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Abstract

Discovering community structure in complex networks is a mature field since a tremendous number
of community detection methods have been introduced in the literature. Nevertheless, it is still
very challenging for practioners to determine which method would be suitable to get insights into
the structural information of the networks they study. Many recent efforts have been devoted to
investigating various quality scores of the community structure, but the problem of distinguishing
between different types of communities is still open. In this paper, we propose a comparative,
extensive and empirical study to investigate what types of communities many state-of-the-art and
well-known community detection methods are producing. Specifically, we provide comprehensive
analyses on computation time, community size distribution, a comparative evaluation of methods
according to their optimisation schemes as well as a comparison of their partioning strategy through
validation metrics. We process our analyses on a very large corpus of hundreds of networks from five
different network categories and propose ways to classify community detection methods, helping a
potential user to navigate the complex landscape of community detection.

Keywords: community detection, community structure, comparative analysis, empirical analysis,
computation time, community size, structural quality function, validation metric, decision-making
assistance for practionners
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1 Introduction

In network science, community detection, sometimes called graph clustering1 is one of
fundamental challenges to discover the structure of networks in mesoscopic level. How-
ever, it is an ill-defined problem2 such that there exists no universal definition or closed
form formula of what kind of objects one should be looking for (Fortunato & Hric, 2016),
and consequently there is ambiguity on what should be used as a golden standard to assess
the quality of a community structure and the performance of a detection algorithm.

The most frequently found definition of community in the network science literature is
derived from the mechanism of connection preference. It implies that a community is a
group of nodes (a subgraph) in a graph where there must be many edges (denser) connect-
ing them together than edges connecting the community with the rest of the graph (Radicchi
et al., 2004), (Fortunato, 2010). Newman defines a community as a ”group of vertices with
a higher-than-average density of edges connecting them” (Newman, 2006). Depending on
the context, a community may be called a cluster, a module, a class or a modular group.
This definition is the most basic that sets the fundamental requirement for most of its
derivative definitions. Many different variations of community could be found in (Wasser-
man, 1994), for instance LS-set, which is a set of nodes in a network such that each of
its proper subsets has more ties to its complement within the set than outside; or k-core,
which is a subgraph in which each node is adjacent to at least a minimum number k of
the other nodes in the subgraph. However, in recent developments of community detection
algorithms, there is no consensus of the quantity of edges in reality that could be considered
as ”many”, communities are just algorithmically defined, i.e. they are final products of the
algorithm without any precise a priori definition (Fortunato, 2010).

In practice, there are even more constraints, which are sometimes not explicitly ex-
pressed, than that appeared in the announcement of the problem. If one only look for a
partition of graph that maximize the number of internal edges and minimize the number
of external edges, then the graph itself can be considered as a big community and there is
none external connection. Another solution is to let the node having the smallest degree of a
graph into one community, and all other nodes into another community. This solution could
also maximize the ratio between external and internal edges. However, these monotonous

1 The concept of graph clustering might refer to two different meanings existing in the literature.
The first one implies a categorization of many graphs into different sets within which graphs share
a common similar feature. The second one relates to the problem of partitioning nodes of a graph
into densely connected groups. Here we means graph clustering in the latter case.

2 It means “it does not have clear goals, solution paths or expected solution” (Arifin et al., 2017)
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solutions seem not be a seductive one for most (if not to say all) analysts who consider
using a community detection algorithm to detect communities. In fact, it is preferable to
cluster a network into at least 2 relatively similar size communities or more3 (Newman,
2010). It means that somehow, the relative size of communities with respect to the network
containing them is important without having explicitly been announced. Besides, there
are many other criteria that could be mentioned such as community complete mutuality,
reachability, vertex degree distribution and the comparison of internal versus external co-
hesion (Wasserman, 1994), (Fortunato, 2010). There exists a subtle compromise between
adding new vertices as well as their edges into a community and conserving the common
property that defines the group. In fact, different community detection methods usually
have different ways to divide a network into multiple subsets of nodes and hence result in
different community structures. There are many reasons that could lead to these contentions
between detection methods:

• Different algorithms may have different notions of community meaning that the
structure discovered may strongly depend on the assumptions made about expected
community structure.

• When two algorithms define the same concept of community, it may also mathemat-
ically and algorithmically be formalized in different ways (the same objective but
different objective functions) and hence lead us to different results.

• Even when two algorithms have exactly the same objective function, the algorithmic
mechanism they employ to find communities also decides what they are going to
find, especially in heuristic searching approaches.

• Initial configuration in also another important factor that affects the final result of an
algorithm, many community detection methods are not deterministic.

• Each method may include a consideration between obtaining optimized results in
its sense and providing a high-performance method (in terms of calculation time,
memory consumption, etc.). This trade-off may be considered differently across the
methods.

• Some algorithms are variable in function of input data and will prove more or less
efficient on some kinds of inputs than on others.

• Variations due to implementation factors could also impact the final result of an
algorithm.

• Finally, in some algorithms, there are tie-break situations where the algorithm have
to chose randomly without any factor related their final objectives. It may also affect
heavily the result that one would get if the tie-break problems have been resolved in
a different way.

Due to many reasons stated above, choosing the community detection method that corre-
sponds well to a particular scenario or to an expectation of quality is not straightforward. In
this paper, we introduce some techniques and empirical analyses that help to get insights

3 Community detection is identified in the research community as the search for natural groups
in networks without a given number of clusters. When the number and the size of clusters are
specified, the problem is often referred as graph partitioning or graph bisection for a division into
only two clusters.
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into the differences between popular community detection methods according to many
community structure quality aspects and algorithmic performance. The paper is organized
as follows: Section 2 introduces some popular and state-of-the-art community detection
methods that will be analyzed in this paper as well as the benchmarking dataset employed
in our experiments. Then, Section 3 presents analyses on the most essential aspects of
community detection performance including computation time, community size distribu-
tion as well as numbers of detected communities by each method. In Section 4, we address
different structural quality aspects of community structure associated with the community
detection methods introduced in Sections 2. It is followed by an comparative evaluation
using many popular clustering validation metrics in Section 5, which are widely used in
the context of community detection. Finally, we present some close results of related work
that can be found in the literature in Section 6 and conclude our study by some discussions
and recommendations in Section 7.

2 Community detection methods and dataset

2.1 Community detection methods

We present in this section some popular community detection methods that have been
widely used and discussed in the literature. Note that in recent years, there are a large
number of innovative methods which are proposed to solve either generic or specific cases.
However, an empirical and exhaustive analysis of all methods would be impractical if not
to say unrealizable. In the best of our knowledge, we try to include most important and
representative methods among several approaches for the community detection task.

There are many possible theoretical taxonomies for community detection methods de-
pending on the final objective of each categorization. For instance, one could classify meth-
ods according to differences in searching mechanisms, objective functions, assumptions
about the structure to be found, expected qualities, hypothesis models, or even theoretical
model employed, etc. Moreover, many methods are not just some simple algorithms to
resolve a specific problem but instead are combinations of many different approaches in
order to leverage as much as possible algorithmic power provided from each one, which
makes the problem more tricky. There is not a consensus on how different methods are
similar and how they can be classified into different families whose functionality can be
resumed in some simple words. (Porter et al., 2009) uses centrality based, local techniques,
modularity optimization4, spectral clustering to describe communities in networks. (For-
tunato, 2010), (Fortunato & Hric, 2016) group community detection methods into tradi-
tional data clustering methods, divisive algorithms, modularity-based methods, spectral
algorithms, dynamic algorithms, statistical inferences based methods. (Coscia et al., 2011)
summaries community discovering into feature distance based, internal density, bridge
detection, diffusion process, closeness based, structural pattern based, link clustering, meta
clustering. In a context of Social Media, (Papadopoulos et al., 2011) compares methods

4 First introduced by (Newman & Girvan, 2004) to assess hierarchical clustering levels of a
community detection algorithm, modularity has became the most popular objective function in
the context of community detection.
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in substructure detection, vertex clustering, community quality optimization, divisive and
model-based. (Bohlin et al., 2014) aggregates different approaches into three principle
classes representing different network models: null models, block models and flow models.
(Schaub et al., 2017) classifies methods into four perspectives: cut based, clustering inter-
nal density based, stochastic equivalent based and dynamical based showing four different
facets of community structure.

In the following sections, community detection methods are classified according to
different theoretical approaches including edge removal, modularity optimization, spectral
partitioning, dynamic process and statistical inference. Although every theoretical taxon-
omy can be questionable, this categorization is expected to support the empirical analyses
in the next sessions to verify whether theoretical and conceptual closeness could engender
quality closeness in practice.

2.1.1 Edge removal based methods

Edge betweenness (GN) by (Newman & Girvan, 2004) detects communities by removing
edges progressively according to their betweenness centrality scores. This method is based
on the intuition that dense zones in a graph are loosely connected by a few edges that
contribute a high inclusion in the shortest paths between every pair of nodes. Removing
these edges would reveals densely connected communities.
Edge clustering coefficient (RCCLP) by (Radicchi et al., 2004) suggests to replace the
edge betweenness centrality of Girvan-Newman’s method by edge clustering coefficient,
which requires less computation time and hence reduces the algorithm complexity. In this
paper, we analyze two configurations of this method corresponding to triangular (g = 3
denoted by RCCLP-3) and quadrangular (g = 4 denoted by RCCLP-4) versions.

2.1.2 Modularity optimization methods

Greedy optimization (CNM) by (Clauset et al., 2004) greedily maximizes the modularity
function Q by aggregating iteratively connected communities which induce a maximum
increase or smallest decrease in modularity ∆Q.
Louvain method by (Blondel et al., 2008) adopts two-step agglomerative process similar
to that of the greedy optimization method. However, in each iteration of the first step, it
allows nodes to move between communities until no additional gain in modularity can
be obtained due to local switch. Then, a new graph whose vertices are the communities
resulting from the first step is build and the process is repeated on the new graph to reduce
computation time.
Spectral method (SN) by (Newman, 2006) identifies community structure by finding
leading eigenvectors corresponding to largest eigenvalues of a modularity matrix. In this
method, the problem of modularity optimization is translated to the problem of vector
partitioning of modularity matrix.
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2.1.3 Dynamic process based methods

Walktrap by (Pons & Latapy, 2005) defines a pairwise dynamic distance between nodes of
a graph and then applies traditional hierarchical clustering to detect community structure.
The distance is formulated using the transition probability of a random walker based on
the concept that nodes belonging to the same community tend to ”see” other nodes in the
same way.
Infomod by (Rosvall & Bergstrom, 2007) uses an information theoretic model where a
signaler try to send the structure of a network over a limited capacity transmission channel
to a receiver. The network must be encoded in community structure in a way that minimizes
the transfered information and the information loss tat the side of receiver.
Infomap by (Rosvall et al., 2009) represents networks by a two-level structure description.
Analogically, each node in a network is encrypted by a unique codeword composed by two
parts: a prefix representing the community to which it belongs and a suffix representing
the local code. Detecting community structure becomes equivalent to searching the coding
rule to minimize the average code length describing random walks on the network.

2.1.4 Statistical inference based methods

Stochastic Block Model (SBM) by (Riolo et al., 2017) uses a Monte Carlo sampling
scheme to maximize a Bayesian posterior probability distribution over possible divisions
of the network into communities. This probability implies an expected network model
to be fitted from the observed network data. In this block model variant, the authors
employ a new prior on the number of communities based on a queueing-type mechanism to
calculate posterior probability. We analyze in the following sections both traditional SBM
and degree-corrected version DCSBM, which is proved to perform better in practice.
Order statistics local optimization (OSLOM) by (Lancichinetti et al., 2011) measures the
statistical significance of a community by calculating the probability of finding a similar
one in a null model. Following this concept, nodes are gradually aggregated into commu-
nities to find significant communities. Then nodes are considered to be swapped between
communities in order to increase significance level.

2.1.5 Other methods

Spin glass model (RB) by (Reichardt & Bornholdt, 2006) finds communities by fitting the
ground state of a spin glass model. Instead of favoring only intra-community edges and
penalizing inter-community edges like the traditional modularity, this model also favors
inter-community non edges and penalizes intra-community non-edges.
Label propagation (LPA) by (Raghavan et al., 2007) exploits the topology of networks to
infer community structure. It is closely related to the context of message passing paradigms
or epidemic spreading. The principled idea of this method is based on the concept that
nodes should belong to the community of most of their neighbors. Hence, they gradually
update their memberships according to their incident nodes.
Speaker-listener label propagation (SLPA) - of Xie and Szymanski (Xie & Szymanski,
2012) modifies the propagation mechanism above by a new label update strategy. Also,
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Table 1: Community detection methods involved in the study.

Approach Publication Ref. label Time order Implementation

Edge
removal

(Girvan & Newman, 2002) GN O(nm2) igrapha

(Radicchi et al., 2004) RCCLP O(m4/n2) Authorsb

Modularity
optimization

(Clauset et al., 2004) CNM O(m log2(n)) igraph
(Blondel et al., 2008) Louvain O(n log(n)) Authorsc

(Newman, 2006) SN O(nm log(n)) igraph

Dynamic
process

(Pons & Latapy, 2005) Walktrap O(n) igraph
(Rosvall & Bergstrom, 2007) Infomod NA Authorsd

(Rosvall et al., 2009) Infomap O(m) Authorse/igraph

Statistical
inference

(Lancichinetti et al., 2011) Oslom O(n2) Authorsf

(Riolo et al., 2017) (DC)SBM Parametric Authorsg

Other
methods

(Reichardt & Bornholdt, 2006) RB O(n2log(n)) igraph
(Raghavan et al., 2007) LPA O(m) igraph
(Xie & Szymanski, 2012) SLPA O(m) Authorsh

(Meo et al., 2014) Conclude O(n+m) Authorsi

a Published at http://igraph.org/
b Published at http://homes.sice.indiana.edu/filiradi/resources.html
c Published at https://sourceforge.net/projects/louvain/
d Published at http://www.tp.umu.se/~rosvall/code.html
e Published at http://www.mapequation.org/
f Published at http://www.oslom.org/
g Published at http://www-personal.umich.edu/~mejn/
h Published at https://sites.google.com/site/communitydetectionslpa/
i Published at http://www.emilio.ferrara.name/code/conclude/

instead of keeping only hard membership information, each node is equipped by a mem-
ory to contain the labels that it receives. Then, in the update phase, nodes transmit the
membership to their neighbors according to the membership frequency in the memories.
Mixing global and local information (Conclude) by (Meo et al., 2014) combines a dy-
namic distance with a modularity optimization process to identify community structure.
Firstly, the authors define a new pairwise proximity function using random and non back-
tracking walks of finite length to determine distances between vertices. Then, the muti-level
modularity optimization strategy of Louvain method (Blondel et al., 2008) is employed in
combining with the defined distance to find community structure.

Table 1 summaries the methods presented previously grouped by different approaches.
Since community detection is getting more and more attention in the network science
community, there is a huge volume of work that has been published in the recent years to
evaluate different methods including both theoretical and empirical approaches. However,

http://igraph.org/
http://homes.sice.indiana.edu/filiradi/resources.html
https://sourceforge.net/projects/louvain/
http://www.tp.umu.se/~rosvall/code.html
http://www.mapequation.org/
http://www.oslom.org/
http://www-personal.umich.edu/~mejn/
https://sites.google.com/site/communitydetectionslpa/
http://www.emilio.ferrara.name/code/conclude/
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there is not any quantitative definition of community that is explicitly implemented inside
algorithms, therefore it is challenging to distinguish the topological differences of com-
munity structures using different methods, even when the associated concepts are quite
theoretically discernible. Additionally, it is still not clear yet whether a proximity in the
assumption of community concept will engender a structural similarity of communities
that could be detected. Our comparative analysis in the next sections will try to address
these questions in more details.

2.2 Experimental dataset

In this section, we describe some statistical properties of networks that will be included
in the following analysis. It is expected that networks in each category are spread in a
wide range of structural measures. However, available biological networks that have been
published and analyzed widely are relatively small in comparison to the other networks
of the other families. Besides, due to the complexity of the analysis process, we limit the
domains of interest at 5 categories which are commonly researched and where numerous
networks are available. In this study, we consider 108 different networks, which is rel-
atively large in comparison to many studies. Many notable related work where some of
these networks are also employed to study community structure could be mentioned for
a quick reference: Orman et al. use 6 networks to evaluate the structure of communities
discovered by several detection techniques (Orman et al., 2012); Lancichinetti et al. use
15 networks to characterize structural communities (Lancichinetti et al., 2010); Hric et al.
use 16 networks to reveal differences between structural communities and ground truth
(Hric et al., 2014) ; Leskovec et al. use over 100 networks to analyze network community
profile (Leskovec et al., 2008) and 230 networks to evaluate the goodness of ground-
truth communities in social networks, within this number, 225 samples of the Ning online
social networking platform’s networks5 are aggregated (Yang & Leskovec, 2013). Table 2
resumes the composition of networks that have been analyzed in this section.

Some notable structural measures of networks in the dataset are illustrated in Figure 1.
It is noticeable that apart from biological networks which are relatively small, the other
classes cover quite a wide range of number of nodes, edges, mean degree, clustering
coefficient and edge density. Since real world networks are relatively sparse, the number of
edges increase linearly in function of the number of nodes and consequently, the edge den-
sities decrease linearly by the number of nodes (since the number of possible connections
increase quadratically by the number of nodes in a community). This sparsity property can
be easily noticed from Figure 1(a,d). Specifically, the number of edges increases linearly in
function of the number of nodes with equivalent rates among different network categories
as can be deduced from the gradients of the linear estimates. From Figure 1(b), it can be
seen that the average degree of the networks in the dataset varies principally between 1 and
100 edges per node except for 2 communication networks. Also, the majority of networks
has an average degree of approximately from 10 to 20 connections. In a global point of
view, networks in the dataset have a quite strong modular quality since most of them have
relatively high clustering coefficient as shown in Figure 1(c).

5 https://www.ning.com/
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Table 2: A summary of network dataset used in this analysis where “Size” is the number of
networks analyzed in each category, “Nodes” and “Edges” indicates the average number
of nodes and edges of networks in each category respectively. ∗The last row shows the
total number of networks, nodes and edges in the whole dataset. This dataset is collected
from several sources including: http://networkrepository.com (Rossi & Ahmed,
2015), http://konect.uni-koblenz.de (Jerome, 2013), http://snap.stanford.
edu (Leskovec & Krevl, 2014)

.

Category Size Nodes Edges Notable networks

Biological 7 1860 10763 Yeast, brain, protein-protein interactions
Communication 9 39595 195032 Email, forums, message exchanges
Information 25 38358 159812 Amazon, DBLP, citation & education webs
Social 37 6888 49666 Facebook, Youtube, Google Plus networks
Technological 19 18431 48494 Internet, AS Caida, Gnutella P2P networks
Miscellaneous 11 4298 49033 Ecology, power-grid, synthetic networks

Total∗ 108 1.99M 9.08M

3 Preliminary analysis of community detection methods

3.1 Computation time performance

Since computation time is a crucial factor to be considered in the selection of an algorithm,
it is worth analyzing experimental performances to see how different community detection
methods accomplish their task in real-world networks. By reusing the dataset summarized
in Table 2, we proceed to assess official implementations of community detection methods
introduced in Table 1. As listed in this table, the implementations are provided officially
either from their own authors or popular network analysis tools, which can be easily
accessed from a large public.

We employed all implementations stated above to identify community structures on all
the networks contained in the dataset. We measured the time needed for each implementa-
tion to compute each partition on each network. The default parameters configured by the
implementations are kept unchanged during the test. The calculations were executed on a
server equipped by an Intel Xeon CPU E5-2650 with 32 cores of 2.60 GHz and a memory
capacity of approximately 100 GBytes. However, due to the high complexity of some
methods, only processes that finish in a practical amount of time (less than 4 hours) are
taken into account. However, for a reference purpose, we let some of longer computations
go on, for example, Conclude method took approximately 9 days to identify community
structure on a network of 300 thousand vertices and 1 million edges; GN method did not
finish its calculation for networks of more than 4 thousand nodes and 40 thousand edges
within 2 days. Consequently, the experiments that theoretically require too much time
are neglected in the test. It is also worth noting that the calculations of communities on
large-scale networks are also restrained by limited memory, therefore calculations that are
supposed to be finished within 4 hours but required too much memory can not be shown

http://networkrepository.com
http://konect.uni-koblenz.de
http://snap.stanford.edu
http://snap.stanford.edu
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Fig. 1: From left to right, up to bottom, we illustrate structural measures of the 108
networks: (a) Number of edges as a function of the number of nodes, (b) Mean degree 〈k〉
as a function of the number of nodes, (c) Clustering coefficient in function of the number
of nodes, (d) Edge density in function of the number of nodes. The colored backgrounds
represent the 95% confidence intervals of the relations estimated from the dataset using a
linear regression model for the corresponding variables on each network category.

here neither. We repeat the calculations 5 times on average for each pair graph/method to
reduce the fluctuation impact. Eliminating all the cases that do not satisfy our requirements,
the final successful rate (number of partitions identified over the number of possible tests)
ended up at around 44.72%, mainly due to time/memory surpassing.

In the following figures (from Figure 2 to Figure 7) that illustrate the analyses on
experimental time consumption, some conventions are commonly used. Points in the fig-
ures correspond to separated executions that have been measured. The solid lines with
the same corresponding colors to the points are estimated relations between computation
time and network size (number of vertices and number of edges) using a local regression
model (Cleveland, 1979). The dark colored backgrounds around the regression curves
represent 95% confidence intervals of the model parameters. Besides, we show the worst
case theoretical execution time (number of calculation needed in this case) of associated al-
gorithms are included for a comparative reference purpose. From the analysis of structural
characteristics of the dataset as shown in Figure 1(a), it is noticeable that most networks are
sparse, i.e the number of edges (m) increase in a linear function by the number of nodes
(n). Hence, in our estimate, we plot theoretical execution time by assigning n = m. For
the simplicity of illustration, we grouped the measures of the methods by their approaches
(refer to our Classification on Table 1).
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Fig. 2: The execution time needed by GN, RCCLP-3 and RCCLP-4 methods to identify
community structures on networks of the dataset.

The first group of methods consists in centrality detection techniques to identify commu-
nity structure. As we can see in Figure 2, the GN method can not be accomplished in our
test for networks of more than 4 thousand of nodes or 30 thousand of edges. The outcome
is quite reasonable since the theoretical estimation for this method is O(nm2), which grows
quickly in function of network size. Remind that one of the primary purpose of the RCCLP
method is to reduce the time complexity of the GN method. We can easily observe that this
objective is achieved since the RCCLP-3 reduces an order of around 103 times for graphs
from 3 hundred nodes. RCCLP-3 can well function with graphs up to millions of edges.
However, when we proceeded the same test with RCCLP-4, the method rarely reached its
terminus for large graphs as well as small graphs. As we can see in the figure, there are
few dots at the two sides. The reason is that there are not many (or even absent) 4-step
close paths on real world networks. As it is not very probable that such structures exist in
small graphs, finding them in large graphs also require a huge amount of time, RCCLP-4
shows a poor performance in our tests. Therefore, this configuration of the method is not
recommended, as well as versions with g > 4 would logically poorly perform. It is also
worth noticing that RCCLP-3 and RCCLP-4 are extremely memory consuming and are not
suitable for limited resource devices. Finally, theoretical and practical time seem to find a
consensus as the increments of time in function of network size are quite consistent in the
three cases.

The next group includes methods using modularity optimization processes whose ex-
perimental measures are shown in Figure 3. Practically, the three methods in this family
require a reasonable time for calculating community structures. The most time consumed
experiment took less than 2 hours for a graph of 1 million edges. Louvain method is the
fastest in this group whose computation increases approximately in linear time. It took only
9 seconds for the largest graph. Among the three methods, the optimization using spectral
approach is the most expensive. However, all of these three methods have higher perfor-
mance than the methods in the edge removal group previously stated. The experimental
results also justify theoretical estimates about the complexity of these methods.

Similarly to the two previous group, the computation time needed by methods in the
dynamic process group is illustrated in Figure 4. In terms of time consumption, this group
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Fig. 3: The execution time needed by CNM, Louvain and SN methods to identify
community structures on networks of the dataset.
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Fig. 4: The execution time needed by Infomap, Infomod and Walktrap methods to identify
community structures on networks of the dataset.

shows a better performance with respect to the first group, but generally worse than the
modularity optimization group (except for the Walktrap method for small and average size
graphs). Among them, Infomod has the poorest performance. In the meanwhile, Walktrap
and Infomap work asymptotically equally good with a slightly better rendition for Walktrap
in small and average size graphs.

The same analyses for methods in the two final groups are shown in Figure 5 and Fig-
ure 6. We can easily see that DCSBM and Oslom have practically identical performance in
terms of time consumption with a slightly less expensive on the side of DCSBM. In the last
group, the results are quite discernible between different methods. The label propagation
method LPA shows a clear distinctive curve indicating its out-performance over the other
methods. Besides, SLPA works quite well, but less fast than LPA although it employs some
additional techniques to reduce the number of necessary calculations (Xie & Szymanski,
2012). This difference in the performance is due to the more complicated mechanism that
SLPA uses in comparison to LPA. The fact that SLPA has to reserve dedicated memories
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Fig. 5: The execution time needed by DCSBM and Oslom methods to identify community
structures on networks of the dataset.
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Fig. 6: The execution time needed by RB, LPA, SLPA and Conclude methods to identify
community structures on networks of the dataset.

for all nodes of the network to stock the membership information that they received during
the detection process and update them regularly to transfer into their neighbors makes
it demanding. Therefore, despite of a 5 to 10 times of improvement in the label update
strategy, the global performance can not surpass that of LPA method. In terms of scalability,
LPA and SLPA seem to exhibit the same comportment which is nearly linear for small and
medium graphs but accelerate in large graphs. The spin glass model RB manifests a better
than expected presentation with an undeviating linear augmentation. The only unexpected
behavior is spotted in Conclude method, as when the size of input graphs exceed some
thousands, the required time has been inflated by a factor of n, making it very demanding
for large graphs.

Finally, we aggregate all the analysis measures in the 5 previous groups into a common
illustration as shown in Figure 7. At the same time, for a more convenient observation,
we remove all the points corresponding to the experiments and keep only the regression
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Fig. 7: The estimated execution time needed for each method to identify community
structures on networks of the dataset using a local regression model. Methods of the same
theoretical family (in the same group) are represented by chromatically similar color.

curves, which are the estimates of execution time for these methods in function of number
of vertices on the left hand side and number of edges on the right hand side. At a first sight,
it is easy to see that except for GN, the necessary execution time for all other methods are
limited in a range that increases polynomially in function of network size, which reflect
well theoretical estimates. This range is upper-bounded by Conclude/Oslom and lower-
bounded by LPA which corresponds to worst and best performed method(s) respectively.
Another important information which can be deduced from this figure is that, for most real
world networks of size in the range up to 1 million edges, choosing a fast detection method
could economize an order of 103 times to 105 times calculation effort. This is an important
element to be considered in applications where time consuming is a serious problem.

We demonstrate in Table 3 the ranking of these methods according to our test for ref-
erence purpose. GN and RCCLP-4 are not involved in this ranking since they failed to
accomplish their tasks in large graphs, which also means they are the most time consumed
methods within the methods that we analyze. We show both the ranking by the average and
the median of time. Since the average-time ranking is heavily affected by the measures on
large graphs, i.e. the methods that succeeded to discover communities on very large graphs
are lower ranked than methods that were not able to do so. In these cases, the ranking by
median is more accurate and it reflects well the relative performance on small and medium
graphs between the methods. For large graphs, using the ranking by average would better
fit.

3.2 Analysis on community size distribution

The number of latent communities that should be induced from a given network is one
of the major question in community detection context (Fortunato & Hric, 2016), (Riolo
et al., 2017), equivalent to the subject of the expected number of clusters in classical
clustering problem. Observing the number of communities discloses useful information
about the mesoscopic structure of a network. The variation of the number of communities
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Table 3: Ranking of analyzed methods according to their amount of time consumed to
identify community structure on networks of the dataset.

Method label Rank by average Rank by median Scalability

RCCLP-3 9 8 Low

CNM 5 3 Medium
Louvain 1 2 High
SN 3 5 High

Walktrap 4 4 High
Infomod 12 9 Low
Infomap 6 7 Medium

Oslom 11 14 Low
DCSBM 8 12 Low

RB 10 13 Low
LPA 2 1 High
SLPA 7 6 Medium
Concude 13 11 Low

in a network involves different level of resolutions. An analogous way to describe the
concept of resolution is the distance from an object that we prefer in order to contemplate
it. The closer we get to an object, the more its detailed micro-structures could be perceived,
in the meanwhile the less information about the global organization tends to be clear.
Although several multi-resolution approaches (Lambiotte, 2010; Pons & Latapy, 2011)
incorporate resolution parameters into their solutions providing more flexible mechanisms
and different modular scales of networks, it is not always obvious to regulate appropriately
these parameters without ad-hoc cases. The inclusion of multi-resolutions parameters,
of course, widen the possibility of understanding networks, but in the expense of the
automatic aspect that is sometimes required in clustering problems.

In this section, we compare again the previously mentioned methods but this time ac-
cording to their resolution abilities. We use the same network corpus and we keep again
all default configurations of the implementations unchanged to ensure the consistency of
future results. From the antecedent analyses, some modifications will be applied on our
testing process as follows:

1. From the observation of the network size distribution in Figure 1(a) as well as the
previous computation time analyses, the linear relation between number of vertices
and number of edges of networks in our corpus becomes evidenced. As a conse-
quence, it will be redundant to address the relation of dependent variables in respect
of these two latter predictors. Therefore, only analyses in function of number of
vertices will be introduced.
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2. In community detection problem, showing only the numbers of communities dis-
covered on networks or their statistical derivatives would not always be enough.
Assume that the sizes of communities in an arbitrary network follow a negative
power-law distribution, its means that the number of communities depends heavily
on the number of tiny communities. Therefore, we also observe the distribution of
community size to discern the differences between methods which could not be
recognized by seeing solely the number of blocks.

3. Due to a huge number of required calculations and a limited hardware resource,
discovering processes in the last section were interrupted unless they are finished
in a few hours. Here, some more efforts have been flexibly given if a method is
supposed to be finished in a reasonable amount of time.

For a given network in the dataset, we applied all of the presented methods to identify the
set of communities predicted by each one and measured their volumes. Similarly to the last
part, for the simplicity of observation, we group methods by different families depending
on their approaches. We illustrate the obtained results of community repartition measures
in Figure 8 to 12 by using some conventions as follows:

Conventions for Figure 8 to Figure 12

1. A figure (denoted a) on the top contains three following sub-figures:

(a) The central figure (a1): shows a scatter plot about the distribution of com-
munities in function of the number of vertices of the network to which
they belong. The solid lines in the figure represent the estimated average
community size in function of number of vertices using a local regression
model (Cleveland, 1979). Dark colored backgrounds around the lines are
95% confidence intervals of the estimates.

(b) The top figure (a2): exhibits marginal density distributions of communities
found in each range of network sizes. They are rendered by a Gaussian
kernel estimator.

(c) The right figure(a3): illustrates another type of marginal density distribu-
tions of communities in function of their sizes. They are also rendered by a
Gaussian kernel estimator.

2. A figure on the bottom (denoted b) presents the number of communities in
function of the number of vertices of different networks as well as the estimated
relation between these variables using the regression model stated above. Dark
colored backgrounds around the lines shows 95% confidence intervals of the
estimate relations.

3.2.1 Edge removal approach: GN, RCCLP-3 and RCCLP-4

From Figure 8, we can notice again that GN method can only be able to function on small
and medium networks due to its high complexity, which is quite obvious from theoretical
analysis. RCCLP-3 and RCCLP-4 can detect up to the largest networks in our corpus. By
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Fig. 8: Fitting quality of GN, RCCLP-3 and RCCLP-4 methods on the networks of the
dataset.

observing the right marginal density distribution, surprisingly, all of these methods identify
a huge number of singleton communities6. The average number of singleton communi-
ties is around 24% which can be up to 60% in some cases. The reason for this aberrant
phenomenon is that in some dense and small networks, there exists too many high and
equivalent central vertices and edges. The separating mechanism employed here keeps
removing central nodes or edges until a large number of vertices are isolated, creating
singletons or very small communities. Since GN only works on small graphs, it is highly
impacted by this phenomenon in our experiment. Besides, in a global observation, we can
see in the top figure that the majority of communities detected by these methods are very
small for the same reason. From Figure 8(a), we can see that a large number of communities
have only less than 10 vertices even in very large networks. This makes the number of com-
munities increase rapidly as one can remark on Figure 8(b). Remind that the distributions of
community size have right-skewed shapes, meaning that the majority of communities are
small and most of them are found under the lines of average community sizes. Therefore,
the three methods of this family have very high resolutions. Notwithstanding, this result
need to be understand with caution due to two reasons:

6 Communities that contains only one vertex
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1. The density function in Figure 8(a1) reveals that the successful rate on discovering
community structures of the three methods are distinguished fundamentally. In fact,
due to the high complexity of time and memory, many networks are not successful
resolved, which degrade importantly the comparison quality.

2. As a consequence of the first reason, there is a high fluctuation in the dependent
variables which make the confidence intervals quite large. A deeper investigation on
the quality on small and medium networks could partially palliate this problem.

Although the previously mentioned issues, this class of methods remaisn the one which
conjectures the highest number of communities with a great consensus.

3.2.2 Modularity optimization approach: CNM, Louvain and SN
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Fig. 9: Fitting quality of CNM, Louvain and SN methods on the networks of the dataset.

On this second group, our measures are more complete since all three methods suc-
ceeded to resolve large networks. From Figure 9(a2), it can be seen that there is a regularity
between the distributions of communities over the whole range of networks except for
the range of very large networks. Actually, in this range, the behavior is very different
with the three methods. While CNM determines a very large number of medium and
small communities, Louvain identifies less small communities and more medium and large
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communities. On the other hand, SN only proposes a partition of two giant communities.
For instance, if we take the Amazon network (Leskovec & Krevl, 2014), while CNM
detected 1480 clusters, this number is 249 for Louvain and only two for SN. The same
phenomenon is also remarked for another example, the DBLP network (Leskovec & Krevl,
2014), the corresponding numbers are 3077, 275 and 2 in the same order for the three
methods. This notice can also be remarked in smaller networks as can be seen in Figure
9(b), however gap between the number of communities reduces gradually from the right to
the left of the figure. But in general, the order remains unaltered in as experienced in our
observations, i.e. the average number of communities detected by CNM is larger than that
of Louvain which is in its turn larger than that of SN. Consequently, the order of community
sizes are inversed since the sizes of graphs are fixed as can be seen in Figure 9(a1). Another
remark can be extracted from Figure 9(a3) about the diversity of community size, while
CNM and CN consistently move towards small and medium communities respectively,
Louvain on the other hand tends to propose both small and medium size communities.

3.2.3 Dynamic process approach: Infomap, Infomod and Walktrap
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Fig. 10: Fitting quality of Infomap, Infomod and Walktrap methods on the networks of the
dataset.
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At a first glance, we can see a clear separation within the three methods. While Infomap
and Walktrap display quite comparable evolution of average community size depicted by
Figure 10(a1) as well as marginal distribution as depicted by Figure 10(a2-a3), Infomod is
driven distinctly apart. Diving into the measures, we notice that in Infomod, there is a rela-
tively uniform repartition of communities which is upper-bounded by the largest containing
6948 vertices. Unlike many other methods including Infomap and Walktrap, the number of
medium and large communities dicovered by Infomod does not outnumber the number of
small communities as stipulated by heavy-tailed distributions. As a consequence, the total
number of communities observed remains low and increases with a small constant pace.

Infomap and Walktrap tend to keep their average community size limited around 10 to 30
over the whole range of networks. This phenomenon keeps them away from the resolution
limit issue. In both methods, the most popular community size can be found around 10
nodes or smaller. Our more specific measure on the median community size shows al-
most similar results for Infomap while this number decreases slightly for Walktrap. Above
these values, the number of communities decreases profoundly. The biggest difference
between these two methods can be easily observed at the spurious region on the marginal
distribution of Figure 10(a3). In fact, unlike Infomap which produces very moderately
small communities, Walktrap identifies a huge number of isolated nodes (around 10%
according to the statistics) and small communities similarly to RCCLP-3 and RCCLP-
4. This problem may be due to the agglomerative hierarchical clustering employed by
Walktrap to detect communities which engenders orphaned peripheral vertices which has
been indicated by (Newman & Girvan, 2004) - Figure 3. This problem, however, is quite
simple to be palliated since these peripheral vertices could be assigned to their closest
neighbor’s community. By removing this issue, we have got a quite similar result for
Infomap and Walktrap.

In terms of average number of communities, Infomap and Walktrap show practically
the same behavior. The evolutions are nearly coincided over the whole range of networks
with small confidence intervals, especially in the middle range. For medium and large
networks, as seen in Figure 10(b), it is very likely that Infomod identify much less number
of communities. In fact, more than 75% of Infomod’s partitions have less communities than
those of the other two methods.

3.2.4 Statistical inference approach: SBM, DCSBM and Oslom

In the case of statistical inference, we see a quite similar phenomenon previously expe-
rienced in the dynamic approach. Specifically, the distributions of community size of the
two implementations SBM and DCSBM are nearly coincided with a slightly higher average
community size for the former. In fact, in this Bayesian block model, it is necessary that
the prior distribution of number of block is given. According to different block model
variants, one could assume various hypotheses about underlying mechanisms that create
observed network under the corresponding regulations of block structures and define a
prior probability. In the implementation that has been employed, the authors initialize the
community discovering process by assigning nodes randomly to groups according to a
queuing-type mechanism and then use a Monte Carlo sampling process to maximize the
posteriori probability. However, the calculation becomes extremely time consuming when
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Fig. 11: Fitting quality of SBM, DCSBM and Oslom methods on the networks of the
dataset.

the maximum number of communities is too large (Riolo et al., 2017). Hence, by default,
the maximum number of communities is configured at 25 as proposed, which leads to an
underestimation of medium and large graphs as shown in Figure 11(b) as also be noticed
by the authors. One can see the impact of this regulation as the number of communities
approaches asymptotically 25 independently with the network size on the right hand side
of the figure.

By observing the distribution of community size in Figure 11(a1), it is understandable
that the average block size of SBM and DCSBM increases linearly in function of number
of vertices. As the number of communities remains constant, the average community size
must increase proportionately. Besides, the Figure 11(a3) also reveals that community sizes
are well spread around their mean values, which makes the marginal distribution quite
symmetric for both SBM and DCSBM. There is nearly no particular inclination towards
small communities as acknowledged in some previous methods.

For the case of Oslom, the separation is quite clear. It unveils much more communities,
making their sizes very small. Figure 11(a1) shows that the majority of Oslom’s commu-
nities are found under the average values of the associated partitions of SBM and DCSBM.
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Our demonstrations show that there is indeed a significant difference in the repartition
strategies of these methods.

3.2.5 RB, LPA, SLPA and Conclude methods

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+02 1e+03 1e+04 1e+05
Number of vertices

C
om

m
un

ity
 s

iz
e

Method
RB
LPA
SLPA
Conclude

(a)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+02 1e+03 1e+04 1e+05
Number of vertices

N
um

be
r o

f c
om

m
un

iti
es

Method
RB
LPA
SLPA
Conclude

(b)

Fig. 12: Fitting quality of RB, LPA, SLPA and Conclude methods on the networks of the
dataset.

In the last group, we discover that there is a remarkable coincidence in all distributions
of the three methods LPA, SLPA and Conclude. In fact, the difference between them is
nearly indistinguishable on the marginal measures. There is only a small discrepancy in
the number of detected communities in very large networks as can be noticed from Figure
12(a2), such that LPA detected slightly more communities than SLPA and Conclude. From
Figure 12(a3), one can see that the majority of communities are quite small in these three
methods. Similarly to CNM, Infomap or Walktrap, the majority of communities are small,
i.e. have less than 10 nodes.

On the three methods, one could see that the variation of the data is significantly large,
which produce also a large variation in our estimates. Since the associated prediction
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Fig. 13: A summary of community size estimation

intervals for the estimates are likely to be larger, predictions related to community size
distribution are not expected to be accurate.

On the other hand, RB method shows a solid consistency with much less variations in
our examination. Average community size increases regularly and number of communities
becomes saturated from medium size networks. The behavior of RB method is very resem-
bling to that of DCSBM observed in Figure 10. Consequently, it is supposed to suffer the
resolution limit for large networks. Notwithstanding, since RB is provided with a resolution
tune parameter, the method may escape from this effect if the parameter is correctly chosen.

3.2.6 Summary

For the final step of this part, in the same manner as the previously presented time com-
putational analysis, we aggregate for all methods the estimates of average community size
and the number of detected communities in function of number of vertices in the network
in Figure 13(a) and 13(b) respectively. One can see that there exists several repartition
strategies hidden in these methods. If we use the preference of theoretical number of
recoverable communities in a k-planted partition model (Ames, 2013), being O(

√
n), the
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studied methods could be considered to over-fit (create more than k clusters) or under-fit
(create less than k clusters) as presented in Table 4, in the third column.

Table 4: Ranking of analyzed methods according to their number of detected communities.
A method is considered to over-fit if it detects asymptotically more than

√
n clusters. The

group numbers exhibit the estimated similarity based on fitting quality.

Method label Size wrt. k-planted model Fitting

GN Bigger Over-fit
RCCLP-3 Bigger Over-fit
RCCLP-4 Bigger Over-fit

CNM Close Over-fit
Louvain Close Under-fit
SN Smaller Under-fit

Walktrap Bigger Over-fit
Infomod Close Under-fit
Infomap Bigger Over-fit

Oslom Smaller Under-fit
SBM Smaller Under-fit
DCSBM Smaller Under-fit

RB Smaller Under-fit
LPA Bigger Over-fit
SLPA Bigger Over-fit
Concude Bigger Over-fit

We can see that, in a general view from the second and third column of Table 4, methods
belonging to the same theoretical class which shares a common assumption about the
definition of community have a tendency to show the same fitting quality, as also dis-
covered by (Ghasemian et al., 2018). However, although being useful to help practitioners
to presume the expected number of clusters a method would detect with respect to the
theoretical experience, it is still very embarrassing to know which method to use since the
reference is based on an hypothesis about an underlying model. This also means that if
the hypothesis about the partition model change (another model than k-planted model),
the expected number of communities will be diversified, and hence the indicated fitting
quality preference becomes disproved. As a consequence, we propose a novel technique
to estimate the similarity of community detection methods based on community size dis-
tributions in the next section. Certainly, this is only one among interesting quality aspects
that differentiate one method from the others. Nonetheless, we will demonstrate that it also
allows to get more insight into the difference in terms of partitioning strategy.
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3.3 Similarity based on community size distribution

A very naive but efficient approach to evaluate the similarity of two methods is to inquire
into the “closeness” of the two corresponding community size distributions (Dao et al.,
2018b). As such, two methods could be supposed to be similar if their corresponding
density distributions expose a large intersection area as shown in Figure 14(a). From this
notice, we can define our new similarity function as follows:
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Fig. 14: The distribution of sizes of communities detected by two different methods. On the
left (a) overlap fraction using histogram, on the right (b) when community sizes interlace,
the similarity is better estimated using a kernel density estimator.

First, we denote two 2-tuples (A ,na) and (B,nb) being the multisets representing all
communities detected on a set of networks G = {G} by method A and method B respec-
tively, where A = {xa

1,x
a
2, ...,x

a
r} and B = {xb

1,x
b
2, ...,x

b
s} being the ascending ordered sets

of sizes of communities: 1≤ xa
1 < xa

2 < ... < xa
r and 1≤ xb

1 < xb
2 < ... < xb

s . The multiplicity
functions na : A → N≥1 and nb : B→ N≥1 measure the number of communities of sizes
xa

i and xb
i respectively. Let Na = ∑

r
i=1 na(xa

i ) and Nb = ∑
s
i=1 nb(xb

i ) being the total number
of communities of all sizes detected by each method, we define a similarity function
describing the closeness of A and B on G as:

SG (A,B) =
1
2

r

∑
i=1

s

∑
j=1

min

{
na(xa

i )

Na ,
nb(xb

j)

Nb

}
δ (xa

i ,x
b
j), (1)

where δ (xa
i ,x

b
j) = 1 if xa

i = xb
j and 0 otherwise. Equation (1) is simply the common

fraction of same-size communities detected on G by both A and B: 0 ≤ SG (A,B) ≤ 1.
This definition seems to be intuitive but does not work well in practice. As illustrated in
Figure 14(b), when the sizes interlace each other, a low score will be produced although
the similarity in this case is as much as that of the case in Figure 14(a). Choosing an
appropriate binning interval would mitigate the problem. This solution is, however very
inflexible, sensible to the characteristic of data as well as to the functionality of the methods
in use. A straightforward alternative can be envisioned by using a kernel density estimator
to uncover the probability density function as shown by the solid lines in Figure 14(b).
In this way, we approximate the common fraction of same-size communities of Equation
(1) by the overlapping area of two corresponding continuous distributions. The premise
behind this estimation is that two similar methods must not compulsorily produce a large
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portion of exactly same-size communities but rather a large portion of comparable-size
ones. Hence, we consider the following estimator to take into account local information of
community size x0:

f̂ (x0) =
1
hn ∑

i
K
(

xi− x0

h

)
, (2)

where h is the bandwidth controlling the neighborhood interval around x0 and K is the
kernel function controlling the weight given to the observations {xi} chosen as Gaussian
in our analysis. Using this estimator, we rewrite the similarity function defined in Equation
(1) as follows:

SG (A,B) =
∫

min{ f̂ (a)(x), f̂ (b)(x)}dx, (3)

where

f̂ (u)(x) =
1

hNu

Nu

∑
i

[
nu(xu

i )K
(

xu
i − x
h

)]
, (4)

with u ∈ {a,b}. In the estimations of this paper, the bandwidth h is selected based on the
normal reference rule (Silverman, 1986) to minimize the mean integrated squared error.

Using equations (3) and (4) to estimate the similarity between pairs of detection methods
on a large dataset will help us discovering different behaviors of community detection
methods. Since the accuracy of the estimator depends on the networks of the dataset
that we analyze, the result will have obviously to be relativized. However, our large and
representative corpus would help to reduce the dependency impact.
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Fig. 15: The distributions of communities by sizes contained in the partitions detected
on the networks of the dataset. They are smooth using a Gaussian kernel estimator. The
illustrative gradient color is only for the ease of view purpose.
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3.3.1 Experimental results

From the communities identified in the previous section, we proceed to measure the vol-
umes of communities detected by each method to determine the elements of the corre-
sponding 2-tuples. Finally, we use the similarity function defined by Equation (3) to esti-
mate the closeness between each pair of methods. Due to the huge number of experiments,
only processes having a reasonable theoretical estimated time and memory consumption
are maintained (less than a few days and at most 30 to 40 GBytes of memory). The outcome
distributions are illustrated in Figure 15.

As we can see, there is a clear difference in the densities of community size, showing that
these methods have various partitioning strategies. Knowing that methods belonging to the
same theoretical group (as shown in Table 1) are placed next to each other, we can notice
some agreements between the theoretical families with practical outcomes as follows:

Edge removal: GN and RCCLP-3 have very similar distributions where a large
number of communities are very small. This is due to the fact that in some highly
local centralized networks having star-like structures (Dao et al., 2018a), they have a
tendency to remove edges connecting hub and peripheral nodes and create singletons
(single node community). This phenomenon is less distinguishable on RCCLP-4
since there are much less quadrangular than triangular connections in networks.
Modularity optimization: Modularity is known to suffer from resolution limit phe-
nomenon (Fortunato & Barthelemy, 2006), which often aggregates small communi-
ties in large scale networks. We can see from Figure 15 that Louvain and SN found
very large communities as predicted. In the meanwhile, there are also a comparable
number of small communities which are found on small graphs. However, the be-
havior is a little bit different on CNM method, which is an agglomerative clustering
algorithm based on modularity optimization.
Dynamic process: Methods in this family show very discernible distributions al-
though all based on dynamic processes. In fact, they make different assumptions
about community structure and searching mechanisms. Therefore, belong to the
same theoretical family does not lead to a similarity in practical results.
Statistical inference: the Bayesian SBM and DCSBM uses Monte Carlo sampling
process which is very time demanding in order to sweep the solution space. This
makes the method unfeasible if the maximum number of clusters is not limited.
Indeed, in the default version, the maximum number of communities is limited at 25
making (DC)SBM methods find very large communities in large networks. On the
other hand, Oslom method use an agglomerative discovery mechanism and identify
globally smaller communities.
Other methods: In this group, LPA, SPLA (both based on label propagation) and
Conclude display nearly identical distributions. RB method, being based on a very
close concept with modularity (with a tuning parameter), exhibits a similarity with
modularity optimization based methods.

Quantitatively, applying the estimator presented in Equation (4) to compute pairwise
similarities between the methods leads us to the results demonstrated in Figure 16. As
we can see, according to the community size criterion, these methods can be classified
into different classes of partitioning strategy. The separations are very shaped showing that
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Fig. 16: The similarity between community detection methods in term of size fitting
quality. Two methods are considered to be similar if they share a large fraction of same-size
communities. Methods are ordered using hierarchical clustering (Joe H. Ward, 1963). The
dendrogram proposes a hierarchical structure of the fitting closeness. Blue colors mean
high similarity.

the distinction is very clear between groups. Therefore, we choose to characterize these
methods by 3 (possibly 4) principle groups as follows:

1. Group 1 - RB, DCSBM, SBM, Infomod, SN, Louvain: Methods in this group dis-
cover communities whose size vary in wide range of spectrum, from very small to
very large communities. The characterized community size distribution is quite flat,
meaning all sizes are nearly equally considered.

2. Group 2 - GN and RCCLP-3: These two methods identify a huge number of very
small communities including singletons regardless of network size. As a conse-
quence, there are few variations in community volume.

3. Group 3 - the others: These methods produce communities whose sizes approach
bell-shaped distribution. The strategy can be translated as: not left not right, i.e. not
too small and not too big communities.

This characterization could help us to identify appropriate group of community detec-
tion methods according to different community size fitting strategies. Also, it helps to
avoid brute-force tries when a method does not succeed to propose desired partitions by
proposing substitute solutions. Moreover, by combining with the previous time computa-
tion analysis in Section 3.1, one could also choose a group of methods corresponding to
size distinction criteria, and then select the fastest method that lead to a desired outcome.
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The community distribution (or number of communities) is just one possible quality
dimension, possibly one of the most intuitive and important information when choosing a
clustering method. In the next part, we demonstrate some techniques that can be used to
define other similarity aspects. We show that these notions of similarity can be combined
to accentuate the distinction between different community detection methods.

4 Goodness profiling of community detection methods

4.1 Fitness functions

A popular way to evaluate the structure of communities is to design quality goodness
metrics in order to measure different expected characteristics from subgraphs that we want
to obtain. In practice, goodness metrics using network generative models are sometimes
preferable as they reflect different assumptions about the underlying mechanisms that cre-
ate community structure. One of the most widely used metric that quantifies the quality of
community structure is the modularity function. The idea here is to reveal how the quality
of an identified community structure is different from what would be expected. Although
some unexpected phenomena known as resolution limit (Fortunato & Barthelemy, 2006),
(Traag et al., 2011) have been exposed when the scale of community size is too small,
modularity remains to be the standard measure of quality.

The advantage of this approach is that one can “embed” the assumption of community
structure inside quality functions, hence they provide better performance in some cases.
However, community structure is quite an open question, such that according to different
mechanisms that render the structure of networks, there will be models that are more
suitable than others. Modeling networks hence contributes a great impact on the evaluation
of network structure as well as community structure.

We present some quality metrics in this class to evaluate community structure. Many
of them are initially or gradually employed as objective functions in some community
detection methods since they expose good performance in searching processes. Firstly,
we remind some notations that will be used to describe structural characteristic of com-
munities. A graph G = (V ,E ) consisting of n = |V | vertices and m = |E | edges can be
represented by an associated adjacency matrix A. Given a community C of nC vertices
being a subgraph of G in an arbitrary partition P, a function f (C) or f (P) quantifies a
structural goodness feature of community C or the whole partition P according to a partic-
ular expectation of community structure. Let mc be the number of edges inside community
C, mC = |(i, j)∈ E : i∈C, j ∈C|, lC be the number of edges that connect C to other vertices
outside of C, lC = |(i, j) ∈ E : i ∈ C, j 6∈ C|. Any vertex i belonging to community C has
an internal degree kint

iC and an external degree kext
iC satisfying kint

iC + kext
iC = ki, where ki is the

total degree of vertex i. The internal and external degree can be expressed via the adjacency
matrix A as: kint

iC = ∑ j∈C Ai j and kext
iC = ∑ j/∈C Ai j. If vertex i in community C has kext

iC > 0
and kint

iC ≥ 0 , i is called boundary vertex since i has neighbor(s) outside of C. Otherwise,
if kext

iC = 0 and kext
iC > 0, i is called internal vertex which only has connections with other

vertex in the same community. In this paper, we employ the following functions to evaluate
community structure:
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4.1.1 Newman-Girvan Modularity

The standard version of modularity (Newman & Girvan, 2004) reflects the difference the
fraction of intra community edges of a partition with the expected number of such edges if
distributed according to a null model. In the standard version of modularity, the null model
preserves the expected degree sequence of the graph under consideration. In other words,
the modularity compares the real network structure with a corresponding one where nodes
are connected without any preference about their neighbors. There are several ways to
mathematically express the modularity, in order to compare the standard modularity with
other variants, it is convenient to consider the modularity as a sum of contributions from
pairs of vertices of the same community:

QNG(P) =
1
m ∑

c∈P

[
mc−

(2mc + lc)2

4m

]
(5)

4.1.2 Erdős-Rényi Modularity

The Newman-Girvan modularity has attracted much attention in the research literature.
Many alternative derivations have been proposed to adapt to different contexts. Some of
them use different null models to quantify the modular structure of partitions. For example,
one could assume that vertices in a network are connected randomly with a constant
probability p as formulated in the Erdős-Rényi (ER) model (Erdős & Rényi, 1959). The
connection probability is calculated as p = 2m

n(n−1) being the number of presented edges
over the total number of edges that could be established. The expected number of edges
in a community of size nc becomes 〈mc〉 = p

(nc
2

)
. This null model leads us to the ER

Modularity:

QER(P) =
1
m ∑

c∈P

[
mc−

mnc(nc−1)
n(n−1)

]
(6)

4.1.3 Modularity Density (D-value or D-modularity)

The standard modularity is found to be impacted by resolution limits (Fortunato & Barthelemy,
2006), i.e. it is claimed that the sizes of detected modules depend on the size of the whole
network such that optimizing standard modularity can not identify communities having
a small number of vertices. The expected number of intra community edges is highly
sensitive to the total number of edges in the whole network (Rosvall & Bergstrom, 2007) as
can be observed in the second term of Equation (5). The modularity density (Li et al., 2008)
is one of several propositions that envisioned to palliate this issue. The idea of this metric is
to include the information about community size into the expected density of community to
avoid the negligence of small and dense communities. For each community C in partition P,
it uses the average modularity degree calculated by d(C) = dint(C)−dext(C) where dint(C)

and dext(C) are the average internal and external degrees of C respectively to evaluate the
fitness of C in its network. Finally, the modularity density can be calculated as follows:



ZU064-05-FPR arxiv˙dao˙bothorel˙lenca˙v1 8 January 2019 2:46

Community structure evaluation 31

QD(P) = ∑
c∈P

1
nc

(
∑
i∈c

kint
ic −∑

i∈c
kext

ic

)
(7)

4.1.4 Z-modularity

Z-modularity is another variant of the standard modularity proposed to avoid the resolution
limit (Miyauchi & Kawase, 2016). The concept of this version is based on an observation
that the difference between the fraction of edges inside communities and the expected
number of such edges in a null model should not be considered as the only contribution
to the final quality of community structure. Specifically, the authors recommend that the
statistical rareness of a community should be also taken into consideration. Such that an
additive contribution amount of a community to the final modularity of a partition would
be more important if its structure is less likely to be happen. Therefore, the variance of the
probability distribution of the fraction of the number of edges within each community is
included into the quality function throughout a standardization using Z-score. Following
the null model of the standard modularity, the probability that an edge in placed inside
community C is p = (DC

2m )2, where DC = 2mC + lC is the total degree of community C. The
number of edges in each community follows a binomial distribution with the probability
p and its normalized value approaches a normal distribution when the number of edges is
sufficiently large. The statistical rarity of partition P in terms of the fraction of the number
of intra-community edges using Z-score is hence translated into Z-modularity as follows:

QZ(P) =

[
∑
c∈P

mc

m
−∑

c∈P

(
Dc

2m

)2
][

∑
c∈P

(
Dc

2m

)2
(

1−∑
c∈P

(
Dc

2m

)2
)]−1

2

(8)

4.1.5 Surprise

This statistical approach proposes a quality metric assuming that edges between vertices
emerge randomly according to a hyper-geometric distribution (Aldecoa & Marı́n, 2011).
Specifically, for a graph of n vertices and m edges, there are M =

(n
2

)
possible ways of

drawing m edges. For a particular partition, there are Mint = ∑C∈P
(nc

2

)
possible ways

of drawing an intra-community edge. Surprise metric computes the (minus logarithm of)

probability of observing at least mint = ∑C∈P
kint
C
2 intra-community edges within m draws

without replacement from the population of M possible choices in which consist precisely
Mint possible intra-community edges. This probability is formalized as follows:

S(P) =− log
min(m,Mint )

∑
k=mint

(Mint

k

)(M−Mint

m−k

)(M
m

) . (9)

However, this formulation is not straightforward to work with in large-scale networks
due to numerical computational problems. Hence, (Traag et al., 2015) provides an asymp-
totic approximation for the metric which is a good alternative. By assuming that the relative
number of intra-community edges q = mint

m and the relative number of expected intra-
community edges 〈q〉= Mint

M remain fixed, Surprise metric is approximated at:
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S(P)≈ mD(q||〈q〉), (10)

where D(q||〈q〉) is the KullbackLeibler divergence (Kullback & Leibler, 1951):

D(q||〈q〉) = p log
p
〈q〉

+(1−q) log
1−q

1−〈q〉
. (11)

According to the Surprise metric, the higher the score of a partition, the less likely it is
resulted from a random realization, the better the quality of the community structure.

4.1.6 Significance

This metric use a similar approach to Surprise metric. It estimates how likely a partition of
dense communities appear in a random graph (Traag et al., 2015). However, Significance
estimates the unlikeness of dense communities in a random graph in a different way. While
Surprise uses global quantities q and 1− 〈q〉, Significance compares each community
density pC = mC

(nC
2 )

to the average graph density p= m
M . The asymptotic form of Significance

can be written as:

Z(P) = ∑
C∈P

(
nC

2

)
D(pC||p). (12)

Similarly, D(x||y) is the KullbackLeibler divergence defined in Equation (11). Generally, if
the number of communities is relatively large or the graph is relatively dense, Significance
is more discriminative than Surprise. On the other hand, in case that 〈q〉> p, Surprise can
be better than Significance (Traag et al., 2015).

4.2 Co-performance index

We devise a new comparative approach using a matrix called community detection co-
performance matrix. The idea is that, given an expected quality function, one could inves-
tigate whether there exist a correlation in the efficiency of enhancing (or aggravating) its
scores between different methods. The co-performance matrices reveal how understanding
the performance of a method in optimizing a quality would allow us to predict the per-
formance of other methods on the same quality. Therefore, an exhaustive analysis of co-
performance matrices on many qualities allows to profile the characteristics of community
detection methods in a comparative way. The index could be calculated as follows:

Let methods A and B divide a graph Gi = (Vi,Ei) of dataset G = {Gi|i = 1..N} into α

and β communities described by partitions Pa
Gi

= {Ca
1Gi

,Ca
2Gi

, ...,Ca
αGi
} ∈PGi and Pb

Gi
=

{Cb
1Gi

,Cb
2Gi

, ...,Cb
βGi
}∈PGi respectively, we consider solely hard clustering methods, mean-

ing Ca
uGi
∩Ca

vGi
= ∅ : 1 ≤ u < v ≤ α and Cb

uGi
∩Cb

vGi
= ∅ : 1 ≤ u < v ≤ β . A function

Q : PGi → R quantifies a quality of a partition of graph Gi according to a particular
goodness aspect (or model).

We define a co-performance index of two methods A and B on G by their mutual capacity
in discovering community structures showing a particular quality Q. In other words, each
couple of methods should be assigned a high index according to a quality Q if knowing the
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performance of one method reveals significantly the information about the performance of
the other. A straightforward solution for defining the index is using Pearson correlation.
Denoting qa

i = Q(Pa
Gi
) and qb

i = Q(Pb
Gi
), the co-performance index can be calculated as

follows:

IG (A,B,Q) =
N ∑qa

i qb
i −∑qa

i ∑qb
i

[N ∑(qa
i )

2− (∑qa
i )

2]1/2[N ∑(qb
i )

2− (∑qb
i )

2]1/2
, (13)

where 0≤ IG (A,B,Q)≤ 1. A high positive (negative) score implies that two methods often
find a strong consensus (disagreement) in discovering communities having a particular
quality. In order words, given a co-performance index, knowing the quality scores of one
method could provide predictive information about the outcomes of the other method on
the same dataset. This information in fact could be very useful in a context where alter-
native solutions must be deployed while maintaining an assumed quality is expected. We
present in the following part the mutual performance of the presented detection methods
by the previously presented quality functions.

Figure 17 illustrates the co-performance matrices according to six different quality good-
ness criteria. Again, similarly to the previous section, goodness functions with a close
concept are placed together. For instance, NG modularity and ER modularity are both
based on null models whose concept use an expected fraction of intra-community edges.
While the hypothesis of NG version is to keep the expected degree sequence of the graph
in question, the ER version redistributes edges randomly with a constant average degree
for every nodes. D-modularity and Z-modularity attempt to penalize large communities by
including community sizes and significance level respectively. One can notice a very slight
similarity in the experimental results of the co-performance indexes between different
quality functions. Also, it seems that the assumption about the quality of community
structure has an impact on the co-performance outcome.

As shown in Figure 17, there is a class of methods (Louvain, GN, CNM, RB, Infomod,
Infomap, Walktrap, Oslom, LPA, SLPA, Conclude) in which all methods show very consis-
tent results, except for the case of D-modularity7. Besides, there is also a strong relation
between SBM and DCSBM. For the other methods (RCCLP and SN), no clear tendency
could be observed from this experiment. The similarity of a large number of methods by
many quality functions imply that, globally, if a method performs well on a given network,
there is a signal that the others (from the same group) could also reach good results. In
other words, if the community structure in a network is clear, most method will be able to
detect it with more or less accuracy and inversely. However, as the co-performance indexes
also vary significantly (0.2 to 0.3) inside each group, there will be always a remarkable
difference if one goes from one method to another.

Within the case of density modularity shown in Figure 17(c), we discover that the sizes
of detected communities have a great impact on the co-performance. Since density is a
measure that penalizes heavily large size communities, especially in sparse networks, D-
modularity gives very small values of giant communities and very high values for small

7 In fact, density modularity is somehow apart from other traditional ways to define the modularity,
as it is not defined based on a null model but solely on edge density. The term D-modularity is
abused in this sense
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Fig. 17: The co-performance matrices of different methods. The ”+” marks indicate cases
where p-values are larger than 0.05. (a) Newman-Girvan modularity, (b) Erdős-Rényi
modularity, (c) Density modularity and (d) Z modularity.

ones. Concretely, the methods SBM, DCSBM, Infomod, RB, SN discover very large com-
munities (as shown in Section 3.3) and their co-performances in terms of D-modularity
are very weak, showing that internal densities of communities detected by these meth-
ods are not linearly correlated. The reason is that the corresponding densities fluctuate
unpredictably around zero. Similarly, GN and RCCLP-3 found many tiny communities
making the density either very high or zero (if internal degree is equal to external de-
gree), consequently the co-performance index can not show significant information. On the
other hand, we notice a consistency between the similarity of community size and the co-
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Fig. 17: The co-performance matrices of different methods (cont.) (E) Surprise and (F)
Significance.

performance when methods identify medium size communities. Specifically, we find high
co-performance indexes between CNM, Conclude, Oslom, Walktrap, LPA, SLPA, Infomap
methods in most of the cases of the six quality fitness functions. This finding exposes a
global agreement with our categorization determined by community size distributions.

The co-performance matrices also disclose interesting information about quality func-
tions. As we can see in Figure 17(a,b,d), the matrices imply a similarity between NG
modularity, ER modularity and Z-modularity in the assumptions of quality. In the same
way, Surprise and Significance are quite close in practice as illustrated in 17(d,e). This
experiment shows again another proof about the closeness between the theoretical assump-
tion of community structure and the practical outcome. Moreover, although being based on
different aspects of goodness, the performance of many methods tends to reach agreement
on the modular structure of networks in general. This is to say, methods in the same group
identify roughly and globally comparable results although there are always significance
differences. In order to strengthen and validate our conclusion, we are interested in using
other popular approaches in the literature to compare these community detection algo-
rithms, which will be presented in the next section.

5 Partitioning strategy comparison

This section is dedicated to using conventional clustering validation metrics from the
literature to verify the previous similarity analyses. We employ some popular metrics in
the traditional clustering context (and also widely used in community detection context),
which measure directly the likeliness of partitions using their corresponding contingency
tables. These metrics do not take into consideration the structural information of commu-
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nity structures, but only use the common numbers of nodes that are shared by pairs of
communities in two partitions.

5.1 Validation metrics

The consensus of two partitions P1 = {c(1)1 ,c(1)2 , ...,c(1)R } and P2 = {c(2)1 ,c(2)2 , ...,c(2)S } can be
more practically observed using a contingency table (sometimes called confusion matrix
or association matrix) whose elements ni j = |c(1)i ∩ c(2)j | corresponds to the number of
common vertices between the i-th community of P1 and the j-th community of P2 as shown
in Table 5.

Table 5: Contingency table of P1 and P2 on the same graph provides information about the
similarity between the two partitions.

Partition P1

Partition P2

c(2)1 c(2)2 · · · c(2)S ∑

c(1)1 n11 n12 · · · n1S n1···
c(1)2 n21 n22 · · · n2S n2···

...
...

...
. . .

...
...

c(1)R nR1 nR2 · · · nRS nR···
∑ n···1 n···2 · · · n···S n

In the evaluation of community structure using a validation metric, some following
validation metrics are often used in the context of community detection to define the
matching coefficient between two arbitrary partitions of a network:

5.1.1 Rand Index (RI)

The rand index is a pair-counting based measure, defined as the ratio of the number of
vertex pairs correctly classified (either in the same community or in different communities)
by the total number of pairs (Rand, 1971). The RI penalizes both false positive and false
negative decisions of the clusterings. When the false positive need to be neglected, we can
refer to the Jaccard index (Kuncheva & Hadjitodorov, 2004). The rand index value of two
partitions can be calculated by the following:

RI(P1,P2) =

(n
2

)
+2∑i ∑ j

(ni j
2

)
−
[
∑i
(ni···

2

)
+∑ j

(n··· j
2

)](n
2

) (14)

The value varies between 1 (meaning the two partitions are identical) and 0 (indicating
that the two partitions do not agree on any pair of vertices). However, this value is only
observed in the scenario when one partition consists in one community and the other
consists in n community of 1 vertex, which has little practical value. Another shortcoming
of the rand index is that its expected value for two randomly chosen partitions does not
take a constant value which is normally expected for a good matching index (Vinh et al.,
2010). Therefore, a modified version of RI has been suggested, taking into consideration



ZU064-05-FPR arxiv˙dao˙bothorel˙lenca˙v1 8 January 2019 2:46

Community structure evaluation 37

the expected value of randomness (Hubert & Arabie, 1985), which is introduced in the
following.

5.1.2 Adjusted Rand Index (ARI)

The corrected version of rand index takes the form:

Ad just index =
Index−Expected Index

Max Index−Expected Index
(15)

It quickly becomes a replacement recommended for measuring agreement between two
partitions in the analysis of clusterings. Its values ranges from −1 to 1 indicating com-
pletely different and identical partitions respectively. It is known to be less sensitive to
the difference of the number of communities between two partitions. An ARI value of 0
indicates that the similarity is equal to the expected value from randomly chosen partitions.
It can be calculated as:

ARI(P1,P2) =
∑i j
(ni j

2

)
−
[
∑i
(ni

2

)
∑ j
(n j

2

)]
/
(n

2

)
1
2

[
∑i
(ni

2

)
+∑ j

(n j
2

)]
−
[
∑i
(ni

2

)
∑ j
(n j

2

)]
/
(n

2

) (16)

5.1.3 Normalized Mutual Information (NMI)

Information theoretic based metrics constitute another approach for validating community
structure with a given reference partition. Using the same notations as previously presented,
the Mutual Information (MI) between two partitions quantifying the mutual dependence is
calculated as:

I(P1,P2) = ∑
i j

p(c(1)i ,c(2)j ) log
p(c(1)i ,c(2)j )

p(c(1)i )p(c(2)j )
= ∑

i j

ni j

n
log

ni jn
ni···n··· j

(17)

It measures how much knowing a repartition of vertices in one way would reduce the
uncertainty about the other way. In order words, it could be considered as an indicator of
information closeness expressing by the joint distribution between two variables. There-
fore, the mutual information can be used as similarity measure between two partitions.
However, it need to be normalized to reflect a consistency between different measures. The
normalization is applied by using the entropy of each partition as:

H(P) =−∑
k

nk

n
log

nk

n
(18)

Several variants of normalization can be considered, for instance taking the average, the
root or the maximum of entropy of the two partitions as the denominator (Ana & Jain,
2003). In this document, we use the average version which is widely used in the context of
community analysis (Danon et al., 2005), (Chakraborty et al., 2017). The closed form of
NMI is hence defined from Equation (17) and (18) as follows:

NMI(P1,P2) =
2I(P1,P2)

H(P1)+H(P2)
=

−2∑i j ni j log
(

ni jn
nin j

)
∑i ni log

( ni
n

)
+∑ j n j log

( n j
n

) (19)
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Likewise, the NMI similarity between two partitions varies between 0 corresponding to
independent relation and 1 when two partitions are identical. The NMI does not follow
triangle inequality.

5.1.4 Adjust Mutual Information (AMI)

Similarly to the Rand Index, the Mutual Information is also subject to the effect of ran-
domness, i.e. there is not a constant baseline value between random partitions of a graph.
This issue raises many difficulties in the comparison mechanism since it is expected that a
comparative index should preserve the relativity between different clusterings and enhance
intuitiveness about the mutual agreement. For that reason, the traditional Mutual Informa-
tion is proposed to be normalized with a supplementary correction for chance and recently
attracted attentions for comparing graph partitions. It is calculated as follows (Vinh et al.,
2010):

AMI(P1,P2) =
I(P1,P2)−E{I(M)|ni···n··· j}

1
2 (H(P1)+H(P2))−E{I(M)|ni···n··· j}

, (20)

where I(P1,P2) and H(P) are introduced in equations (17) and (18) respectively. E{I(M)|ni···n··· j}
is the expected mutual information value of all feasible contingency tables constructed
from the actual table M with the same marginals ni···, n··· j.

5.1.5 Normalized Variation of Information (NVI)

Another popular metric that is often used in the context of comparing community partition
similarity is the Variation of Information (VI) (Meilă, 2003), which is defined as:

V I(P1,P2) = H(P1)+H(P2)−2I(P1,P2) (21)

The VI metric can be interpreted as an index of shared information distance between two
partitions. Its lower bound is 0 and is occurred when the two partitions are identical whether
the upper bound log(n) happens when they are completely different. It is also preferable
to use a normalized version with chance corrected to avoid the effect of randomness.
Similarly to the construction of the Adjusted Mutual Information, with the same notation,
the Normalized Variation of Information is calculated as follows:

NV I(P1,P2) =
H(P1)+H(P2)−2I(P1,P2)

H(P1)+H(P2)−2E{I(M)|ni···n··· j}
. (22)

However, it turns out that NV I discloses the same information with AMI since from Equa-
tion (20) and (22), one has NV I(P1,P2) = 1−AMI(P1,P2). By consequent, calculating V I
and NV I is unnecessary. We will be interested in using RI, ARI, NMI and AMI in our
experiment. A summary of these validation metrics are shown in Table 6.

Validation metrics are often used in the context of community structure evaluation to
measure the difference between the partition identified by a method with an expected par-
tition of the network under consideration (ground-truth). The more similar the discovered
partition to the ground-truth, the higher the performance of the method. However, in this
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Table 6: Some popular validation metrics for comparing community partitions

Label Range Measure

RI [0,1] Fraction of commonly grouped and separated vertices in two partitions.
ARI [0,1] Rand index with a chance correction, less sensitive to differences of

community sizes.
NMI [0,1] Information theoretic approach, indicate how much information knowing

one partition will help to guess the other.
AMI [0,1] Similar with NMI, with a chance correction to set a constant baseline for

random partitions.
VI [0, log(n)] Shared information distance measures the amount of mutual information.

The higher the value, the less resembling the two partitions.
NVI [0,1] Normalized version of shared information distance with chance correction.

section, validation metrics are exploited as a tool to compare community structures of
different detection methods. They estimate the practical proximity of different algorithms
through detected partitions, which constitutes a supplement source of information for eval-
uating their performance in a comparative approach.

5.2 Empirical results

Once again, the experimental process is the same as those of the previous sections. From
the partitions detected by the methods on the dataset, we calculate pairwise scores quan-
tified by each validation metric on each network. Figure 18 illustrates pairwise average
scores of the 4 metrics over the networks of the dataset8.

Again, by observing the dendrograms in Figure 18, one can see that all of the 4 met-
rics classify methods into two principle groups in a similar way that the co-performance
matrices exposed in the previous section. The group of methods CNM, Conclude, Oslom,
Walktrap, LPA, SLPA, Infomap mentioned in the last section also show very strong sim-
ilarities in this experiment. Especially, LPA and SLPA being based on label propagation
mechanism show nearly identical results in many cases. Besides, one could also discern
another group including RB, CNM, GN and Louvain (modularity based), which show a
high consistency in general. Additionally, even with weaker scores, SBM and DCSBM are
often found in the same group as well as RCCLP-3 and RCCLP-4. In a global view, it
seems that methods with a close theoretical approach tend to provide more similar results,
which is also noticed in the previous sections.

Another information that could be extracted from this experiment is that RI should not
be used as validation metrics for evaluating detection performance. Since its average values
vary generally in a small range (0.9 to 1.0), it is more difficult to see the different between
partitions. On the other hand, NMI and AMI shows very close results in our experiment,
which are between 0.5 and 1.0 meaning that structural communities detected by different

8 Where the corresponding methods are able to finish using a reasonable amount of time and
memory as mentioned in the previous experiments.
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Fig. 18: The similarity between community detection methods quantified by different
validation metrics based on partitions discovered on networks of the dataset. Rows and
columns are ordered according an hierarchical clustering method (Joe H. Ward, 1963). In
the order, the average score of (a). NMI, (b). AMI, (c). RI, (d). ARI.
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methods are quite comparable as concluded in the previous section. Finally, ARI seems
to magnify the differences between methods, however there is no major difference in the
similarity evaluation in comparison with the other metrics.

6 Related work

Orman et al. publish a comparative evaluation of eight community detection algorithms
which most of them are also studied in this paper (Orman et al., 2012). Different validation
metrics are also used to compare detection performance and they also find that these
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metrics (RI, ARI, NMI) “agree with each other with small differences when considering
the way they rank algorithms”, as also illustrated in Section 5. Beside, the authors also
focus on analyzing many topological aspects of community structure including also com-
munity size, transitivity, density, etc. These topological qualities are then used to inspect
community structures detected by different algorithms. The analyses allow the authors to
conclude that these two approaches (topological metrics and validation metrics) to evaluate
community structures are “complementary and needed to perform a relevant and complete
analysis of community detection results”. They also propose that the “traditional approach
(RI, ARI, NMI) is much faster and easier to apply”, and hence is proposed to be used
first. However, in practice, reference community structures (ground-truths) are not usually
available9. Therefore, from these above notices, our analyses in this paper could be an
important support dispensing additional information about the closeness between methods
both in terms of topological aspect and partition-based aspect.

Agreste et al. evaluate different community detection algorithms in a empirical and
comparative approach, especially for the context of web data analytic (Agreste et al., 2017).
The authors find that “time complexity is a crucial factor in the selection of a community
detection algorithm” and recommend that the label propagation method (LPA) “has out-
standing performance in scalability on both artificial and real graphs”, which is also in a
global agreement with our analysis in Section 3.1 providing predictions about required time
of each method in function of network size. They also conclude that “Infomap algorithm
showcased the best trade-off between accuracy and computational performance” based
on NMI score. The conclusion could be valid in some specific cases when the expected
ground-truth community structure is well understood. Otherwise, some additional analyses
should be done to determine whether ground-truth information aligns the final objective of
community detection algorithms10 (Peel et al., 2017).

Ghasemian et al. present in a recent publication that an evaluation of overfitting and
underfitting of several community detection models (Ghasemian et al., 2018). The authors
study the number of communities detected in practice by many methods and the maximum
number of detectable clusters according to a theoretical model. Some conclusions are
drawn about fitting qualities of methods in comparison to theoretical estimates. This study
provides evidences that help to choose an appropriate method in function of fitting quality.
Community detection methods are also grouped in distinct families based on their outputs
on many real-world networks (similarly to our analysis in Section 5.1) using AMI metric.
The authors also find that “what an algorithm finds in a network depends strongly on the
assumptions it makes about what to look for”, which is aligned with our results through
several analyses.

9 In the context where a new algorithm is invented, one normally uses networks whose community
structures are well known in order to validate the proposed method. In reality, since community
detection is often employed to discover structures of new networks, hence it is not likely that
reference community structures always exist.

10 In fact, metadata information of nodes are usually used in practice as ground-truth community
structure. However, it has been found that metadata communities are sometimes very sparse (Dao
et al., 2017).
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7 Conclusion

Finally, it is quite challenging to recommend which method is better in which scenario.
It is at least as much demanding as defining all possible scenarios in the reality that could
happen. Our experiments in this paper provide several experiments demonstrating different
aspects of community structure quality, which can be combined together in a flexible way
to assist network analysts to find appropriate methods according to their context. Some
questions could be sequentially asked during decision making processes:

1. What is the size of the network of interest and what is the acceptable computation
time for the task of community detection?

2. What are the expectations about the number of communities as well as the commu-
nity size distribution?

3. Is there any fitness function that should be optimized?
4. In circumstances where the targeted method can not be deployed, is there any alter-

native solution?

The experiments and results in this paper could help to identify quickly suitable method(s)
if one is able to response the previous questions.

The consideration of computation time is very crucial in the process of choosing a
community detection method for a problem at hand. Even if theoretical estimate of time
complexity is important and reveals the scalability of a community detection method, prac-
tical computation time is worth being studied in practice. Our estimates provide detailed
information of practical time required by many popular community detection methods in
function of network size. In particular the most scalable methods that we tested (Louvain,
LPA and SN) reduce by approximately 104 times the required computation time compared
with most of the other methods, which is not only significant but also crucial for a large
network. Given a network size our results help in filtering non suitable methods.

In addition, the expected number of communities to be obtained is another important
criterion in choosing a community detection method. According to the context, one would
prefer different granularity levels. Our study shows that there are globally three main
strategies that community detection methods decompose a network. Specifically, some
identify communities whose size vary regularly in a wide range of values from very small
to very large communities, some others divide networks into a huge number of very small
communities and very few large communities, and finally the last ones distribute nodes
into similar medium-size communities (around 10 members). Therefore, knowing how a
network should be broken down is very useful in order to end up with an appropriate
community discovery method.

In cases where (advanced) network analysts can determine a targeted objective function,
designing new algorithms (or employing existing algorithms) that optimize the function
would be the most evident. Since improving an objective function usually means expending
more computation time, a compromise between getting higher fitness score and using less
time needs to be considered. However, finding a good method to optimize an objective
function satisfying a time constraint condition in the problem of community detection
is not straightforward and needs many investigations. Our approach presented in the co-
performance analysis provides network practitioners a quick glance about how different
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methods perform in improving some widely-used quality functions. This predictive infor-
mation about the effect of using alternative methods in achieving good fitness scores would
suggest network analysts multiple solutions for a certain objective function. This scenario
is specifically useful when the desired method is too expensive in terms of computation
time. Therefore, a combination of our empirical analyses about scalability and/or commu-
nity size distribution with the co-performance index can identify eligible alternatives for
specific cases.

Finally, we find that using some validation metrics to estimate the similarity between
community detection methods could also provide interesting information that could help
the decision process of network analysts. In situations where one knows exactly, or have
clues about, what should be found (ground-truth information), studying the way nodes are
allocated to communities is important as it provides useful information about how a method
is able to reach the desired clusters. However, this scenario is generally not popular in prac-
tice since community detection is often used to discover the structures of networks when
no a priori information is available. In these cases and when performing several methods
is possible, validation metrics are used to compare the results and identify different types
of partitions. From our empirical study, we noticed significant differences in the way that
nodes are distributed into communities. Especially, methods such as SBM or RCCLP-4
seem to detect partitions which are very discernible from that of the others. Hence, the use
of these methods needs to be examined, and we shall recommend to use them along with
other methods as they might bring totally different and probably complementary insights
in the data.
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