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Article

Assigning function to natural allelic variation via
dynamic modeling of gene network induction
Magali Richard1,2,* , Florent Chuffart1, Hélène Duplus-Bottin1, Fanny Pouyet1, Martin Spichty1,

Etienne Fulcrand1, Marianne Entrevan1, Audrey Barthelaix1, Michael Springer3, Daniel Jost2,** &

Gaël Yvert1,***

Abstract

More and more natural DNA variants are being linked to physiolog-
ical traits. Yet, understanding what differences they make on
molecular regulations remains challenging. Important properties
of gene regulatory networks can be captured by computational
models. If model parameters can be “personalized” according to
the genotype, their variation may then reveal how DNA variants
operate in the network. Here, we combined experiments and
computations to visualize natural alleles of the yeast GAL3 gene in
a space of model parameters describing the galactose response
network. Alleles altering the activation of Gal3p by galactose were
discriminated from those affecting its activity (production/degra-
dation or efficiency of the activated protein). The approach
allowed us to correctly predict that a non-synonymous SNP would
change the binding affinity of Gal3p with the Gal80p transcrip-
tional repressor. Our results illustrate how personalizing gene
regulatory models can be used for the mechanistic interpretation
of genetic variants.
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Introduction

In the past decade, countless DNA variants have been associated

with physiological traits. A major challenge now is to understand

how they operate at the molecular level. This is a difficult task

because the mechanistic consequences resulting from each variant

are not easy to identify. Even when the function of a gene is well

documented, investigators need to determine the tissues, cells, or

organelles in which a mutant allele makes a biological difference,

the developmental stage at which this may happen, the metabolic or

regulatory network that may be involved, as well as possible molec-

ular scenarios. A mutation may alter the regulation of transcription

or mRNA splicing; the enzymatic activity of the target protein; its

rate of production, maturation, or degradation; its intracellular

localization; its binding affinity to an interacting partner or the

specificity of its molecular interactions. In the vast majority of cases,

information from the DNA sequence alone is not sufficient to delimit

the perimeter of possible implications.

Systems biology has opened new opportunities to better predict

the action of DNA variants. First, “omics” data that are gathered at

various levels (DNA, transcripts, proteins, metabolites, etc.) estab-

lish relations between target sequences and functional pathways.

Information about molecular and genetic interactions, expression

profiles, chromatin landscapes, post-transcriptional and post-trans-

lational regulations can be exploited to derive functional predictions

of DNA variants. Various methods have been proposed to do this,

such as Bayesian genetic mapping (Gaffney et al, 2012), visualiza-

tion of SNPs on relational protein networks (Bauer-Mehren et al,

2009), prioritization based on negative selection (Levenstien &

Klein, 2011), inference of miRNA:RNA binding defects (Coronnello

et al, 2012), or combinations of lncRNA eQTL-mapping with

DnaseI-hypersensitivity maps (Guo et al, 2016). In addition, struc-

tural data of biomolecules can also highlight functional perturba-

tions in specific domains such as catalytic sites or interaction

surfaces (Barenboim et al, 2008; Al-Numair & Martin, 2013).

Another alternative is to model the quantitative and dynamic

properties of molecular reactions and to explore which feature(s)

may be affected by a DNA variant. The functional consequences of

mutations can then be inferred by considering their impact on speci-

fic parameters of the model. In other words, assigning function to a

DNA variant may be straightforward after it is linked to parameters

of a model. This perspective may also, on the long term, generate

developments in personalized medicine: If a model can be
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personalized according to the patient’s genotype, then it can help

predict disease progress or treatment outcome and therefore adapt

medical care to the patient’s specificities. Such an approach

nonetheless differs from machine-learning techniques, which can be

efficient for prediction but where parameters are often not inter-

pretable. For it to become reality, the model must be (i) informative

on the biological trait of interest and (ii) identifiable (variation of

one parameter cannot be exactly compensated by variation of

another parameter) and sufficiently constrained (few parameters

with limited degrees of freedom) so that fitted parameter values can

inform on the patient’s specificities. These two requirements antago-

nize each other regarding the complexity of the model to be used.

The former asks for completeness: The molecular control of the trait

must be correctly covered by the model, describing known reactions

as best as possible. The latter asks for simplicity: If too many param-

eters are allowed to be adjusted to the data, then the validity of the

personalized model is questionable and none of the adjustments are

informative. It is therefore important to determine if and how

personalizing model parameters can be productive.

For a given molecular network, individuals from natural popula-

tions have different genotypes at several nodes (genes) of the

network, as well as in numerous external factors that can affect

network properties. Such external factors can modify, for example,

global translation efficiencies, metabolic states, or pathways that

cross-talk with the network of interest. Adapting model parameters

to specific individuals is challenging when so many sources of varia-

tion exist. A way to circumvent this difficulty is to study the

network experimentally in the context of a more reduced and

focused variation. If investigators have access to nearly isogenic

individuals that differ only at specific genes of the network, they

can then characterize the differences in network behavior that

result from these specific allelic differences. The numerous exter-

nal factors affecting the network can then be ignored or drastically

simplified in the model because they are common to all individu-

als. This way, the parameter space is constrained and only poten-

tially informative parameters are allowed to be adjusted to fit

individual-specific data.

Some model organisms such as the yeast Saccharomyces cere-

visiae offer this possibility. They can be manipulated to generate

single allelic changes, which provides an ideal framework to link

DNA variants to model parameters. In particular, the gene regula-

tory network controlling the yeast response to galactose (GAL

network) is well characterized, both in vivo and in silico. This

circuit controls galactose utilization by upregulating the expression

of regulatory and metabolic genes in response to extracellular

galactose (Sellick et al, 2008). Regulation is based on the tran-

scriptional activator Gal4p, the galactose transporter Gal2p, a

signal transducer Gal3p, and the transcriptional inhibitor Gal80p.

In addition, the galactokinase Gal1p involved in galactose metabo-

lism is also a co-inducer of the response (Bhat & Hopper, 1992).

This system can display either a gradual induction (where the rate

of transcription progressively increases in each cell according to

the timing and intensity of the stimulus) or a binary induction

(where some cells are rapidly activated and others not). This dual

behavior has received a lot of attention, and important molecular

features have been elucidated by experimental and theoretical

approaches (Biggar & Crabtree, 2001; Hawkins & Smolke, 2006;

Song et al, 2010; Apostu & Mackey, 2012). In particular, the

dynamic response of a population of cells to galactose can be

described by two quantities: (i) The inducibility of the network is

defined as the proportion of activated cells in the population and

(ii) the amplitude of the response refers to the expression level

that is reached by induced cells. Regulatory feedback loops of the

network are critical to the switch-like behavior. They were shown

to feed back the dynamics of transcription bursts rather than the

levels of expression (Hsu et al, 2012). They regulate the amplitude

response by reducing noise in GAL gene expression (Ramsey et al,

2006), they control inducibility by fine-tuning the timing of the

switch (Ramsey et al, 2006), and they participate to the memory

of previous inductions (Acar et al, 2005; Kundu & Peterson, 2010).

As a consequence, bimodal distributions of expression of the GAL

genes can be observed in isogenic populations exposed to interme-

diate concentrations of inducer (Becskei et al, 2001; Venturelli

et al, 2012; Peng et al, 2015), and this population heterogeneity

can confer a growth advantage during the transition from glucose

to galactose metabolism (diauxic shift) (Venturelli et al, 2015).

Interestingly, wild yeast isolates present diverse types of induction

dynamics during the diauxic shift, ranging from strictly unimodal

to transient bimodal distribution of expression levels (New et al,

2014; Wang et al, 2015). This indicates that natural genetic varia-

tion can modify the network dynamics.

The GAL3 gene plays a central role in the network. Its protein

product Gal3p is activated by binding to galactose and ATP and then

binds as a dimer to Gal80p dimers to release the repression on Gal4p

at target promoters (Sellick et al, 2008). The protein is enriched in

the cytoplasm prior to stimulation and in the nucleus after the stim-

ulation, although this cytonuclear transfer does not account for the

dynamics of activation (Jiang et al, 2009; Egriboz et al, 2011).

Expression of GAL3 is itself under Gal4p/Gal80p control (positive

feedback). In addition, the sequence of GAL3 differs between natu-

ral isolates of S. cerevisiae and this allelic variation was recently

associated with different sensitivities of the network to galactose

(Lee et al, 2017). There are multiple ways that a GAL3 variant could

affect the dynamics of induction: by modifying the production or

degradation rates of the Gal3p protein or of its messenger RNA, by

changing the affinity of Gal3p to galactose or ATP, by changing the

capacity of Gal3p to dimerize, by changing the nucleocytoplasmic

ratio of Gal3p molecules, or by changing the affinity of Gal3p to

Gal80p. A GAL3 variant may also affect the background expression

level of Gal3p prior to stimulation, which is known to be critical for

network memory of prior stimulations (Stockwell & Rifkin, 2017).

Thus, it is difficult to predict the functional consequence of

sequence variation in GAL3.

Using the yeast GAL3 gene as a model framework, we show here

that experimental acquisitions combined with network modeling are

efficient to predict the effect of sequence variants. The principle of

the approach is to link genetic variation to informative changes of

parameter values of the model. We show that replacing natural

GAL3 alleles can be sufficient to transform a gradual response into a

binary activation, and the approach allowed us to distinguish

between different types of GAL3 alleles segregating in S. cerevisiae

populations: those altering the activation of Gal3p by galactose and

those altering the strength with which activated Gal3p alleviates the

transcriptional inhibition operated by Gal80p. In particular, our

approach was efficient to associate a non-synonymous SNP with a

change of binding affinity for Gal80p.
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Results

Natural variation in GAL3 is sufficient to convert a gradual
induction into a binary switch

We constructed a panel of yeast strains that were all isogenic to the

reference laboratory strain BY, except for GAL3. At this locus, each

strain carried an allele that was transferred from a natural strain of

the Saccharomyces Genome Resequencing Project (Liti et al, 2009;

Appendix Fig S1). All strains of the panel also harbored a PGAL1-GFP

reporter of network activity, where the promoter of the GAL1 gene

controlled the expression of a GFP fluorescent protein destabilized

by a degradation signal (Mateus & Avery, 2000; Chuffart et al, 2016).

GAL1 is a paralogous gene of GAL3 (Hittinger & Carroll, 2007) and

transcription at its promoter is commonly used as a proxy of GAL

network activity (Acar et al, 2005; Venturelli et al, 2015; Wang et al,

2015). Using flow cytometry, we monitored the dynamics of network

activation in each strain (Fig 1). This was done by first culturing

cells for 3 h in a medium containing 2% raffinose, a sugar known to

be neutral on network activity, adding galactose (0.5% final concen-

tration), and quantifying fluorescence at multiple time points for 4 h.

Significant differences in the dynamics of activation were observed

between the strains. Those harboring the GAL3NCYC361, GAL3K11,

GAL3BY, GAL3DBVPG1788, GAL3DBVPG1853, and GAL3JAY291 alleles

displayed a gradual response and all cells of the population were

induced and responded with similar rate of expression, maintaining

population homogeneity (see example shown in Fig 1A). In contrast,

strains harboring the GAL3Y12 and GAL3YJM978 alleles displayed a

binary response, with a transient coexistence of induced (ON) and

uninduced (OFF) cells in the population (example in Fig 1B).

We quantified induction using two metrics: the mean level of

reporter expression in activated cells (response amplitude) and the
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Figure 1. Dynamic response to galactose in the context of GAL3 variants.

Acquisitions were made on strains where the GAL3 allele was replaced by the indicated natural alleles. These strains were otherwise isogenic, with a BY background.

A, B Flow cytometry data obtained on strains harboring the GAL3NCYC361 allele (A) or the GAL3Y12 allele (B). Cells were cultured in raffinose 2% and induced at time 0 by
adding galactose at a final concentration of 0.5%. a.u., arbitrary units. Gray dashed line, threshold used to distinguish ON cells from OFF cells.

C Amplitude of the response (mean expression) as a function of time for each GAL3 replacements strain. Error bars represent standard error of the mean (n = 6).
D Inducibility of the response (fraction of ON cells) as a function of time for each GAL3 replacement strain. Error bars represent standard error of the mean (n = 6).
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proportion of activated cells in the population (inducibility of the

network). We observed that the response amplitude varied little

among the strains, all of them approaching steady state with compa-

rable kinetics (Fig 1C). In contrast, inducibility of the network dif-

fered between strains (Fig 1D). As expected, in strains showing a

gradual response, the fraction of ON cells increased significantly

during the first 2 h of induction, reaching full inducibility (all cells

activated) by the end of the experiment. On the opposite, the strains

showing a transient binary response displayed reduced inducibility

over time. For instance, 21% of GAL3Y12 cells were still not induced

after 250 min of stimulation. These results indicate that natural

genetic variation in GAL3 is sufficient to modify the inducibility of

the network and to convert a gradual response into a binary

response, or vice versa.

A quantitative model of inducibility over time

To examine what functional properties of the GAL3 gene could

determine a gradual or a binary response, we constructed a dynamic

stochastic model of the network (Fig 2A). We based our quantita-

tive model on the following current molecular knowledge, which

derives from reference laboratory strains. In absence of galactose, a

homodimer of the transcription factor Gal4p is constitutively bound

to upstream activation sites (UAS) of promoter regions of GAL

genes. However, transcription is inactive because of the homo-

dimeric Gal80p inhibition of Gal4p (Peng & Hopper, 2002; Pilauri

et al, 2005). When intracellular galactose binds Gal3p, it changes

conformation and associates with Gal80p dimers (Lavy et al,

2012), thereby releasing Gal80p from promoters and allowing
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Figure 2. In silico model of network induction.

A Schematic representation of the model used. Galactose-activated Gal1p and Gal3p proteins become Gal1p* and Gal3p*, respectively. Pointed and blunt arrows
represent activation and inhibition, respectively. Positive and negative feedback loops are highlighted by + and � signs. The central Gal4p activator is not shown
because its dynamics is not included in the model.

B Example of a gradual response predicted by the model ([gal] = 0.5%, qGal3 = 140 and KGal = 0.055). Thin violet lines represent stochastic simulations of network
activation in individual cells. Dashed red line represents the threshold distinguishing ON from OFF cells. Green thick line indicates the fraction of ON cells as a
function time.

C Example of a binary response predicted by the model ([gal] = 0.5%, qGal3 = 40, and KGal = 0.055). Same color code as in (B).
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Gal4p-mediated transcriptional activation. It was initially thought

that activated Gal3p sequestered Gal80p in the cytoplasm, prevent-

ing it from its inhibitory role in the nucleus (Peng & Hopper, 2002).

Later studies revised this view by showing that Gal3p molecules

were not exclusively cytoplasmic (Jiang et al, 2009) and that forcing

Gal3p to be mostly nuclear did not alter the kinetics of induction

(Jiang et al, 2009). In addition, the slowness of the nucleocyto-

plasmic translocation of Gal80p, which depends both on transport

rates and on the Gal4p:Gal80p dissociation rate, contrasts with the

fast induction of transcription (Egriboz et al, 2011). This implies a

direct role of Gal3p in promoting the dissociation of Gal80p from

UAS. In addition, the galactokinase Gal1p (a paralog of Gal3p) can

also act as a co-inducer of the regulatory circuit, presumably using

similar mechanisms as Gal3p (Venturelli et al, 2012).

Our model covers the mRNA and protein species of three major

players of GAL network induction: GAL1, GAL3, and GAL80, as well

as of the reporter gene. We considered that promoters of each GAL

gene could switch between an ON state (full transcription) and an

OFF state (leaky transcription) at rates that depended on the concen-

tration of Gal80 dimers, activated Gal3p dimers, and activated Gal1p

dimers. The model is provided (computer Code EV1), and a detailed

description of it is given in Materials and Methods and in

Appendix Text S1. Most of the parameters of the model were fixed at

values obtained from previous studies (Appendix Tables S1 and S2).

Stochastic simulations reproduce the two types of induction
observed experimentally

We first explored if our model captured the two types of responses

of allele-replacement strains (i.e., binary and gradual). We ran

stochastic simulations (Gillespie, 1977) that accounted for intrinsic

and extrinsic sources of noise (see Appendix Text S1). We observed

that tuning the parameters related to GAL3, while keeping all other

parameters constant, was sufficient to modify inducibility and to

obtain either a gradual (Fig 2B) or a binary (Fig 2C) response of the

network at a given concentration of galactose. In the gradual

system, the simulated single-cell trajectories were all similar; in the

binary system, the simulated single-cell trajectories bifurcated, with

a subset of cells having a stochastic lagging time before responding.

The single-cell value of this lag time is directly correlated with the

number of potential inducer proteins (Gal1p and Galp3p) present in

the cell just before induction (Appendix Fig S2). This is in very good

agreement with recent single-cell experiments on galactose induc-

tion (Stockwell & Rifkin, 2017). Note that a binary response is not

necessarily a signature of steady-state bistability (Hermsen et al,

2011) but may represent a transient regime converging to a mono-

stable ON state at equilibrium (see Appendix Text S1).

We then studied the response predicted by the model when stim-

ulating the network with various concentrations of galactose while

keeping model parameters constant (Appendix Fig S3). Inducibility

increased with the concentration of galactose, with low concentra-

tions causing a binary induction and high concentrations causing a

gradual one.

Two parameters related to GAL3 control network behavior

A detailed analysis of the model showed that inducibility of the

system was mainly controlled by the average values of promoter

switching rates kon and koff at the time of induction (see Materials

and Methods, Appendix Text S1, and Figs S2 and S4). Rates koff
depend only on GAL80 and are therefore invariant to GAL3 allelic

variation. Rates kon depend on GAL3 in two ways: via Gal3p*, the

amount of galactose-activated Gal3p, and via K3, which corresponds

to an effective concentration encompassing the dissociation

constants of the Gal3p-Gal80p interaction and of Gal3p dimerization

(see Appendix Text S1). Gal3p* is determined by the level of Gal3p

and by parameter Kgal, which represents the typical concentration of

galactose needed to efficiently activate Gal3p. While Kgal was identi-

fiable, several other GAL3-related parameters, such as those control-

ling the level of Gal3p, were not and we grouped them into a

meta-parameter, qGal3, which we termed the strength of GAL3. qGal3
corresponds to the invert ratio between K3 and the mean concentra-

tion of Gal3p at the time of induction, which depends on the leaky

transcription rate, the translation rate and the degradation rates of

GAL3 mRNA and protein product.

This formalism made the network sensitive to only two identifi-

able GAL3-related parameters, Kgal and qGal3. At a fixed concentra-

tion of galactose induction, high qGal3 values correspond to high

numbers of Gal3p dimers that can rapidly be activated to release

Gal80 repression. The model predicted that high values of qGal3
would generate a gradual response (Appendix Fig S5A) because the

number of potential activators was high enough in each cell to

rapidly trigger the GAL1/GAL3-mediated positive feedback loop. In

contrast, low values of qGal3 would generate a binary response

(Appendix Fig S5B) because the number of activators is more

stochastic, with many cells having too few initial Gal1p or Gal3p

dimers to directly trigger the response. These cells need a lag time

before fast activation (Fig 2B and C, and Appendix Fig S2). The

other important parameter, Kgal, corresponds to a threshold of galac-

tose concentration below which induction was limited and favoured

a binary response, and above which induction was efficient and

favoured a gradual response (Appendix Fig 3C). In summary, both

qGal3 and Kgal values can determine whether the network adopts a

gradual or a binary response at a given concentration of galactose

induction.

Linking GAL3 alleles to specific parameter values

We first examined if our model could capture a known functional

alteration of the GAL3 gene. The ATP and galactose binding pocket

of Gal3p was previously described (Lavy et al, 2012). It contains

an aromatic cage that encircles the adenine nucleotide of ATP. A

mutation targeting this cage should therefore reduce the affinity of

Gal3p for ATP. Galactose is localized more internally than ATP,

suggesting that the sequential activation of Gal3p starts first with

galactose binding and then ATP binding. We analyzed how para-

meters of our model should be affected by a mutation reducing

Gal3p:ATP affinity, and we found that Kgal should increase, that

qGal3 should decrease, and that the relative change to wild-type

values should be more pronounced for Kgal (Appendix Text S1). In

contrast, if ATP binds prior to galactose, then Kgal should also

increase but qGal3 should remain unaffected. Using Crispr/Cas9, we

replaced in the BY reference strain the W117 residue of the cage by

either an alanine or a threonine, and we monitored the dynamics

of transcriptional activation of the corresponding mutants

(Appendix Fig S6A–C). The non-conservative W117T mutation
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fully abolished the response, even at very high concentrations of

galactose. The W117A mutation profoundly reduced activation and

caused a binary response. We then inferred parameters qGal3 and

Kgal for the wild-type strain and for the W117A mutant. This was

done by selecting a set of parameters that minimized a global chi-

squared score of deviation between the measured and predicted

fractions of induced cells at different times after induction and for

the different galactose concentrations (for details, see Materials and

Methods and Appendix Text S1). Inferred Kgal value was about 10

times higher for the mutant than for the wild type, and qGal3 was

reduced by about threefold (Appendix Fig S6D). This fully agreed

with the expected sequence of activation of Gal3p (galactose first,

ATP second).

We then used our model to study natural GAL3 alleles. We

measured the transcriptional response of the GAL3BY, GAL3Y12, and

GAL3YJM978 strains at different galactose concentrations (0.05, 0.1,

and 0.5%). This confirmed that inducibility increased with galactose

concentration (Fig 3A). We used these experimental data as above

to infer parameters qGal3 and Kgal for each of the three strains. To

evaluate the usefulness of the inferred parameter values, we used

the fitted model to predict the behavior of each strain at a galactose

concentration that was not used for model training (0.2%) (Fig 3B).

Finally, to test model predictions, we experimentally monitored

GAL3BY, GAL3Y12, and GAL3YJM978 induction at 0.2% galactose.

Without any additional fitting procedure, we observed that

inducibility (fraction of activated cells over time) differed between

strains in a way that was entirely consistent with model predictions.

Thus, the differences among parameter values assigned to the dif-

ferent natural GAL3 alleles are relevant outside the specific experi-

mental conditions used for parameters estimation.

Natural GAL3 alleles map to distinct locations of the
parameter space

We sought to classify GAL3 alleles based on the parameter values

assigned to them. We made experimental measurements on two

additional strains (GAL3NCYC361 and GAL3DBVPG1788), and we deter-

mined best-fit qGal3 and Kgal values to them as for the three strains

described above. Appendix Fig S7 shows these data and the corre-

sponding fitted models. Figure 4A and B shows the obtained
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Figure 3. Strain-specific training of the model and validation.

A Model fitting. Each panel corresponds to one strain carrying the indicated GAL3 allele. Inducibility was measured by flow cytometry (data points � s.e.m., n = 6) after
stimulating cells with three different concentrations of galactose (points colored according to the concentration). For each strain, these data were used to fit the
GAL3-dependent parameters qGal3 and KGal. Inferred parameter values are shown. Lines in plain (resp. dashed and dotted) represent the inducibility predicted by the
model at [gal] = 0.5% (resp. 0.1 and 0.05%).

B With the parameters inferred in (A), we use the model to predict the inducibility of each strain at a galactose concentration of 0.2% (lines), and this prediction was
compared to experimental measures (dots � s.e.m., n = 2).
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parameters, qGal3 and KGal, normalized by the corresponding values

of our reference strain GAL3BY. Different data points represent

results obtained by applying the inference process to models with

different GAL3-independent parameters (see Appendix Text S1).

The fold change of a parameter between two different strains is

indicative of the functional nature of the genetic variations between

the two GAL3 alleles. In agreement with model predictions

(Appendix Fig S3), we observed that more gradual strains
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Figure 4. GAL3 alleles map to distinct locations of the parameter space.

A, B Parameter values obtained by fitting the model to experimental data collected on five strains at three concentrations of the inducer ([gal] = 0.05, 0.1, and 0.5%).
Six independent fits were performed (one per gray line). For each one, different values of GAL3-independent parameters were chosen (see Appendix Text S1), and
parameters qGal3 (A) and Kgal (B) were estimated for each strain. Dots represent their value for the indicated strain, relative to the value estimated for the GAL3BY

strain. Error bars: uncertainty on parameter estimation for each inference (see Materials and Methods).
C Phenotypic landscape predicted by the model. At defined concentrations of the inducer ([gal]), the values of qGal3 and Kgal determine whether the response is

gradual (brown) or binary (pink). The white zone is an intermediate region where the distinction between gradual and binary is unclear. Using parameters inferred
in (A) and (B), alleles are mapped to the landscape (colored dots). Error bars: standard deviation of the six distinct estimations.

D Bifurcation diagram of the deterministic description of the network at steady state. Yellow: region of the (qGal3, Kgal) space where the system is bistable at the
indicated galactose concentration. Parameters: qGal1 = 100, qGal80 = 250, others as in Appendix Table S1. Symbols: positions of the five natural GAL3 alleles as in (C).
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(GAL3NCYC361 and GAL3DBVPG1788) display a high GAL3 strength

qGal3 and a low “typical” galactose concentration KGal. Interestingly,

we observed that qGal3 and KGal can be decorrelated. In particular,

although both GAL3YJM978 and GAL3Y12 strains were binary respon-

ders at all galactose concentrations tested, the model attributed this

behavior to different functional effects: a low sensitivity to galactose

(high Kgal) for the Gal3 protein originating from YJM978 and a

reduced strength of the GAL3 gene originating from Y12. Thus, the

induction specificities of the strains can be attributed to distinct

GAL3-related parameters.

To address the direct relationship between the network proper-

ties (gradual or binary response) and the GAL3-related parameters,

we positioned each of the tested strains within a phenotypic land-

scape according to their relative qGal3 and KGal parameters (Fig 4C).

According to our model, qGal3 and KGal parameters are sufficient to

predict the behavior (gradual or binary) associated with a given

GAL3 allele at a given concentration of galactose. As an illustration

of these predictions, we specifically observed the dynamics of tran-

scriptional activation of the network for the strain GAL3DBVPG1788

(Appendix Fig S8). The position of the GAL3DBVPG1788 allele on the

phenotypic landscape corresponded to a transient binary activation

at low concentration ([gal] = 0.05%) converted into a gradual

response at higher concentration ([gal] = 0.1% and [gal] = 0.5%).

Importantly, mathematical analysis of the system at steady state

indicated that all strains should reach a monostable ON state at

equilibrium (Fig 4D and Appendix Text S1). Thus, although a

binary regime of induction is observed in some strains, this is a tran-

sient regime that should eventually convergence to monostability

after a very long time (> 10 h).

Variation in induction dynamics is consistent with variation in
diauxic shift decision

The physiological relevance of the GAL network regulation is to

switch from the consumption of glucose (the preferred carbon

source) to the consumption of galactose when glucose supply is

running out. This diauxic switch is controlled not only by galactose

induction but also by glucose-mediated repression. When both

sugars are present, their relative concentration ratio determines

whether cells activate the switch or not (New et al, 2014; Escalante-

Chong et al, 2015; Venturelli et al, 2015). At some ratio values, only

a fraction of the cells are induced, even at steady state. Given this

dual regulation, the propensity of a strain to activate GAL metabo-

lism can be quantified by measuring the fraction of induced cells

after a prolonged period (8 h) of simultaneous induction (by galac-

tose) and repression (by glucose). If this measurement is repeated at

a given concentration of galactose and various concentrations of

glucose, a useful score can be computed (called “decision thres-

hold” hereafter): the concentration of glucose needed to maintain

half the population of cells in the repressed (OFF) state (Fig 5A). A

high decision threshold corresponds to an early activation of GAL

genes during the diauxic shift.

A previous study identified GAL3 as an important genetic deter-

minant for this decision: The concentration ratio at which cells turn

GAL expression ON differs between strains harboring different natu-

ral alleles of GAL3 (Lee et al, 2017). We asked if this variation, visi-

ble in the steady-state exposure to both glucose and galactose, was

correlated with the variation observed on the dynamics of network

induction upon exposure to galactose only. We chose four strains

that showed different decision thresholds because of different GAL3

alleles (Lee et al, 2017; Fig 5B), and we monitored their dynamics

of induction at three different concentrations of galactose (with no

glucose). We then used our model to assign qGal3 and KGal parame-

ter values to each strain. Experimental data and model fitting are

shown in Fig 5B and Appendix Fig S9. We used the inferred param-

eter values to visualize the four strains in the parameter space

where binary and gradual responses upon stimulation at

[gal] = 0.25% are delimited (Fig 5D). Remarkably, the properties of

induction dynamics in absence of glucose were fully consistent with

the decision threshold during diauxic shift from glucose to galac-

tose. Strains having a low decision threshold, such as GAL3YJM421,

displayed a transient binary response, and strain GAL3BC187 had a

high decision threshold and responded gradually. Coordinates of

strains in the parameter space indicate that qGal3 values are highly

informative on the decision threshold (Fig 5D). Thus, mapping

allelic variation to dynamic parameters of induction is also useful to

understand trade-offs that are observed at steady state.

A quantitative parameter change predicts a role of H352D SNP on
Gal3:Gal80 complex formation

We noticed that, at position 352 of the Gal3p protein, all natural

strains harbored an aspartic acid, whereas the reference laboratory

strain BY harbored a histidine. This aspartic acid was also

conserved in Saccharomyces mikatae, Saccharomyces paradoxus,

and Saccharomyces uvarum protein sequences (Cherry et al, 2012).

Given the prevalence of this aspartic acid, we hypothesized that a

single H352D amino acid change could have consequences on Gal3p

regulatory function.

To test this, we generated an artificial GAL3BY-H352D allele by

introducing the H352D mutation in the GAL3BY strain and we moni-

tored the dynamics of induction of the resulting strain. At similar

concentrations of galactose, induction was faster for the modified

strain than for the original strain (compare Fig 6A with 2A). We

then used our model to make functional predictions. We fitted our

model to experimental data of induction as described above for

natural alleles. Induction dynamics of the modified strain were fully

explained by preserving parameter KGal and increasing qGal3
(Fig 6B). This suggested that the H352D mutation did not affect acti-

vation of Gal3p by galactose but rather the strength of Gal3p, which

summarizes six biochemical features: the basal level of GAL3 tran-

scription prior to induction, its translation and degradation rate, the

degradation rate of its coding mRNA, its capacity to homodimerize,

and the affinity of activated Gal3p for Gal80p.

How the implicated SNP could change either the leaky transcrip-

tion level prior to induction or the transcription rate during induc-

tion is difficult to imagine. In addition, the amino acid change was

not surrounded by any particular peptide motif, nor was it located

at the extremity of the protein. This did not support for an effect on

translation or degradation rates. Thus, the most plausible interpreta-

tion of the parameter change of the model was that the H352D

modification would increase either the capacity of Gal3p* to dimer-

ize or the affinity of the Gal3p* dimer for Gal80p.

To explore these possibilities, we analyzed the structure of the

heterotetramer [Gal3p*]2-[Gal80p]2 that was previously solved

(Lavy et al, 2012). We made three important observations. First,
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His352 is located at the binding interface of the Gal3p* dimer with

the Gal80p dimer (Fig 6C), and distant from the pocket containing

galactose and ATP. Secondly, it is spatially close to the Gal80p site

where the acidic domain of Gal4p is known to bind (Thoden et al,

2008). Finally, the Gal80p dimer exhibits a positive electrostatic

surface potential in the vicinity of Gal3p-His352, suggesting that the

replacement of the neutral His352 by a negatively charged aspartic

acid would stabilize the Gal3p*-Gal80p complex. Stabilization refers

here to a gain in thermodynamic stability relative to the Gal4p-

Gal80p complex, or in other words, to a decrease in Gibbs free

energy change (DGsub) for the substitution of the Gal4p dimer by the

Gal3p dimer as binding partner of the Gal80p dimer. A molecular

dynamics simulation of the Asp352 mutant (in a model system of

the Gal3p*-Gal80 complex) indicates that two positively charged

amino acids, Gal3p-Arg362 and Gal80p-Lys287, are able to form

direct salt bridges with Asp352 (Fig 6D). These attractive interac-

tions of Asp352 with its environment are, however, expected to be

partially canceled out by repulsive interactions with the less proxi-

mate, negatively charged amino acids Gal3p-Glu363 and Gal80p-

Glu348 (Fig 6D). Also, the polar solution (water + counter ions)

could partially reduce the stabilization effect of the H352D mutation

because residue 352 is better solvated in the Gal3p* dimer than in

the Gal3p*-Gal80p tetramer. Thus, to quantify a possible stabiliza-

tion effect of the H352D mutation, we computed the change in the

Gibbs free energy difference, ΔΔGsub = ΔGsub
D352 � ΔGsub

H352, with

the aid of the thermodynamic cycle depicted in Fig 6E. The actual

free energy calculations (see Materials and Methods) yielded

ΔΔGsub = �2.8 � 0.9 kcal/mol, which indicates that the H352D

mutation indeed increases the thermodynamic stability of the

Gal3p*-Gal80p complex with respect to the Gal4p-Gal80p complex.

Thus, as predicted by the dynamic model of network induction, the

H352D mutation increases the cellular response by facilitating the

formation of the complex.

Discussion

We experimentally monitored the induction dynamics of the yeast

GAL network in the context of natural genetic variation at the GAL3

gene. This revealed that GAL3 natural variation is sufficient to

convert a gradual induction into a binary one. We built a stochastic

model of the network and used it to link GAL3 alleles to functional

network parameters. This approach discriminated alleles that

increased the strength of activated Gal3p (e.g., of strains NCYC361

and DBVPG1788) from alleles that desensitized Gal3p to galactose

activation (e.g., of strain YJM978). Alleles showing different

glucose/galactose trade-offs at equilibrium displayed different

dynamics of induction, and they were associated with different
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induced in the presence of 0.25% galactose. The blue curve is theoretical and shown to explain how the fraction of ON cells depends on glucose concentration.
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C Schematic representation of GAL3 induction parameters determination.
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Figure 6. Functional inference of the H352D variant of GAL3.

A Experimental acquisitions (dots � s.e.m., n = 4) and model fitting (curves) of the induction dynamics of the GAL3BY-H352D strain.
B GAL3BY (blue dot) and GAL3BY-H352D (gray dot with standard deviation bars) strains localization in the phenotypic landscape of the model at [gal] = 0.5%. Arrows:

phenotypic trajectory between the two alleles. Error bars: as in Fig 4C.
C Structure of the tetrameric complex [Gal3p*]2[Gal80p]2 (PDB entry 3V2U). Residue His352 of one Gal3p unit is in the back side and not visible. The His352 residue of

the other Gal3p unit is shown as green beads in the center; it is located at the binding interface of the Gal3p* dimer (white beads) and the Gal80p dimer (colored
surface). Gal80p residues are colored according to their electrostatic surface potential from red (≤ �10 kT/e) to blue (≥ +10 kT/e). Yellow beads: The acidic activation
domain of Gal4p was inserted in the complex by superimposition with crystal structure 3BTS. A similar insertion in the other Gal80p unit is in the back side and not
visible. Created with VMD software.

D Local stabilization of Gal3p-Asp352 by residues Gal3p-Arg362 and Gal80p-Lys287 in the [Gal3]2[Gal80]2 complex. Green and white labels refer to residues from Gal3p
and Gal80p units, respectively. The figure shows a snapshot from a molecular dynamics simulation of the mutation H352D carried out for a model system of the
complex (see Appendix Text S2). Atoms within 15 Å of residue 352 are shown as thin sticks in white (Gal3p) or dark gray (Gal80p). Remaining atoms are shown as a
solid surface. Created with VMD software.

E Thermodynamic cycle quantifying the energetic impact of the H352D mutation on the substitution of [Gal4p]2 by [Gal3p]2 as binding partner of [Gal80p]2 (DGsub,
horizontal arrows). This impact is measured as DDG = DGsub

D352 � DGsub
H352, which equals to DGalchem

tetramer � DGalchem
dimer (vertical arrows) because free enthalpy

is a state function. These latter quantities correspond to the free enthalpy change for the alchemical (double) mutation of His > Asp in the Gal3p-Gal80p tetramer
and in the Gal3p dimer, respectively, which were computed by alchemical free energy calculations (see Appendix Text S2).
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strength of activated Gal3p. Our approach also predicted a func-

tional effect of a single non-synonymous SNP that was validated by

atomistic simulations of the binding interface between Gal3p and

Gal80p dimers. These results provide further details on the yeast

GAL system and, perhaps more importantly, they constitute a proof-

of-concept of the feasibility and usefulness of linking genetic vari-

ants to model parameters.

Genetic variability of the yeast GAL network

Our in vivo and in silico analyses of the induction kinetics of yeast

GAL activation reveal properties of this system and how it is sensi-

tive to genetic variation. The fact that an allelic exchange in GAL3

was sufficient to convert a gradual response into a transient binary

one is important because it shows that, although binary induction

requires a polygenic architecture of transcriptional regulation,

whether it takes place or not can be dictated by the genotype of a

single gene.

Previously, several computational models of the network have

been proposed, usually in an effort to understand the properties of

the system at steady state (Acar et al, 2005; Apostu & Mackey,

2012; Venturelli et al, 2012). Particularly, they highlighted the

important role of Gal3p-, Gal1p-, and Gal80p-mediated feedback

loops. Our in silico analysis suggests that the gradual or binary

kinetic response is mainly controlled by the initial number of repres-

sors (Gal80p) and inducers (Gal1p and Gal3p), the efficacy of galac-

tose to activate the inducers, and the efficiency of the activated

inducers to release the effect of repressors. In particular, a low mean

number of inducers at the time of induction may lead to high cell-

to-cell variability in their actual number. Cells with few inducers (as

compared to repressors) display a lag time before responding, lead-

ing to a binary response pattern at the population level. This predic-

tion from our model is fully consistent with recent experiments that

tracked the induction of the network at the single-cell level and

showed that the initial concentrations of Gal1p and Gal3p are

predictive of the transient bimodal response (Stockwell & Rifkin,

2017). We also observed that feedback loops were important to

control the strength of cell-to-cell variability before induction

(Gal80-mediated negative feedback) and the duration of lag times

(Gal3/Gal1-mediated positive feedbacks), which agrees with the

previous observation that disabling the Gal80p and Gal3p feedback

loops can transform a gradual response into a binary one (Ramsey

et al, 2006). Our results on GAL3 genetic variants also complement

previous genetic manipulations of the feedback loops, where their

effect on bimodality was tested by modulating promoter activities

(Acar et al, 2005; Ramsey et al, 2006; Venturelli et al, 2012; Peng

et al, 2015). Here, we showed that a non-synonymous variant

affecting Gal3p:Gal80p interaction directly affects the dynamics of

transient bimodality. This is a novel experimentally based observa-

tion that is totally coherent with the conclusions of Venturelli et al

(2012) who showed computationally that steady-state bimodality of

the network could rely on protein–protein binding affinities.

We also observed that genetic variations at GAL3 could affect its

propensity to be activated by galactose/ATP binding. In particular,

the GAL3YJM978 allele was associated with increased values of the

KGal parameter (more galactose needed for its activation). This allele

harbored three non-synonymous SNPs: M179I, R312I, and H352D.

As shown above, H352D is found in all natural alleles that we tested

and it therefore does not explain a change in KGal specifically for

GAL3YJM978. According to the structure of the Gal3p:Gal80p tetramer

complexed with galactose and ATP (Lavy et al, 2012), the other two

polymorphic sites do not map close to the pocket containing the

ligands. Met179 is located at the surface of the complex, distant from

any binding interface and distant from the bound galactose (30 Å)

and ATP (25 Å). The mutational effect of the rather conservative

amino acid change (methionine to isoleucine) on the KGal parameter

might therefore be negligible. In contrast, the non-conservative argi-

nine to isoleucine mutation at site 312 could influence KGal in several

ways: First, the positively charged arginine contributes favorably to

the binding of the negatively charged ATP through long-range elec-

trostatic interactions. The charge-neutral Ile312 variant lacks this

favorable interaction and may have lower affinity for ATP, thereby

penalizing activation by the two ligands. Second, residues Arg312 of

the two Gal3p units are in direct contact with each other, and the

non-conservative R312I change may affect the dimerization of

Gal3p. Lavy et al (2012) reported that, in absence of galactose,

Gal3p is monomeric in solution and adopts an open conformation

that differs from the conformation generating the Gal3p:Gal3p

dimeric interface found upon interaction with Gal80p. If the R312I

modification alters Gal3p dimerization, this could modify the overall

activation by galactose because these processes are coupled.

We observed that genetic variation of the strength of activated

Gal3p (qGal3), estimated from the dynamic properties of network

activation, was correlated with variation of the glucose/galactose

trade-off at steady state. This implies that the two traits co-evolve

in natural populations of S. cerevisiae. Given the relatively short

time scale of network induction, mild differences in the dynamics

of activation alone are unlikely to cause fitness differences unless

environmental galactose concentrations are highly dynamic. In

contrast, variation in the sensitivity of the network to the ratio

of external sugars corresponds to the triggering of an adaptive

metabolic process, which is highly related to fitness even for

slow environmental changes. The induction dynamics that we

observed on short time scales are probably not themselves under

selection, but they provide valuable information on the molecular

mechanism affecting a fitness-related trait operating on longer

time scales.

The H352D variant is interesting in this regard. At this position

in Gal3p, a histidine residue was found in all laboratory strains

(BY4741, CEN.PK, D273-10B, FL100, FY1679, JK9-3d, SEY6210,

W303, X2180-1A, YPH499), while nearly all natural isolates as well

as distant species possess an aspartic acid. Our results showed the

importance of this aspartic acid for interaction with Gal80p, which

suggests that its conservation in wild population results from purify-

ing selection. The presence of slightly deleterious mutations in labo-

ratory strains is well known. Examples from the reference strain

BY/S288c include mutations in AMN1 (Yvert et al, 2003), BUL2

(Kwan et al, 2011), ERC1 (Fehrmann et al, 2013), FLO8 (Kron,

1997), GPA1 (Yvert et al, 2003), and HAP1 (Gaisne et al, 1999).

These mutations likely resulted from a release of purifying selection

caused by strong population bottlenecks when propagating yeast on

petri dishes. As for the genes listed above, the implication for GAL3

is that most mechanistic studies refer to a “wild-type” protein that is

in fact a slightly hypomorphic allele not found in nature.

We also noted cases where the specificities of a GAL3 allele in

the context of the BY strain did not reflect the properties of the
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donor strain. An extreme example of this was the GAL3DBVPG1853

allele which improved the response of the BY strain (Fig 1D) while

the DBVPG1853 strain itself did not respond at all to galactose (not

shown), presumably because of genetic defects in other genes.

Another example was the GAL3Y12 allele which, when introduced in

the BY strain, conferred a binary induction that was milder than the

binary phenotype of the Y12 strain itself (Appendix Fig S10). This

illustrates the importance of other loci than GAL3 that also contri-

bute to the dynamics of network induction. Background-specific

effects are common and should be taken into account when inter-

preting the functional impact of natural alleles in their original strain

context (Gerke et al, 2010).

Linking DNA variants to model parameters: feasibility
and potential

We developed our approach using a model system, the yeast GAL

network, which was an ideal context for investigation: Molecular

players were well known, important network properties had been

previously described, genetic engineering could be used to study the

effect of a single gene in an otherwise isogenic background, and

experimental measurements were relatively cheap. If network

modeling had provided no added value in such a context, it would

be hard to imagine how it could be useful in more complex frame-

works. We report that it did: Observing different dynamics experi-

mentally was not sufficient to make functional inferences, but

combining data and modeling was. The concept is therefore fruitful

and it is interesting now to consider how it can be extended to other

biological systems.

First, it is important to realize that inference is based on the

wealth of information contained in the dynamics of activation.

Evidently, studying the system at equilibrium would not be suffi-

cient. Mapping DNA variants to model parameters is therefore

promising for systems where time-course data are available.

Second, even in the simple context of our study, not all param-

eters of the model were identifiable and it was necessary to aggre-

gate several of them into a meta-parameter (qGal3). We admit that

this constitutes a limit of the approach: When the H352D SNP

was linked to this meta-parameter, additional assumptions were

needed to infer biochemical effects. Similar difficulties will likely

be encountered in other systems and the identifiability and sensi-

tivity analysis of the model are therefore crucial to determine the

nature of biological information that can be retrieved by the

approach.

Third, our method here was to infer function and then to validate

a prediction by exploring the structural data of a protein complex.

Depending on the system under consideration and the data avail-

able, it may be judicious to reverse the approach: scanning protein

structures first in order to identify variants modifying binding affi-

nities and then studying these variants specifically using experimen-

tal measurements and model fitting. This way, a parameter change

is first inferred from structural data and a dynamic model of the

network then allows one to predict its phenotypic effect. The SAAP

database (Al-Numair & Martin, 2013), which registers structurally

relevant variants of human proteins, may constitute a very helpful

resource to do this.

Fourth, while we based our approach on cell population distri-

butions, tracking the response dynamics of individual cells over

time is also possible (Stockwell & Rifkin, 2017) and can provide

more information on the network response. In other contexts, such

methods had been very useful to infer parameters associated with

individual cells (Llamosi et al, 2016). A variant may then be asso-

ciated with one parameter by a whole distribution of values,

which likely carries more information than a single scalar value as

presented here. In addition, such time-lapse acquisitions can

provide high temporal resolution of gene induction (Aymoz et al,

2016).

Fifth, additional work is now needed to extend the approach to

more than one gene. At the level of an entire network, the overall

genotype of the individual is a combination of alleles. The number

of such combinatorial genotypes of the network segregating in

natural populations can be very large and mapping this diversity

to the parameter space would be very interesting. In particular,

models accounting for genetic changes might predict and explain

genetic interactions (epistasis) within the network. The challenge

to achieve this will likely reside in the number of free parameters:

If the genotype is allowed to vary at too many genes, parameters

cannot be constrained efficiently. Mapping variants one gene at a

time, as we did here, and then in combination would maintain this

necessary constraint while evaluating epistasis. A more difficult

task would be to infer the contribution of genes that are external

to the network while nonetheless affecting its behavior (e.g., by

modifying widely transcription rates or the stability of proteins, or

cross-talks with other networks). Studying these factors by our

approach is only possible after they are identified and connected to

the network. Their identification can be obtained by genetic

mapping. For example, we recently identified a locus on yeast

chromosome V that affects the variability of the GAL response at

transient times of activation (Chuffart et al, 2016). Once identified,

these factors must be integrated in the network model, which may

be a complex task.

Network modeling is expected to help the development of

personalized medicine and the fact that it is possible, in a yeast

system, to personalize model parameters according to DNA vari-

ants is encouraging. Can the approach described here be applied

to human variants? This requires overcoming several difficulties

that could be avoided in our framework. First, most regulatory

networks of human systems are incompletely known. Second,

most of these networks comprise numerous genes, implying many

model parameters and, possibly, too many degrees of freedom for

adjustments and identifiability issues. The first task is therefore a

careful identifiability and sensitivity analysis of the model and, as

much as possible, a reduction of its complexity. The work of Zhao

et al (2015) is encouraging in this regard. The authors studied the

mitochondrial outer membrane permeabilization network control-

ling entry in apoptosis. Their model comprised ~50 parameters

and ~20 molecular species, but the network critical behavior (bi-

furcation point) was sensitive to less than half of the parameters.

The authors then searched for enrichment of cancer mutations in

protein domains involved in molecular interactions and they used

molecular dynamics simulations to estimate the affinity changes

caused by these mutations. Interestingly, most mutations that were

predicted to affect sensitive parameters of the model caused a

significant change of affinity in the expected direction, illustrating

that the model was able to highlight relevant vulnerabilities. Simi-

larly, Nijhout et al (2015) studied a model of the folate-mediated
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one carbon metabolism system. They reported that human muta-

tions that strongly perturb enzymatic activities could have little

phenotypic effect if they targeted parameters that are poorly sensi-

tive. Another type of difficulties when studying human networks

are experimental limitations: Manipulating human cells needs

more time and funds than manipulating yeast; replacing alleles of

specific genes is possible via CRISPR/Cas9 editing but the large

physical size of human genes as well as the functional redundancy

between paralogs can be problematic; and setting up dynamic

experimental acquisitions is often not straightforward. Thus, apply-

ing our approach to a minimal network in human cells compatible

with genetic editing and time-series acquisitions will probably

constitute an important step in the near future.

Materials and Methods

Yeast strains and plasmids

The strains used in this study are listed in Appendix Table S3.

Oligonucleotides are listed in Appendix Table S4. We used the strain

BY4711 (GY145, isogenic to s288c) as BY reference strain. The

PGAL1GFP reporter cassette was obtained from plasmid pGY338

previously described (Chuffart et al, 2016). pGY338 was linearized

by NheI and integrated at the HIS3 locus of BY4711 to create strains

GY1648 and GY1649, two independent transformants. To replace

endogenous GAL3BY allele by natural variants in GY1648 strain, we

PCR-amplified the TRP1-GAL3 locus of natural wild isolates using

primers 1D28 and 1D56. The endogenous locus was then replaced

by in vivo homologous recombination and positive transformants

were selected on SD-TRP plates. GAL3NCYC361, GAL3K11, GAL3Y12,

GAL3DBVPG1788, GAL3DBVPG1853, GAL3YJM978, GAL3JAY291 were PCR-

amplified from NCYC3451, NCYC3452, NCYC3445, NCYC3311,

NCYC3313, NCYC3458 [wild isolates from the Saccaromyces

Genome Resequencing Project, SGRP (Louis & Durbin, 2007; Liti

et al, 2009)] and JAY291 (Argueso et al, 2009), respectively. The

strains used to characterize the effect of natural variants on galac-

tose response were GY1648, GY1689, GY1692, GY1695, GY1698,

GY1704, GY1707, and GY1713, all isogenic to S288c except for

GAL3BY, GAL3NCYC361, GAL3K11, GAL3Y12, GAL3DBVPG1788,

GAL3DBVPG1853, GAL3YJM978, GAL3JAY291, respectively. Strains geno-

type was verified by PCR and either high-resolution melting curves,

restriction fragment-length polymorphism typing, or sequencing.

The TRP1-GAL3 locus from BY strain was PCR-amplified with

primers 1M95 and 1M96 and cloned into HpaI-linearized plasmid

pALREP (Fehrmann et al, 2013) by homologous recombination in

yeast, generating plasmid pGY409. The mutated GAL3BY-H352D allele

was synthesized by GeneScript and subcloned into pGY409 using

MscI-BstEII restriction sites, generating plasmid pGY418. The TRP1-

GAL3BY-H352D locus was PCR-amplified from pGY418 using primers

1D28 and 1D56 and transformed into GY1649 to create strain

GY2009. Genotype was validated by PCR and sequencing. Strains of

Fig 5 were MPJ125-E06 (GAL3BY), MPJ143-H01 (GAL3YJM428),

MPJ143-F01 (GAL3YJM421), and MPJ125-A07 (GAL3BC187), which

were described in another study (Lee et al, 2017); they all derived

from a S288c hoD::GAL1pr-YFP-mTagBFP2-kanMX4; gal3Δ::hphNT1

parental strain. Strains GY2180 and GY2181 carrying mutations

GAL3W117A and GAL3W117T, respectively, were obtained using

CRISPR/Cas9: Oligonucleotides 1P29 and 1P30 were annealed and

cloned in the SwaI, BclI sites of the pML104 plasmid (Laughery

et al, 2015) to produce pGY514. Repair-templates were produced by

PCR on pGY474 (a plasmid containing the wild-type GAL3 gene

from strain BY) using primers 1P22 and 1J63 (for W117A) or 1P23

and 1J63 (for W117T). Strain GY1566 (Chuffart et al, 2016) was

co-transformed with pGY514 and the repair template and plated on

�URA selection medium. Transformants were verified by PCR

with 1P21 and 1J63 followed by Sanger sequencing. They were

cultured on YPD plates, and plasmid loss was verified by replica-

plating on �URA plates.

Galactose response measurements

Liquid cultures in synthetic medium with 2% raffinose (yeast nitro-

gen base w/o amino acids 6.7 g/l, raffinose 2%, dropout Mix 2 g/l,

adjusted to pH = 5.8) were inoculated with a single colony and

incubated overnight, then diluted to OD600 = 0.1 (synthetic

medium, 2% raffinose) and grown for 3–6 h. The galactose induc-

tion experiments were carried out in 96-well sterile microplates

using a Freedom EVO200 liquid handler (Tecan) equipped with a

96-channel pipetting head (MCA), a high precision 8-channel pipet-

ting arm (LiHa), a robotic manipulator arm (RoMa), and a MOI-6

incubator (Tecan). All robotic steps were programmed in Evoware

v2.5.4.0 (Tecan). Cells were resuspended in synthetic medium with

2% raffinose and the appropriate galactose concentration (0.01, 0.1,

0.2, and 0.5%) and grown for the desired time (from 0 to 250 min).

Cells were then washed with PBS1X, incubated for 8 min in 2%

paraformaldehyde (PFA) at room temperature, followed by 12 min

of incubation in PBS supplemented with glycine 0.1 M at room

temperature and finally resuspended in PBS. They were then

analyzed on a FACSCalibur (BD Biosciences) flow cytometer to

record 10,000 cells per sample. Each set of data is representative of

the results of two independent experiments (each comprising three

technical replicates).

Flow cytometry data were analyzed using the flowCore package

from Bioconductor (Hahne et al, 2009). Cells of homogeneous size

were dynamically gated as follows: (i) removal of events with satu-

rated signals (FSC, SSC, or FL1 = 1023 or = 0), (ii) correction by

subtracting the mean(FL1) at t = 0 to each FL1 values, (iii) compu-

tation of a density kernel of FSC, SSC values to define a perimeter of

peak density containing 60% of events, (iv) cell gating using this

perimeter, (v) removal of samples containing less than 3,000 cells at

the end of the procedure, and (vi) correction of the data according

to an eventual experimental bias during cytometer acquisitions. For

the twelve time points (0, 10, 20, 30, 40, 60, 80, 100, 130, 160, 205,

and 250 min) experimental design, the time course for a given strain

was acquired on different plates on the flow cytometer. In order to

correct an eventual plate effect, we systematically included 24 repli-

cates on each plate acquired on flow cytometer. We then tested the

fixed effect of plates using an ANOVA. The FL1 values of each cell

were subsequently corrected according to the plate offset of the

ANOVA. For the six time points (0, 30, 60, 80, 130, and 210 min)

experimental design, all the time points being acquired on the same

experimental plate, we did not apply the normalization filter. The

GFP expression values presented here in arbitrary units were the

FL1 signal of the retained cells (normalized for the plate effect, if

required).
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Analysis of flow cytometry distributions

All statistical analyses were done using R (version 3.2.4).

Calculation of the response amplitude

The response amplitude A was defined as the mean of PGAL1GFP

expression in activated cells. First, for each strain, at each time

point, we determined by eye if the PGAL1GFP distribution was uni-

modal f XALLð Þ ¼ N lALL; rALL

� �� �
or bimodal fðXALLÞ ¼ f XOFFð Þ þ f XONð Þ

� �
.

If the distribution was unimodal, we calculated: A = lALL. Otherwise,

bimodal distributions were considered as mixtures of two normal

distributions, such as: fðXALLÞ ¼ qOFFN lOFF; rOFF

� �þ qONN lON; rON

� �
,

with A = lON. We used the function mixtools::normalmixEM() to

calculate A for mixture distributions.

Calculation of inducibility

Inducibility was defined as the proportion of ON cells in the popula-

tion. The threshold t between OFF and ON cells was calculated as

follows: (i) a subset of OFF cells (all cells acquired at t = 0 min)

and ON cells (activated cells belonging to unimodal distributions,

acquired at the latest time point of the experiments) was defined for

each experiments, (ii) the mean and standard deviation were

extracted from each OFF and ON normal distributions using the

function mixtools::normalmixEM(), (iii) these parameters were

used to determine t such as PðXON\tÞ ¼ PðXOFF [ tÞ, with XON the

observed fluorescence FL1 in ON_cells and XOFF the observed fluo-

rescence FL1 in OFF_cells, (iv) we finally calculated

I ¼ nb cells FL1[ tð Þ
nb cell totalð Þ for each time point, for each strain.

Stochastic modeling

We model the stochastic gene expression of GAL1, GAL3, GAL80,

and of the reporter gene (under a GAL1 promoter). For each gene,

we account for the status of the promoter (ON/OFF) and for the

production and degradation of mRNAs and proteins. In addition, for

the reporter gene, we account for the maturation of the fluorescent

protein. The promoter switching rate from ON to OFF for gene i

is driven by GAL80p: koffi ¼ koffo
Gal80p
K80

� �2
� �ni

with ni the number of

strong GAL4p binding sites in the promoter. We assume that

GAL80p represses transcription via its dimerized form (with K80

encompassing the dimer dissociation constant). The promoter

switching rate from OFF to ON is driven by GAL3p and Gal1p: koni ¼
kono

Gal1p�
K1

� �2
þ Gal3p�

K3

� �2
� �ni

with Galp� ¼ Galp
gal½ �=Kgal

1þ gal½ �=Kgal

� �
the number

of activated proteins at a given galactose concentration [gal] (Kgal

being the galactose dissociation constant). Here also, we assume

that activated Gal3p and Gal1p are mainly found as dimers. K1 and

K3 encompass the dimer dissociation constants as well as the affinity

of activated proteins for Gal80p. For a detailed description of the

model, see Appendix Text S1. Most of the parameters of the model

(except K1, K3, K80, and Kgal) were fixed based on the literature (see

Appendix Table S1 in Appendix Text S1). The model had 7 GAL3-

dependent parameters: a3 (leaky transcription rate), c3 (translation

rate), b3 (mRNA degradation rate), l3 (protein degradation/dilution

rate), Da3 (full transcription rate), K3, and Kgal. The phenotypic

response of a strain (gradual vs. binary) at a given galactose concen-

tration mainly depends on Kgal and on the strength of GAL3 defined

by qGal3 = a3c3/(b3l3K3) (see main text, Appendix Text S1 and

Appendix Fig S12). For a given set of parameters, the stochastic

dynamics of galactose induction was simulated using the stochastic

simulation algorithm from Gillespie (Gillespie, 1977). The system

was first allowed to reach steady state at [gal] = 0. At t = 0, galac-

tose is introduced and the parallel—independent—evolution of

5,000 cells is monitored during 250 min of real time. The model is

provided in computer Code EV1.

Parameter inference

For a fixed set of GAL3-independent parameters, predictions for

various values of GAL3-dependent parameters qGal3 and Kgal were

performed at three different galactose concentrations (0.05, 0.1, and

0.5%). Parameters were sampled from a 2D logarithmic-grid encom-

passing the region of interest. Then, for each strain, a global chi-

squared score between the experimental data and the corresponding

model predictions integrating the three concentrations were mini-

mized to infer qGal3 and Kgal. Uncertainties on the parameters reflect

the size of the sampling parameter grid. Parameter inference was

repeated six times for different values of GAL3-independent parame-

ters (see Appendix Text S1).

Molecular dynamics simulations for free energy calculations were

carried out as described in Appendix Text S2 and Fig S11.

Data availability

All flow cytometry raw data files can be downloaded from http://

flowrepository.org under accession number FR-FCM-ZY6Y.

Expanded View for this article is available online.
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