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Abstract: This paper shows how to formally design a hybrid automaton 
model for a wide class of dissipative physical systems with sources and 
switching topology. This method is based on a mathematical representation 
of the dynamic network graph and of its dual graph, using the hybrid 
incidence matrix, and on a constructive method to analyze admissible and 
constrained configurations. The port-Hamiltonian representation associated 
with the set of hybrid system configurations, parameterized by the discrete 
state of the switches, is synthesized to be part of the hybrid automaton of 
the system. This is a further step to a generic control synthesis for physical 
switching systems.  
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1. INTRODUCTION 
 
 In a physical switching system (PSS), the topology may change instantaneously depending 
on certain discrete parameters [33,34]. The aim of this paper is to formally synthesize a 
hybrid automaton model [1,14] for a wide class of physical switching systems (PSS) with 
ideal controlled or autonomous switches. Our constructive method is based on mathematical 
representations of network graphs and the analysis of the admissible and constrained 
configurations of the system. A family of hybrid parameterized incidence matrices is 
developed representing a primal dynamic network graph and a dual graph associated with the 
PSS. The algebro-differential equations associated with the set of system configurations are 
deduced and written in a non-minimal parameterized implicit port-Hamiltonian formulation 
using a kernel representation. Within the hybrid automaton, the transitions from one discrete 
state of the system, W, (or discrete dynamic, configuration, topology) to another are 
determined by the conditions producing autonomous switches, and the control actions on the 
controlled switches. The method for modeling the complete autonomous PSS presented in this 
paper does not include how to control the switches. The work presented here is an extension 
of both, [19], which explained how to obtain the parameterized incidence matrices for a class 
of physical switching system and [31] which analyzed admissible and constrained 
configurations. The paper [32] proved a theorem about the formulation of the parameterized 
incidence matrix for a wider class of physical switching systems with varying constraints. 



 
The energy-based approach used here, is related to other works. First of all, it provides a 
generic method for synthesizing a structured autonomous model and analyzing a class of 
hybrid port Hamiltonian systems that includes the models of various power converters 
presented in [9]. Haddad, Nersesov and Chellaboina [13] expressed the model of a class of 
physical switching systems (PSS) as an explicit port-controlled Hamiltonian system, 
including both the dynamics of each configuration and the discontinuities in the real valued 
state variables at the transitions from one configuration to another. Buisson, Cormerais, 
Leirens, Richard [2,3,6] developed hybrid models from another energy-based graphical 
model, bond graphs, where the switches are modeled by effort or flow sources; a set of 
algebro-differential equations associated with the PSS is written as a minimal implicit state 
space model after dealing with causality and a rank condition determines if a given 
configuration is acceptable or not. Buisson, Cormerais, Zainea, Guéguen, Godoy [4] also 
proposed an approach for computing hybrid automata models for linear PSS with four types 
of switches: ideal, transistors, diodes and thyristors. This is a bottom-up approach concerning 
the discrete locations of the PSS but a global approach concerning the computation of the set 
of algebraic and differential equations associated with each configuration of the PSS. The 
method presented in this paper is based on network graphs and a port-Hamiltonian 
formulation and is entirely global. Jeltsema, Scherpen [16] provided valuable insight by 
establishing a dual relation between the energy-based port Hamiltonian formulation and the 
power-based Brayton-Moser equations.  
 
The method presented in this paper is illustrated only on electrical power converters. 
However, since many mechanical systems or hydraulic systems have an equivalent network 
representation, the networks treated here could be seen as equivalent physical systems arising 
from another field, through analogy [17,27].   
 
Section 2 provides some background on dynamic network graphs and our modeling 
formalism based on parameterized incidence matrices. Section 3 defines the non-admissible 
and constrained configurations of the class of physical switching system (PSS) under study. 
Section 4 recalls the parameterized port-Hamiltonian formulation. Section 5 presents the main 
result of this paper, which is a generic and constructive approach to design a hybrid 
automaton model of a class of autonomous PSS. This approach is based on the port-
Hamiltonian formulations of the configurations of the PSS presented in the previous sections 
and the analysis of the hybrid incidence matrices for the system. 
 

2. GRAPHS AND MATHEMATICAL BACKGROUNG 
 
We shall consider a class of physical switching systems (PSS) with dissipation, sources and 
ideal controlled or autonomous switches. They can be viewed as physical systems with 
switching topology or multiconfiguration systems. The autonomous part of such systems can 
be mathematically represented by a hybrid automaton [1,14]. We shall recall in this section 
the formal calculation of the piecewise continuous dynamics associated with the various 
configurations of the system (discrete states of the automaton) defined in [18,19,32]. This 
calculation is based on graph theory and a port-Hamiltonian representation and it leads to a 
family of models parameterized by the discrete state of the switches. This generic approach 
based on network graphs is an interesting way of understanding and analyzing energy 
exchanges and element interactions in physical switching systems, independently of the field 
and in a constructive way which is not only based on experience. 
 



Network graphs [25,29] have been used successfully to model physical switching systems in 
various domains [5,8,11,22]. In order to represent equipment failures, various transformations 
of the graph have been defined, such as edges or vertices removal. Turning on or off ideal 
switches is a more complicated operation since edges must be disconnected from one vertex 
and reconnected to another. Therefore an original graph transformation in a dynamic network 
graph has been defined in [18,19,32]. The ideal switches are considered as elements whose 
function is to change the interconnection of the functional elements of the system.  
 
Definition 1: A dynamic network graph Gw is defined as an oriented graph Gw = (V, E, Ew) in 
which: 

* V is a nonempty finite set of nv vertices (vx  V),  
* E is a nonempty finite set of nef pairs of elements of V called functional edges (ei  E / ei 

= (vx , vy), vx being the starting vertex and vy being the ending vertex). The port of a 
functional element is associated with every  nef oriented functional edge of this graph. If 
vx = vy, the edge is a self-loop. 

* Ew is a nonempty finite set of ns pairs of elements of V called virtual edges (ewi  Ew / ewi 
= (vx , vy), (vx, vy)  V2 ). The port of a switching element is associated with every  ns 
oriented virtual edge of this dynamic graph. The set of switches is split into two separate 
sets: the set of nas ideal autonomous switches, indexed from 1 to nas, and a set of ncs (ncs = 
ns - nas) ideal controlled switches, indexed from nas+1 to ns. 

 
A network graph is said to be cyclically connected if and only if there is a circuit sub-graph 
(connected sub-graph with each vertex having degree two) containing any given pair of 
vertices. This concept is independent of any orientation. A pair (pf, pe) of conjugated 
variables, called power variables because their product has the unit of power [17,27], is 
associated with every functional or virtual edge of the dynamic network graph. The variable 
pf denotes the cocycle variable (also called flow variable) and the variable pe denotes the 
cycle variable (also called effort variable). Edges are oriented as flows. The orientation of 
virtual edges associated with autonomous switches is chosen in order that the flow variable is 
positive when the switch is closed (for example, current through a diode).    
 
The parameterized incidence matrix defined in [19] is a highly appropriate mathematical 
representation of dynamic network graphs in order to model and analyze physical systems 
with a variable structure. The parameterized incidence matrix gives the geometric 
interconnection structure for all the configurations of the system in a single matrix 
parameterized by the discrete state of the switches. A discrete variable wk  {0, 1} is 
associated with each switch Swk, so that: wk=1 if the switch is closed and wk=0 if the switch is 
open. Thus, the discrete state of the model is given by: W = [w1, w2, ..., wns]T. After 
instantiation of W, each row of the incidence matrix gives the edges connected to the 
corresponding vertex and each column gives the two vertices connected to an edge associated 
with a functional element. 
 
Let us recall here the definition of a hybrid incidence matrix, following [18,19]. It models the 
various topologies of the physical switching systems defined by proposition 1, as a single 
representation parameterized by W. 
 
Proposition 1: The physical switching systems (PSS) studied in this paper satisfy the 

following four assumptions: 
Assumption 1. The dynamic network graph associated with the PSS is cyclically connected. 
Assumption 2. The dynamic network graph associated with the PSS has no self-loop. 



Assumption 3. The outdegree of each vertex of the sub-graph composed of all virtual edges 
with their incident vertices is below or equal to 1. 

Assumption 4. All virtual edges are indexed so that an oriented sequence of virtual edges is 
decreasing.  

 
Proposition 1 defines the class of physical switching systems (PSS) studied in this paper. In 
the sequel, the PSS belong to this class. Moreover, it should be noted that the orientation of 
the edges in the network graphs is neither unique nor predefined by the structure or the logic 
of the system as in Petri net models for example, and that a PSS is modeled by various 
parameterized hybrid incidence matrices, depending on the orientation of the edges in its 
dynamic network graphs.   
 
Definition 2: Consider a physical switching system w, represented by a dynamic oriented 
network graph Gw. 

* The term   kwTkn w)G(MI 
v
  gives the transformations of the geometric 

interconnections between the functional elements which are produced by closing the 
switch Swk associated with the oriented virtual edge, eGwk = (vi, vj), (i, j){1,..,nv}2. For k 
 {1,..,ns},  kwTk w)G(M  is defined by: 
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* The transformation matrix associated with the network graph, MT(Gw)(W), represents the 

graph transformation from the reference configuration Gr (network graph without the 
virtual edges i.e. with all switches open) to another configuration, W, given by the 
discrete state of the ns switches. MT(Gw)(W) is the following ordered product (from k=1 
to k=ns):   
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* The hybrid parameterized incidence matrix IM(Gw)(W) of the family of geometric 

interconnection structures of the 2ns configurations of the PSS depends on W and is given 
by: 

 
  IM(Gw)(W) = MT (Gw)(W) IM(Gr) with W  {0, 1}ns (2) 

 
To illustrate these definitions, let us give the hybrid incidence matrices for the dynamic 
network graph and a dynamic dual graph (figure 2) associated with the simplified Buck power 
converter schemed in figure 1. 
 

 
 

Fig. 1. simplified Buck power converter 
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Fig. 2. a primal and a dual dynamic network graphs for the Buck converter: Gwa and Gwa
* 

 
The functional edges of the primal network graph Gwa are represented with thick lines and the 
virtual edges with thin lines. The functional edges of the dual network graph Gwa

*
 are 

represented with dotted lines and dual virtual edges with thin dotted lines. The orientation of 
the edges is chosen in accordance with the proposition 1 and is not unique. 
 
The parameterized incidence matrices for the simplified Buck converter are: 
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with (w1, w2)  {0, 1}2. 

 
Some states of the switches may lead to non-admissible configurations for the physical 
system with variable topology. Indeed, a problem arises if generalized Kirchhoff’s laws and 
independent non zero effort or flow sources are in conflict. It is therefore of prime importance 
to remove them for the control synthesis procedure.  
 

 
3. ADMISSIBLE AND CONSTRAINED CONFIGURATIONS ANALYSIS 

 
3.1 Admissible configurations 
 
Naturally, electrical, mechanical or thermal specialists analyze the non admissible 
configurations according to their experience. In this section, we propose a generic and 
constructive method so that the modeling and control specialist can carry out this analysis, 
even if he is unfamiliar with the field. 

 
Proposition 2: a non-admissible configuration corresponds to: 

i)  An effort source in short-circuit or several independent effort sources connected in 
parallel or in reversed parallel. 
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ii) A flow source connected in an open-circuit or several independent flow sources 
connected in series or in reversed series.  

 
A main advantage of the incidence matrix IM(Gw)(W) is that its direct analysis gives all the 
admissible configurations dealing with effort sources, because the generalized Kirchhoff’s 
flow laws can be expressed from IM(Gw)(W). Non-admissible configurations dealing with 
flow sources may be deduced from the direct analysis of the dual dynamic network graph 
because the generalized Kirchhoff’s effort laws can be expressed from IM(Gw

*)(W). If a flow 
source is connected in an open-circuit, its dual edge shows a short-circuit. If several 
independent flow sources are connected in series, their dual edges are connected in parallel. 
 
Therefore, in order to allow the systematic analysis of the hybrid incidence matrices, the 
edges in the reference network graph Gr are indexed by gathering the elements of each type 
together. The following edges indexation is arbitrarily chosen: effort sources, elastic energy 
storage elements, kinetic energy storage elements, dissipative elements and flow sources. 
Thus, the characterization of non-admissible configurations is: 
 
Definition 3: If the physical switching system w, the geometric structure of which is modeled 

by the hybrid incidence matrices IM(Gw)(W) and IM(Gw*)(W), includes nes effort sources 
and nfs flow sources, a non-admissible configuration defined by a vector W {0, 1}ns 
fulfills one of the four following conditions: 
1) If nes0,   j  {1, …, nes}  / IM(Gw)(W) j = 0 . 

2) If nes>1,   (i, j)  {1, …, nes}2 with i j / |IM(Gw)(W) j| = |IM(Gw)(W) i|. 

3) If nfs0,    j  {nef -nfs+1, …, nef} / IM(Gw
*)(W) j = 0. 

4) If nfs>1,  (i, j)   {nef -nfs+1, …, nef}2 with i j / |IM(Gw
*)(W) j| = |IM(Gw

*)(W) i|. 

 

|V| represents the vector where each component is the absolute value of each component of V. 
Condition 1) detects effort sources in short-circuit, condition 2) independent effort sources 
connected in parallel or reversed parallel, condition 3) flow sources connected in open circuit 
and condition 4) independent flow sources connected in series or reversed series, in the 
configuration characterized by W. The set of admissible configurations of the physical 
switching system w, according to proposition 2, is denoted A(w). Note that: A(w)  {0, 1}ns. 
 
Let us consider the simplified Buck converter presented in figure 1. Its primal and dual 
dynamic network graphs Gwa and Gwa

*, given in figure 2, respect the index order of the 
functional elements proposed in this section and there is only one effort source. This source is 
represented in IM(Gwa)(W) by the first column (equation (3)).  
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Thus, the only non-admissible configuration among the four possible is: Wa=[1 1]T. 
Therefore, as there are no flow sources in the circuit, A(wa) =  {0, 1}2 - {[1 1]T}. The 
simplified Buck power converter is a good educational example which is easy to understand. 



This result is therefore highly expectable. However, for larger size applications, this generic 
analysis method is an interesting support for modeling and control specialists. 
 
In the Bond graphs context, Buisson, Cormerais and Richard [3] proposed a rank condition on 
part of an implicit state space standard form (equation (5)) to determine if a given 
configuration is admissible (or acceptable). Definition 3 could be written as a rank condition 
too, but with the loss of information about the nature of the non-admissibility. 
 
3.2 Constrained configurations 

 
 It should be noted that some configurations of a physical switching system are represented by 
implicit state space representations with algebraic modes that introduce constraints. As a 
consequence, discontinuities may occur in the real valued state variables if the constraints 
configurations are reached when the constraints are not satisfied. It is therefore interesting to 
be aware of these constrained configurations for the control synthesis procedure.  
  
Proposition 3: a constrained configuration corresponds to elastic energy storage elements 

connected in short-circuit or in parallel (with the same orientation or not), or kinetic 
energy storage elements connected in open-circuit or in series (with the same orientation 
or not).  

 
Definition 4: If the physical switching system, w, includes nes effort sources, nc elastic energy 

storage elements and nL kinetic energy storage elements, a constrained configuration is 
defined by vector W {0, 1}ns if one of the four following conditions is satisfied: 
1) If nc0,  j  {nes+1, …, nes+nc}  / IM(Gw)(W) j = 0 . 

2) If nc>1,   (i, j)  {nes+1, …, nes+nc}2 with i j / |IM(Gw)(W) j| = |IM(Gw)(W) i|. 

3) If nL0,   j  {nes+nc+1, …, nes+nc+nL} / IM(Gw
*)(W) j = 0. 

4) If nL>1,  (i,j) {nes+nc+1, …, nes+nc+nL}2 with i j / |IM(Gw
*)(W) j| = |IM(Gw

*)(W) i|. 

 
Condition 1) detects elastic energy storage elements in short-circuit, condition 2) elastic 
energy storage elements connected in parallel condition 3) kinetic energy storage elements 
connected in open-circuit and condition 4) kinetic energy storage elements connected in series 
in the configuration characterized by W. The set of constrained configurations of the physical 
switching system w is denoted C(w). A constrained configuration is admissible, thus C(w) 
 A(w). 
 
For example, take all the cases of potential discontinuities in real valued state variables for the 
simplified Buck converter. If the only capacitor is in short-circuit, the second column in 
IM(Gwa)(W) (equation (3)) satisfies the following equations: 
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If the only inductor is in open-circuit, the third column in IM(Gwa

*)(W) (equation (4)) satisfies 
the following equations: 
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Then, one configuration among the three admissible is constrained. Therefore:  

C(wa) = {[0 0]T}. 
 

4.  PARAMETERIZED PORT-HAMILTONIAN FORMULATION 
 

In this section 4, the family of models of the piecewise continuous dynamics associated with 
the configurations of the system (discrete states of the hybrid automaton modeling the 
autonomous physical switching system (PSS)) is calculated in a generic and constructive way. 
Indeed, a non-minimal implicit parameterized port-Hamiltonian formulation of a PSS can be 
deduced from the hybrid incidence matrices for the primal and dual dynamic network graphs 
[19] of the system if these graphs are cyclically connected with no self-loop. As the network 
graph has some ports (edges) to which sources are connected with power variables being (iS, 
uS), and others to which dissipative elements are connected with power variables being (iR, 
uR), the so-called kernel representation [7] has been extended to admissible configurations of 
a physical switching system, w, as follows:  
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 , with nc the number of elastic energy storage elements in the 

circuit and nl the number of kinetic energy storage elements in the circuit.  
 
This implicit port-Hamiltonian system is defined on the space of the energy variables. This 
representation is non-minimal in the sense that it is a set of (nef+ns+2) equations while a 
minimal representation would have (ns+2) less. This is a special case of a non-minimal 
representation of a Dirac structure corresponding to a terminal formulation of generalized 
Kirchhoff's laws. It is parameterized by the discrete state of the switches and defines a family 
of models.  
 
In the Bond graphs context, Buisson, Cormerais and Richard [3] proposed an implicit state 
space standard form (equation (25)) for physical systems with switches. It depends on the 
discrete state of the switches in comparison with a reference configuration defined with the 
most elements in integral causality. Therefore the meaning of the discrete state is not 
immediately the state of the switches, but it changes from one model to another, depending on 
the reference configuration. Moreover, in the non-minimal implicit parameterized port-
Hamiltonian formulation of a PSS presented in equation (5) in this section, power variables 
associated with the switches are reduced. Thus, the state of the switches appears immediately 
as a parameter of the structure matrices. 
 



Note that in equation (5), flow and effort vectors are composed of both derivatives of the real 
valued state variables with respect to time, and real valued state variables. This non-minimal 
kernel representation of the parameterized implicit port-Hamiltonian formulation of a PSS 
may be rewritten, after a simple permutation of the variables and relations and the reduction 
of variables related to dissipative elements, to express the following non-minimal set of 
parameterized algebraic and differential equations.  
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This set of algebraic and differential equations (6) and (7) can be written as a single 
parameterized representation common to all the admissible configurations of the system, after 
having taken into account the constitutive equations of the dissipative elements and only if the 
associated power variables (iR, uR) can be expressed by explicit equations depending on the 
real valued energy variables, q and , and on the discrete state of the switches, W. The 
equations of each configuration must be calculated individually by taking into account the 
constitutive equations of the dissipative elements and instantiation of, W, in the set of 
equations (5). In the sequel, the dissipative elements have a constant positive resistance value. 
 
For the simplified Buck converter, a non-minimal parameterized implicit port-Hamiltonian 
formulation, with (nef+ns+2=8) equations, is: 
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with
L2C2

q
H

22 
 and W {[0 0]T, [0 1]T, [1 0]T}. 

 
Furthermore, after a simple permutation of the variables and relations and a reduction of 
variables related to resistors, it is possible to obtain the following single parameterized 
representation with (nef+ns+2- nR =7) equations: 

 

 

        
s

21

21

2

21

21

2

2121

2121

22

u

0

ww1
R

1

ww
R

1

w
R

1

H
q

H

1
R

1

)1w)(w1(
R

1
)1w(w0

w0

 
q

01

1w1w1
R

1
w1w1

)w1(w
R

1
w1w

w
R

1
w


























































































































  (8) 

 





































































H
q

H

1w0

00

w10

i

ww

1w

w1

1

1

s

21

2

1
 (9) 

 

with
L2C2

q
H

22 
 and W {[0 0]T, [0 1]T, [1 0]T} 

 
A minimal implicit port-Hamiltonian formulation of each physical switching system’s 
configuration is obtained from this non-minimal single representation, after instantiation of 
W.  
 
Let us now suggest a new generic method for modeling the complete autonomous PSS as a 
hybrid automaton, based on the parameterized port-Hamiltonian formulation presented in the 
section 4 and the analysis of the hybrid incidence matrices for the system presented in the 
section 3. It does not include the control of the switches that can be carried out using several 
approaches as [10,13,15,20,23,24,26,28,30,34] etc. and therefore is not relevant in a generic 
method. Two kinds of switches are considered in this paper: controlled switches as transistors, 
and autonomous switches as diodes. These two switching elements are therefore viewed as 
ideal. The transitions from one discrete state of the system, W, to another are determined by 
the conditions producing autonomous switches, and the control actions on the controlled 
switches.  
  

5. SYNTHESIS OF A HYBRID AUTOMATON MODEL 
 
5.1 Synthesis of a model of the autonomous hybrid system 
 
Hybrid automata were defined ten years ago in [1,14]. In this section, a new generic and 
constructive method to synthesize such a model for an autonomous physical switching system 
(PSS) with only ideal controlled or autonomous switches is proposed, based on the 
parameterized port-Hamiltonian formulation and the analysis of the parameterized hybrid 
incidence matrices for the system. Two various control objectives are considered with two 
possible behavior patterns for the inferred controlled system: 

Control objective 1: Keep the maximum number of admissible configurations (as defined 
in proposition 2) in the control sequence, but discontinuities may 
occur along the real valued state variables trajectory if the 
constraints are not satisfied when reaching a constrained 
configuration (as defined in proposition 3),  

Control objective 2: Guarantee that no real valued state variable discontinuities occur 
keeping only admissible and non-constrained configurations in the 
model of the autonomous system.  

 
Proposition 4: To obtain a hybrid automaton, HA, for the autonomous physical switching 
system with only ideal controlled or autonomous switches, w, in a generic and constructive 
way, each element of the 6-tuple HA=(X, L, , Act,T, Inv) is defined as follows. 
 

 X is the real valued state space, nlncX  . Real valued state variables are energy 
variables associated with functional elements storing energy in the PSS. 

 



 L is a finite set of configurations of the PSS (also called modes, locations, discrete phases 
or discrete valued states variables):  
 If control objective is 1, L is the set of admissible configurations of the PSS defined in 

subsection 3.1, L = A(w). 
 If control objective is 2, L is the set of admissible and non-constrained configurations 

of the PSS as defined in subsections 3.1 and 3.2, L = A(w) - C(w). 
L = {lj / lj = [wj1, wj2, ..., wjns]T {0, 1}ns, j  {1, ..., m}}. L is the set of m vertices of the 
graph of the hybrid automaton. Then, the hybrid state of the system is given by the pair 
(x,lj)XL. 

 
   is the synchronization (control) events set.  = {ij, (i, j){1,…,m}2}. The events are 

synthesized by the control system (not given in this autonomous model).  is the 
continually-occurring event.  

 
 Act is a mapping that assigns to each location liL , a set of equations which define the 

dynamics of real valued state variables: 
 If the control objective is 1, it is the mixed set of differential and algebraic equations 

synthesized in section 4 (equations (6) and (7) reiterated below): 
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 If the control objective is 2, it is a set of explicit differential equations written from the 
parameterized port-Hamiltonian formulation synthesized in section 4 (equation (5)): 
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with W= [wj1 wj2 ... wjns]T. (iS, uS) are the real valued external conjugated variables and 
H is the Hamiltonian function of the PSS. The solutions of the port-Hamiltonian system 
are called the activities of the location li. 

 
 T is a finite set of transitions. They are the edges of the graph of the hybrid automaton. 

Each transition, trij = (li, ij, guardij, ij ,lj), consists of a source location liL, a target 
location ljL, a guardij(x) which is a subset of X, a synchronization event ij, and an 
initialization function ij, so that: 

 
1) ij is defined so that: 

 If ns = nas, thus  (i, j) {1, …,m}2, ij = . All switches are autonomous switches. 
 If nas < ns: 

 If  k {nas+1, …, ns} wik = wjk, thus ij = . The transition trij does not affect 
any controlled switches. 

 If   k {nas+1, …, ns} / wik  wjk, thus ij is given by the control system. 
 

2) guardij(x) is defined so that the transition from the discrete state li to the discrete state 
lj is made possible when the real valued state variable x fulfils the guardij(x). It is 
described by cij linear equalities (at most nas, because the system has nas ideal 
autonomous switches):  k  {1, …, cij}, Ck

T x = dk with Ck being a (nc+nl)-length 

vector and dk a constant. guardij(x) nlnc only if ij =  i.e. if the transition is 
autonomous (not controlled). Thus, if ij = : 



  k {1, …, nas} / (wik = 0)(wjk = 1), (pewik = 0) guardij(x). If the relation (pewik 
= 0) does not make sense, it means that the transition trij is not possible. 

  k {1, …, nas} / (wik = 1)(wjk = 0), (pfwik = 0)  guardij(x). As before, if the 
relation (pfwik = 0) does not make sense, it means that the autonomous transition 
trij is not possible. 

If ij  , guardij(x) nlnc . In this case, it is not written on the model. 
pewik (respectively pfwik) are expressed by writing the generalized Kirchhoff’s law of a 
dynamic network graph’s cycle (respectively cocycle) including the virtual edge ewk and 
only functional edges. pewik (respectively pfwik) is a function of the Hamiltonian, H (which 
depends on the real valued state variable, x) and of the real valued external conjugated 
variables (iS, uS). 
 

3) ij is defined so that: /XX:ij   ))t(x()t(x ij
    

 If the control objective is 1, a discontinuity occurs in the real valued state variables 
after that a transition trij towards a constraint configuration occurs, if the 
constraints in lj are not fulfilled at that moment. In this case, ij(x(t -))  x(t -).          
ij(x(t -)) is calculated so that the constraints in lj  (given in Act(lj)) and the physical 
properties of the PSS are satisfied. In (Haddad, et al., 2003) the initialization 
function (also called the resetting law in equation (2)) is written as an explicit port-
controlled Hamiltonian system. In this objective 1, pulses may occur in some power 
variables associated with some switches, pewik,  pfwik, as a consequence of the 
discontinuities in the real valued state variables, x, which are energy variables. 
They meet the physical properties of the PSS. 

 If the control objective is 2,  ij(x(t -)) = x(t -) and no discontinuity occurs in the real 
valued state variables when the transition trij happens. In this objective 2, 
discontinuities may occur in some power variables associated with some switches, 
pewik and pfwik depending if the constitutive equations of the switches are satisfied 
when a transition occurs. 

 
 Inv is a mapping from the set of discrete states L to the set of subsets of X, that is Inv(lj)  

X for all ljL. For each location lj = [wj1 wj2 ... wjns]T, the real valued state variable x 
must satisfy x Inv(lj). Inv(lj) cannot be violated, which means that the phase lj is left as 
soon as an inequality of Inv(lj) is revealed to be false and that a transition to lj can not 
occur if Inv(lj) is false. It is described by cj linear inequalities (at least, nas which take into 
account the behavioral constraints of the ideal autonomous switches):  k  {1, …, cj}, 
Cjk

T x  djk with Cjk a (nc+nl)-length vector and djk a constant. The set of invariants of the 
hybrid automaton is not necessarily a state-space partition.  
 
The set of cj linear inequalities brings together various kinds of invariants: 

1) Concerning ideal autonomous switches (nas linear inequalities): 
   k {1, …, nas} / wjk = 0, (pewjk ≤ 0) Inv(lj), 
   k {1, …, nas} / wjk = 1, (pfwjk  0) Inv(lj), 

2) Physical constraints relating to functional elements, if they are considered, 
3) It contains no invariants concerning ideal controlled switches. 

pewjk (respectively pfwjk) is expressed by writing the generalized Kirchhoff’s law of a 
dynamic network graph cycle (respectively cocycle) including the virtual edge ewk and 
only functional edges. pewjk (respectively pfwjk) is a function of the Hamiltonian, H (which 
depends on the real valued state variable, x) and the real valued external conjugated 
variables (iS, uS). 

 



5.2 Synthesis of the hybrid automaton of the Buck converter 
 
To illustrate proposition 4, a hybrid automaton is synthesized for the autonomous part of the 
Buck power converter. A more realistic scheme than in figure 1 is considered in figure 3, with 
switch Sw1 being an ideal autonomous switch and switch Sw2 an ideal controlled switch. 
 
 
 

 
 
 

Fig. 3. More realistic Buck converter’s scheme 
 

5.2.1 Synthesis in the context of the control objective 2 
 
The specifications given by the control objective 2 imply that no constrained 
configurations appear during the control of the system. It means that the control is 
supposed to ensure that the current through the inductance is never equal to 0. Thus, Act 
is a set of explicit differential equations expressed by the parameterized port-Hamiltonian 
formulation.  
 
According to proposition 4: 

 L = {l1, l2}={[1 0]T, [0 1]T} is the set of admissible and non constraints 
configurations.  

  Tqx   
2  

 Act(li) comes from instantiation of W in equations (8) and (9) in section 4. 
 Inv(l1): (pfw11  0) i.e. ( 0

H






) 

 12   because the transition tr12 affects the controlled switch Sw2. 

 Thus, guard12(x) 2 . It is not written in the model. 
 Inv(l2): (pew21 ≤ 0) i.e. (-U ≤ 0), which is always true, thus, Inv(l2): 2  
 21   because the transition tr21 affects the controlled switch Sw2. 

 Thus, guard21(x) 2 . It is not written in the model. 
 
 

The hybrid automaton of the autonomous part of the Buck power converter, in the 
context of the control objective 2, is: 
 
 
 
 
 
  
 
 
 
 
 

Fig. 4. Autonomous Buck converter’s hybrid automaton within the control objective 2.  
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 l1: [1 0]T 
 Inv(l2): 2  

 

l2: [0 1]T 



 
Discussion: Within this objective 2, there is no discontinuity in the state variables and 
therefore there is no pulse in the power variables associated with the switches. But, there 
are discontinuities in the effort variables associated with the switches and there may be 
discontinuities in the flow variables associated with the switches, depending on when 
transitions take place; 
 

 After transition tr12: 

 pew21 = pew11 – U and pfw21 = pfw11 - 
L

 =0. 

 pew22 = pew12 + U and pfw22 = pfw12 + 
L

 . 

 
 After transition tr21: 

o pew11 = pew21 + U and pfw11 = pfw21 + 
L

 . 

o pew12 = pew22 - U and pfw12 = pfw22 - 
L

 =0. 

 
5.2.2 Synthesis in the context of the control objective 1 

 
The specifications given by the control objective 1 imply that constrained configurations 
may appear during the control of the system. Thus, Act is a set of implicit or explicit 
differential equations expressed by the parameterized port-Hamiltonian formulation. 
Act(li) comes from instantiation of W in equations (8) and (9) in section 4. It may not be 
written as we would have written it immediately from experience, but the complete set of 
equations is nevertheless valid.  
 
According to proposition 4: 
 L = {l0, l1, l2}={ [0 0]T, [0 1]T, [1 0]T } is the set of admissible configurations. 
 The locations l1 and l2 are defined as in 5.2.1. as well as transitions tr12 and tr21. 

 Inv(l0): (pew01 ≤ 0) i.e. ( 0
q

H





) 

 The autonomous transition tr10 is defined by: 
 10 =  because w12 = w02. Indeed, the transition tr10 does not affect any 

controlled switches. 

 As (w11 = 1)(w01 = 0), thus, (pfw11 = 0)  guard10(x) i.e. 0
H






 

guard10(x). 

 10(x(t -))=  T0)t(q  =x(t -) because the constraint 0
H






 is included in 

the guard10(x). 
 

 The autonomous transition tr01 is defined by: 
 01 =  because w02 = w12. Indeed, the transition tr10 does not affect any 

controlled switches. 

 As (w01 = 0)  (w11 = 1), thus, (pew01 = 0)  guard01(x) i.e. 0
q

H



  

guard01(x). 
 10(x(t -)) = x(t -) because Act(l1) is not a constrained configuration. 



 
Remark: in reality, this transition will occur when the capacitor C is fully discharged. 
Then it creates a zeno behavior with transitions tr01 and tr10 because, (pew01 = 0) and 
(pfw11 = 0). Therefore the control has to ensure that it does not happen with the 
occurrence of 02. 

 
The hybrid automaton of the autonomous part of the Buck power converter, in the 
context of control objective 1, is (each element is explained after the figure): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 5. Autonomous Buck converter’s hybrid automaton within the control objective 1.  

 
 The controlled transition tr02 is defined by: 

 02   because the transition tr02 affects the controlled switch Sw2. 

 Thus, guard02(x) 2 . It is not written on the model. 
 02(x(t -)) = x(t -) because Act(l2) is not a constrained configuration. 

 
 The controlled transition tr20 is defined by: 

 20   because the transition tr20 affects the controlled switch Sw2. 

 Thus, guard20(x) 2 . It is not written on the model. 

 20(x(t -))=  T0)t(q   because the constraint 0
H






 in Act(l0) must be 

satisfied. 
 

Remark: From a control point of view, this transition tr20 does not make any sense, 
but it is nevertheless part of the autonomous model of the Buck power converter 
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because there is no generic rule to take it out. Moreover, if the invariant Inv(l0) is 
false, at the time when 20 occurs, this transition tr20 will not happen. 

 
In the Bond graphs formalism, Buisson, Cormerais, Zainea, Guéguen, Godoy [4] proposed 
also an approach for computing hybrid automata models for linear physical systems with four 
types: of switches ideal, transistors, diodes and thyristors. This approach is bottom-up 
concerning the discrete locations of the PSS. It means that one elementary hybrid automaton 
is designed for each switch of the system. The complete automaton of the PSS is deduced 
from these elementary automata. On the other hand, the calculation of the set of algebraic and 
differential equations associated with each configuration of the PSS is global i.e. it is 
performed for the global system without previous decomposition. The method presented in 
this section 5 is based on network graphs and a port-Hamiltonian formulation and is entirely 
global which makes it possible to take utmost advantage of the interconnection structure of 
the various topologies of the PSS and of the control objectives.  

 
 

6. CONCLUSION AND PERSPECTIVES 
 
A generic and constructive method to synthesize a hybrid automaton model for a wide class 
of dissipative physical systems with sources and switching topology has been proposed. It is 
based on graph theory and on a parameterized port-Hamiltonian formulation of the piecewise 
continuous dynamics of the various configurations of the hybrid dynamical system and on the 
analysis of the admissible and the non-constrained configurations of the physical switching 
system (PSS). Indeed, it is of prime importance to remove the non-admissible configurations 
from the control synthesis procedure and to be aware of the constrained configurations which 
may lead to state discontinuities in the trajectory of the real valued state variables. This 
generic approach based on network graphs is an interesting way of understanding and 
analyzing energy exchanges and element interactions in physical switching systems, 
independently of the field and in a constructive way which is not only based on experience. 
This method has been illustrated in the educational example of the Buck converter. 
 
The approach presented here is particularly well-suited to the context of a modular analysis of 
complex non-regular systems. Indeed, the hybrid (parameterized) incidence matrices can be 
calculated for all the subsystems (regular or not) and then connected through the ports.   
 
A continuation of this work is to extend control synthesis methods based on continuous 
Hamiltonian systems such as Interconnection Damping Assignment Passivity Based Control 
[21,26] and continuous control synthesis method for hybrid port-controlled Hamiltonian 
systems affecting autonomous switching [13] to dissipative physical switching systems with 
sources and controlled switches. Some studies are already exploring this area as [24]. Another 
perspective of this paper would be the extension of solution concepts and the trajectory 
calculation developed in [12] to dissipative physical switching systems with sources. 
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