*) ds
0

2
& | A favas )|

T
+ 16T/0 E(|Cp(f (s, V{1, Z8, [V, [28]) — f(s, Vi, Z2, [YJ), [Z2])P)ds

< 16E(Cy(8) — &) + 16E<

T
+32TL§/ E(JAY2P|? 4+ |AZ2P|*)ds.
0

To bound the second expectation of the previous inequality, we use the first property of Lemma
2 and the Lipschitz property of f. Then we bring together this term with the last one to get

E( sup |AYIHHP 2) < 16E(|Cp(&) — &)

0<t<T

T
+ 16T/0 E(|Cp(f(s, Y1, 24, Y1), [28])) — f(s. Y, 24, [Y), [20))*)ds

T
+160TL?/ ]E(|Ay$q7p|2+|AZ§7p’2)ds.
0

(5.4)
Let us now study the upper bound E(fOT|AZf+1’p|2ds). To do so, we use the Itd6 isome-
try E(fOT\AZfH’des) = E((foT AZITPdB,)?).  Using the definitions (4.4)-(4.6) and the
Clark—Ocone Theorem leads to

T
/ AZg+1,Pst = F9 E(Fq) — (Cp(qu) _ E(Cp(Fq,p)))
0
T
=i [ vz L s - v
0

T
— (ngﬂ,p +/0 fs,YIP Z9P [YIP) [Z9P])ds — Y()q+1,p>

Rearranging this summation makes AY;!H’p — (AYOqul’p ) appear. We get

T
E( / \AZ§+17p12d5> §6E< sup \AY{’“”JF)
0 0<t<T (55)

T
+24TL§/ E(JAYZ?]? +|AZIP %) ds.
0

Since fOTIE(|AYSq’p|2 + |AZIP*)ds < (T + 1)e??, by computing 7 x (5.4) 4 (5.5) we obtain
et P < 112E(|Cp(€) — €7)

T
+ 112T/0 E(|Cp(f(s. Y, 28, [V, [Z0])) — f(s, Y, 28, [Y1), [22))%)ds

+ 11447 (T + 1) L3P,
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Since & and f(s,Yd, Z,[V{], [Z8]) belong to D™? (¢ satisfies M}, ,, f € Cg’m+q7m+q and
(Y4,29) € 8™ (see Lemma 4)), Lemma 1 gives

112
gtlp < Dmel|2 N

¥ — "D (s, v, 28, V3, [Z)2 ds
(p+1)---(p+2—m) B »Sso Hsolts b IZs L2 (Qx[0,T]™)
+ 11447(T + 1) L3e%P.

. T | .
Since fo | D™ f(s, Y, 22, [Vd], [Zg])H%Q(QX[OyT}m)ds is bounded by C(T,m, (Hafproo)kgm,
(Y9, Z7)||27,, ), Lemma 4 gives the result. O

m,2m

5.3. Error due to the truncation of the basis. We are now interested in bounding the error
between (Y9P, Z4P) (defined by (4.5)) and (Y9PN Z4PN) (defined by (4.7)).
Before giving an upper bound for the error, we measure the error between C), and C]ﬁv for a r.v.
satisfying (5.1) when m = p.
Remark 11 (Remark 4.13, [BL14|). Let £ satisfy Hy, and f € C’g’p’p’o’o. Then, for all integer
q>0, I, = fOTf(s, Y ZEP VP [Z3P))ds satisfies (5.1); that is for all multi-index o such
that || = r, we have
B(D .t Tap) = B(DS, .. o Igp)l < Koo ((t1 = 51) a0 4 - 4 (t, = 5,)a2),

1

where B, , = 3 A B¢ and K" depends on K¢, €llp1 T and on (HaépHOO)lSkSp'

Lemma 5 (Lemma 4.14, [BL14]). Let F denote a r.v. in L*(Fr) satisfying (5.1) for m = p.
We have

N 2 F\2 T W & 2Ti F\2 T 2or T
s~ < () R <o () Taenen
where K]I; and Br are defined in Hypothesis 2.

Proposition 4. Assume that £ satisfies Hy, and f € Cl()),p,p,(],o. We recall
et N . — |(YaPr — yorN zap Zq,p,N)H%Q, We get
T

l/\QﬁE
eitbpN < CoT(T + 1)L}5‘17P7N + Ky(q,p)T(T + 1) <N> ; (5.6)

where Cy is a scalar and K2(q,p) depends on Ké, T, |&llpa and on (H@fproo)lngp.

Since 2PN =0, we deduce from (5.6) that e9PN < As(q,p)(%)"2Pe where

CoT(T+1)L2)1—
As(q,p) == Kao(q,p)T(T + 1)eT(C?2T((TJ;11))Lf?)711. Then, (Y3PN  Z4PNY converges to (Y 4P, Z9P)

when N tends to oo in ||(.,.)] 2.

Proof of Proposition 4. For the sake of clarity, we assume d = 1. In the following, one notes

N N N N N N N N N
AY;/qvpv = }/'tq7p7 _}/tq7p, AZ{?»p7 = Zg:p» _Zg»p and Aftquv = f(t, }/tq7p7 ’ngpv , [}/tqvp7 ]7 [th’pz ])_
f@, Y22, ZPP [YAP],[ZEP]). First, we deal with E(supg<i<r |AY, PN 12) From (4.5) and (4.7)
we get

t
AYthrl,p,N — Et(Cp(Fq’p’N) _ Fq,p) _/ Afg’p’Nds.
0

Following the same steps as in the proof of Proposition 3, we get
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E( sup [AYTPNE) <T6E(CN () - Gyl&)?)
0<t<T

ros( | - [ " fs, v, 28, [vee] Z27)as) ) (57)

T
+160L% / E(|AY 2PN 2 4+ |AZIPN () ds.
0

Let us now study the upper bound E(fOT |AZITPN1245) . Following the same steps as in the
proof of Proposition 3, we get

T
]E</ ‘AZ;]“FLP,NFdS) S 6E( sup |A}/;q+1,p,N|2)
0 e (5.8)

+24TL3 /0 TE(| AYZPN 2 4 |AZTPN|12) s,
Adding 7 x (5.7) and (5.8) we obtain
PPN <112E(|(C) — Gp)(6))
o5~ [ sto.rar.zae van iz

+ 1144T(T + 1) L3P,

)
Since ¢ and I, := f(s, Y7, ZIP [YIP], [ZEP]) satisty (5.1) (see Remarks 8 and 11), Lemma 5
gives

+ 112E<

1728
otV <aa(0) T )RS+ )

+ 11447(T + 1) L3e%P N,
and (5.6) follows. O

5.4. Error due to the Monte Carlo approximation. We are now interested in bounding
the error between (Y 4PN Z4P:N) (defined by (4.7)) and (Y4P-N-M  7ap.N.MY (defined by (4.10)).

In this section, we assume that the coefficients dj} are independent of the vector (G1,---,Gn),
which corresponds to the second approach proposed in (Remark 3.2,[BL14]).

Before giving an upper bound for the error, we measure the error between C’Iﬁv and C’IJ,V M for a
r.v. satisfying Hng (see Hypothesis (3)). The following Lemma deals with CéV’M(F), i.e. the
case of i.i.d. samples of F' (see Definition 1). The general case will be stated in Lemma 7.

Lemma 6. Let F be a r.v. satisfying Hypothesis H;?;N' We have

E(/(Cy = G (R)[*) = 57 Vo (F),

and

E(CNM (F)P) < B(FP) + 1V (F).

We refer to |[BL14, Appendix A.5| for the proof of the lemma.
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Proposition 5. Let & satisfy Hypothesis H> b N and f is a bounded function. Let e9PN-M =

||(yq7p,N — Y NM 7ap.N _ 7apN, M)H%Z We get

K N

Pt (5.9)

where Cs is a scalar and K3(p, N) := 724(Vp, N () + T2(| f[|2. >0 _, (J’f,))

0P NM-— 0 we deduce from the previous inequality that e¥PN-M < w where

Since €
C- 2)q_
As(q,p,N) := K3(p,N) ( g:;;;fff;;; L Then, (Y 3PNM 740, NMY conperges to (YIPN | ZaP:N)

when M tends to oo in ||(.,.)]| 2.

Proof of Proposition 5. For the sake of clarity, we assume d = 1. In the following, note that
AYq7p7NM YqvvaM }/;:qvp7 AZ(vaNM ZQ7p7NM Zt(vaN and Aftq7p7N7M —

F(L YN, ZENM [y NAL) (ZEn N fq yanN, ZanN, [yanN) (760N Fire, we
deal with E(supy<;<r |AY TP NMI2) CBrom (4.7) and (4.10) we get

t
AYth“Lp’N’M =E, (CIJ;V,M(Fq,p,N,M) _ CIJ)V(Fq,p,N)) _ /0 Afg’p’N’Mds.

By introducing iC’éV (FaP-N.M) and by using Lemma 3, Doob’s inequality, and the Lipschitz
property of f, we obtain

E( sup |AYtQ+LP7N,M|2) < 12E(|(CZJ,V’M B CI])V)(Fq,p,N,M)|2)
0<t<T

n 12E<|Cé\7 (FapNM _ Fq,p,N)‘z)
T
+ 12TL§/ E(|AY@PNM2 4| AzeeNM 2
0

W ([Y 2PN [y 20N )2 4 (220N M, [Z00N))2) ds
< 12E (|G - O ) (A 2)

T
+24TL} / E(|AY2PNM2 4 | AZ2NM2) s,
0

From Lemma 6, we get E(|(ChM — CY)(FerNMY 12y < Z(V, N (€ fo FOFPNAMY gg)).
Then, from Remark 8,
24 Pk
B( sup |A¥NR) < 2 (v + 221 Y (N>)
ost=t k=0 (5.10)

T
+120TL} / E(|AY@PNM2 4 | AZ2e-NM2) g
0

Let us now bound E(fOT |AZ§+1’p’N’M|2dS). Following the same steps as in the proof of Propo-
sition 4, we get
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E(/T |AZ§1+1’p’N’M|2d8> < 6E< sup |AYtq+1’p’N’M\2>
0

e (5.11)
+24TL3 / E(|AYZPNM 2 4 | AZaPNAM ) g
0
Adding 7 x (5.10) and (5.11) gives the result. O

5.5. Error due to the Particle approximation. In order to prove the error between (Y 4PN:-M  7¢:p.N.M)
(defined by (4.10)) and (Y aPN.Mm 7¢p.N.Mm) (defined by (4.11)) for all 1 <m < M , we in-
troduce the following independent copies of (Y #PN:M & 7a.p.N.M)

?;q+17p7N7M7m :Et (CéVaM((Fq)p7N7M7m)m))

t
_ / f(s’zq,p,N7M,m’ Zg,p,N,M,m’ [qu;p,N,M,m], [Zg,p,N,M,m])ds’ (5_12)
0
Zg_‘_l’p’N’M’m =D,E, (CI]JV,M((Fq,p,N,M,m)m)) :

where Fq’pJV’M,m _ é. + f(;T f(s,}—/;q,p,N,M,rn7 Zg,p,N7M,m7 [qu,p,N,M,m]’ [Zg,p,N,M,deS.

Note that [YIPNMMM (pegy  [Z2PNMMMY G the empirical distribution of the particles
FRPNMm (oo ZapNMm)

We are now interested in bounding the error between (Y #P-N.M.m  7a.p.N.Mm) (defined by (5.12))
and (YapNMm 7apN.Mm) (defined by (4.11)), for all 1 < m < M. Before giving an upper
bound for the error, we measure the error between CI],V and C’év Mforarv. F satisfying %f,, N

(see Hypothesis (3)) when (F™)i1<m<nm are identically distributed r.v., but not necessarily inde-
pendant.

Lemma 7. Let F be a r.v. satisfying Hypothesis ’H]?_;’N and let (F™)1<m<m be M identically
distributed r.v. with law F. We get

E((Cp = G (F™)m)?) < E(IFI?) +ZZ E(!FIZHK2 )

k=1|n|=k

and so, we obtain

p N
B(ICYM(F™)m) ) < 2B(F) + 30 3 §E<IFIQHK&(G@-)>~
=1

k=1 |n|=k
Proof of Lemma 7. Using definitions (2.6) and (4.9), we have

(C) — CNMY(F™),,) —do—d0+z > (dy — dy) H . (Gh).
k=1 |n|=k
Since a?’,g is independent of (G;);, it implies that

E((C — OFM)(F™)m)?) = Blldo — o) + 32 37 S — ).

k=1 |n|=k
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The definition of the coefficients dy and dj} given in (2.7) leads to

E((C — OFM)(F™)m)?) = V(do) + 37 37 —v(dp)

E(|dol?) +ZZ . E(|d}[)

From the representation (4.8) of the coefficients do and d, we can prove for the first term of the
previous inequality that

wier-a((y i) - o[

and for the second term IE(|CZ”|2), we obtain that
n! &
wn( 2wnmwn)
(| e Tl s )
M N N
M(M —1)
m|2 2 (m 1 1y 2 2
B( o1 [152 @ ) + M=V (|r [ (@7 [ Kt

m=1 =1

n N M(M — 1)n!? N
B 1 ) R e (49 L)

(b eorflsso)

Then, the first result follows. To get the second result, we write C’,ﬁv M((F ™) = (C’ZJ,V M _
N m N(p N,M N N —
CO)((F™)m) + C,' (F). Since E((Cp ™ — CY ) (F™)m)Cy' (F)) = 0, we get

E(|C M (E™)m)?) = E((C Y = GO (F™)m) ) + E(C (1)),

and Lemma 3 completes the proof.

) < E( Z rFmP) ~E(FP),

)

IN

IN

O
Proposition 6. Assume that there exists a real v > 4 s.t. £ € (L' N DY) C 7-[3N and f is a
bounded function. Let P N-Mm .= | (yapr.NMm _yapNMm 7qpN.Mm _ 74p, NMm)||2 . We
get
12 Ky4(p,N)
N,M N,M, a\p;,
catLp.N.Mm < Cy(p, N) (Eq,p, ) m) 4 VY (5.13)

where Cy(p, N) and K4(p, N) depends on p, N, T and || f||co. Since e®PN-M-m =0 we deduce
A

from (5.13) that e¥P-N-Mm < % where Ay(q,p, N)depends on q, p, N, T and || f||oo- Then,

V1<m< M, (yopNMm: zapNMm) conperges to (YEPN-Mm 7ap.N.Mm) yyhen M tends to

oo in ()l Lz

Lemma 8. Assume that f is a bounded function and & € L N'DY". Then, for all v > 1 and

1 <m < M, there exist a positive constant K,, depending on f,r and T such that

(|77 ) + B 207 < K (14 B(EN) + E(DE)-
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Proof of Lemma 8. Let r > 1 and t € [0,T]. From (5.12) and by using Cauchy-Schwartz inequal-
ity, we obtain

BF ) = B [E ) (o)

t
— / f($7128q7p7N,M7m, Zg,p,N,M,m’ [Y‘S‘Z»va7M7m]7 [ng,NM,m])dS
0

)

t
+ ‘ / f(s,zq,p7N7M7m, ngp,Nvam’ [Kq,p7N7M7m]7 [Zg7p7N7M,deS
0

r

< 27”—1]E< Et (CI])V(Fq,nN,M,m))

)
9y
Where Fq7p:N,M7m — é' + f(;I' f(s, Y/;%P,N7M,m7 Zg:paNzMﬂn’ [Z‘L%N,M,m]’ [Zgava’M)m])ds

Then, since f is a bounded function, there exists a positive constant K7, depending on f, r and
T such that

(|77 < K (1 +E(E)-

In the same way, we can obtain that

E(|Zg,p,N,M,m|r) _ E(‘DtEt (CIJ)V(FII,PyN,M,m))

)

and the result follows. O

< Ko(1 4+ E(|Di£]"),

Proof of Proposition 6. For the sake of clarity, we assume d = 1. In the following, consider that
AYtqvaV?M:m = Ytqvp7N7M7m_}/tq7paN7M7m’ AZ;]vvavM:m = ngp7N7M7m_Zgzp7N7M7m’ AftqvpaN7M7m R

f(t Yq,p,N M,m qu,N M,m [Yq,nN Mm] [qu,N Mm]M) f(t qu,N M,m qu,N M,m [yq,p,N M, m]
[Zf’p’NMm]) and AF2PN, Mm = Fap., Mm —Fap,N.Mom - Rirst we deal w1th E(supg<i<r |AY PN M 2y,
From (5.12) and (4.11) we get

By using Doob and Cauchy-Schwartz inequalities, we obtain

2 t 2
]E( sup ’AY}quLP,N,M,mP) < 2E< sup Et (CN M((AFq p,NMm ) ( sup / Afg’p’N’M’mdS >
0<t<T 0<t<T 0<t<T | Jo
2
< 8E< CrM((AFTPNAm) Y > + 2TIE< / A fapNAMm ds>.

From Lemma 7, we have

p ' N
E(Cy M (AP P) < 2B(AFTNAT2) 4 3 2E<'AFW’N’M’WPHK&(GJ)’

k=1 |n|=k i=1

and by using Cauchy-Schwartz inequality and the bounded property of the function f, we get
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E(CYM ((AFHPm), )[2) < 2B(|AFH N2

. n! N.Mm2\ 2 N,M,m |2 ~ 4 /2
£ % m(areimp) e (japsainp Tk G)

k=1 |n|=k i=1

1/2
< 2E(|AF4PNMm 2y 4 o (p, N)E(’AFq,p,N,M,mF)

< <C(p, N) + 4THfHOO)[E(’AFq,p,N,M,mF)1/2’

N 1/2
where C(p, N Z Z T f]looE (HKﬁZ(GZ)> . Then, we can conclude that

k=1 |n|=k
T 2 1/2
E( sup !M@“l’p’N’M’mF)SSVT(C<p,N>+4THfHoo)E</ 'Afgvp’N:Mvm d8>
0

0<t<T
T 2
+2TE < / ds>
0

< (3T(Ct.3) + 17 f) + T ([

T 2\ 1/2
< N)E( J ds) |
0

where Ci(p,N) = 4\/T<2C(p, N)+ 9THfHOO)
Moreover, the Lipschitz property of f gives

qu,p,N,M,m
S

A fapNMm
S

2 1/2
ds)

qu,p,N,M,m
S

T
E( sup ]AY;qH’p’N’M’mF) < 204 (p, N)Lf</ E(|AYgPNAMm 2 | A 780N M2
0<t<T 0

g [Ny (g, 7)) s "
where
E(Wa([ygrNAMm My @b NALm])2) < o (W ([Y M Mm M [y g AT AT)2)
+ 2B (W ([YppAbm M [y ap N abm))2)
and
E(Wa([ZgPNATmM [ ZEPNALm))2) < 9B (Wh([ZgP M Mm M [Z a0 NATm]M ) 2)
+ I (W2 N M, (73N im2).
On the one hand, by using the property of the Wasserstein distance Wh, we get

M M 2
— 1 1
E(WQ(D/S‘I»F,N,M,TIZ]M, [}/S%I’,N,Mym]M)z) S E<W2 <M Z 5Y5q,p,N,M,m, M E 55—/Sq,p,N,1M,m> >
m=1 m=1

E

S M ‘qu,p,N,M,m _ qu,N,M,m}Q)
m=1

= E(|AYgnNMm 2y,

On the other hand, thanks to Lemma 8 and to the assumption on &, we apply [FG15, Theorem
1] to obtain
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B(Wa([F0Mm (TR NAR2) < sup B(W ([T, e )

< Cr

i

3

where C' is a positive constant.
In the same way, we have

E(W2([Zg,p,N,M,m]M’ [Zg,p,N,M,m]M)Z) < E(‘AZ;],;IJ,N,M,771‘2)7

and
Cr
VM

E(WZ(I:ZngvaM?m]M’ [Zg7p7N7M7m])2) g

Finally, we can derive the inequality

E( sup |Aytq+1,p7N,M,m |2)
0<t<T

vM VM
1/2

K(p,N T
< B Calp ([ (v sz Ryas)
0

T c C' 1/2
/ E<3|AY;LP7N7M’W\2+3|AZ§%N’M”|2+2T 2 ) ] (5.14)
0

where K (p, N) and Ca(p, N) = 6C1(p, N)Ly are two constants depending on p, N, T" and || f||c-
Let us now study the upper bound E(fOT |AZg LN 20

the proof of Proposition 3, we get

T T
E( / |AZ§+1’p’N’M’m|2ds> < GIE( sup \AYtq“’p’N’M’my?) +3TIE< / |A fgmvN»M’mF)ds,
0 0

0<t<T

. Following the same steps as in

and by using the same previous majoration for the second term of the right hand side, we deduce

T
Ki(p, N
0

0<t<T M1/4
r 1/2
+ C3(p, N)(/ E(‘AY;QJJ,N,M,WL’Q + !Angp’NvamP)@)
0
(5.15)
By adding 7 x (5.14) and (5.15), the result can follows easily. 0

6. NUMERICAL ILLUSTRATIONS

In this section, we will illustrate the algorithm by presenting some explicit computations.
We consider on [0, 7] the following sort of processes

T

—§+/tT(aY + BE(Y, )+7E(Zs)>ds—/t Zs-dBs, 0<t<T, (6.1)

where «, f and v € R. First, we study the solution of (6.1) when v = 0. Then, we study the
solution of (6.1) in the general case.
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Case (1) v =0. We have
Vi = 0 (By(€) + B(§) (7T - 1)),

and
Zy = e T=VE(Dyg).

Now, if £ = By, we obtain
Yy, Z,) = <ea(T—t)Bt7 ea(T—t)>,
and if £ = B%, we get
(Ys, Zy) = (e“<T—t> (B2 —t + TePT1), 2ea(T_t)Bt).

Case (2) v # 0. We consider two different values of &:
If ¢ = By and 8 # 0, we have

_ (T oBT—t) a(T—t)
(Y, Z) (e (Bt + 5l 1)),e )
If¢&= B%, we have

(Vi Z) = (2T (B = t 4 Te/T=0) 20T ;).

6.1. Proofs of the numerical illustrations.

Proof of case (1). In this case, we have

T
E(Y;) = E(¢) + / (o + BYE(Ya)ds,

from which we derive
E(Y;) = B(g)el+)T),

and taking into account (6.1), we get

T T
Vi=¢+ / (aY;+BE(£>e<“+B><T‘S>)ds— / Z,dB,.
t t

Applying It6’s formula on e®'Y;, we get

T T
ey, = e*T¢ + BE(€) / e®Se(atBAT=9)gq / €™ Z,d By
t t

T
_ eaTé. + E(f)@aT (eﬁ(T*t) — 1) — / eaSZSdBS,
t

which leads
T
}/; — eO‘(T_t)f + E(§)€Q(T_t) (eﬁ(T—t) . 1) _ e—at/ eostsst.
t

27

Finally, by taking the conditional expectation of Y, we get the explicit form of (Y3, Z;) as follows

Yi = e (Ey(€) + E(§) ("0 — 1)),

and
Zt = ea(T_t)Et (Dtg) .

When the terminal condition is equal to Bp or B%, we easily get the results.
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Proof of case (2). From (6.1), we have

Y; = Ei(€) + Ey ( /tT (oY, + BE(Y;) + v]E(ZS))ds>.

By applying the Malliavin derivative on Y;, we obtain that for all s € [0, T,
T
B(DY) = E(D.§) +a [ E(D.Y.)ds,
t

and obviously when s — ¢, we get
E(Z:) = E(D:Yy)
= *TVRE(D;¢).
Therefore,
E(Z,) = {ga(T_t) e = b,
if &€= DB7.

When & = B2, we obtain the same equation as in the case (1), and therefore, the same result.
Now, when & = Bp, we get the following form of the process Y;

T T
Y, =¢ +/ (aYS + BE(Y:) + vea(T_S))ds - / Z.dB. (6.2)
t t
Since
T
B0 = [ ((a+ BB 4762 ds,
t
it implies that

T
E(Y;) = yelotA(T=Y) / e~ (@+P)(T—s) T =) g g
t

_ %ea(Tft) (eﬁ(Tft) _ 1)

)

and from (6.2), we deduce that

T T
Y,=¢+ / (aY; + 'ye(aJrﬁ)(T*s))ds - / Z.dB;.
t t

Finally, by applying Itd’s formula and by taking the conditional expectation of €Y}, we conclude
that

Yy, Zy) = (ea(T—t) (Bt + %(GB(T—'?) — 1))7604(T—t)>.

O

6.2. Illustrations. The computations of this section have been done on the following computers

e Dell precision tower 3620 4 cores Intel(R) Xeon(R) CPU E3-1240 v6 @3.7 Ghz with 16
Go of memory for M varying from 10* to 107

e Dell precision T7920 with 2 Intel Xeon Gold 6128 with 6 cores @3.7 Ghz and 128 Go of
memory for M = 108

Let 0 =ty <t; < --- <ty =T be a subdivision of [0,T] of step size h = T/N, N being a
positive integer, let (Y, Z) be the unique solution of McKean-Vlasov BSDE (1.2) and let, for a
given ¢, p and m, (f@’i’p . ka’p "™)o<k<n be its numerical approximation given by Algorithm 1.
For a given integer L, we draw (Y, Zl)oglgL and (?q’p’m’l, Zq’p’m’l)OSZSL, L independent copies
of (Y, Z). Then we approximate the L?-error of Theorem 2 by:
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1 L
error = — E max ‘Ytl — Ytq’p’m’l
Lz - 0<k<N | "¢ k

2 al 1 = gl |2
+hz‘ztk — 7P ‘ ) (6.3)
k=0

7p7N7M

e Convergence in p. Table 1 represents the evolution of }70‘1 w.r.t ¢ (Picard’s itera-

tion index), when p = 2 and p = 3. We also give the CPU time needed to get }708’73 VM
and Z3PN M We fix M =107, N = 20, € = \/|Br| and f(t,Y, Z) = Y + E(Z). The seed
of the generator is also fixed. Note that the difference between the values of %8’2’N’M and
}708’3’N’M does not exceed 0.12%. This is due to the fast convergence of the algorithm in
p. CPU time is 5 times higher when p = 3 than when p = 2.

Iterations 1 2 3 4 5 6 7 8 Real time

p=2 0.822301 1.644047 2.033746 2.150164 2.174622 2.178412 2.178843 2.178874 49.596
p—3 0.822236 1.644453 2.035001 2.152181 2.177102 2.181102 2.181609 2.181662  284.947

TABLE 1. Evolution of %q’p’N’M (p = 2 and p = 3) w.r.t. Picard’s iterations,

M = 10", N = 20, ¢ = /|Br|, f(t,Y,Z) = Y + E(Z) and the real time of

calculation.

e Convergence in M. Figure 1 (resp. Figure 2) represents the evolution of 170q,p ANM and
Zg’p’N’M w.r.t. ¢ when p = 3 (resp. when p =2), N =20, f(t,Y,Z) =Y + E(Z) and
¢ = \/|Br| (resp. £ = B2) for different values of M. For this set of parameters, the exact
solutions are Yp = 2.2352 (resp. Yy = 2.7183) and Zp = 0. The exact solution depicted
in Figure 1 is obtained by applying a lot of drawings. Concerning Figure 1, we notice
that Y22 M (resp.  ZIPNMY converges to the exact solution when M > 107 (resp.
M > 10°). Concerning Figure 2, we notice that Y (resp. ZIPNM) converges to
the exact solution when M > 10° (resp. M > 107). In both cases the algorithm stabilizes
after very few iterations.

Evolution of Y7 Evolution of Z}
3 T . 0.04
/‘__——"1“_\___\&11‘
O g
0 [+ @ ¢ & <]
¢ Y, exact \ & Z,exact
M=10* .02 b — m=10"
—M=10® — =105
M=10% g m=10%
i -0.04 ~— 5
M=10 S o —— M=10
—n=10* T | —wm=10*
0.5 : + -0.06
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
iterations iterations

FIGURE 1. Evolution of f”bq’p’N’M and Zg’p’N’M w.r.t. ¢ for different values of M
when N =20, p=3, € = \/[Brl, f(t,Y.Z) = Y + E(2)

e Convergence in N. Figure 3 represents the evolution of f’oq’p’N’M and Zg’p’N’M w.r.t. q

when p =2, M =10%, f(t,Y,Z) =Y + E(Y) + E(Z) and & = By for different values of
N. For this set of parameters, the exact solutions are Yy = 4.6708 and Zy = 2.7183. The
algorithm converges even when N = 10, but Yb&p’lo’M (resp. Zg’p’lo’M) is quite below
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Evolution of Y

Evolution of Zg

3 0.3 R —" S— —
& o o & 0z ol
25 01 =
2 o
& Yuexad Ed & ‘{L‘exact
15 — m=10" 02 —m=10"
— M=10° —M=10"
1 M=10® 03 M=10°
— M=107 — M=107
— n=10* EL —m=10* |
0.5 05
1 2 3 4 ) T 2 3 4 ) B 7 8
iterations iterations
. i N,M > N,M .
FIGURE 2. Evolution of Y™™ and ZJ"™"™ w.r.t. ¢ for different values of M
when N =20,p=2,§&= B2, f&,Y,Z2)=Y + E(Z).
 -8,p,40, M ~8,p,40, M . . .
Yy P (resp. Zy™™™). Notice that for N = 40 the approximation values are very
close to the exact values.
Evolution of Yg Evolution of Zg
5 T 3
4 &
&k & & G __7_4} 43 [s]
257
sl
X 2
1k / & ¥, exac / & Zexact
3 ——N=10 isk / ——N=10
r —N=20 y — N=20
or N=30 1 y N=30
N=40 — N=40
_,‘ 1 L I L 1 ,I A I I I 1 L
1 2 3 4 5 6 7 B8 1 2 3 4 5 B 7 8
iterations iterations

FIiGURE 3. Evolution of Y/Oq’p’N’M and Zg’p’N’M w.r.t. ¢ for different values of NV
when M =109, p=3, &6 =By, f(t,Y,Z) =Y + E(Y) + E(Z).

e Convergence in M of the error (6.3). Figure 4 illustrates the error (6.3) (i.e. the error
made on the whole path) for the case p =2, N =20, ¢ = 6,¢ = B2, f(t,Y,Z) = Y+E(2)
for different values of M. We notice that the convergence in M is much faster than the

. . . 1
theoretical one, which is ik



FIGURE 4. Regression of log(error) w.r.t. log(M). Data: error when M =
(103,10%,10%,10%). Parameters: N = 20, p = 2, ¢ =
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Regression: Slope = -1.2449

= O Data
4 £ - Slope & Intercept

] 7 8 9 10 1" 12 13 14
log(M)

6, & = Bf, f(t,Y.2)

Y + E(Z).
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