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Abstract—Perceiving our own body posture improves the way
we move dynamically and reversely, motion coordination serves
to learn better the position of our own body. Following this idea,
we present a neural architecture toward reaching movements
and body self-perception from a developmental perspective.
Our framework is based on the neurobiological mechanism
known as gain modulation in parietal neurons that is found
to integrate the visual, motor and proprioceptive information
through product-like processes. These multiplicative networks
have interesting properties for learning nonlinear transforma-
tions such as the head-centered mapping in reaching tasks or
the hand-centered mapping for a body-centered representation.
In a simulation of a three-link arm, we perform experiments
of nearby and far reach targets exploiting one or the other
strategy. The later combination of the two networks generates
autonomous control toward the target by processing the body-
centered spatial information and the preferred visual direction
for the desired motor commands.

I. INTRODUCTION

Body perception and motion control are the two comple-
mentary sides of the same flip coin. As we acquire a better
representation of where our body is, we are more precise to
reach various locations in space. Reversely, knowing how to
move serves to recognize more accurately the actual location
of each body part, even without seeing it. Developmental
studies in newborns and in 6 month-old babies have shown
that self-recognition and reaching are gradually acquired fol-
lowing separated paths [1], [2] and progressively combined to
learn a spatial representation of the body (the body schema)
and a repertoire of actions (the motor synergies) by aligning
the visual and the proprioceptive information. We propose
to follow such paradigm for robot control in reaching tasks
with a neural architecture that learns to minimize jointly any
uncertainties about the robot’s location (where the arm is)
and about its motor commands (how to move it).

Within the brain, the parietal cortex is one important area
for the development of spatial cognition and multimodal
integration [3], [4]. For instance, multisensory neurons have
been found to monitor nearby objects in the peripersonal
space [5], [6]. These neurons combine diverse incoming
information from multiple modalities to process multiple
body-centered coordinate systems invariant to a motion. They
are sensitive to any objects entering within the visual re-
ceptive fields anchored at specific body locations (e.g. hand-
centered) even if the eyes or the hand is moving. This spatial
information of objects into hand-centered coordinate frames
is used then for biasing ongoing movement trajectory for

grasping or for defense behaviors [5]. Similarly, multimodal
neurons have been found in the motor cortex to be activated
with respect to where the hand is moving [7], [8], [9]. In
both regions, we observe a neural field activity sensitive
to both the preferred motor activity and to the preferred
visual orientation [10]. Since these neurons respond not
only to one type of signal but to various information, either
visual, proprioceptive, audio or tactile signals, they are called
conjunctive cells or gain-field neurons and their amplitude
encodes a joint distribution of various input [11], [12].

We propose to exploit the properties of these neurons in
order to construct two compartmented neural networks that
processes (a) a visuomotor network for inverse dynamics
(reaching) and (b) visual spatial locations in body-centered
coordinates based on body posture, motor information and
vision, see Fig. 1. The two networks are not fully linked
from each other at first but they can later iteratively update
their prediction from incoming signal error to learn better
how to move and where the hand is (dashed gray line).
Their modeling corresponds to multiplicative Radial Basis
Functions (RBFs) or sigma-pi networks [13], [14] to learn
sensorimotor transformations. In image processing, these
networks are known as gated networks, which have been
recently re-investigated in [15], [16] for affine transforma-
tions and in developmental robotics [17], [18], [19] for
multimodal integration. These multiplicative networks can
serve to learn nonlinear transformations, which are common
problems in robotics to compute direct mapping and inverse
kinematics. In robotics, different authors have proposed
several approaches in line with ours. Sturm and colleagues
employed Bayesian networks to simultaneously identify a
robot’s kinematic structure and to learn the geometrical
relationships between its body parts as a function of the
joint angles [20]. Lanillos et al. used them for constructing a
probabilistic body map for self-perception [21]. Besides, [22]
employed self-organizing maps for learning inverse-forward
kinematics for self-perception whereas [23] and [24] used
them for the learning of tactile maps and body image. In
comparison, gain-field networks can combine advantageously
the topological self-organization property of SOM with auto-
encoding and the nonlinear probabilistic mapping property of
Bayesian networks based on multiplication.

After we describe the neural architecture used, we present
results using gain-field networks (1) for reaching tasks (learn-
ing an inverse model) and (2) for learning a body-centered



Fig. 1. Gain-field networks for reaching tasks and body schema from
visuo-, motor- and proprioceptive integration. The GF network in a) learns
motor commands M for reaching movements by integrating the what
information of the arm’s posture P that refers to the encoding of the triplet
{ϕS , ϕE , ϕW } and the where signal of the visual direction V . The results
are reaching movements with preferred visual directions, see c). The GF
network in b) learns the relative hand-centered reference frame, the direction
V , from mapping of the motor commands M and the visual input of the
locations of the hand H and of the target T . The results are hand-centered
receptive field for grasping tasks of nearby targets, see d). Once the two
networks have been learned, the two strategies can be combined for reaching
targets relative to the body location (gray dashed link).

coordinate system (forward model mapping) with a three-
link arm simulation in 2D. We show that few learning steps
are necessary to make the robotic arm to reach various
regions, binding desired visual orientation and arm posture
in order to compute the most preferred motor command.
Reversely, we exploit the same type of network in order to
learn a body-centered coordinate system (a body schema)
depending on the selected motor command and the actual
visual information (forward model). The two systems can be
coupled so that estimation of nearby objects in hand-centered
reference frames can serve to construct a desired visual
orientation vector for moving the hand in that direction. The
two learning systems can work in a complementary way so
that prediction error in one can serve to adapt the other for
position estimation and motion control.

We discuss then the relevance of our approach for au-
tonomous robotics (learning inverse/forward models and
image-based nonlinear transformation) and its utility for
more complex tasks not presented here (grasping, tool-use,
body-centered representations, spatial inference, social inter-
action), and its implication in neurorobotics for modeling the
so-called Mirror Neurons System and the Ventral Inferior
Parietal (VIP) neurons.

II. ARCHITECTURE AND NEURAL MECHANISMS

Gain-modulated networks are an instance of sigma-pi
networks constituted of radial basis functions, pre-defined
parametrically or learned, which produce a weighted sum of
joint probability distributions as output [13].

The output terms Y are a linear combination of the product
of the input variables X and H whose cardinalities are
respectively nY , nX and nH , so that predicting Ŷ consists
on computing for all values Yk of Y , k ∈ nY

∀k, Yk =

nX∑
i

nH∑
j

WijkXi ·Hj , (1)

with W synaptic coefficients in nX × nH × nY . Since
this matrix can be quite large, a way to reduce the di-
mensionality of the gain-fields networks is to categorize
first each input variable with factored functions or basis
functions, fX and fH , in order to have fX =

∑
WXX and

fH =
∑
WHH . The computational complexity is reduced

then to RfX + RfH + RfX × RfH and the output function
becomes

Y =
∑

WY fX · fH , (2)

=
∑

WY (
∑

WXX) · (
∑

WHH). (3)

The global error E is defined as the Euclidean distance
calculated between Y and Ŷ for all the input examples.
The optimization function used for learning the synaptic
weights of the output network is the classical stochastic
descent gradient. All synaptic weights can be updated in
one step with back-propagation, but in our experiments, we
make to learn separately each subnetwork X and H before
computing Y toward the desired value Y ∗ using the Widrow-
Hoff learning rule. This process is more in line with our
previous works [17] and differs slightly from [25]:

∆WY = ε(Y ∗ − Y )(fX · fH). (4)

To reconstruct back one of the input variable X (or H),
we can use the same network architecture as eq. 1 but
implemented in mirror as an auto-encoder with now the
global error E estimated from the difference between the
actual variables X (resp. H) and the retrieved ones X̂ (resp.
Ĥ); see also red lines in Fig. 1. The retrieved values from this
second network are computed from the output Ŷ calculated
from the first network.

X̂ =
∑

WX̂ Ŷ ·H, (5)

=
∑

WX̂(
∑

WYX ·H) ·H. (6)

In this configuration, the two networks form a coupled
system similar to an auto-encoder. Each neuron Ŷ in the
intermediate layer represents a latent representation of the
input variables X ·H , a joint distribution.



This property is interesting for sensorimotor learning and
multimodal integration because each hidden unit Ŷ catego-
rizes a nonlinear transformation, which could be caused by
a motor command or a spatial mapping from one reference
frame to another. Therefore, this network can be used not
only for reconstructing back one missing modality from
two others but it can serve also to identify which hidden
variables have caused it based on the two other information.
For instance, in section IV-B, we use this feature to retrieve
back the motor commands Y that have generated the moving
of the hand located at H to the visual goal located at X . This
corresponds to the construction of a visual preferred direction
in hand-centered coordinates, a body schema.

III. EXPERIMENTAL SETUP

We set up our experiments using a 2D simulation of a three
links manipulator. The arm simulator is used in all experi-
ments of section IV from visual, motor and proprioceptive
integration.

IV. RESULTS

A. Visuo-Proprioceptive Integration for Motion Control

The GF network achieves motion coordination by learning
the relationship between the proprioceptive information P
and a desired visual orientation V to derive a preferred
motor command C in that direction, see Fig.1 a). We give
as inputs to the GF network the proprioceptive information
P of the robotic arm, which corresponds to its three joint
angles ϕS , ϕE and ϕW resp. coding the shoulder, elbow
and wrist angles, and the preferred visual orientation V , in
radian. In this section, we make the note that this desired
visual orientation V in radian is computed algebraically
from the coordinates of the hand position in (xH , yH) and
the coordinates of the target (xT , yT ) with the arctan2
function. The arctan2 function is replaced in sections IV-B
and IV-C with the network that reconstructs the relative hand-
target angle visually in hand-centered coordinates.

The feature functions fP and fV from eq. 3 consist on
10 units each, factorizing the input space. The desired motor
command C∗ sees its synaptic weights reinforced with the
compositional matrix fP · fV following a gradient descent.
The output vector C consists on 27 units corresponding to
33 = 27 different motor synergies of the shoulder-elbow-
wrist motion triplet {∆ϕS ,∆ϕE ,∆ϕW } whose discrete
values are comprised in the small repertoire of three speeds
{−∆ϕ, 0,+∆ϕ}; i.e., going backward, release or going
forward. The resulting network corresponds to an inverse
model for reaching tasks guided by desired visual orientation
given in absolute coordinates.

The learning stage follows the guidelines presented as
previously with one thousand data of the triplet {P, V,C}
uniformly chosen in the arm workspace. Twenty epochs are
necessary to make the network to converge. In order to
demonstrate the capability of the GF network for a reaching
task, we plot in Fig. 2 the trajectories from three different
postures P to eight target locations placed in star around

them. The color of each target indicates the Euclidean dis-
tance error for reaching it. In these trials, the trajectories are
always smooth and curvy, which indicate that the complete
repertoire of the 27 motor units contribute to the motion
control. During motion, the motor synergies C change with
respect to the posture of the arm P best matched by the
network and the updated visual orientation V . Depending on
the posture, some trajectories are preferred with respect to
the learning stage, whereas for unseen postures the network
poorly generalizes as for the target locations which are
outside the working space beyond the dashed line Fig. 2.
This behavior corresponds also to what it has been observed
in real motor units that are sensitive to visual direction and
proprioception [9].

Fig. 2. Reaching task for three different positions to eight target locations
placed in star around the wrist location. The red lines represent the arm in
its initial configuration and the circles represent the target locations. The
trajectories of the wrist are displayed (colored lines) and the color of the
target indicates the Euclidean distance to the target location.

We plot in Fig. 3 the density distribution of the reach
spatial error in the workspace for almost 900 examples of
target locations; its corresponding histogram is plotted in
Fig. 8 in blue. In this map, we can see that most of the
spatial errors are made for singular configurations at far
reach postures at the limit of the peripersonal space or for
locations nearby the origin {0, 0} where the arm cannot
really reach it and for which the network cannot interpolate
easily. Nonetheless, the system can generalize mostly in
the full space, which defines also the reachable space with
physical limits and visual preferred directions.

Another important point is to see how the system can
switch from one synergy to another one during a reaching
task. In Fig. 4, we display for two different initial postures
A and goals B plotted in a) the evolution of motor neuron
activities through time and the associated movement of the
shoulder, elbow and wrist in c). The figure shows in c) that
the system ”decomposes” its reaching tasks by switching
between synergies. The movement is mostly driven by one
strategy in particular controlling the shoulder motion during



the first part of the phase and then by the synergy that
combines the wrist and the elbow motions during a second
phase. In b) we plot the evolution through time of each
synergy activity for each corresponding reaching task (red
corresponds to an increase, blue to a decrease), it shows the
GF network is able to categorize the reaching tasks by firing
one synergy, which corresponds to move the shoulder, elbow
and wrist for achieving a down global shift (synergy #16 in
left chart b)) or by firing and inhibiting multiple synergies
dynamically through time for achieving a more complex
movement on the upper left side relative to the initial position
(right chart b)). This more complex strategy is represented
in c) by switching between a driven shoulder movement to
a wrist driven movement at t = 50 which corresponds to
target final approach.

Fig. 3. Density distribution of reach distance error for 864 reach goals. The
color intensity indicates the Euclidean distance error between the location
of the wrist and the target.

B. Learning Target Visual Orientation in Body-centered Rep-
resentation

In the previous section, we described a learning architec-
ture for encoding the “physical goal”, which is the selectivity
of motor cells with the preferred visual directions V at
certain postures P . V was assumed to be given.

In this section, we propose to use the same neural architec-
ture but with different inputs and output in order to learn V ,
see Fig. 1 b) green line. The neural architecture is used for
visual goal encoding by integrating the visual locations of the
end-effector and of the nearby targets with the corresponding
motor commands that permit to reach it [26]. Making a
parallel with image processing, the motor command C can
be envisioned as a visual transformation from hand image H
to target image T . The result will be the learning by output
neurons of the necessary transformation to go from the end
effector to the nearby target; that is, computing the estimated
distance of the reachable space based on motor command,
a.k.a the peripersonal space. In the first experiment with our
three-links arm simulation, the hand-centered information is

Fig. 4. Representation of activity through time for two different reaching
tasks a) and the associated mouvement for each degree of freedom c).In b),
the color intensity indicates the evolution of each synergy activy(red for an
increase, blue for a decrease).

modeled as is when the hand H reaches the target location
T with the motor command C.

The first experiment aims at testing the neural network’s
ability to encode a hand-centered reference frame based on
the visual information of the end-effector location H and
of the target location T using the motor command units
C as estimators of the performed visual transformation, see
Fig. 1 b) black and green lines. During the learning phase, the
images H and T with (13×13) pixels are provided as input
and the motor units C as output for visuomotor mapping,
see Fig. 1 b) the black and red lines. This output layer is
composed by 27 motor neurons –, the same number as in the
previous section,– and the motor units activated during the
supervised learning period are the ones that permit to reach
the target position from the current end-effector location.

An example of how the network behaves after the learning
stage is showed in Fig. 5. For one particular hand posture
H and for different target position T , represented in the left
chart column, the motor output units in the right chart column
get activated more or less strongly. The activity level of these
units corresponds to the estimation of the performed visual
transformation necessary for going from H to T . Based on
the estimated contribution of each motor unit, on the spatial
location of the hand it is possible to reconstruct back the
position of the target relative to the hand in the left chart
column. This information can serve to model a hand-centered
reference frame based on the motor units prediction, see



Fig. 5. Input and output information about visual locations of the end-
effector H (blue dot) and of the target nearby T (red dot) are provided to
the nework, see also Fig. 1 b) (red lines). Each unit in the hidden layer
encodes the corresponding motor command C that performs the visual
transformation from image H to image T . After learning, each motor unit
performs a visual prediction about where the target is relative to the visual
hand position, see Fig. 1 b) (black lines). The contribution of each motor
unit is plotted in the right chart column and the location estimate in hand-
centered reference frame is plotted in superposition in the left chart colum.
The yellow colour corresponds to a high activity and the blue colour to a
low activity.

Fig. 1 b) (black and red lines), that is, a dynamic body
image. The reconstructed target position follows a gaussian
distribution centered on the correct location of the target. The
variance level is the result of the contribution of each motor
unit for which the motor unit 5 here is the most active for this
example (lower right chart column). Differently said, each
motor unit gives clues about how the hand could move to the
visual location of the target; i.e., estimating its displacement,
which corresponds to the target affordance. This distribution
around the hand or the target reproduces well the activity of

parietal neurons seen to code the peri-personal space [27].
We plot in Fig. 6 a histogram of the estimated visual ori-

entation reconstructed by the network from H and T images
directly learned for various hand-target visual locations. This
histogram shows that the estimated orientation error is small
and that the network is robust for the majority of the learned
examples in the workspace.

Fig. 6. Histogram of the visual orientation error for 864 target reconstructed
by the GF network from hand-target images in various locations.

C. Autonomous Reaching in Body-Centered Visual Coordi-
nates

Once the two networks have learned to reach from global
visual direction and from relative hand-centered orientation,
respectively in section IV-A and IV-B, it is possible then to
cascade their output as examplified by the gray dashed line
in Fig. 1. The body schema network in section IV-B predicts
the visual orientation V and replaces the atan2 function
of the reaching network of section IV-A. The result is the
autonomous goal-directed reaching of visual targets.

In order to compare the performance of the three reaching
strategies with respect to the targets location, using the
visual information only, the hand-centered information and
the combinaison of the two, we plot in Fig. 7 their trajectories
to three nearby and distant target locations. We display also
in Fig. 8 the histogram of the reaching performance for
the three networks and the histogram of the reaching error
depending on the goal distance in Fig. 8. These three graphs
aim to explain how the three neural systems behave with
respect to the reaching tasks, local or distant.

The trajectories of the Visual Reaching network (VR)
plotted in blue in Fig. 7 are similar to the results found
in Fig. 2 with smooth reaching directions. We can explain
these trajectories as a compromise produced by the different
visuo-motor synergies between the visual direction and the
linearly combined motor synergies in order to generate a
smooth command toward the goal. The result for the visual
strategy represents somehow the ground truth as we provide
the preferred visual direction information directly to the



network. This network gives also the most accurate results
with nearly half percent of success to reach the targets, see
Fig. 8. For the two other networks, this information of the
preferred direction is learned and estimated online, which
perform with less accuracy. Nonetheless, they accomplish
overall good results as one-third of the reachings are accurate
with a slight advantage for the hand-centered reaching in
Fig. 8.

The trajectory of the hand-centered Reaching network
(HCR) in green is less efficient than for the Visual network,
which performs well only for the two distant targets. In
contrast, the combinaison of visual and hand-centered in-
formation reaching network (VHCR) is less sensitive to the
relative distance to the target as it combines efficiently the
two information. In some cases however, the visual direction
is not efficiently reconstructed and the trajectory is sub-
optimal, see the red dashed line in Fig. 7 in order to reach the
target in the bottom. However, its trajectories are smoother
and straiter than the VR network.

Fig. 7. Reaching trajectories to three different target distance and for the
three reaching strategies: visual, hand-centered and visual and hand-centered
combinaison.

V. DISCUSSIONS

We proposed a framework for sensorimotor coordination
and multimodal integration based on the product of indepen-
dent distributions. These type of networks are known as gain-
field networks in biology and as gated networks in image
recognition. They present several similarities with radial
basis functions [13], auto-encoders and Boltzmann networks
as well [15]. The multiplicative function has interesting
properties to map effective nonlinear transformations from
one reference frame to another. This feature can be used
to learn the effects of motor activity on different sensor
maps and to construct correspondences. Each motor unit
of the hidden layer thereby represents a transformation in
the sensory space. At reverse, knowing the variation in the
sensory maps, it is possible to estimate which transformation
(hidden variable) is the most probable to have generated these

Fig. 8. Histogram of error distance for all reaching performed for the three
reaching strategies: visual only, hand-centered and visual and hand-centered
combinaison. The visual strategy represents the ground truth. For the later
cases, the two networks have to reconstruct the missing visual modality in
hand-centered reference frame.

outputs. This property of auto-encoders can serve for active
inference and action observation, which are also features
observed in parietal neurons and in the mirror neurons
system [28], [29], [30] for affordances generatation [31], [32]
and also sensorimotor adaptations as during tool-use [18].
During grasping, the prediction done by the motor units of
the hidden layer of the auto-encoder can serve to “reverse-
engineer” the hand preshaping based on visual information;
this idea is also found in Rumelhart or Kawato’s forward-
inverse models [33], [34] as well as in the “virtual finger hy-
pothesis” by Arbib who proposed to explain grasp affordance
and the assignement of the orientation and of the power grip
of the real fingers during grasping [31], [32], [35].

Our experiments show that GF networks can develop
pointing and reaching functionalities separately, with spatial
representations in hand-centered RF and visual direction
preferences. In infants, these two mechanisms may grow
separately and gradually during the first 6 months till their
plausible integration for more robust reaching [1], [3], [2].
The possible implication of the hippocampus to the struc-
turing of the spatial maps in the parietal cortex –, which
possesses also GF types of neurons for navigation,– can even
provide some hints how this framework can expand for whole
body coordination in allocentric and egocentric spaces [36],
[37].

In future experiments, we will extend our work with a
complete humanoid robot arm with a hand and tactile sensors
toward grasping objects, learning spatial representation and
observing someone else actions as well. In addition, we
have to perform further analysis in order to understand how
the prehension synergies can be learned during babbling
in a self-organised way; e.g., if the GF network develops
coordinated synergies based mostly on the shoulder activity
or on the wrist activity only.



ACKNOWLEDGEMENTS

This work was partially supported by grants from
the EQUIPEX-ROBOTEX (CNRS), the chaire dexcellence
CNRS-UCP and the project Labex MME-DII (ANR11-LBX-
0023-01).

REFERENCES

[1] A. Bremner, N. Holmes, and C. Spence, “Infants lost in (peripersonal)
space?” Trends in Cognitive Sciences, vol. 12, no. 8, pp. 298–305,
2008.

[2] D. Corbetta, S. Thurman, G. Y. Wiener, R.F., and J. Williams,
“Mapping the feel of the arm with the sight of the object: on the
embodied origins of infant reaching,” Frontiers in Psychology, vol. 5,
p. 576, 2014.

[3] M. Del Giudice, V. Manera, and C. Keysers, “Programmed to learn?
the ontogeny of mirror neurons,” Developmental Science, vol. 12,
no. 2, pp. 350–363, 2009.

[4] A. Maravita, C. Spence, and J. Driver, “Multisensory integration and
the body schema close to hand and within reach,” Current Biology,
vol. 13, no. 2, pp. R531–R539, 2003.

[5] M. Graziano and C. Gross, “Spatial maps for the control of move-
ment,” Current Opinion in Neurobiology, vol. 8, pp. 195–201, 1998.

[6] A. Iriki, M. Tanaka, S. Obayashi, and Y. Iwamura, “Self-images in the
video monitor coded by monkey intraparietal neurons,” Neuroscience
Research, vol. 40, pp. 163–173, 2001.

[7] S. Kakei, D. Hoffman, and P. Strick, “Sensorimotor transformations in
cortical motor areas,” Neuroscience Research, vol. 46, pp. 1–10, 2003.

[8] G. Blohm, A. Khan, and J. Crawford, “Spatial transformations for
eyehand coordination,” Encyclopedia of Neuroscience, p. 203211,
2009.

[9] A. Georgopoulos, H. Merchant, T. Naselaris, and B. Amirikian,
“Mapping of the preferred direction in the motor cortex,” Proc Natl
Acad Sci USA., vol. 104, no. 26, pp. 11 068–72, 2007.

[10] P. Baraduc, E. Guigon, and Y. Burnod, “Recording arm position to
learn visuomotor transformations,” Cerebral Cortex, vol. 11, no. 10,
pp. 906–917, 2001.

[11] A. Pouget and L. Snyder, “Spatial transformations in the parietal cortex
using basis functions,” J. of Cog. Neuro., vol. 3, pp. 1192–1198, 1997.

[12] E. Salinas and T. J. Sejnowski, “Gain modulation in the central nervous
system: Where behavior, neurophysiology and computation meet,” The
Neuroscientist, vol. 7, pp. 430–440, 2001.

[13] A. Pouget and L. Snyder, “Spatial transformations in the parietal cortex
using basis functions,” J. of Cog. Neuro., vol. 3, pp. 1192–1198, 1997.

[14] D. Bullock, S. Grossberg, and F. Guenther, “A self-organizing neural
model of motor equivalent reaching and tool use by multijoint arm,”
Journal of Cognitive Neuroscience, vol. 5, no. 4, pp. 408–435, 1993.

[15] R. Memisevic, “Learning to represent spatial transformations with fac-
tored higher-order boltzmann machines,” Neural Computation, vol. 22,
pp. 1473–1493, 2010.

[16] O. Sigaud, C. Masson, D. Filliat, and F. Stulp, “Gated networks: an
inventory,” arXiv:1512.03201v1, 2016.

[17] A. Pitti, A. Blanchard, M. Cardinaux, and P. Gaussier, “Gain-field
modulation mechanism in multimodal networks for spatial percep-
tion,” 12th IEEE-RAS International Conference on Humanoid Robots
Nov.29-Dec.1, 2012. Business Innovation Center Osaka, Japan, pp.
297–302, 2012.

[18] S. Mahe, P. Braud, R. Gaussier, M. Quoy, and A. Pitti, “Exploiting
the gain-modulation mechanism in parieto-motor neurons application
to visuomotor transformations and embodied simulation,” Neural Net-
works, vol. 62, pp. 102–111, 2015.

[19] A. Droniou, I. Serena, and O. Sigaud, “A deep unsupervised network
for multimodal perception, representation and classification,” Robotics
and Autonomous Systems, vol. 71, p. 8398, 2015.

[20] J. Sturm, C. Plagemann, and W. Burgard, “Body
schema learning for robotic manipulators from visual
self-perception,” Journal of Physiology-Paris, vol. 103,
no. 3-5, pp. 220–231, 2009, neurorobotics. [Online].
Available: http://www.sciencedirect.com/science/article/B6VMC-
4WY6JVM-D/2/0aaabe9b7dc9628c8c818fa87c8b56e9

[21] P. Lanillos, E. Dean-Leon, and G. Cheng, “Yielding self-perception in
robots through sensorimotor contingencies,” IEEE TCDS, p. to appear,
2017.

[22] E. Escobar-Jurez, G. Schillaci, J. Hermosillo-Valadez, and B. Lara-
Guzmn, “A self-organized internal models architecture for cod-
ing sensorymotor schemes,” Front. Robot. AI, vol. 3, no. 22, p.
10.3389/frobt.2016.00022, 2017.

[23] M. Hoffmann, Z. Straka, I. Farkas, M. Vavrecka, and G. Metta,
“Robotic homunculus: Learning of artificial skin representation in a
humanoid robot motivated by primary somatosensory cortex,” IEEE
Transactions on Cognitive and Developmental Systems, vol. PP, no. 99,
pp. 1–1, 2017.

[24] J. Born, J. Galeazzi, and S. Stringer, “Hebbian learning of hand-centred
representations in a hierarchical neural network model of the primate
visual system,” PLoS ONE, vol. 12, no. 5, p. e0178304, 2017.

[25] R. Memisevic, “Gradient-based learning of higher-order image fea-
tures,” in Computer Vision (ICCV), 2011 IEEE International Confer-
ence on. IEEE, 2011, pp. 1591–1598.

[26] S. Kuang, P. Morel, and A. Gail, “Planning movements in visual and
physical space in monkey posterior parietal cortex,” Cereb Cortex,
vol. 2, no. 26, pp. 731–747, 2016.

[27] M. Graziano and D. Cooke, “Parieto-frontal interactions, personal
space, and defensive behavior,” Neuropsychologia, vol. 44, pp. 845–
859, 2006.

[28] C. Buneo, A. Jarvis, A. Batista, and R. Andersen, “Direct visuomotor
transformations for reaching,” Nature, vol. 416, pp. 632–636, 2002.

[29] M. Brozovic, A. Gail, and R. Andersen, “Gain mechanisms for
contextually guided visuomotor transformations,” The Journal of Neu-
roscience, vol. 27, no. 39, pp. 10 588–10 596, 2007.

[30] R. Andersen and H. Cui, “Intention, action planning, and decision
making in parietal-frontal circuits,” Neuron, vol. 63, pp. 568–583,
2009.

[31] E. Oztop, N. Bradley, and M. Arbib, “Infant grasp learning: a com-
putational model,” Exp. Brain Res., vol. 158, p. 480503, 2004.

[32] J. Bonaiuto and M. Arbib, “Learning to grasp and extract affordances:
the integrated learning of grasps and affordances (ilga) model,” Bio-
logical Cybernetics, vol. 109, no. 6, p. 639669, 2004.

[33] M. Jordan and D. Rumelhart, “Forward models: supervised learning
with a distal teacher,” Cognitive Science, vol. 16, pp. 307–354, 1987.

[34] D. Wolpert, K. Doya, and M. Kawato, “A unifying computational
framework for motor control and social interaction,” Philosophical
Transactions of the Royal Society, vol. 358, pp. 593–602, 2003.

[35] A. Pitti, H. Alirezaei, and Y. Kuniyoshi, “Cross-modal and scale-free
action representations through enaction,” Neural Networks, vol. 22, pp.
144–154, 2009.

[36] A. Pitti, H. Mori, Y. Yamada, and Y. Kuniyoshi, “A model of
spatial development from parieto-hippocampal learning of body-place
associations,” 10th International Conference on Epigenetic Robotics,
pp. 89–96, 2010.

[37] J. Hirel, P. Gaussier, M. Quoy, J.-P. Banquet, E. Save, and B. Poucet,
“The hippocampo-cortical loop spatio-temporal learning and goal-
oriented planning in navigation,” Neural Networks, vol. 43, no. 0, pp.
8–21, 2013.


