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Abstract
Despite the recent progress in sequencing technologies, genome-wide association studies

(GWAS) remain limited by a statistical-power issue: many polymorphisms contribute little to

common trait variation and therefore escape detection. The small contribution sometimes

corresponds to incomplete penetrance, which may result from probabilistic effects on

molecular regulations. In such cases, genetic mapping may benefit from the wealth of data

produced by single-cell technologies. We present here the development of a novel genetic

mapping method that allows to scan genomes for single-cell Probabilistic Trait Loci that

modify the statistical properties of cellular-level quantitative traits. Phenotypic values are

acquired on thousands of individual cells, and genetic association is obtained from a multi-

variate analysis of a matrix of Kantorovich distances. No prior assumption is required on

the mode of action of the genetic loci involved and, by exploiting all single-cell values, the

method can reveal non-deterministic effects. Using both simulations and yeast experimen-

tal datasets, we show that it can detect linkages that are missed by classical genetic map-

ping. A probabilistic effect of a single SNP on cell shape was detected and validated. The

method also detected a novel locus associated with elevated gene expression noise of the

yeast galactose regulon. Our results illustrate how single-cell technologies can be exploited

to improve the genetic dissection of certain common traits. The method is available as an

open source R package called ptlmapper.

Author Summary

Genetic association studies are usually conducted on phenotypes measured at the scale of
whole tissues or individuals, and not at the scale of individual cells. However, some com-
mon traits, such as cancer, can result from a minority of cells that adopted a special behav-
ior. From one individual to another, DNA variants can modify the frequency of such
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cellular behaviors. The body of one of the individuals then harbours more misbehaving
cells and is therefore predisposed to a macroscopic phenotypic change, such as disease.
Such genetic effects are probabilistic, they contribute little to trait variation at the macro-
scopic level and therefore largely escape detection in classical studies. We have developed
a novel statistical method that uses single-cell measurements to detect variants of the
genome that have non-deterministic effects on cellular traits. The approach is based on a
comparison of distributions of single-cell traits. We applied it to colonies of yeast cells and
showed that it can detect mutations that change cellular morphology or molecular regula-
tions in a probabilistic manner. This opens the way to study multicellular organisms from
a novel angle, by exploiting single-cell technologies to detect genetic variants that predis-
pose to certain diseases or common traits.

Introduction
Modern genetics aims to identify DNA variants contributing to common trait variation
between individuals. A high motivation to map such variants is shared worldwide because
many heritable traits relate to social and economical preoccupations, such as human health or
agronomical and industrial yields. In addition to the molecular knowledge they provide, these
variants fuel the development of personalized and predictive medicine as well as the improve-
ment of economically-relevant plants, animal breeds or biotechnology materials. However, this
high ambition is accompanied by a major challenge: common traits are under the control of
numerous variants that each contribute little to phenotypic variation [1], and this modest con-
tribution of each variant hampers the statistical power to detect them. Power is further limited
by the multiplicity of linkage tests when scanning whole genomes. The consequence of this has
been debated under the term "missing heritability": most of the genetic variants of interest
remain to be identified. Currently, this issue is handled by modelling the effect of known or
hidden factors, and by scaling up sample size up to tens of thousands of individuals [2–4].
Practically, however, cohort size cannot be infinitely increased, and relevant factors are difficult
to choose. Studies would therefore greatly benefit from a better detection of small genetic
effects, and from a reduction of the number of genomic loci to test.

Small-effect variants are typically associated with predisposition (or incomplete pene-
trance): carriers of a mutation display a phenotype at increased frequency, but not all of them
do. In this probabilistic context, the statistical properties of cellular traits may sometimes
become informative: a tissue may break because cells have an increased probability to detach, a
tumor may emerge because a cell type has an increased probability of somatic mutations, a che-
motherapy may fail if cancer cells have an increased probability to be in a persistent state. In
other words, molecular events in one or few cells can have devastating consequences at the
multicellular level. As discussed previously [5], cellular-scale probabilities are likely related to
the genotype and this relation may sometimes underlie genetic predisposition [6]. Striking
examples are genetic factors affecting the mutation rate of somatic divisions and thereby modi-
fying cancer predisposition. These loci have a probabilistic effect on a cellular trait: the amount
of de novomutations in the cell's daughter. Other loci may modulate the heterogeneity between
isogenic cancer cells that underlies tumour progression [7,8] and resistance to chemotherapy
[9–11]. They would then change the fraction of problematic cells between individuals and
thereby disease progression or treatment outcome.

Fortunately, the experimental throughput of single-cell measurements has recently
exploded. Technological developments in high-throughput flow cytometry [12], multiplexed
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mass-cytometry [13], image content analysis [14–16] and droplet-based single-cell transcrip-
tome profiling [17,18] now offer the possibility to estimate empirically the statistical distribu-
tion of numerous molecular and cellular single-cell quantitative traits. We therefore propose to
scan genomes for variants that modify single-cell traits in a probabilistic manner, which we call
single-cell Probabilistic Trait Loci (scPTL). This requires to monitor not only the macroscopic
trait of many individuals but also a relevant cellular trait in many cells of these individuals.
After scPTL are found, they can constitute a set of candidate loci to be directly tested for a pos-
sible small effect on the macroscopic trait of interest.

Methods are needed to detect scPTL. With its fast generation time, high recombination rate
and reduced genome size, the unicellular yeast Saccharomyces cerevisiae offers a powerful
experimental framework for developing such methods. Using this model organism, scPTL
were discovered by treating one statistical property of the single-cell trait, such as its variance
in the population of cells, as a quantitative trait and by applying Quantitative Trait Locus
(QTL) mapping to it [19,20]. However, this approach is limited because it is difficult to antici-
pate a priori which summary statistics must be used.

We present here the development of a genome-scan method that exploits all single-cell val-
ues with no prior simplification of the cell population phenotype. Using simulations and exist-
ing single-cell data from yeast, we show that it can detect genetic effects that were missed by
conventional linkage analysis. When applied to a novel experimental dataset, the method
detected a locus of the yeast genome where natural polymorphism modifies cell-to-cell vari-
ability of the activation of the GAL regulon. This work shows how single-cell quantitative data
can be exploited to detect probabilistic effects of DNA variants. Our approach is conceptually
and methodologically novel in quantitative genetics. Although we validated it using a unicellu-
lar organism, it opens alternative ways to apprehend the genetic predisposition of multicellular
organisms to certain complex traits.

Results

Definitions
We specify here the concepts and definitions that are used in the present study. Let X be a
quantitative trait that can be measured at the level of individual cells. X is affected by the geno-
type of the cells and by their environmental context. However, even for isogenic cells sharing a
common, supposedly homogeneous environment, Xmay differ between the cells. To describe
the values of X among cells sharing a common genotype and environment, we define a single-
cell quantitative trait density function f [5] as the function underlying the probability that a cell
expresses X at a given level (Fig 1A). Statistically speaking, f represents the probability density
function of the random variable X. In the present study, this function f(X) constitutes the 'phe-
notype' of the individual from whom the cells are studied. As for any macroscopic phenotype,
it can depend on the environmental context of the individual (diet, age, disease. . .) as well as
on its genotype. Single-cell trait density functions also obviously depend on the properties of
the cells that are studied, such as their differentiation state or proliferation rate.

We focus here on the effect of the genotype. Conceptually, cells from one individual may fol-
low a density function of X that is different from the one followed by cells of another individual,
because of genotypic differences between the two individuals (Fig 1B). The important concept is
that the genetic difference has probabilistic consequences: it changes the probability that a cell
expresses X at a given level, but it does not necessarily change X in most of the cells. Depending
on the nature of trait X and how the two functions differ, such a genetic effect can have implica-
tions on macroscopic traits and predisposition to disease [5]. The term single-cell Probabilistic
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Trait Locus will refer here to a genetic locus modifying any characteristics of f (that is, changing
allele A in allele B at the locus changes the density function f of X, i.e. fB 6¼ fA).

A quantitative trait locus (QTL) linked to X is a location on a chromosome where a genetic
variant changes the mean or the median of X in the cell population. Similarly, a varQTL is a
genetic locus changing the variance of X and a cvQTL is a genetic locus changing the coefficient
of variation (standard deviation divided by the mean, abbreviated CV) of X in the cell popula-
tion. All three types of loci (QTL, varQTL and cvQTL) assume a change in f and they are there-
fore special cases of scPTL. However, not all scPTL are QTL: many properties of fmay change
while preserving its mean, median, variance or CV. The purpose of the present study was to
develop an approach that could identify scPTL without knowing a priori how it might change f.

Mean and variability of cellular traits can have distinct genetic
heritabilities
An important question before investing efforts in scPTL mapping is whether genotypes can
modify f without affecting its expected value (the mean of X). If not, then QTL mapping will
capture the genetic modifiers of f and searching for more complex scPTL is not justified. In
contrast, if other-than-mean genotypic changes of f are frequent, then scPTL can considerably
complement QTL to control single-cell traits. In this case, scPTL mapping becomes important.

In multicellular organisms, cell types and intermediate differentiation states constitute the
predominant source of cellular trait variation. Studying their single-cell statistical characteris-
tics requires accounting for the developmental status of the cells. This constitutes a major chal-
lenge that can be avoided by studying unicellular organisms. The yeast S. cerevisiae provides
the opportunity to study individual cells that all belong to a single cell type, in the context of a
powerful genetic experimental system. By analysing specific gene expression traits in this
organism, we and others identified loci that meet the definition of scPTL but not of QTL
[20,21]. This illustrated that, for some traits, scPTL mapping could complement classic quanti-
tative genetics to identify the genetic sources of cellular trait variation.

To estimate if non-QTL scPTL are frequent, we re-analysed an experimental dataset corre-
sponding to the genetic segregation of many single-cell traits in a yeast cross (Fig 2A). After a
round of meiosis involving two unrelated natural backgrounds of S. cerevisiae, individual segre-
gants had been amplified by mitotic (clonal) divisions and traits of cellular morphology were
acquired by semi-automated fluorescent microscopy and image analysis [22]. This way, for

Fig 1. Concept and definitions. A) A cellular trait is considered as a random variable X with density function

f. The probability Pðx1 � X < x2Þ ¼ R x2
x1
fðXÞdX

� �
that one cell expresses X at a value comprised between x1

and x2 is given by the shaded area. B) f differs between individuals because of environmental and genetic
factors.

doi:10.1371/journal.pgen.1006213.g001
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each of 59 segregants, 220 single-cell traits were measured in about 200 isogenic cells, which
enabled QTL mapping of these traits. We reasoned that if all scPTL of a trait are also QTL,
then a high genetic heritability of any property of f should coincide with a high genetic herita-
bility of the expected value of f. In particular, the coefficient of variation (CV) of a single-cell
trait should then display high heritability only if the mean value of the trait also does. To see if
this was the case, we computed for each trait the broad-sense genetic heritabilities of both the
mean and CV of the trait. Note that the genetic heritability computed here is not the same as
the mitotic heritability of cellular traits transmitted from mother to daughter cells. Here, a
value (mean or CV) is computed on a population of cells, and its heritability corresponds to
the proportion of its variation that can be attributed to genetic differences between the cell pop-
ulations (see methods). Overall, heritability of mean was higher than heritability of CV, and
the two types of heritabilities were correlated (Fig 2B). We also observed that several traits had
high heritability of CV and low heritability of their mean value, or vice versa. This indicates
that, for some traits, genetic factors exist that modify the trait CV but not the trait mean. This
observation is in agreement with the complex CV-vs-mean dependency previously reported in
this type of data [23,24]. We therefore sought to develop a method that can detect scPTL that
do not necessarily correspond to QTL.

Principle of scPTL mapping
One way to identify scPTL from experimental measures is to compute a summary statistic of
the trait distribution, such as one of its moments, and then scan for QTL controlling this quan-
tity. This approach is particularly appropriate when searching for specific genetic effects on f,
such as a change in the level of cell-to-cell variability, and a few previous studies successfully
used it to map varQTL and cvQTL [19,20,22,25,26]. However, it is less adapted when nothing
is known on the way fmay depend on genetic factors.

Scanning for scPTL considers the entire distribution of single-cell trait values as the pheno-
type of interest and searches the genome for a statistical association with any change in the
distribution. We assume that for a set of genotypic categories (individuals for multicellular

Fig 2. Genetic heritabilities for mean and CV of cellular yeast traits are not correlated. A) Scheme of the experimental data used to
compute genetic heritabilities. The dataset is from [22]. B) Broad-sense genetic heritability of mean (y-axis) and CV (coefficient of variation, x-
axis) for 220 traits describing the morphology of individual cells (see methods). Each dot corresponds to one trait. Negative values were set to
zero. Bars: 95% confidence intervals. Spearman correlation coefficient: 0.671.

doi:10.1371/journal.pgen.1006213.g002
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organisms, or populations of cells for unicellular ones), a cellular trait has been quantified in
many individual cells of the same type. This way, the observed distribution of the trait consti-
tutes the phenotypic measure of individuals. We also assume that a genetic map is available
and the individuals have been genotyped at marker positions on the map. The method we pro-
pose is based on three steps. First, a distance is computed for all pairs of individuals in order to
quantify how much their phenotype differs. We chose the Kantorovich metric (also known as
the Wasserstein distance or the earth-mover's distance) to measure this distance because,
unlike the Kullback-Leibler divergence, it satisfies the conditions of non-negativity, symmetry
and triangle inequality and, unlike the Hellinger distance, it does not converge to a finite upper
limit when the overlap between distributions diminishes [27]. The Kantorovich metric can be
viewed as the minimum energy required to redistribute one heap of earth (one f-function) into
another heap (a second f-function). It has enabled developments in various fields, ranging
from mathematics [28] to economy (the minimal transportation problem) [29,30] to the detec-
tion of states from molecular dynamics data [27]. The next two steps are inspired from meth-
ods used in ecology, where spatial distinctions between groups are often searched after
determining distances between individuals [31,32]. In step 2 of our method, individuals are
placed in a vectorial space while preserving as best as possible the distance between them (Fig
3A). This is achieved by multi-dimensional scaling, a dimension-reduction algorithm [33]. The
third step is the genetic linkage test itself. At every genetic marker available, a linear discrimi-
nant analysis is performed to interrogate if individuals of different genotypic classes occupy
distinct sectors of the phenotypic space (Fig 3B and 3C). The optimal choice of dimensionality
is determined dynamically and a permutation test assesses statistical significance in the context
of the corresponding degrees of freedom. Note that if the dimensions have been reduced to a
single one, then canonical analysis is not needed: the phenotypic value of each individual has
become a scalar and linkage can be performed by standard QTL mapping. Finally, scPTL link-
age is scored using the Wilks' lambda statistics. Statistical inference is made using empirical p-
values produced by permutations where the identities of individuals are re-sampled. The full
procedure is described in details in the methods section.

Detection of simulated scPTL
We first evaluated if our method could detect scPTL from simulated datasets. To do this, we
considered a probabilistic single-cell trait governed by a positive feedback of molecular regula-
tions. This is representative of the expression level of a gene with positive autoregulation. As
depicted in Fig 4A, the employed model is based on three parameters. For each individual, a set
of parameter values was chosen and single-cell values of expression were generated by stochas-
tic simulations. We chose to simulate a scPTL that modified the expected values of the parame-
ters so that the skewness of cellular trait distribution is affected. To do so, we considered a
panel of individuals and their genotype at 200 markers evenly spaced every 5cM. Parameter
values of each individual were drawn from Gaussians and the mean of these Gaussians
depended on the genotype at the central marker. This defined two sets of phenotypes that are
depicted by blue and red histograms in Fig 4B. A universal noise term η was added to introduce
intra-genotype inter-individual variation which, in real datasets, could originate from limited
precision of measurements or from non-genetic biological differences between individuals. For
each of five increasing values of η, about 130 individuals were simulated.

We first scanned the generated dataset by QTL mapping, treating either the mean trait or its
variance as the phenotype of interest. This way, the central scPTL locus was detected only
when intra-genotype noise was null or very low (Fig 4C). This was anticipated because the
mean and variance of the simulated trait values slightly differed between the two sets of

Mapping Single-Cell Probabilistic Trait Loci

PLOS Genetics | DOI:10.1371/journal.pgen.1006213 August 1, 2016 6 / 27



individuals. In contrast, our new method allowed to robustly detect the scPTL locus even in the
presence of high (up to 20%) intra-genotype noise (Fig 4D and 4E).

scPTL mapping of yeast cell morphology
The results described above using a simulated dataset suggest that the method can complement
usual QTL mapping strategies. To explore if this was also the case when using real experimental
data, we applied scPTL scans to the dataset of Nogami et al. [22] mentioned above (Fig 2A)
where 220 single-cell traits were measured in about 200 cells from segregrants of a yeast cross.
We applied three genome x phenome scans, each one at FDR = 10%. Two consisted of QTL
interval mapping and were done by considering either the mean cellular trait value of the popu-
lation of cells or the coefficient of variation of the cellular trait as the population-level quantita-
tive trait to be mapped. The third scan was done using the novel method described here to map
scPTL. Significant linkages obtained from this scan are available in S1 Table. As shown in Fig
5, the three methods produced complementary results. We detected more linkages with the
scPTL method than with the 2 QTL scans combined (71 vs. 61 traits mapped). This illustrates
the efficiency of using the full data (whole distribution) of the cell population rather than using
a summary statistic (mean or CV). In addition, we expected that a fraction of scPTL would
match QTL, because QTL controlling the mean or CV of cellular traits are specific types of
scPTL. This was indeed the case, with 67% of scPTL corresponding to loci that were detected
by at least one of the two QTL scans. For 11 cellular traits, a locus was found by QTL or cvQTL
mapping but it was missed by the scPTL scan. This illustrates that the methods have different
power and sensitivity. Importantly, 22 cellular traits were associated to scPTL that were not

Fig 3. Principle of scPTLmapping. A cohort of multi-cellular individuals (or unicellular clones) with differing
genotypes is used. For each individual (or clone), a cellular trait X is measured on a population of cells, and
the observed distribution of X corresponds to the 'phenotype' of the corresponding individual.A) Kantorovich
distances are computed for all pairs of individuals. The resulting distance matrix is used to place individuals in
a multidimensional space. Proximity of individuals (grey and colored squares) in this space reflects
comparable phenotypes (distributions in insets). B) Individuals are 'labeled' (blue vs. red) by their genotype at
one genetic marker.C) A canonical discriminant analysis is performed to test if the genotype at the marker
discriminates individuals in the phenotypic space. In the examples displayed, genetic linkage is significant at
marker 2 but not at marker 1.

doi:10.1371/journal.pgen.1006213.g003
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detected by the QTL search, suggesting that some probabilistic effects may affect poorly the
trait's mean or CV. Altogether, these observations highlight the complementarity of the differ-
ent approaches and show that scPTL mapping can improve the detection of genetic variants
governing the statistical properties of single-cell quantitative traits.

Examples of scPTL of yeast cellular morphology are shown in Fig 6. One of the cellular traits
measured was the distance between the center of the mother cell and the brightest point of
DNA staining (Fig 6A). No QTL was found when searching genetic modifiers of the mean or

Fig 4. Test on simulations. A) A model of gene expression with positive feedback was used to simulate data (see methods). For each of ~130 distinct
individuals, parameters α0, α1 and K were drawn from Gaussian distributions and then used to generate independent values of X in 10,000 cells of each
individual. Mean values μ0, μ1 and μK depended on the genotype of individuals at a locus located in the middle of a 200cM genetic map. Other sources of
inter-individual variability were modeled by the extrinsic noise strength η. B) Distributions obtained (one per individual) at various values of η. Color:
genotype at the locus controlling μ0, μ1 and μK. C) QTL scans. For each individual, the mean (upper panels) or the variance (lower panels) of X were
considered as quantitative traits and the map was scanned using interval mapping. Red dashed line: genome-wide significance threshold at 0.05. D)
Coordinates of individuals (dots) in the phenotypic space obtained after computing Kantorovich distances and applying multi-dimensional scaling. Only the
first two dimensions are shown. E) scPTL scan. At every marker position, linear discriminant analysis was performed. W score: -log10(Λ), where Λ is the
Wilks' lambda statistics of discrimination (see methods). Red dashed line: empirical genome-wide significance threshold at 0.05 (see methods).

doi:10.1371/journal.pgen.1006213.g004
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CV of this trait, but a significant scPTL was mapped on chromosome II. When displaying trait
distributions, it was apparent that segregants carrying the BY genotype at the locus had
reduced cell-cell variability of the trait as compared to segregants having the RM genotype (Fig
6A, right panel). Consistently, a small cvQTL peak was seen on chromosome II, although this
peak did not reach genome-wide statistical significance. This trait, which relates to the statisti-
cal properties of DNAmigration during the early phase of cell division, provided a biological
example where scPTL scan identified a genetic modulator of cell-to-cell variability that was
missed by the QTL approach.

Three other traits were of particular interest because they mapped to a position on chromo-
some VIII where a functional SNP was previously characterized in this cross. This SNP corre-
sponds to a non-synonymous I->S mutation at position 469 in the Gα protein Gpa1p. It
targets a domain that is essential for physical interaction with pheromone receptors Ste2p and
Ste3p [34,35]. In the presence of pheromone, Gpa1p is released from the receptor and triggers
a signalling cascade of molecular response that causes cell-cycle arrest and cell elongation (a
process called 'shmooing'). In the absence of pheromone, improper binding of Gpa1pI469S to
the receptor causes residual activation of the pathway in the BY strain, as seen by transcrip-
tomic profiling [36], which explains why BY cells are more elongated [24] and proliferate
slower [37] than RM cells. Here we saw that this locus is a scPTL, but not a QTL, of the degree
to which cells are elliptical (Fig 6B). Displaying the distributions of this trait in each segregant
revealed a remarkable amount of variability between the segregants, and that the BY allele at
the locus corresponded to a modest reduction of the trait value as compared to the RM allele
(sharper mode at slightly lower value). To see if this was due to the GPA1I469S mutation, we
examined the data from a BY strain where this mutation was cured [22]. Remarkably, the single
amino-acid substitution caused a mild but statistically significant redistribution of the trait val-
ues (Fig 6B). This change was comparable to the difference seen among the segregants, demon-
strating the causality of the GPA1I469S SNP. Another trait, corresponding to the distance
between the bud tip and the short axis of the mother cell, also mapped to this locus, with the
RM allele associated to greater cell-cell variability, and data from the GPA1I469S allele-replaced
strain validated this SNP as the causal polymorphism (Fig 6C). These observations suggest that
either the residual activation of the pathway in absence of pheromone is not uniform among

Fig 5. Complementarity of scPTL and QTLmapping using experimental data. The data of Nogami et al. [22] was used to perform genomic
scans for QTL, cvQTL and scPTL. For scPTL mapping, we used both the first-axis only and multiple dimensions of the phenotypic space (see
methods), and the results were pooled.A) Venn diagram showing the number of traits for which a significant locus was found in the genome by
each method (each at FDR = 10%).B) Same representation as Fig 2B showing the traits successfully mapped by each method. The traits that
passed the heritability filter (see methods) and were considered for mapping are shown as triangles, and colored if mapping was successful.

doi:10.1371/journal.pgen.1006213.g005
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BY cells, or the proper inactivation of the pathway is not complete in all RM cells. This, and the
fact that the mutation does not prevent BY cells from proliferating (as compared to phero-
mone-arrested cells), indicate that the detachment of Gpa1pI469S from the receptor is a rare
event that has probabilistic effects on the cellular phenotype. Further investigations based on
biochemistry, dynamic recording of individual cells and stochastic modelling are needed to
understand how variation in binding affinity accounts for this effect. The results described here

Fig 6. Mapping single-cell probabilistic traits of cellular morphology. For each of 59 recombinant BYxRM yeast strains, four quantitative traits were
measured on ~200 individual cells [22]. From left to right: description of the trait; results from QTL scans applied to the mean (brown) or coefficient of
variation (green) of the trait; results from scPTL scan (pink dashed line: genome-by-phenome significance threshold at FDR = 10%; single-cell trait density
functions computed from the data, where each line corresponds to a recombinant strain (color: genotype at scPTL); when relevant, single-cell trait density
functions of nearly-isogenic BY strains differing for one non-synonymous SNP in theGPA1 gene are shown (p: statistical significance of the corresponding
two-sample Kolmogorov-Smirnov test). A) Trait D148_A1B is the distance between the nuclear brightest point and the mother center, relative to the mother
size. An scPTL was detected on chromosome 2. B) Trait C13_A is the fitness of the cell outline to the best adjusted ellipse.C) Trait C111_C is the distance
between the bud tip and the extension of the mother short axis.D) Trait C105_C corresponds to the position of the budding site. It is the angle between the
long axis of the mother cell and the line defined by the mother center and the middle point of neck.

doi:10.1371/journal.pgen.1006213.g006
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illustrate that scPTL scans can identify individual SNPs that modify single-cell trait distribu-
tions without necessarily affecting the trait mean.

Finally, another trait corresponding to the angle of bud site position mapped to two scPTL
loci and no QTL. One of these loci contained the GPA1 gene on chromosome VIII. Although
the phenotype of bud site selection is not related to 'shmooing', we examined if the GPA1I469S

SNP was involved and found that it was not: the allele-replaced strain did not show a different
trait distribution than its control (Fig 6D). Thus, other genetic polymorphisms at the locus
should participate to the statistical properties of cellular morphology, by affecting the position
of budding sites.

scPTL scanning detects a new yeast locus that modulates cell-cell
variability of the transcriptional response to galactose
We then explored if scPTL scanning could provide new results when applied to a molecular
system that had been extensively characterized by classical genetics. The system we chose was
the yeast GAL regulon which, in addition to be one of the best described regulatory network,
presented several advantages. Natural strains of S. cerevisiae are known to display differences
in its regulation [38,39] and the transcriptional response of cell populations can be tracked by
flow cytometry. This provides data from large numbers of cells and therefore a good statistical
power to compare single-cell trait distributions. In addition, acquisitions on many genotypes
are possible using 96-well plates. We reasoned that if features of the cell population response
segregate in the BY x RM cross (described above for morphology), then scPTL scanning might
identify genetic variants having non-deterministic effects on the regulation of GAL genes.

We first compared the dynamics of transcriptional activation of the network in the two
strains BY and RM. This was done by integrating a PGal1-GFP reporter system in the genome
of the strains, stimulating them by addition of galactose in the medium, and recording the
response by flow cytometry. As shown in Fig 7, both strains responded and full activation of
the cell population was reached after ~2 hours of induction. Interestingly, remarkable differ-
ences were observed between the two strains regarding the distribution of the cellular response.
The BY strain showed a gradual increase of expression through time that was relatively homo-
geneous among the cells (unimodal distribution with relatively low variance), whereas the RM
strain showed elevated cell-cell heterogeneity at intermediate activation time points (higher
variance, with fraction of non-induced cells). This suggested that genetic polymorphisms
between the strains might control the level of heterogeneity of the cellular response at these
intermediate time points.

We sought to map one or more of these genetic factors. To do so, we acquired the response
of 60 meiotic segregants of the BY x RM cross. Using the data collected at each time point, we
scanned the genome for scPTL of the reporter gene expression level using the novel genome-
scan method described above. The procedure identified a locus on chromosome V position
350,744 that was highly significant (genome-wide p-value< 0.001) at 30 minutes post induc-
tion, the time at which heterogeneity markedly differed between the BY and RM strains (Fig 7B
and 7C). The locus was also significant at times 20 min (p< 0.005) and 40 min (p< 0.005)
post induction.

Visualizing the distributions of single-cell expression levels at 30 minutes revealed that the
RM and BY genotypes at this locus corresponded to high and low cell-cell heterogeneity,
respectively (Fig 7D and 7E). Thus, this locus explains, at least in part, the different levels of
heterogeneity observed between the parental strains. It should therefore also be detected as a
varQTL or cvQTL. This was indeed the case: the LOD score linking the locus to the variance of
expression was 4.5 and reached statistical significance (P = 0.005). Importantly, the scPTL was
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not a QTL: the locus genotype did not correlate with the mean level of expression of the popu-
lation of cells (LOD score< 2.8).

When surveying the genomic annotations of the locus [40], we realized that it contained no
obvious candidate gene that would explain an effect on the heterogeneity of the response (such
as genes known to participate to the transcriptional response). One potentially causal gene was
DOT6, which encodes a poorly characterized transcription factor that was shown to shuttle
periodically between the cytoplasm and nucleus of the cells in standard growth conditions
[41]. Given that i) the shuttling frequency of such factors can sometimes drive the response to
environmental changes and ii) numerous non-synonymous BY/RM genetic polymorphisms
were present in the gene, we constructed an allele-replacement strain for DOT6 and tested if
the gene was responsible for the scPTL linkage. This was not the case. Strains BY and BY-
DOT6RM (isogenic to BY except for the DOT6 gene which was replaced by the RM allele) dis-
played very similar transcriptional responses at intermediate times of induction (S1 Fig). Fine-
mapping of the locus and a systematic gene-by-gene analysis are now needed to precisely iden-
tify the polymorphisms involved. By highlighting a novel genetic locus modulating cell-cell

Fig 7. Detection of a scPTL for the cellular response to galactose. A) Time-course flow cytometry acquisitions of the response to galactose
in strains BY and RM. Cells were cultivated in raffinose 2% and were shifted to a medium containing Raffinose 2% and Galactose 0.5%. After the
indicated time, cultures were fixed with paraformaldehyde and analysed by flow cytometry. Histograms correspond to the fluorescent values
obtained on cells gated for cell-size (see methods). B) Genome scan for scPTL affecting the response after 30 minutes induction. Data similar to
panel A was generated for 60 segregants, and the histograms obtained at 30 min post-induction (shown in D), together with the genotypes from
[66] were used for scPTL mapping using the multi-dimensions method. The linkage profile (W score) obtained when retaining the first two
dimensions is shown, colored by chromosome. Dotted line: significance threshold at genome-wide p-value < 0.005. Arrow: significant scPTL on
chromosome 5.C) Two-dimensional coordinates of the 60 segregants in the phenotypic space (30 min induction time). color: genotype at the
scPTL locus.D) Phenotypes (histograms of single-cell expression value) of the 60 segregants after 30 min induction, colored by the genotype of
the segregants at the scPTL locus. a.u.: arbitrary unit. E) Boxplot summarizing the variance of histograms from panel D grouped by the genotype
at the scPTL locus.

doi:10.1371/journal.pgen.1006213.g007
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variability of the transcriptional response to galactose, our results show that scPTL scanning
can provide new knowledge on the fine structure of a well-studied system.

Discussion
We have developed a novel method to scan genomes for genetic variants affecting the probabi-
listic properties of single-cell traits. We validated the method using data from colonies of a uni-
cellular organism, which constitutes a first step before transferring the method to multicellular
organisms. Our approach extends the usual genetic analysis of quantitative traits both concep-
tually and methodologically: by incorporating large samples of phenotypic values at the cellular
scale, variants that have probabilistic effects can be detected and their possible contribution to
trait heritability at the macroscopic (multicellular) scale can be investigated.

scPTL and the genetic predisposition to disease
When considering macroscopic phenotypes, it is important to distinguish the situations where
scPTL mapping is biologically relevant from those where it is not. The determinants of human
height, for example, act via countless cells, of multiple types, and over a very long period of
time (~ 16 years). In such cases, the macroscopic trait results from multiple effects that are
cumulated and considering the probabilistic individual contribution of specific cells is inappro-
priate. Similarly, many tissular traits heavily rely on communications between cells and proba-
bilistic changes in a few may not affect the collective output of the cell population. In contrast,
a number of macroscopic traits can be affected by particular events happening in rare cells or
at a very precise time (see below). In these cases, studying the probabilities of a biological out-
come in the relevant cells or of a molecular event within the critical time interval can provide
invaluable information on the emergence of the macroscopic phenotype, and scPTL mapping
then becomes relevant.

A striking example of such traits is cancer. Genetic predisposition is conferred by variants
affecting somatic mutation rates and these loci are special cases of scPTL: the cellular trait they
modify is the amount of de novomutations in the cell's daughter. These variants have classically
been identified by genetic linkage of the macroscopic trait (disease frequency in families and
cohorts), and their role on the maintenance of DNA integrity was deduced afterwards by
molecular characterizations. For a review on the genetics of cancer syndrome predisposition,
see [42,43]. scPTL mapping is also relevant to the non-genetic heterogeneity of cancer cells
which was shown to be associated with tumour progression [7,8] and treatment efficiency [9–
11]. Genetic loci changing the fraction of problematic cells are likely modulators of the progno-
sis. If the functional properties (expression level, phosphorylation status, subcellular localiza-
tion) of a key molecular player, such as a critical tumor-suppressor gene, can be monitored in
numerous individual cells, then scPTL mapping, as presented here, may help identify genetic
factors that modulate the activity of this gene in a probabilistic manner. Once identified, the
association of these loci with the macroscopic phenotype can then be tested directly, avoiding
at least partly the statistical challenges of whole-genome scans.

To illustrate this, we considered an idealized case where three scales are bridged: at the
molecular level, a scPTL affects the expression of a protein X (same regulation as in Fig 4); at
the cellular level, cells have higher probability to divide if their level of X is low (Fig 8A); and at
the whole-organism level, disease appears if too many cells are present. Using a stochastic
model of this scenario, we simulated a cohort of individuals and recorded the state and number
of cells in every individual over time (Fig 8B, see methods for details). Disease appeared in all
individuals, between age 22 and 29. Using the data at age 23, we compared the power of GWAS
and scPTL mapping. For GWAS, the trait of individuals was whether they had declared the
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disease or not. For scPTL mapping, the trait was the expression level of X in 10,000 of their
cells. As expected by the moderate effect on disease frequency, GWAS failed to detect the locus
(Fig 8C). In contrast, scPTL detection was highly significant from the same cohort of individu-
als (Fig 8D). Importantly, although not significant genome-wide, the GWAS score at the locus
had a nominal p-value lower than 0.01 (Fig 8C). The locus would therefore be considered sig-
nificant if it had been the only one tested. This illustrates the added value of scPTL mapping:
while keeping cohort size constant, it can highlight candidate loci of the genome that can then
be tested individually for association to the disease. This power clearly results from i) additional
traits (cellular ones) that are included before scanning the genome and ii) relaxation of multi-
ple-testing correction when testing association to disease. Note that other system genetics
methods, such as expression QTL (eQTL) mapping, improve power in a similar way: they high-
light relevant candidates via the addition of intra-individual traits (molecular ones) [44]. Note
also that recruiting large cohorts remains important: Methods detecting scPTL and eQTL can
improve genetic mapping but their detection power remain strictly dependent on the number
of individuals available in the study.

What cellular trait should be quantified?
In real studies, external knowledge is needed on the link between the cellular trait and the dis-
ease: what single-cell trait should be measured? Can it be measured in a sufficiently large num-
ber of cells? If a reporter system of de novomutations, for example based on the intracellular
distribution of a fluorescently tagged repair protein [45,46], can be introduced in a relevant
and large population of cells, then the high number of cell measurements may allow to detect
loci that modify even slightly the mutation rate. For non-genetic features of problematic cells,
choice of the trait can be driven by investigations at the molecular level, such as stochastic pro-
filing [47], and at the cellular level, such as recording the response of cell populations to treat-
ment or differentiation signals [9,10]. For example, the distribution of the biomarker JARID1B
(a histone demethylase) in populations of melanoma cells is indicative of an intra-clonal het-
erogeneity that is important for tumour progression [7], biomarkers CD24 and CD133 can

Fig 8. The added value of scPTLmapping. A simple model is considered where a population of cells evolves, with a death rate that is constant and a
division rate that depends on the intra-cellular concentration of a tumor-suppressor protein X (A). The population of cells is considered to be pathogenic if
it exceeds 120,000 cells (over-proliferation). The expression of X follows the model described in Fig 4, with extrinsic noise strength η = 0.16.B) Time-
evolution of the number of cells in 124 simulations corresponding to 124 distinct individuals (see methods). Each line represents one individual. Color:
same genotypic groups as in Fig 4, which correspond to distinct sets of parameters for the regulation of X, which are linked to an scPTL located in the
middle of a chromosome. Disease onset is earlier in group B (red curves). C) Using the macroscopic data (disease vs. healthy, 124 individuals) from
panel B at age 23, the simulated disease-modifying locus was not detected by classical association mapping. Linkage was searched with an exact Fisher
test. Dashed line: genome-wide 5% significance threshold determined by permutations. D) Using single-cell data (level of X in 10,000 cells, 124
individuals) from panel B at age 23, the locus was detected by scPTL mapping. Dashed line: genome-wide 5% significance threshold determined by
permutations.

doi:10.1371/journal.pgen.1006213.g008
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distinguish rare cells that persist anti-cancer drug treatments [10] and multiplexed markers of
signalling response can reveal patterns of population heterogeneity that predict drug sensitivity
[48]. When relevant markers are not known, a possibility is to screen for them using stochastic
profiling [47]. This method interrogates the transcriptomic variability between pools of few
cells in order to identify transcripts displaying elevated cell-to-cell variability in specific biolog-
ical contexts. It allowed the discovery of two molecular states of extracellular matrix-attached
cells that can be distinguished by the jun D proto-oncogene and markers of TGF-β signalling
[8]. Such markers of isogenic cellular subtypes may allow the development of scPTL mapping
in humans.

An important statistical requirement to identify scPTL is the abundance of cells on which
the probabilistic trait is quantified. For human studies, peripheral blood offers access to many
cells but, unfortunately, many internal organs do not. This requirement also implies using tech-
nologies where the throughput of quantitative acquisitions is high. This is the case for flow-
cytometry and, although at higher costs, for high-content image analysis [14,15] and digital
microfluidics [17,18]. For these practical reasons, it is possible that mouse immunological stud-
ies will help making progress in mammalian scPTL mapping. For example, the work initiated
by Prince et al. [49] describing pre- and post-infection flow-cytometry profiles of F2 offsprings
from different mouse strains may provide an interesting pilot framework.

scPTL mapping and developmental instability
The interest of scPTL mapping is not restricted to cancer biology. Developmental processes
and cellular differentiation are also vulnerable to mis-regulations happening in few cells or dur-
ing short time intervals. Their macroscopic outcome can therefore be affected by probabilistic
events at the cellular scale. For example, stochastic variation in the expression of the stem cell
marker Sca-1 is associated with different cellular fates in mouse hematopoietic lineages [50],
suggesting that genetic factors changing this stochastic variation may impact blood composi-
tion. Similarly, embryonic stem cells co-exist in at least two distinct molecular states that are
sensitive to epigenetic and reprogramming factors [51]. Genetic variants modulating these fac-
tors may change the statistical partitioning of these states. Two observations made on flies
remarkably support the existence of natural genetic factors altering developmental processes in
a probabilistic manner. The first one is the fact that high levels of fluctuating asymmetry can be
fixed in a wild population of D.melanogaster under artificial selection [52]. The second one
comes from a comparative study of Drosophila species [53]. Embryos of D. santomea and D.
yakuba display high inter-individual variability of expression of the signal transducer pMad at
the onset of gastrulation, as compared to D.melanogaster embryos. This increased variability
was attributed to a reduced activity of the homeobox gene zerknüllt thirty minutes before this
stage. Very interestingly, it is accompanied by phenotypic variability (inter-individual variance
of the number of amnioserosa cells) in D. santomea but not in D. yakuba. These and other
examples [54] illustrate how developmental variability and phenotypic noise can evolve in nat-
ural populations. Applying scPTL mapping may allow to dissect the genetic factors responsible
for this evolution.

Methods for scPTL mapping
Our new method based on the Kantorovich distance is not the only one by which scPTL can be
identified. Applying classical QTL mapping to summary statistics of the cellular traits can also
be efficient. We emphasize that the two approaches are complementary. For example, our
method missed to detect linkage for 9 yeast morphological traits for which cvQTL scans were
successful, but it detected several significant scPTL that were missed by the QTL-based
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approach (Figs 5 and 6). Second, we observed that scPTL detection was often efficient when
the mean value of cellular trait differed among genotypic categories. As shown on Fig 5B, traits
successfully mapped tended to display high heritability of the mean. Thus, after a scPTL is
detected, it is necessary to examine the effect on the trait distributions and to determine if it is a
QTL or not. Third, alternative ways of mapping scPTL are open and may prove more appropri-
ate in some contexts. For example, if a cellular trait becomes preoccupying when it exceeds a
certain threshold value, then the fraction of cells above this threshold can be used as a macro-
trait to be mapped by QTL analysis. This way, the focus is made on the relevant aspect of the
cellular trait, avoiding variation in other parts of the distribution. We therefore recommend
conducting Kantorovich-based scPTL mapping in addition to classical methods and not as a
replacement strategy.

Future statistical improvements in scPTL mapping
While the principle of genotype-phenotype genetic linkage dates back to several decades ago,
the statistical methods that test for linkage are still being improved, especially regarding multi-
loci interactions or population structure corrections [55,56]. The present study provides a
priming of a generic scPTL mapping approach (exploiting thousands of single-cell trait values)
and demonstrates its feasibility and potential (new loci were detected). Since it is new, we antic-
ipate that it will also evolve in the future. It is currently based on three steps: (i) computing
pairwise distances between individuals by using the Kantorovich metric, (ii) using the resulting
distance matrix to construct a relevant phenotypic space and (iii) testing for genetic linkage by
LDA. A number of methodological considerations can be made in anticipation to future devel-
opments and applications.

Estimating the proportion of variance explained by scPTL is not straightforward: the 'cap-
tured variance' as quantified by the eigenvalues of the LDA is not the same as the 'explained
variance' which must be re-computed by regression; and if linearity of the data is questionable,
the method remains a useful tool if it detects scPTL but interpreting variance proportions need
justifications.

A phenotypic space can be constructed by alternative ways that do not require the Kantor-
ovich metric. For example, we considered representing individuals in a "space of moments",
where the coordinate of every individual on the i-th axis was the i-th moment of the cellular
trait distribution associated to this individual. We applied this to the yeast morphological data
and we searched for genetic linkages by linear discriminant analysis as described above. This
approach detected many significant scPTL but we encountered a difficulty that was avoided
by our Kantorovich-metric based method. When searching for significant linear discrimina-
tion, the dimensionality of the phenotypic space is important. At high dimensionality, dis-
criminant axes are more likely to be found. This improves detection in the actual data but at
the expense of increasing the degrees of freedom and therefore the false positive hits estimated
from the permuted data. In a "space of moments", the properties of the single-cell trait distri-
butions are very important because they define which axis (moments) are relevant to separate
individuals. Keeping the 4-th axis may be crucial even if all individuals have very similar first,
second or third moments. Choosing the appropriate dimension for LDA is then arbitrary and
it becomes difficult to keep a good detection power while still controlling the FDR. In fact,
applying QTL mapping on the 3rd and 4th moments of all traits was fruitless because the FDR
could not be controlled at the genome-by-phenome scale. This issue is avoided in the case of
Kantorovich distances because multi-dimensional scaling can be applied without normaliza-
tion and the axes of the phenotypic space are ranked by descending order of their contribution
to the inter-individual differences. The 4-th axis, for example, contributes less than the first

Mapping Single-Cell Probabilistic Trait Loci

PLOS Genetics | DOI:10.1371/journal.pgen.1006213 August 1, 2016 16 / 27



three axes to the separation of individuals in the space. If keeping the 4-th dimension prior to
LDA is beneficial for linkage, then keeping the first three axes is also highly relevant, and this
is true regardless of the properties of the single-cell trait distributions. We found this very use-
ful: our algorithm adds dimensions one by one and evaluates the benefit of each increase (see
methods).

There are at least three lines along which our method may be further improved. First,
LDA is only appropriate if genotypic categories can be distinguished along linear axis. If indi-
viduals in the phenotypic space are separated in non-linear patterns, other methods such as
those based on kernel functions [57] may be more appropriate. Second, we propose to com-
pute confidence intervals of scPTL position by bootstrap, following a method sometimes
applied to QTL positions [58]. As expected, resampling not only affected scPTL position but
also the optimal dimensionality retained (S2A Fig). A deeper investigation of the simulta-
neous variation of these two outputs could help improve the precision of mapping. And
third, single-cell data acquisitions often generate multiple trait values for each individual
cells. This is the case for morphological profiling as in the dataset we used here, but also for
gene expression [59] or parameters describing the micro-environment of the cells [60]. It
would therefore be interesting to search for scPTL affecting multiple cellular traits simulta-
neously instead of treating cellular traits one by one. A multidimensional analysis could be
performed in order to extract a set of informative meta-traits, such as principal components
or representative medoids and scPTL of these meta-traits could be searched using our
method. This dimension-reduction approach would benefit from the redundant information
available from correlated traits (e.g. the perimeter of a cell and its area are two measurements
of its size), but the biological interpretation of a probabilistic effect on a meta-trait may not
be straightforward. Alternatively, one might want to identify scPTL affecting the joint proba-
bility distribution of multiple cellular traits. In this case, a natural extension of our method
would be to compute Kantorovich distances between multivariate distributions. However,
the Kantorovich metric cannot be easily computed for more than two marginals (i.e. cellular
traits in our case). In fact, its existence as a unique solution to the multi-dimensional trans-
portation problem was itself a subject of research [61]. A possible alternative could be to
compute a Euclidean distance in the "space of moments" mentioned above and then apply
multi-dimensional scaling.

Furthermore, although our study was focused on probability density functions, steps (ii),
constructing the phenotypic space, and (iii), testing for genetic linkage, could in principle be
applied to other types of functions, provided that a relevant metric estimating the dissimilarity
between such functions exists. This could be interesting in the case of function-valued traits,
such as speech sound or other time-series functions. The evolution of these functions is being
studied using phylogenetic methods that present challenging statistical issues [62,63]. Extend-
ing our approach to such functions may open the possibility to study them from a (comple-
mentary) quantitative genetics angle.

Finally, we can anticipate that gene-gene and gene-environment interactions also shape the
probability density function of cellular traits. Our results on the activation of the yeast galactose
network remarkably illustrate this: the effect of the scPTL on chromosome V is apparent only
transiently, and in response to a change of environmental conditions. It is tempting to extrapo-
late that signaling pathways in plants and animals may be affected by scPTL that act at various
times and steps along molecular cascades.

In conclusion, our study provides a novel method that can detect genetic loci with probabi-
listic effects on single-cell phenotypes, with no prior assumption on their mode of action. By
exploiting the power of single-cell technologies, this approach has the potential to detect small-
effect genetic variants that may underlie incomplete trait penetrance at the multicellular scale.
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Methods

Stochastic modeling of a positively auto-regulated gene
Single-cell gene activity was modeled by a stochastic variable X that represented the number of
proteins in one cell at a given time. Under the model, the dynamics of X is controlled by two
processes: (1) protein production with rate α and (2) protein degradation with rate β. We
assume that the gene is positively auto-regulated by a 4-mer complex, meaning that α is an
increasing function of X with a typical Hill-like shape

a ¼ a0 þ a1
X
K

� �4
1þ X

K

� �4

with α0 the leaky production rate in absence of X 4-mers at the promoter, α1 the production
rate in presence of 4-mers, and K the dissociation constant of the 4-mer. We set β = 1, which
corresponds to scaling time units. The dynamics of the mean value of X in a population of iso-
genic cells follows the equation shown in Fig 4A. To obtain the probability distribution of X,
we performed exact stochastic simulations of the chemical system defined by the two reactions
rate α and β, using the Stochastic Simulation Algorithm [64].

To generate two groups of individuals, we assumed that the set of parameters (α0, α1, K) was
controlled by one locus that could exist in two alleles (A and B) with mean values (μ0

A/B, μ1
A/B,

μK
A/B) and, for simplicity, that the individuals were haploids. To account for sources of inter-

individual variability within genotypic groups, the values of the parameters for one individual
were drawn from normal distributions of mean values μ0

A/B, μ1
A/B and μK

A/B and of standard
deviations ημ0

A/B, ημ1
A/B and ημK

A/B where η represented the strength of inter-individual vari-
ability. η was assumed to be the same for A and B alleles. Values were: μ0

A = 6.3, μ0
B = 0.1,

μ1
A = 12, μ1

B = 10, μK
A = 10 and μK

B = 1.6.

Genetic heritabilities of cellular traits' mean and CV
All statistical analysis were done using R (version 3.1.2) [65]. The data from Nogami et al. [22]
consisted of 220 traits, acquired on>200 cells per sample. Note that most traits are related to
one of three division stages. Each trait was therefore measured on a subset of cells of the sample
(less than 200). There were nine samples of the BY strain, nine of the RM strain, and three of
each of 59 segregants of the BY x RM cross. For each trait, we computed the genetic heritabili-
ties of the mean and CV as follows. The mean and CV of the cellular trait in each sample were
computed, leading to two scalar values per sample that we call macro-traits hereafter (to distin-
guish them from the single-cell values). The broad-sense genetic heritability of each macro-
trait was H2 = (varT − varE) / varT, with varT and varE being the total and environmental vari-
ance, respectively. For Fig 2B, we estimated varT by randomly choosing one of the three repli-
cate sample of each segregant and computing the variance across these 59 values. This was
repeated 100 times and the estimates were averaged. Our estimate of varE was the pooled vari-
ance of varBY, varRM, varSeg1, varSeg2, . . ., varSeg59 which were the between-replicates variance of
each strain. Confidence intervals on H2 values were computed by bootstrapping the strains.
For the filtering step prior to linkage, H2 was computed slightly differently in order to be con-
sistent across mapping methods (see below).

scPTL mapping of yeast morphological traits
We first normalized the distributions as densities (division of all bin counts by half the total
number of cells). Following [27], we then computed the Kantorovich distance between two dis-
tributions f1 and f2 as the area under the absolute value of the cumulative sum of the difference
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between the two distributions:

KDðf1; f2Þ ¼
Z þ1

�1

Z x

�1
f1ðtÞ � f2ðtÞ dt

����
����dx

Multi-dimensional scaling of the resulting distance matrix was then performed using the R
function cmdscale() from the stats package. The number of dimensions retained (ndim) was
the number of eigenvalues exceeding the expected value under the hypothesis of no structure
in the data (i.e. mean of all eigenvalues, Kaiser criterion). We computed the heritability of each
yeast morphological trait in this multidimensional space. This was done as above for one
dimension, by computing the total variance of the data, and estimating the environmental vari-
ance from the replicated experiments made on the parental strains. For 147 traits, heritability
was greater than 0.5 and scPTL were searched. Details on how these steps were implemented in
R are described in S1 Methods, and the code is available in the open source ptlmapper R pack-
age (https://github.com/fchuffar/ptlmapper).

The yeast genotypes we used were from Smith and Kruglyak [66]. For the morphological
traits, we pooled triplicates together in order to increase the number of cells per sample. The
data then corresponded to 220 traits, measured on>600 cells per sample, with 3 BY samples, 3
RM samples, and 1 sample per segregant. We scanned the genetic map with two methods.
First, we considered the coordinates of each segregant on the first axis of the multi-dimensional
scaling, and we considered this coordinate as a quantitative trait that we used for interval map-
ping using R/qtl [67]. Secondly, we applied a linear discrimination analysis (LDA) on the phe-
notypes data, using the genotype at every marker as the discriminating factor. An important
issue in this step is the multidimensionality of the data: axis 2, 3 and more may contain useful
information to discriminate genotypic groups, but if too many dimensions are retained, a
highly-discriminant axis may be found by chance only. To deal with this issue, we evaluated
the output of LDA at all dimensions d ranging from 2 to ndim. For each value of d, we applied
LDA at every marker position and we recorded the Wilks' lambda statistics:

L ¼
Yd

j ¼ 1

1

1þ lj

where λj was the j-th eigenvalue of the discriminant analysis. Low values of this statistics allow
to reject the null hypothesis of no discrimination by the factor of interest [68] which, in our
case, is the genotype. We defined a linkage score (W score) as:

W ¼ � Log10ðPÞ

where P is the p-value of the Wilk's test (deviation of Λ from the F-statistics with relevant
degrees of freedom). Note that P is not interpreted directly as a significance value for linkage
(see the permutation test below).

We then quantified how much the best marker position was distinguished from the rest of
the genome by computing a Z-score:

Z ¼ Wbest � hWi
sw

whereWbest,<W> and σW were the highest, the mean and the standard deviation of all W
scores found on the genome, respectively. Finally, we chose the dimension that maximized this
Z-score (i.e. dimension where the linkage peak had highest contrast). Very importantly, the
same degrees of freedom (exploration of the results at various dimensionalities) were allowed
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when applying the permutation test of significance (see below). The distribution of the dimen-
sionalities retained for the morphological traits is shown in S2B Fig. Additional details are pro-
vided in S1 Methods and the code is available in the open source ptlmapper R package (https://
github.com/fchuffar/ptlmapper).

QTL, cvQTL and varQTL mapping
QTL-based mapping was performed as follows. A quantitative trait was considered at the cell-
population level. This macro-trait was either the mean (for QTL), the coefficient of variation
(standard deviation divided by mean, for cvQTL) or the variance (for varQTL) of the cellular
trait in the population of cells. For the yeast morphology data, we selected the traits with H2 >

0.5 prior to linkage. To do so, we re-computed H2 values in a way that was consistent with the
heritability calculation of the phenotypic space prior to scPTL mapping, where replicates of
segregants were pooled together before analysis of inter-strain variation (see above). In this
case, only 3 replicates of BY and 3 replicates of RM are then available to estimate the environ-
mental variance. Therefore, we estimated varT as the variance of the 59 macro-trait values of
the segregants and varE as (varBY + varRM) / 2, with varBY (resp. varRM) being the variance of
the three macro-trait values of the BY (resp. RM) strain. We then scanned the genome using
the scanone function from r/qtl [67] with a single QTL model and the multiple imputation
method [69]. Our code implementing the calls to r/qtl is available in the open source ptlmapper
R package (https://github.com/fchuffar/ptlmapper).

Permutation tests for statistical significance
We first explain the case where a single trait is studied. When the trait was mapped using R/qtl,
significance was assessed by the permutation test implemented in function scanone() of the
package [67]. For scPTL, we implemented our own permutation test as follows. The signifi-
cance of an scPTL is the type one error when rejecting the following null hypothesis: "there is
no marker at which the genotype of individuals discriminates their location in the phenotypic
space", where one 'individual' refers to one population of isogenic cells, and where the 'pheno-
typic space' is the multi-dimensional space built above by computing Kantorovich distances
and applying multi-dimensional scaling. The relevant permutation is therefore to randomly re-
assign the phenotypic positions to the individuals before scanning genetic markers for discrim-
ination. We did this 1,000 times. Each time, LDA was applied at dimensions 2 to ndim, the
dimension showing the best contrast (high Z score) was retained, and the highest W score
obtained at this dimension was recorded. The empirical threshold corresponding to genome-
wide error rates of 0.1%, 1% and 5% were the 99.9th, 99th and 95th percentiles of the 1,000 val-
ues produced by the permutations, respectively. These thresholds are typically those employed
in whole-genome scans for a single trait.

We now explain the case of the morphological study, where multiple traits (220) were con-
sidered. This case is similar to system genetics studies, where the FDR must be controlled.
Keeping it below 10% ensures that 9 out of 10 results are true positives, which is often consid-
ered as acceptable. Four different methods were used. For three of them, single-cell trait values
were resumed to a scalar macro-trait and QTL was searched. The three methods differed by the
choice of this macro-trait, which was either the mean or the coefficient of variation of single-
cell traits, or the coordinate of individuals on the first axis of the phenotypic space. For each of
the three methods, morphological traits with less than 50% genetic heritability (see above) were
not considered further, and QTL was searched for the remaining Ntraits traits only. For each of
these traits, LOD scores were computed on the genome by interval mapping using the macro-
trait value as the quantitative phenotype of interest. Significance was assessed by random re-
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assignment of the macro-trait values to the individuals (yeast segregants). We did 1,000 such
permutations. For each one, the genome was scanned as above and the highest LOD score on
the genome was retained. This generated a 1,000 x Ntraits matrixMperm of the hits expected by
chance. At a LOD threshold L, the FDR was computed as:

FDR ¼ NFalseL = NActualL

where NActualL was the number of linkages obtained from the actual dataset at LOD> L, and
NFalseL was the expected number of false positives at LOD> L, which was estimated by the
fraction of elements ofMperm exceeding L.

The fourth method considered all coordinates of the individuals in the phenotypic space. At
this step, for each morphological trait, a phenotypic space of ndim dimensions had been built as
explained above by computing Kantorovich distances and applying multi-dimensional scaling.
Let P1, P2 and PS be the phenotypic matrices of parent 1 (strain BY), parent 2 (strain RM) and
segregants, respectively, with rows being the samples (replicates for P1 and P2, and segregants
for PS) and columns being the ndim coordinates of each sample in the phenotypic space. These
matrices had dimensions 3 x ndim for P1 and P2 and 59 x ndim for PS. Genetic heritability was
computed asH2 = (varT—varE) / varT, where the total variance varT was the variance of the sam-
ples in PS, and where the environmental variance varE was estimated as (varP1 + varP2) / 2, with
varP1 (resp. varP2) being the variance of the samples in P1 (resp. P2). Morphological traits show-
ingH2< 0.5 were discarded, and scPTL mapping was applied to the remaining Ntraits traits as
described above (choice of dimensionality with highest contrast and recording of the best W
score obtained on the genome at this dimensionality). Significance of W scores was assessed as
described above for the LOD scores, by performing 1,000 permutations and determining the
FDR associated to various thresholds of W scores.

Stochastic model of cell proliferation
For each cell, the probability to divide depended on the concentration of gene product X
according to the following Hill-like function (Fig 8A):

PðXÞ ¼ b0

1þ X
y

� �n þ b1

with β0 = 0.2, ϑ = 2.5, β1 = 0.05 and n = 2.5.
The regulation of X was governed by the same model as above, with η = 0.16. For each indi-

vidual, parameters alpha0, alpha1 and K were drawn from the same normal distributions as
above, where mean and variance depended on the genotype (A or B). At age 0, a population of
1,000 cells was initiated with X = 5. This population was then evolved by Stochastic Simulation
Algorithm [64], with a constant rate of cell death of 0.0001 until the age of 30. The python code
implementing this simulation is provided in S2 Methods.

Yeast strains and plasmids
The yeast strains and oligonucleotides used in this study are listed in S2 Table.

To construct the Gal-GFP reporter, we first removed the MET17 promoter of plasmid
pGY8 [19] by digestion with restriction enzymes BspEI and SpeI followed by Klenow fill-in
and religation. This generated plasmid pGY10. The GAL1 promoter fragment was digested
(BglII-BamHI) from pFA6a-His3MX6-PGAL1 [70] and cloned in the BamHI site of pGY10. A
small artificial open reading frame upstream GFP was then removed by digestion with EcoRV
and BamHI, Klenow fill-in end blunting and religation. This generated plasmid pGY37, carry-
ing a PGAL1-yEGFP-NatMX cassette that could be integrated at theHIS3 genomic locus.
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Plasmid pGY37 was linearized at NheI and integrated at theHIS3 locus of strain BY4716
(isogenic to S288c), YEF1946 (a non- clumpy derivative of RM11-1a) and in 61 F1 non-clumpy
segregants from BY471xRM11-1a described in [22] to generate strains GY221, GY225, and the
S288c x RM11-1a HIS3:PGAL1-yEGFP-NatMX:HIS3 set, respectively.

In parallel, we also constructed a GAL1-GFPPEST reporter coding for a destabilized fluores-
cent protein [71]. We derived it from pGY334, where GFPPEST was under the control of the
PGK promoter. pGY334 was constructed in several steps. The PGK promoter was PCR-ampli-
fied from pJL49 (gift from Jean-Luc Parrou) using primers 1A23 and 1A24, digested by BamHI
and cloned into the BamHI site of pGY10. The resulting plasmid was digested with EcoRV and
XbaI, subjected to Klenow fill-in end blunting and religated, generating plasmid pGY13 carry-
ing aHIS3:PPGK-yEGFP-NatMX:HIS3 cassette. The lox-CEN/ARS-lox sequence from pALREP
[20] was amplified by PCR using primers 1I27 and 1I28 and cloned by homologous recombina-
tion into pGY13, generating plasmid pGY252. The GFPPEST sequence was PCR-amplified from
pSVA18 [71] using primers 1I92 and 1I93 and cloned in vivo into pGY252 (digested by MfeI
and DraIII), leading to pGY334. The GAL1 promoter fragment was amplified by PCR from
pGY37 using primers 1J33 and 1I42 and cloned into plasmid pGY334 by recombination at
homologous sequences flanking the BamHI site of the plasmid. The CEN/ARS cassette of the
resulting plasmid was excised by transient expression of the Cre recombinase in bacteria [20],
generating the final integrative plasmid pGY338 carrying theHIS3:PGAL1-GFPPEST-NatMX:
HIS3 cassette.

pGY338 was linearized by NheI and integrated at theHIS3 locus of BY4724 (isogenic to
S288c) and GY1561 to create GY1566 and GY1567 strains, respectively. Strain GY1561 is a
non-clumpy derivative of RM11-1a where the KanMX4 cassette was removed. It was obtained
by first transforming RM11-1a with an amplicon from plasmid pUG73 [72] obtained with
primers 1E75 and 1E76 and selecting a G418-sensitive and LEU+ transformant (GY739) which
was then transformed with pSH47 [73] for expression of the CRE recombinase. After an epi-
sode of galactose induction, a LEU- derivative was chosen and cultured in non-selective
medium (URA+) for loss of pSH47, leading to strain GY744, which was then crossed with
GY689 [74] to generate GY1561.

Galactose response measurements
Liquid cultures in synthetic medium with 2% raffinose were inoculated with a single colony
and incubated overnight, then diluted to OD600 = 0.1 (synthetic medium, 2% raffinose) and
grown for 3 to 6 hours. Cells were then resuspended in synthetic medium with 2% raffinose
and 0.5% galactose and grown for the desired time (0, 10, 20, 30, 40, 60, 80, 100, 130, 160, 205
and 250 minutes). Cells were then washed with PBS1X, incubated for 8 min in 2% parafor-
maldehyde (PFA) at room temperature, followed by 12 min of incubation in PBS supple-
mented with Glycine 0.1M at room temperature and finally resuspended in PBS. They were
then analyzed on a FACSCalibur (BD Biosciences) flow cytometer to record 10,000 cells per
sample.

Flow cytometry data was analysed using the flowCore package from Bioconductor [75].
Cells of homogeneous size were dynamically gated and normalized as follows: (i) removal of
events with saturated signals (FSC, SSC or FL1� 1023 or� 0), (ii) correction of FL1 values by
subtracting the mean(FL1) observed on the same strain at t = 0, (iii) computation of a density
kernel of FSC,SSC values to define a perimeter of peak density containing 60% of events, (iv)
cell gating using this perimeter and (v) removal of samples containing less than 3,000 cells at
the end of the procedure. The GFP expression values were the corrected FL1 signal of the
retained cells.
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Dot6 allele replacement
The DOT6RM allele was amplified by PCR from genomic DNA of the RM strain using primers
1K87 and 1K88. It was then cloned into plasmid pALREP [20] by homologous recombination
at sequences flanking the HpaI site of the plasmid. The CEN/ARS cassette of the resulting plas-
mid was excised by transient expression of the Cre recombinase in bacteria, as previously
described [20], generating plasmid pGY389, which was linearized at EcoRI (a unique site
within the DOT6 gene) and integrated in strain GY1566 (isogenic to BY, and carrying the
HIS3:PGAL1-GFPPEST:HIS3 cassette). The pop-in pop-out strategy was applied as previously
described [20] and four independent transformants were selected (GY1604, GY1605, GY1606
and GY1607) where PCR and sequencing validated the replacement of the DOT6 allele.

Data and method availability
The yeast morphological data corresponds to the experiments described in [22]. For the pres-
ent study, raw images were re-analyzed using CalMorph 1.0. The single-cell values and geno-
types used are provided in S1 Dataset of this article.

The flow cytometry data corresponding to yeast galactose response is made available from
http://flowrepository.org under accession number FR-FCM-ZZPA.

The simulated data of Fig 4 is available as an R package (ptldata) from https://github.com/
fchuffar/ptldata.

The scPTL mapping method is made available as an open source R package (ptlmapper)
which can be downloaded from https://github.com/fchuffar/ptlmapper. A tutorial of this pack-
age explains how to run the analysis on the simulated dataset.

Supporting Information
S1 Fig. DOT6 allele-replacement experiment. Strains GY1566 (BY), GY1567 (RM) and
GY1604, GY1605, GY1606, GY1607 (BY-DOT6RM) were cultivated in raffinose 2% and were
shifted to a medium containing Raffinose 2% and Galactose 0.5%. After the indicated time, cul-
tures were fixed with paraformaldehyde and analysed by flow cytometry. Histograms corre-
spond to the fluorescent values obtained on cells gated for cell-size (see methods).
(PDF)

S2 Fig. A) Confidence interval of scPTL location. An example of confidence intervals obtained
by bootstrap is shown. In this case, we used the data from 90 individuals shown in Fig 4 (simu-
lations with noise strength η = 0.2). We generated 1,000 bootstrapped samples by randomly
choosing individuals, with replacement, and we applied scPTL mapping to each sample. In
each case, we recorded the peak position of the scPTL (x-axis) and the dimensionality of the
phenotypic space that was retained (y-axis). Lower and upper segment boundaries correspond
to the 2.5th and 97.5th percentiles of the observed positions for each dimensionality. B)
Dimensionalities retained for the yeast morphological traits. Let n1 be the Kaiser’s based num-
ber of dimensions retained after MDS, and n2 the Z-score based number of dimensions
retained for linkage. The figure shows the distribution of these values for yeast morphological
traits where multi-dimensional scPTL outperformed the one-dimension only. On this plot, the
number printed at position x = n2, y = n1 is the number of morphological traits for which the
corresponding (n1,n2) values were chosen.
(PDF)

S1 Table. List of QTL, cvQTL and scPTL of yeast morphological traits.
(XLS)
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S2 Table. Yeast strains and DNA oligonucleotides used in this study.
(DOCX)

S1 Methods. Description and R code of the major steps of scPTL mapping.
(DOCX)

S2 Methods. Python code implementing the stochastic model of cell proliferation.
(TGZ)

S1 Dataset. Single-cell values of yeast morphological traits.
(ZIP)
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