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Abstract— The emergence of non-volatile random access 
memory technologies, such as resistive and spintronic RAMs are 
triggering intense interdisciplinary activity. These technologies 
have the potential of providing many benefits, such as energy 
efficiency, high integration density, CMOS-compatibility, re-
configurability, non-volatility and open the path towards novel 
computational structures and approaches, for the traditional 
Von-Neumann architectures and beyond. These promising 
characteristics, coupled with the ever-increasing limitations faced 
by traditional CMOS-based storage and computational 
structures, have driven the research community towards 
completely revisiting the existing computing and storage 
paradigms, now focusing on providing hardware solutions for in-
memory and neuromorphic computing. This has resulted in an 
intensified research activity in the device physics, striving to 
achieve circuit-worth devices, reliable compact models and novel 
architectures. The purpose of this paper is to provide a 
comprehensive overview of the device physics, issues related to its 
use in electronic circuits, methodologies for their compact 
modelling and simulations, and their integration in storage and 
computational structures.

Keywords— reliability, non-volatile RAM, OxRAM, STT-

MRAM, in-memory computing, neuromorphic computing,  

I.� INTRODUCTION

With technology scaling, the existing memories become 
increasingly power hungry, less reliable and their fabrication 
becomes more expensive due to increased manufacturing 
complexity. Although current memory technologies boast 
smaller feature sizes, their performance is not proportionally 
improved from generation to generation. The crossing point, 
the so called “memory wall” – where technology scaling will 
lose its profitability – is going to be reached soon due to the 
growing disparity of speed between Central Processing Unit 
(CPU) and memory outside the CPU [1]. An important reason 
for this disparity is the limited communication bandwidth 
beyond chip boundaries. This opens the path and forces the 
search for brand new generations of memories and computing 
paradigms. There are several emergent memory technologies 
that attempt to address the aforementioned technical 
challenges and constraints. The major focus is today on novel 
non-volatile technologies. 

The International Technology Roadmap of Semiconductors 
(ITRS) in its 2015 report identified the Spin Transfer Torque 
MRAM (STT-MRAM), and Redox RAM (ReRAM) as 
emerging memory technologies recommended for accelerated 
research and development leading to scaling and 
commercialization of non-volatile resistive memories [2]. 
These emerging devices have many advantages such as: 
CMOS process compatibility, low fabrication cost, zero static 
power, nanosecond switching speed, great scalability, and 
non-volatile nature. In addition, these emerging memories 

favor increasing system complexity and performance, opening 
the scientific community to new applications and computation 
paradigms which had been unfeasible a few years back due to 
technological limitations, such as in-memory computing and 
bio-inspired computing. The use of resistive and magneto-
resistive technologies is not limited to memories; they can also 
be used for combinational logic design [3], to integrate non-
volatility in latches and Flip-Flops [4], for ultra-low-power 
normally-off/instant-on computing [5-6].

Among the recent applications of these novel devices, there is 
a growing interest towards hardware implemented neural 
algorithms for pattern recognition and classification. Top 
projects in neuromorphic engineering have led to powerful 
brain-inspired chips able to simulate numerous neurons to 
investigate a new kind of computer architecture (SyNAPSE 
[7], TrueNorth [8]), or to help neuroscientists through the 
Human Brain Project (SpiNNaker [9]). Overall, considering 
the large number of neurons needed to perform efficient 
classification, designers face the same obstacles: storage of at 
least hundreds of thousands of parameters (synaptic weights) 
and access to these parameters in order to analyze the input 
flow of data, sometimes with real-time constraints. We can 
then distinguish some promising approaches to face the 
problem and explore them: at the memory level, use of 
nonvolatile technologies to get parallel access to the memory 
hierarchy, at circuit level, investigate non-Von Neumann 
processing that brings computation and memory together, and 
take advantage of the memristive-like devices.

In-memory computing is an emerging concept based on the 
tight integration of traditionally separated memory elements 
and combinational circuitry, that allows minimizing the time 
and the energy needed to move data across the processor. In 
this paradigm, the physical properties of novel memory 
devices are used for both storing and processing information 

[10-11]. This paradigm leads to an efficient implementation of 

different arithmetic logic functions, such as bit wise operations 
where two or more memory rows storing bit-vectors are 
activated simultaneously. Thanks to in-array calculation, the 
result does not need to travel the memory bus anymore. In-
memory computation of simple OR and AND operations have 
been proposed already in STT-MRAM [12], others exploit 
analog characteristics of non-volatile memories to support 
addition and multiplication inside a crossbar memory, by 
paying the cost of the computation approximation.

Despite the promising nature of the in-memory computing 
based architectures and neuromorphic architectures build with 
emerging devices, many issues related to the devices 
themselves and to their double use (storage and computing 
unit) have still to be solved. From the device perspective, the 

modeling and characterization of fabrication defects, 
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variability and reliability issues, fault analysis and modeling 
are still lacking maturity, as consequence of the novel 
fabrication process and variety of design proposals [13-14].

These issues explain the limitations of the existing reliability 
enhancement strategies for in-memory computing and 
neuromorphic structures, thus motivating our research in this 
direction.

The remainder of this paper is organized as follows. Section II 
provides the fundamental physics, compact modeling and 
main variability sources affecting the OxRAM device. Section 
III provides the fundamental physics, compact modeling and 
main variability sources affecting the STT-MRAM device. In 
Section IV, storage and computing structures based on novel 
non-volatile RAMs are presented, together with issues related 
to their robustness. Section V concludes this paper. 

II.� OXRAM: FROM PHYSICAL DEVICE TO CIRCUIT

SIMULATION

OxRAM technology is seen as a promising candidate for 
Storage Class Memory (SCM) applications or for embedded 
applications, including disruptive architecture such as neural 
networks. This trend is mainly due to enhanced performances 
versus classical Flash and to a straightforward integration in 
the back-end of line (BEOL) of classical CMOS process. 
Indeed, the OxRAM stack is processed with materials already 
present in the CMOS technology, such as metal oxide. Among 
the large panel of possible stacks, the one-presented Fig. 1, 
based on a 5 nm thick HfO2 resistive switching layer 
sandwiched between a TiN/Ti Top Electrode (TE) and a TiN 
Bottom Electrode (BE) has focused a large attention, since 
HfO2 is already used in the MOS HKMG (High k Metal Gate) 
stack. The resistive switching layers are deposited by Atomic 
Layer Deposition (ALD), whereas the metallic electrodes are 
deposited by Physical Vapor Deposition (PVD) [15-17]. 

Fig.1 Schematic representation of RRAM stack based on HfO2.

OxRAM modeling used in this study is based on the work 
presented in [18]. This approach relies on electric field-
induced creation/destruction of oxygen vacancies within the 
switching layer. The model enables continuous accounting for 
SET and RESET operations into a single master equation 
(equation 1) in which the resistance is controlled by the radius 
of a conductive filament (namely rCF):
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where VCell is the voltage applied between the top and the 
bottom electrodes, q is the elementary charge of electron, kb is 
the Boltzmann constant, T is the temperature in the structure. 
The parameters controlling the SET (resp. RESET) operation 

are: �SET (�RESET) the nominal rate, EaSET (EaRESET) the 

activation energy, �SET (�RESET) barrier-lowering coefficient. 

The FORMING operation is also perfectly taken into account 
thanks to a second state variable (rCFmax) determined with 
equation 2: 
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where EaFORM is the activation energy for Electroforming and 

�FORM the nominal forming rate. 

After model card extraction, the model matches quasi-static 
and dynamic experimental data measured on HfO2-based
memory elements. To study reliability issues at circuit level, 
the device to device (D2D) spread and the cycle to cycle (C2C) 
variability of OxRAM cells are included in the model. 

A.� Device-to-device spread 

To account for the D2D spread, one parameter (�D2D) is added 
to the model card according to equation 3. This parameter 
modifies the barrier-lowering coefficients, thus maintaining 
the physical consistency between FORMING, SET and 
RESET operations. 
%&'()*+* � %&'( � , - .*+*

%/'&'()*+* � %/'&'( � , � .*+*

%01/2)*+* � %01/2 � , - .*+*

   (3)

Depending on the setting of the parameter �D2D, corner-cases, 
as well as Monte-Carlo simulations, are possible. Corner cases 
depict the two extreme OxRAM behaviors observed 
experimentally. The first corner promotes the SET mechanism 
and degrades the RESET, whereas the second one is the 
opposite [19]. Between these two extreme cases, Monte-Carlo 
simulations can be enabled with random sampling of the 

parameter �D2D. The Fig. 2 shows quasi-static I-V 
characteristics of the OxRAM device to depict the D2D 
variability. It is worth to note that our model is in good 
agreement with measurement for nominal case. Moreover, the 
corners definition ensures to fully capture the variability range 
for all modes of operations (FORMING, SET and RESET). 

Fig.2: Experimental I(V) characteristics for Electroforming, Set, and Reset 
measured on a large number of memory elements reflecting the device-to-

device variability presented in [15] 

The Fig. 3.a describes the dependence of the switching time to 
the voltage amplitude of the programming pulse. Fast-

programming operations (�ns) can be performed using middle 
voltages (1.5 V) with respect to standard CMOS biasing for 
advanced node (1V for 28 nm). Furthermore, the Fig. 3.b. 
underlines the relation between the RHRS value and the RESET 
voltage. Our model captures well both dependencies 
(programming time versus programming voltage and RHRS

value versus RESET voltage) for nominal and corner cases. 

Fig. 3: Experimental (a) switching time for Forming, Set and Reset 

operations as a function of voltage and (b) RHRS as a function of stop voltage 

during Reset operation presented in [15] and the simulation results
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B.� Cycle-to-cycle variability 

To take into account C2C variability, detection of SET/RESET 
events during simulation has to be provided to the model. To 
achieve this task, the finite state machine described in Fig. 4 is 
included in the model. 

Fig. 4: Finite state machine for detection of SET/RESET cycles

At each new SET/RESET cycle, a random variable x is re-
evaluated according to a normal law. This variable is used to 
process new model card parameters according to equation 4.
34&'()5+5 � 34&'( � , - 6 � .'4

34/'&'()5+5 � 34/'&'( � , � 6 � .'4
(4)

�Ea determines the range of variation for SET/RESET 
activation energy. The Fig. 5 presents the cumulative 
distribution of SET/RESET voltages during 500 cycles long 

simulation. Depending on the parameter �Ea, C2C variability 
may face strong variation. This model feature is very useful to 

take into account aging effects. Indeed, increasing �Ea

parameter during cycling simulation reflects nicely aging 
effect and thus reliability issues. 

Fig. 5: Cumulative distribution of (a) RESET and (b) SET voltages during 

500 cycles simulation with respect to the �EA parameter

III.� STT-MRAM: FROM PHYSICAL DEVICE TO CIRCUIT

SIMULATION

The Magnetic Random Access Memory combines an 
intrinsic non-volatility with fast access time (few ns), low-
power consumption (100fJ at bit cell level), high density 
(~20F²), high endurance and a natural immunity to radiations 
(since the information is not held by a charge). Thanks to these 
characteristics, MRAM can be introduced at all the levels of 
the memory hierarchy, from main memory to latches or 
registers, or even mixed by the logic itself in the combinational 
parts of the circuits [20]. To evaluate the benefits that can be 
expected from these hybrid CMOS/magnetic circuits, it is 
necessary to develop a full design flow, from device to system 
level, compatible with the standard design flows of 
microelectronics. Here, we introduce compact modeling of the 
magnetic devices for electrical simulations.  

A.� Magnetic Tunnel Junctions description 

MRAM technologies rely on Magnetic Tunnel Junctions 
(MTJs, Fig. 6), nanostructures basically composed of two 
ferromagnetic (FM) layers separated by a thin insulator. The 
magnetization of one of the FM layers is pinned and acts as a 
reference (RL), while the magnetization of the other layer 

(Storage Layer, SL) can be switched between two stable states, 
Parallel (P) or Anti-Parallel (AP) to the RL, with a hysteretic 
behavior. The logic information is coded by the resistance of 
the stack, which depends on the relative orientations of the two 
layers, smaller for P than for AP state. The TMR (Tunnel 
Magneto Resistance) ratio gives the relative variation of 
resistance between the two states. It is typically around 150% 
to 200%. Reading the information consists in measuring the 
resistance of the device. 

Fig 6: In-plane magnetized Magnetic Tunnel Junction. The resistance is 

either high or low depending on the relative orientation of the magnetizations

Writing the information is performed by switching the 
magnetization of the SL. Today, MRAM writing relies on the 
Spin Transfer Torque (STT) effect [21-22]. It consists in 
writing the magnetization by applying a current directly 
through the MTJ. The current gets spin polarized by the RL 
and transfers the magnetic moment to the SL, resulting in 
magnetization switching if the current is strong enough. This 
approach allows a good density (with a bit cell composed of 
one MTJ and one selection transistor). It is very scalable, since 
the writing current decreases with the surface of the device. In 
this technology, there is a strong correlation between the 
stability of the MTJ information (i.e. the retention time) and 
the writing current, from one side, and between the writing 
current and the writing speed, on the other side. This is a 
degree of freedom that can be used to adapt the device to the 
application. The STT technology and in particular its 
“perpendicular” implementation [23] (where the 
magnetization stands perpendicular to the plane of the 
magnetic layers) is currently seen as the most promising for 
logic applications and is studied by more and more academic 
and industrial actors of microelectronics.  

B.� Compact modeling 

The operation of electrical simulator imposes a particular 
formalism of the devices models, which should be written 
under the form of an electrical equivalent model. Many 
compact models of MTJs have been proposed, with two main 
approaches for modeling the write operation: a more 
“physical” approach, which takes into account the dynamics 
of the magnetization driving the switching speed, and a more 
“behavioral” approach in which the typical switching duration 
is calculated as a function of the value of the writing current. 
The first approach is more accurate and predictive since it 
really provides the real-time state of the magnetization. 
However, it is relatively slow and not adapted to the simulation 
of complex circuits like memory arrays for instance. The 
second one is faster but needs to be calibrated to fit the actual 
behavior of a device, and does not give the “analog” behavior 
of the MTJ for accurate characterization of the circuit.  Here, 
we present two examples of models developed at Spintec, 
following these two approaches. Concerning the read 
operation modeling (resistance of the MTJ), both models take 
into account the dependence of the resistance upon the 
magnetic state and the polarization voltage, the dependence of 
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the transport and magnetic parameters upon the temperature 
and the heating of the MTJ due to Joule effect. In both cases, 
the model is “BSIM-like”, with a generic model of the MTJ 
associated with a corner file to provide the parameters and 
their variations for a given technology.  

Physical compact model. In this model [24], the writing is 
modeled using the Landau–Lifshitz–Gilbert [21] equation 
giving the dynamic evolution of the magnetization of the SL 
due to STT currents applied to the MTJ, with a precessional 
behavior. Fig. 7 shows simulation results using the model. The 
first curve represents the pulse of voltage applied to the MTJ 
for writing. The second curve represents the resulting current 
flowing through it. We can see that for a constant pulse of 
voltage, we have a straight change of current, which is due to 
the resistance switching. The third curve represents the 
temperature of the MTJ. We see that when applying the writing 
current, the temperature increases. The dynamics of the 
temperature changes at the switching point because of the 
change of resistance resulting in a change in the power brought 
to the system by Joule effect. The fourth curve represents the 
resistance of the MTJ. We see that before and after the 
switching, the resistance is not constant because the tunnel 
resistance depends on the temperature. Moreover, the TMR 
depends on the polarization voltage, so the final AP resistance 
is only reached after the writing pulse is stopped and cooling 
of the MTJ. In the inset, we can see the typical damped 
precessions of the magnetization before and after the 
switching. They are in the GHz range of frequency and drives 
the speed of the writing operation.  

Fig 7: simulation results using the dynamic compact model of the MTJ 

Behavioral compact model [25]. the magnetization dynamics 
is not modeled, resulting in much faster simulations. The 
typical duration of the switching is calculated from the 
parameters of the devices and the value of the writing current. 
Indeed, the switching speed is directly related to the value of 
the current, following the Sun’s and Neel-Brown’s models. Fig 
8 shows simulation results obtained with both kinds of models, 
calibrated to give similar results. We see that in the behavioral 
model, the switching is “binary”, without intermediate states 
of the magnetization (precessions in particular). 

Fig 8: comparison between the compact models of the MTJ 

C.� Reliability 

Although the STT writing scheme is widely investigated by 
major semiconductors companies (Qualcomm, TSMC, IBM, 
NEC, Everspin/Global Foundries, Toshiba, Samsung), it still 
suffers from limitations, especially in terms of reliability. Due 
to the relative height of the MTJ stack compared to its lateral 
dimensions, the etching process is relatively tricky and results 
in process variations in the size and shape of the device, 
affecting the resistance and the writing current. It can result in 
read and write failures. Moreover, since the writing and 
reading paths are the same, accidental writing can occur if the 
reading current is too large. It is generally referred as read 
disturb. When designing circuits embedding STT MTJs, it is 
necessary to keep a good ratio between the reading and writing 
voltages as well as between the writing and breakdown 
voltages (to avoid accelerated aging). These effects can be 
easily taken into account in a compact model, because they can 
all be linked to shape of the device, and so incorporated in the 
standard process variations in the corner file. A specificity of 
the STT technology is the effect of the thermal noise, which 
affects the magnetization and results in a stochastic switching 
occurrence over time. Since this stochasticity is related to the 
time, it cannot be directly taken into account in the form of 
process variations. In the “dynamic” compact model of 
Spintec, we have proposed a solution based on the use of a 
noise module affecting the magnetization. Using transient 
noise simulations in Cadence, we could tune the parameters of 
the noise and find a good agreement between the simulation 
and characterization results (Fig. 9).

Fig 9: modeling of the stochasticity of the STT switching process and 

comparison with characterization results 

IV.�STORAGE AND COMPUTING BASED ON NON-VOLATILE

RAMS

To illustrate the usage of novel non-volatile memories as 
computation and storage unit, compact models have been used 
to study the effect of variability on the circuit behavior. To this 
extent, the evaluations have been done on a specific test case 
of neuromorphic circuit. In the following we will address the 
topic of neuromorphic computing and will describe the 
research efforts directed to hardware implementation of 
spiking neural networks with resistance-change devices used 
to implement the synaptic and neuronal function. In addition, 
we will present an analysis of such network under the effect of 
device variations and analyze its robustness and learning 
efficiency.

Implementation of artificial neural networks with non-volatile 
devices have made great progress recently. An artificial neural 
network has two basic computing elements: the neuron and the 
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synapse. The neural computation consists in the weighted 
summation of neuron input signals subjected to the transfer 
function of the neuron. Research work related to emergent 
non-volatile technologies utilization (i.e. spin transfer torque 
magnetic random access memories and memristors) has been 
mostly focused on how to mimic the biological synapse 
functionality. Significant benefits can be gained by using 
bidirectional RRAMs with continuous conductance tuning 
capability for neuromorphic computing, since these devices 
behave as natural electrically-controlled synaptic device. The 
bidirectional analog switching property could be utilized in 
neuromorphic systems inspired by biology such as spiking 
neural networks, as well as in hardware accelerators for 
machine learning algorithms with artificial learning rules [26]. 

The availability of magnetic junction devices made them very 
attractive for spin-based neurons and spin-based synapses 
implementations, as they mimic biological functionality of the 
cognitive process of the brain at low energy with only one 
single device [27]. It has been proposed to use the intrinsic 
spintronic switching stochasticity to emulate the learning 
ability of neural synapses [28-30].  Binary spintronic devices 
have been explored for energy efficient neuromorphic 
computing [30]. A great advantage of the spintronic devices is 
that they can be used also to perform the neuron function when 
they are used in biology-inspired spiking neural networks, 
opening the path towards full-spintronic neural networks [31]. 
Indeed, several approaches have been proposed to mimic the 
neuron function by a spintronic device, such as domain wall 
motion (DWM) neuron [32] or magnetic tunnel junction 
(MTJ) neuron with spin orbit torque assist [30]. 

An example of a fully-stochastic spiking neural network was 
presented in [29]. This network is designed for pattern 
recognition. It is a two-layer (one input, one output), fully-
connected (all neurons in the input layer are connected to all 
neurons in the output layer) neural network constructed with 
spiking neurons and stochastic synapses (as illustrated in Fig. 
10a) [29]. The output layer has the added function of lateral 
inhibition on a winner-takes-all strategy to assure that neurons 
learn different patterns. In this design, the link between the 
input neuron and the output neuron is implemented with a 
compound magnetoresistive synapse (CMS) as shown in Fig. 
10c. This synaptic device employs multiple (N) binary MTJ 
elements connected in parallel. They operate in stochastic 
regime and act as one single synapse. This CMS is expected to 
exhibit CL = N+1 discrete conductance levels obtained by 
summing up the parallel conductance, ranging from the 
minimum compound synaptic weight – achieved when all 
MTJs are in high resistive state (anti-parallel magnetization) – 
to maximum compound synaptic weight – achieved when all 
MTJs are in low resistive state (parallel magnetization). The 
spiking neuron is illustrated in Fig. 10b. It is designed using an 
MTJ device which can operate in stochastic writing mode 
(when Vwrite is enabled), read mode (when VRead is enabled), or 
reset mode (when VReset is enabled). The MTJ device is 
initialized at low resistance state (parallel configuration). 
During the write operation the synaptic current, with the 
corresponding weight is applied to the MTJ device, through 
the inverting amplifier. If the MTJ device changes its state, the 
pulse generator is activated, therefore the neuron fires.  

Fabrication- and environmental-induced process variations 
have been investigated and the impact of their behavior on 

neuron firing rate and the learning process has been presented 
in [23-24]. 

Fig. 10: Schematic representation of the neural network under study, [29] 

Our results showed that while the read and reset operations of 
the spiking neuron are controlled in such a way to compensate 
for reliability issues, the stochastic write operation is affected 
by process parameter variations and variations in the 
environmental conditions. The switching probability of the 
neuron’s MTJ, directly related with the probability that the 
neuron will spike, is dependent on the amplitude of the 
synaptic current and on the operation temperature. The 
combination of these effects can cause a decrease in the neuron 
firing rate, which in turn, slows the learning process and 
decreases its accuracy, and, in extremis, causes an evaluation 
error of the neural network. Or, on the contrary, it can cause 
an increase in the neuron firing rate which might lead to un-
necessary potentiation or depression actions (see Fig. 11). 

Moreover, the precision of the learning and recognition 
process is dependent on the number of conduction levels 
which can be achieved by the compound synapses. The speed 
and power consumption during the learning operation are 
dependent on the number of potentiation/depression 
operations required to switch between conductance levels. For 
a specific synaptic design, the number of conductance levels is 
dependent on the number of MTJ devices used for its design. 
This number defines the resolution of the synaptic weight. 

Fig. 11: Schematic representation of the MTJ process variability effect on 

the synaptic potentiation and depression

The fabrication-induced process variability affects the learning 
and recongnition process, which in turn translates in the 
necessity of a larger number of samples in the training set. 
Under certain variability scenarios we could also observe 
variations in learning efficiency for different patterns fed to the 
same network. This case is mostly observed when the process 
variability causes asymmetry between the potentiation/ 
depression curves. To investigate the behavior of the SNN 
under study, we have evaluated the learning precision of the 
network as a function of the network design and training set 
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size. To that end, we have designed 2 SNNs with different 
settings for the synaptic weight implementation, i.e., the 
synaptic weight is implemented as 1 stochastic MTJ and 16 
stochastic MTJs in parallel, respectively. The size of the 
training set is also explored and increased at each simulation 
step. To evaluate the effect of device-to-device variations, we 
have performed the same set of simulations, but considered on 
100 instances of SNN under random process variability and 
the results obtained are illustrated in Fig 12. The nominal (Ni), 
minimum (Ni_min) and maximum (Ni_max) values obtained 
for the recognition error in all scenarios are illustrated in the 
figure (with i=1, 16, the number of MTJ devices in a synapse). 
The simulation results show that the process variability has 
indeed an effect on the learning process of the SNN under 
study, but this effect can be mitigated by increasing the size of 
the SNN or/and the size of the training set. 

Fig. 12 – SNN Recognition Error (%) as a function of the size of the training 

data-set for different designs of the compound synapse

V.� CONCLUSIONS

This paper presents the main strengths and weaknesses of the 
two most relevant novel non-volatile memories, i.e., the 
resistive RAM (especially the HfO2 based OxRAM) and the 
spin-transfer-torque RAM. The leading ongoing concern with 
RRAM is the variability of the switching parameters. It has 
now become evident that the low power switching of RRAM 
will impose variant filament formation due to movement of 
only countable number of atoms. Therefore, not only each 
device might show different resistance value but also one can 
have cycle to cycle variation. While variability is also 
important for the STT-MRAM devices, the main concern 
related to these devices is the write operation which requires 
high current densities. 

These shortcomings are visible at circuit level, affecting the 
data storage robustness and the computation efficiency of 
architectures build on novel non-volatile memory devices. 
This brings forth the need for robustness and reliability 
analysis in all future computation architectures, even the ones 
intrinsically fault tolerant, as is the case of neural networks. 
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