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Département d’Informatique
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Abstract

We investigate a recent network model [13] which combines social and cognitive
features. Each node in the social network holds a (possibly different) cognitive network
that represent its beliefs. In this internal cognitive network a node denotes a concept
and a link indicates whether the two linked concepts are taken to be of a similar or
opposite nature. We show how these networks naturally organise into communities and
use this to develop a method that detects communities in social networks. How they
organise depends on the social structure and the ratio between the cognitive and social
forces driving the propagation of beliefs.

1 Introduction

Understanding the mechanisms by which networks self-organise is a major challenge in all
information networks: digital, social, and biological. Here we explore a simple (variant of a)
model of belief propagation in social networks, originally introduced in Ref. [13]. Our specific
question is whether the ways in which belief flows can be revealing of communities in a social
network.

The model incorporates a social network formed by individuals (nodes) and social con-
nections through which an exchange of beliefs is possible. In addition, each individual holds
its own cognitive network. Cognitive networks consist of a fixed set of concepts (nodes) and
relations between them (links), which we call beliefs. Beliefs can be either positive or nega-
tive depending on whether the two concepts are taken to be of a similar or opposite nature.
Such a two-layered socio-cognitive network of networks is illustrated in Fig. 1.

Whenever there is a cycle in our cognitive network we have an opportunity to check the
consistency of our beliefs: if by going around the cycle we end up realising that we believe a
concept is of an opposite nature to itself, we have found a contradiction. These contradictions
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Figure 1: A 2-layer model: on the left a social network is shown. Each node in the social
network contains a cognitive network. Here the cognitive network of one node is shown on
the right: nodes are concepts and links are beliefs. Beliefs can be either positive (blue) or
negative (red).

and how humans deal with them is explained by the theory of cognitive dissonance [7]. In
particular, it has been observed that individuals reduce cognitive dissonance and avoid new
information that would increase it. In the model, nodes try to minimise such contradictions
while maximising consensus.

Our main idea is the following. The socio-cognitive structure of the network favours the
emergence of an endogenous and natural notion of trust which can be used to decompose
the graph into communities. Individuals distrust others that have a wildly different take on
the world. The more different the two world views of two individuals are, the more they will
doubt each others’ conclusions. Trust in this context is determined by how similar people’s
beliefs are. We base our community analysis on the idea that communities materialise by
how often people find each other agreeing. Your friends are the people you end up sharing
beliefs with the most, so to speak.

Concretely, this means that we run repeated randomised belief propagation experiments
on top of our static graph and measure how often nodes end up in the same belief group. As
we average over initial conditions and look at long term behaviour, per necessity, what we
observe is a property of the underpinning network. Results will depend on the “temperature”
of the algorithms (how effectively ergodic the underlying Markov chain is), and the relative
strength of the social and cognitive forces. The stronger the social field the coarser-grained
the community decomposition. Here we will fix temperature (based on empirical convergence
times) and study communities as a one-parameter family of average agreement matrices over
the population of nodes. This parameterised analysis is reminiscent of persistent homology
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techniques in data-analysis [3], and should be resilient to noisy data were we to apply it to
real acquaintance networks. We apply our method to the legendary karate club example [14]
and find a very convincing decomposition of the club in increasingly fine-grained factions.

1.1 Related work

Many different algorithms for community detection have been created in the past [8]. They
are based on markedly different techniques and notions of communities. The majority of
them look only at the connectivity of the graph whereas ours takes into account additional
structure. Our method is in that sense similar to those based on spin models [12] or coupled
oscillators [1]. Here we compare our results in §3.1 to those obtained by the method of Girvan
and Newman [11] which produces a similar type of community decomposition. This method
uses the betweenness centrality of edges, a measure of how many times an edge is used in
a minimal path between two nodes, to find a nested decomposition of communities within
communities. The results are relatively similar while showing interesting differences.

2 Socio-cognitive systems

A socio-cognitive network g consists of finite sets of individuals and concepts, N and M , a
symmetric link relation λ on N , and a map γ : N → {−1, 0, 1}M×M assigning a matrix to
each individual. This matrix can be seen as a signed graph where edges can be either positive
or negative and represents the cognitive network of an individual (as in Fig. 1). Given a node
n ∈ N and concepts i, j ∈M we simply write nij for γ(n)ij , the belief between i and j in n.
The set of all socio-cognitive networks is denoted by G and those with the same individuals,
concepts and link structure by GN,M,λ.

For the dynamics, we only allow transitions that change a belief. No transitions can add
or remove social connections or individuals. We change one belief at a time and any change
of belief is possible. This is a modification from the original model in which only those beliefs
that were in disagreement with a neighbour’s belief could be changed. This is similar to the
voter model [5], and, indeed the model studied here can be thought of as a smoother version
of the voter model (where unstructured beliefs battle out for supremacy on the network).
This slight change makes the dynamics of our model ergodic on GN,M,λ, even though in
practice the kinetics might be very “glassy”.

We define an energy function to drive the system’s evolution. (As usual lower energies
represent more favourable states.) This energy function will be composed of a social and a
cognitive part.

The cognitive energy Ec : G → R describes the cognitive consonance force that is trying
to minimise everyone’s internal contradictions. Here we only consider contradictions in cycles
of length 3, i.e. triangles.
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We use balance theory [10] to define the cognitive consonance of a node as

C(n) =
∑

i,j,k∈M

nijnjknki

Whenever there is an odd number of negative beliefs in a triangle, the term nijnjknki will be
−1. If there is an even number it will be 1. If the three concepts are not forming a triangle
because they are not connected, it will be 0.

The total cognitive energy is then

Ec(g) = −J
∑
n∈N

C(n)

where J is the strength of the cognitive consonance force acting on the network.
The social energy Es : G → R, on the other hand, is determined by trust. We define the

trust T (n,m) between two individuals n,m ∈ N as the similarity of their cognitive networks.

T (n,m) =
∑
i,j∈M

nijmij

The term nijmij will be 1 if the two socially-connected individuals hold the same belief, −1
if they hold the opposite belief, and 0 if any of them do not have a belief between these two
concepts. Then the social energy is defined as

Es(g) = −I
∑

〈n,m〉∈λ

T (n,m)

with I the strength of the social force. The total energy of the system is then

E(g) = Ec(g) + Es(g)

It is easy to see that the minimum energy E0 that a system can ever reach is obtained
when everyone holds the same optimal cognitive network:

− E0 =

(
|M |

3

)
|N | J +

(
|M |

2

)
|λ| I (1)

Hence a key driver of the dynamics will be the ‘soc-cog’ ratio I/J , or rather once put in
scale invariant form:

|M | · I
J
· |λ|
|N |

where |λ||N | is the average degree (which is preserved by the dynamics).

Clearly, M controls the absolute diversity of opinions in minimum energy states. Specif-
ically, there are 2|M |−1 such perfectly ordered states. This is one key difference with plain
propagation or voter models (on static graphs) where perfect states are far less numerous.
The other key difference is less easy to describe and has to do with the ruggedness of the
cognitive energy landscape. This is a marked difference to the Axelrod type of belief propa-
gation [2].
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2.1 Simulation code

Our socio-cognitive systems can be readily simulated using a Metropolis-Hastings algorithm
[9]. The code used to run the simulations reported in this paper can be found at https:

//github.com/rhz/soccog/tree/gh-pages. We have also build a web application which
runs simulations directly in a browser: https://rhz.github.io/soccog/. (It can be advan-
tageous to use a browser which implements javascript efficiently.)

3 Community detection

With our model and simulator in place, we can attack our question. We wish to partition a
network into communities by grouping together individuals with the same beliefs (i.e. same
cognitive network). The claim in contention is that this extraneous socio-cognitive structure
will offer a view of communities parameterised by the soc-cog ratio. Note that for each
batch of numerical experiment, we record the probability that any two individuals are in the
same community at equilibrium (practically defined as acceptance rate steadily under 0.1%).
Hence our notion of being in a community is real-valued.

3.1 Karate club

A simple example that has been used many times as a proof of concept for community
detection algorithms is the social network studied by Zachary [14] (see Fig. 2 taken from
Ref. [6, Chap. 1]). This network maps the friendships within a karate club of 34 people. The
fission into two groups that became independent karate clubs was reported in the study and
it happened along a faultline that community detection algorithms should be able to identify.
This faultline can be intuitively perceived in Fig. 2 due to the way in which the nodes have
been arranged. The two groups are

{1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 20, 22} and

{9, 10, 15, 16, 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34}

We compute the probability of pairs of individuals ending up with the same cognitive
network by running 10,000 simulations and waiting until the rejection rate goes over 99.9%
in a window of 100,000 steps. The results are displayed in Fig. 3.

To get a better visual representation of the community structure, we construct a den-
drogram showing at which probabilities communities merge. Let P (n,m) be the probability
that nodes n and m are in the same community. We start by having each node in its own
community and join two communities c, d at probability p = max {P (n,m) | n ∈ c ∧m ∈ d}.
The dendrogram for the karate club network is shown in Fig. 4 and recapitulates nicely
the visual intuition of the future split, while identifying other possible splits, e.g. {12}, and
{5, 6, 7, 11, 17}.
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Figure 2: Social network in the karate club studied by Zachary. This figure has been taken
from Ref. [6, Chap. 1].
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Our results for the karate club network agree to a reasonable extent with the results ob-
tained using the method developed by Girvan and Newman [11]. Interestingly, their method
also detects {5, 6, 7, 11, 17} as a strong community. However, they see this community join
that of node 1 before that community joins the community of node 34. Given the nature of
their method, bigger communities tend to disconnect earlier than smaller ones because the
betweenness centrality of the edges that connect a peripheral community to the rest of the
network are proportional to its size. Our method does not suffer from this bias.

3.2 Random networks

The strengths of the consensus and cognitive consonance forces, I and J , undoubtedly play
a role in the formation of communities. To assess it, we look at the communities that arise
in random socio-cognitive networks under different conditions. In particular, we first look
at the distribution of community sizes. Given g a state of the system, we can define sn(g)
to be the number of communities of size n in g. We have

∑
n nsn(g) = |N |. By running r

simulations we obtain a collection G of states at equilibrium. Summing over them we get∑
g∈G

∑
n

nsn(g) = |N | r

Hence:
p(n) =

∑
g∈G

nsn(g)/(|N | r)

is a probability distribution on N . Intuitively, this is (an estimate of) the probability that a
random node in N belongs to a community of size n at steady state. We use it as a visual
proxy for the state of agglomeration of the nodes in communities.

It is important to realise that changing I and J might have entropic implications. For
instance, when doubling the value of both, the shape of the valleys and mountains in the en-
ergy landscape will remain constant but the valleys will be deeper and the mountains higher.
In other words, I and J together determine the temperature of the system (or equivalently,
a change in temperature will produce a simultaneous change in I and J). As a proxy to this
intrinsic temperature we look at E0, the depth of the deepest valley. To avoid unintended
entropic effects, we keep E0 constant while we vary logM (I/J). The values for I and J are
then computed using equation 1.

We construct random networks of |N | = 100 individuals with |λ| = 250 social connections,
and assign a random cognitive network of |M | = 10 concepts to each individual, and run
r = 10, 000 simulations as described in the previous section. Then we plot the histogram of
p(n) versus n for different values of logM (I/J) (at constant E0). A slideshow video of them
can be found at https://tardis.ed.ac.uk/~rhz/hg.mpg.

One sees that when J is 10 times bigger than I, almost all communities have size 1,
that is to say no-one shares the same set of beliefs (and all the individual belief systems are
perfectly consonant). This is maximal diversity. (Of course an M which is too small could
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prevent this from happening. See the discussion below on the difference between this model
and the voter models with few possible opinions.)

As the social field becomes stronger, bigger communities start appearing, unsurprisingly.
When I is 10 times bigger than J , it is most likely that a community has a size between
90 and 100. In between, in the transition zone where I, J are of the same order, we see
that a large number of different community sizes are possible and equally likely. This raises
the question of whether the parameters of the simulations are identifiable even in synthetic
data. Indeed the best way to think of our analysis is in terms of a one-parameter family of
community decompositions. No single value of the soc-cog ratio perfectly summarises the
decomposition.

In the previous histogram the correlations between community sizes are lost. So we plot
the size of the two biggest communities against their probability of co-occurrence. When it is
very cognitive or very social, the sizes of the two biggest communities are concentrated in a
small region. Instead during the transition nearly every combination is likely. This confirms
that inference of parameters would be difficult: given the community sizes of a series of
experiments we might only be able to tell in which of these three regimes we are, but the
exact values for I and J would be impossible to infer. The resulting slideshow video can be
found at https://tardis.ed.ac.uk/~rhz/hm.mpg. A version where the colour range has
been truncated to be able to clearly see what happens during the transition can be found at
https://tardis.ed.ac.uk/~rhz/hm-truncated.mpg. One can see a ‘crest line’ appearing
despite the rather dispersed distributions along which the dynamics is transitioning as we
alter the soc-cog ratio. Six of the plots taken during the transition are shown in Fig. 5.

4 Conclusions

There are multiple avenues for further investigation. One is to look for adequate scaling limits
that will, in some regimes, admit for simpler approximate formulations of the dynamics and
could shed some light on the transition behaviour. Another is to look for efficiency of the
simulation. Existing techniques in the domain of energy-based stochastic graph-rewriting [4]
should apply. On the applicative side, it would be interesting to look for data on actual social
networks and ask how one can work around the difficulty of inferring the key parameters I,
J which we have discussed. Which data would be adequate remains to be seen. Perhaps the
new Facebook interaction structures with a graded alphabet of likes/unlikes could be used
to evaluate belief propagation. One problem is that it is not easy to discriminate between
belief acquisition (I change my opinion because of you) and belief confirmation (I am already
of the same opinion as you). But that distinction itself might not be of great import.
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Figure 3: Heat map showing the probability that two nodes end up in the same community
in the karate club network.
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Figure 4: Dendrogram showing the probabilities at which communities merge in the karate
club network.
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Figure 5: Heat map showing the size of the two biggest communities at equilibrium for six
different values of logM (I/J): -0.2 (top left), -0.1 (top centre), 0 (top right), 0.1 (bottom
left), 0.3 (bottom centre), and 1 (bottom right). We see a shift from a polarised configuration
to one where only one opinion predominates.
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