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Abstract
This paper introduces a categorical framework to study the
exact and approximate semantics of probabilistic programs.
We construct a dagger symmetric monoidal category of Borel
kernels where the dagger-structure is given by Bayesian
inversion. We show functorial bridges between this cate-
gory and categories of Banach lattices which formalize the
move from kernel-based semantics to predicate transformer
(backward) or state transformer (forward) semantics. These
bridges are related by natural transformations, and we show
in particular that the Radon-Nikodym and Riesz represen-
tation theorems - two pillars of probability theory - define
natural transformations.

With the mathematical infrastructure in place, we present
a generic and endogenous approach to approximating ker-
nels on standard Borel spaces which exploits the involutive
structure of our category of kernels. The approximation can
be formulated in several equivalent ways by using the func-
torial bridges and natural transformations described above.
Finally, we show that for sensible discretization schemes,
every Borel kernel can be approximated by kernels on finite
spaces, and that these approximations converge for a natural
choice of topology.

We illustrate the theory by showing two examples of how
approximation can effectively be used in practice: Bayesian
inference and the Kleene ∗ operation of ProbNetKAT.

Keywords Probabilistic programming, probabilistic seman-
tics, Markov process, Bayesian inference, approximation

1 Introduction
Finding a good category in which to study probabilistic pro-
grams is a subject of active research [6, 19, 23, 24]. In this
paper we present a dagger symmetric monoidal category of
kernels whose dagger-structure is given by Bayesian inver-
sion. The advantages of this new category are two-fold.
Firstly, the most important new construct introduced by

probabilistic programming, viz. Bayesian inversion, is in-
terpreted completely straightforwardly by the †-operation
which is native to our category. In particular we never leave
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the world of kernels and we therefore do not require any
normalization construct. Consider for example the following
simple Bayesian inference problem in Anglican ([26])

(defquery example

(let [x (sample (normal 0 1))]

(observe (normal x 1) 0.5)

(> x 1)))

The semantics of this program is build easily and composi-
tionally in our category:
• The second line builds a Borel space equipped with a nor-
mally distributed probability measure – an object (R, µ) of
our category.
• The (normal x 1) instruction builds a Borel kernel – a
morphism f : (R, µ) → (R,ν ) in our category.
• The observe statement builds the Bayesian inverse of
the kernel – the morphism f † : (R,ν ) → (R, µ) in our
†-category.
• Finally, the kernel f † is evaluated, i.e. the denotation of
the program above is f †(0.5)(]1,∞[).

The functoriality of † ensures compositionality.
Second, since Bayesian inference problems are in general

very hard to compute (although the one given above has an
analytical solution), it makes sense to seek approximate solu-
tions, i.e. approximate denotations to probabilistic programs.
As we will show, our category of kernels comes equipped
with a generic and endogenous approximating schemewhich
relies on its involutive structure and on the structure of stan-
dard Borel spaces. Moreover, this approximation scheme can
be shown to converge for any choice of kernel for a natural
choice of topology.

Main contributions.

1. We build a category Krn of Borel kernels (§2) and we
show how two kernels which agree almost everywhere
can be identified under a categorical quotient operation.
This technical construction is what allows us to define
Bayesian inversion as an involutive functor, denoted †.
This is a key technical improvement on [6] where the †-
structure1 was hinted at but was not functorial. We show
that Krn is a dagger symmetric monoidal category.

1Suggested to us by Chris Heunen.
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2. We introduce the category BLσ of Banach lattices and σ -
order continuous positive operators as well as the Köthe
dual functor (−)σ : BLopσ → BLσ (§3). These will play a
central role in studying convergence of our approximation
schemes.

3. We provide the first2 categorical understanding of the
Radon-Nikodym and the Riesz representation theorems.
These arise as natural transformations between two func-
tors relating kernels and Banach lattices (§4).

4. We show how the †-structure of Krn can be exploited to
approximate kernels by averaging (§5). Due to an impor-
tant structural feature of Krn (Th. 1) every kernel in Krn
can be approximated by kernels on finite spaces.

5. We show a natural class of approximations schemes where
the sequence of approximating kernels converges to the
kernel to be approximated. The notion of convergence is
given naturally by moving to BLσ and considering con-
vergence in the Strong Operator Topology (§6).

6. We apply our theory of kernel approximations to two
practical applications (§7). First, we show how Bayesian
inference can be performed approximately by showing
that the †-operation commutes with taking approxima-
tions. Secondly, we consider the case of ProbNetKAT, a
language developed in [14, 22] to probabilistically reason
about networks. ProbNetKAT includes a Kleene star oper-
ator (−)∗ with a complex semantics which has proved hard
to approximate. We show that (−)∗ can be approximated,
and that the approximation converges.

All the proofs can be found in the Appendix.

Relatedwork. Quasi-Borel sets have recently been proposed
as a semantic framework for higher-order probabilistic pro-
grams in [24]. The main differences with our approach are:
(i) unlike [23, 24] we never leave the realm of kernels, and
in particular we never need to worry about normalization.
This makes the interpretation of observe statements, i.e.
of Bayesian inversion, simpler and more natural. However,
(ii) unlike the quasi-Borel sets of [24], our category is not
Cartesian closed. We can therefore not give a semantics to all
higher-order programs. This shortcoming is partly mitigated
by the fact that the category of Polish space, on which our
category ultimately rests, does have access to many function
spaces, in particular all the spaces of functions whose domain
is locally compact. We can thus in principle provide a seman-
tics to higher-order programs, provided that λ-abstraction
is restricted to locally compact spaces like the reals and the
integers, although this won’t be investigated in this paper.
The approximation of probabilistic kernels has been a

topic of investigation in theoretical computer science for
nearly twenty years (see e.g. [4, 9–11]), and for much longer
in the mathematical literature (e.g. [5]). Our results build

2To the best of our knowledge.

on the formalism developed in [4] with the following dif-
ferences: (i) we can approximate kernels, their associated
stochastic operator (backward predicate transformer), or their
associated Markov operator (forward state transformer) with
equivalent ease, and move freely across the three formalisms.
(ii) Given a kernel f : X _ Y , we can define its approxima-
tion f ′ : X ′ → Y ′ along any quotients X ′ of X and Y ′ of Y
as in [4], but we can also ‘internalize’ the approximation as
a kernel f ∗ : X → Y of the original type. Morally f ′ and f ∗

are the same approximation, but the second approximant,
being of the same type as the original kernel, can be com-
pared with it. In particular it becomes possible to study the
convergence of ever finer approximations, which we do in
Section 6. Finally, (iii) we opt to work with Banach lattices
rather than the normed cones of [4, 20] because it allows
us to formulate the operator side of the theory very natu-
rally, and it connects to a large body of classic mathematical
results ([2, 27]) which have been used in the semantics of
probabilistic programs as far back as Kozen’s seminal [17].

2 A category of Borel kernels
In [6] the first three authors presented a category of Borel
kernels similar in spirit to the construction of this section,
but with a major shortcoming. As we will shortly see, our
category Krn of Borel kernels can be equipped with an invo-
lutive functor – a dagger operation † in the terminology of
[21] – which captures the notion of Bayesian inversion and
is absolutely crucial to everything that follows. In [6] this
operation had merely been identified as a map, i.e. not even
as a functor. In this section we show that Bayesian inversion
does indeed define a †-structure on a more sophisticated –
but measure-theoretically very natural – category of kernels.

2.1 Standard Borel spaces and the Giry monad

A standard Borel space – or SB space for short – is a measur-
able space (X ,S) for which there exists a Polish topology T
on X whose Borel sets are the elements of S, i.e. such that
S = σ (T ) (see e.g. [16] for an overview). Let us write SB for
the category of standard Borel spaces and measurable maps.
One key structural feature of SB is the following:

Theorem 1. Every SB object is a limit of a countable co-
directed diagram of finite spaces.

The Giry monad was originally defined in two variants [15]:
- As an endofunctor GPol of Pol, the category of Polish spaces,
one sets GPol(X ,T) to be the space of Borel probability mea-
sures over X together with the weak topology. This space is
Polish [16, Th 17.23], and the Portmanteau Theorem [16, Th
17.20]) gives multiple characterizations of the weak topology.
- As an endofunctor GMeas of Meas, the category of measur-
able spaces, one sets GMeas(X ,S) to be the set of probability
measures on X together with the initial σ -algebra for the
maps evA : GMeas(X ,S) → R, µ 7→ µ(A),A ∈ S.
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In both cases the Giry monad is defined on an arrow f :
X → Y as the map f∗ which sends a measure µ on X to
the pushforward measure f∗µ on Y , defined asG(f )(µ)(B) =
f∗µ(B) := µ(f −1(B)) for B a measurable subset of Y .
We want to define the Giry monad on the category SB of

standard Borel spaces (and measurable maps), and the two
versions of the Giry monad described above offer us natural
ways to do this: given an SB space (X ,σ (T )) we can either
compute GPol(X ,T) and take the associated standard Borel
space, or directly compute GMeas(X ,σ (T )). Fortunately, the
two methods agree.

Theorem 2 ([16], Th 17.24). Let B : Pol → SB denote the
functor sending a Polish space (X ,T) to its associated SB-space
(X ,σ (T )) and leaving morphisms unchanged, then

GMeas ◦ B = B ◦ GPol.

We define the Giry monad on SB spaces to be the endo-
functor G : SB→ SB defined by either of the two equivalent
constructions above. The monadic data of G is given at each
SB space X by the unit δX : X → GX ,x 7→ δx , the Dirac δ
measure at x , and the multiplicationmX : G2X → GX ,P 7→
λA.

∫
GX evAdP. We refer the reader to [15] for proofs that

δX andmX are measurable.

2.2 The construction of Krn

Let us denote by SBG the Kleisli category associated with the
Giry monad (G,δ ,m). We denote Kleisli arrows, i.e. Markov
kernels, by X _ Y , and we call such an arrow deterministic
if it can be factorized as an ordinary measurable function
followed by the unit δ . Kleisli composition is denoted by •.
The category ∗ ↓ SBG has arrows ∗_ X as objects, where ∗
is the one point SB space (the terminal object in SB). An arrow
from µ : ∗ _ X to ν : ∗ _ Y is a SBG arrow f : X _ Y
such that ν = f • µ, i.e. such that ν (A) =

∫
X f (x)(A)dµ for

any measurable subset A of Y . This situation will be denoted
in short by f : (X , µ)_ (Y ,ν ), and we will call a pair (X , µ)
a measured SB space.

We want to construct a quotient of ∗ ↓ SBG, such that two
∗ ↓ SBG arrows are identified if they disagree on a null set
w.r.t. the measure on their domain. For д,д′ : (X , µ)_ (Y ,ν ),
we define N (д,д′) = {x ∈ X | д(x) , д′(x)}.
Lemma 3. N (д,д′) is a measurable set.

We now define a relation ∼ on Hom((X , µ), (Y ,ν )) by say-
ing that for any two arrows д,д′ : (X , µ) _ (Y ,ν ), д ∼
д′ if µ(N (д,д′)) = 0. This clearly defines an equivalence rela-
tion on Hom((X , µ), (Y ,ν )). In order to perform the quotient
of the category ∗ ↓ SBG modulo ∼, we need to check that it
is compatible with composition.

Proposition 4. If д ∼ д′, then h • д • f ∼ h • д′ • f .
Definition 5. Let Krn be the category obtained by quotient-
ing ∗ ↓ SBG hom-sets with ∼.

The following Theorem is of great practical use and gen-
eralizes the well-known result for deterministic arrows.

Theorem 6 (Change of Variables in Krn). Let f : (X , µ)_
(Y ,ν ) be a Krn-morphism. For any measurable function ϕ :
Y → R, if ϕ is ν-integrable, then ϕ • f (x) =

∫
Y ϕ d f (x) is

µ-integrable and ∫
Y
ϕ dν =

∫
X
ϕ • f dµ

The symmetric monoidal structure of Krn is defined on
a pair of objects (X , µ), (Y ,ν ) by the Cartesian product and
the product of measure, i.e. (X , µ)⊗(Y ,ν ) = (X ×Y , µ⊗ν ). On
pairs of morphisms f : (X , µ) _ (Y ,ν ) and f ′ : (X ′, µ ′) _
(Y ′,ν ′) it is defined by (f ⊗ f ′)(x ,x ′) := f (x) ⊗ f ′(x ′). The
unitors, associator and braiding transformations are given
by the obvious bijections.

2.3 The dagger structure of Krn

Krn has an extremely powerful inversion principle:

Theorem 7 (Measure Disintegration Theorem, [16], 17.35).
Let f : (X , µ) _ (Y ,ν ) be a deterministic Krn-morphism,
there exists a unique morphism f †µ : (Y ,ν )_ (X , µ) such that

f • f †µ = id(Y ,ν ). (1)

The kernel f †µ is called the disintegration of µ along f . As
our notation suggests, the disintegration depends fundamen-
tally on the measure µ over the domain, however we will
omit this subscript when there is no ambiguity. The following
lemma relates disintegrations to conditional expectations.

Lemma 8 ([8]). Let f : (X , µ) → (Y ,ν ) be a deterministic
Krn-morphism, and let ϕ : X → R be measurable, then µ-a.e.

ϕ • f † • f = E [ϕ | σ (f )]

We can extend the definition of (−)† to any Krn-morphism
f : (X , µ) _ (Y ,ν ) in a functorial way, although f † will
not in general be a right inverse to f . The construction of
f † is detailed in [6], but let us briefly recall how it works.
The category SB has products which are built in the same
way as in Meas via the product of σ -algebras3. Given any
kernel f : (X , µ) _ (Y ,ν ), we can canonically construct a
probability measure γf on the product X × Y of SB-space by
defining it on the rectangles of X × Y as

γf (A × B) =
∫
x ∈X

1A(x) · f (x)(B) dµ . (2)

Equivalently, γf = (δX ⊗ f ) • ∆X • µ, where ∆X : X →
X × X is the diagonal map. Letting πX : X × Y → X and
πY : X × Y → Y be the canonical projections, we observe
that GπX (γf ) = µ and GπY (γf ) = ν : in other words, γf is a
coupling of µ and ν . The disintegration of γf along πY is a
kernel π †Y : (Y ,ν ) → (X × Y ,γf ). Finally we define:

f † = πX • π †Y . (3)
3Unlike the category Krn which does not have products.
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The following Krn diagram sums up the situation:

(X , µ) π †X
� $,

f
�  )

(X × Y ,γf )
πY � $,

πX�dl
(Y ,ν )π †Y�el

f †
�`i

where π †X is explicitly given by (δX ⊗ f ) •∆X . The following
property characterizes the action of (−)† on Krn-morphisms:

Theorem 9. For all f : (X , µ)_ (Y ,ν ), f † : (Y ,ν )_ (X , µ)
is the unique Krn morphism satisfying for all measurable sets
A ⊆ X , B ⊆ Y the following equation:∫

x ∈X
1A(x) · f (x)(B) dµ =

∫
y∈Y

f †(y)(A) · 1B (y) dν (4)

In view of Eq. (4), we will call f † the Bayesian inversion
of f , and refer to (−)† as the Bayesian inversion operation on
Krn. It will be crucial throughout the rest of this paper. It is
important to see that f † absolutely depends on the choice of
µ and not only on f seen as a function. We can now improve
on [6] and show that (−)† is indeed a †-operation in the strict
categorical meaning of the term.

Theorem 10. Krn is a dagger symmetric monoidal category,
with (−)† given by Bayesian inversion.

3 Banach lattices
It is well-known that kernels can alternatively be seen as
predicate – i.e. real-valued function –transformers, or as
state – i.e. probability measure – transformers. The latter
perspective was adopted by Kozen in [17] to describe the
denotational semantics of probabilistic programs (without
conditioning). We shall see in this section and the next, that
the predicate and state transformer perspectives are dual to
one another in the category of Banach lattices, a framework
incidentally also used in [17]. For an introduction to the
theory of Banach lattices we refer the reader to e.g. [2, 27].
An ordered real vector space V is a real vector space to-

gether with a partial order ≤ which is compatible with the
linear structure in the sense that for all u,v,w ∈ V , λ ∈ R+

u ≤v ⇒ u +w≤v +w and u ≤v ⇒ λu ≤ λv
An ordered vector space (V , ≤) is called a Riesz space if the
poset structure forms a lattice. A vector v in a Riesz space
(V , ≤) is called positive if 0 ≤ v , and its absolute value |v |
is defined as |v | = v ∨ (−v). A Riesz space (V , ≤) is σ -order
complete if every non-empty countable subset of V which is
order bounded has a supremum.

A normed Riesz space is a Riesz space (V , ≤) equipped with
a lattice norm, i.e. a map ∥·∥ : V → R such that:

|v | ≤ |w | implies ∥v ∥ ≤ ∥w ∥ . (5)
A normed Riesz space is called a Banach lattice if it is (norm-)
complete, i.e. if every Cauchy sequence (for the norm ∥·∥)
has a limit in V .

Example 11. For each measured space (X , µ) – and in par-
ticular Krn-objects – and each 1 ≤ p ≤ ∞, the space Lp (X , µ)
is a Riesz space with the pointwise order. When it is equipped
with the usual Lp -norm, it is a Banach lattice. This fact is often
referred to as the Riesz-Fischer theorem (see [2, Th 13.5]). We
will say that p,q ∈ N ∪ {∞} are Hölder conjugate if either of
the following conditions hold: (i) 1 < p,q < ∞ and 1

p +
1
q = 1,

or (ii) p = 1 and q = ∞, or (iii) p = ∞ and q = 1.

Theorem 12 (Lemma 16.1 and Theorem 16.2 of [27]). Every
Banach lattice is σ -order complete.

There are two very natural modes of ‘convergence’ in a
Banach lattice: order convergence and norm convergence. The
latter is well-known, the former less so. An order bounded
sequence {vn}n∈N in a σ -complete Riesz space (and thus
in a Banach lattice) converges in order to v if either of the
following equivalent conditions holds:
v = lim inf

n
vn :=

∨
n

∧
n≤m

vm , v = lim sup
n

vn :=
∧
n

∨
n≤m

vm .

For a monotone increasing sequence vn , this definition sim-
plifies to v =

∨
n vn , which is often written vn ↑ v .

In a general σ -complete Riesz space, order and norm con-
vergence are disjoint concepts, i.e. neither implies the other
(see [27, Ex. 15.2] for two counter-examples). However if a
sequence converges both in order and in norm then the lim-
its are the same (see [27, Th. 15.4]). Moreover, for monotone
sequences norm convergence implies order convergence:

Proposition 13 ([27] Theorem 15.3). If {vn}n∈N is an in-
creasing sequence in a normed Riesz space and if vn converges
to v in norm (notation vn → v), then vn ↑ v .

In a Banach lattice we have the following stronger property.

Proposition 14 (Lemma 16.1 and Theorem 16.2 of [27]).
If {vn}n∈N is a sequence of positive vectors in a Banach lat-
tice such that supn ∥vn ∥ converges, then

∨
n vn exists and

∥∨n vn ∥ =
∨

n ∥vn ∥.

It can also happen that order convergence implies norm
convergence. A lattice norm on a Riesz space is called σ -
order continuous ifvn ↓ 0 (vn is a decreasing sequence whose
infimum is 0) implies ∥vn ∥ ↓ 0.

Example 15. For 1 ≤ p < ∞, the Lp -norm is σ -order con-
tinuous, and thus order convergence and norm convergence
coincide. However, for p = ∞ this is not the case as the follow-
ing simple example shows. Consider the sequence of essentially
bounded functions vn = 1[n,+∞[: it is decreasing for the order
on L∞(R, λ) with the constant function 0 as its infimum, i.e.
vn ↓ 0. However ∥vn ∥ = 1 for all n.

Many types of morphisms between Banach lattices are
considered in the literature but most are at least linear and
positive, that is to say they send positive vectors to positive
vectors. From now on, we will assume that all morphisms
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are positive (linear) operators. Other than that, we will only
mention two additional properties, corresponding to the two
modes of convergence which we have examined. The first
notion is very well-known: a linear operator T : V → W
between normed vector spaces is called norm-bounded if
there exists C ∈ R such that ∥Tv ∥ ≤ C ∥v ∥ for every v ∈ V .
The following result is familiar:

Theorem 16. An operator T : V → W between normed
vector spaces is norm-bounded iff it is continuous.

Thus norm-bounded operators preserve norm-convergence.
The corresponding order-convergence concept is defined as
follows: an operator T : V →W between σ -order complete
Riesz spaces is said to be σ -order continuous if whenever
vn ↑ v , Tv =

∨
Tvn . It follows that we can consider two

types of dual spaces on a Banach lattice V : on the one hand
we can consider the norm-dual:

V ∗ = { f : V → R | f is norm-continuous}
and the σ -order-dual:

V σ = { f : V → R | f is σ -order continuous}
The latter is sometimes known as the Köthe dual of V (see
[12, 27]). The two types of duals coincide for a large class of
Banach spaces of interest to us.

Theorem 17. If a Banach lattice V admits a strictly positive
linear functional and has a σ -order-continuous norm, then
V ∗ = V σ .

Example 18. The result above can directly be applied to our
running example: given a measured space (X , µ) and an integer
1 ≤ p < ∞, the Lebesgue integral provides a strictly positive
functional on Lp (X , µ), and we already know from Example 15
that Lp (X , µ) has a σ -order-continuous norm. It follows that

Lp (X , µ)∗ = Lp (X , µ)σ
Moreover, it is well-known that if (p,q) are Hölder conju-
gate and 1 < p,q < ∞, then Lp (X , µ)∗ = Lq(X , µ), and
thus Lp (X , µ)σ = Lq(X , µ). It is also known that L1(X , µ)∗ =
L∞(X , µ), and thus L1(X , µ)σ = L∞(X , µ).
However Theorem 17 does not hold for L∞(X , µ) since the

L∞-norm is not σ -order continuous, as was shown in Example
15. It is well-known that L∞(X , µ)∗ , L1(X , µ), and in fact
L∞(X , µ)∗ can be concretely described as the Banach lattice
ba(X , µ) of charges (i.e. finitely additive finite signed mea-
sures) which are absolutely continuous w.r.t, µ on X (see [13,
IV.8.16]). However, as is shown in e.g. [4, 27]

L∞(X , µ)σ = L1(X , µ) (6)

As Examples 15 and 18 show, the (−)σ operation brings a
lot of symmetry to the relationship between Lp -spaces since

Lp (X , µ)σ = Lq(X , µ)
for any Hölder conjugate pair 1 ≤ p ≤ ∞. For this reason
we will consider the category BLσ whose objects are Banach
lattices and whose morphisms are σ -order continuous posi-
tive operators. Note that the Köthe dual of a Banach lattice

is a Banach lattice, and it easily follows that (−)σ in fact
defines a contravariant functor BLopσ → BLσ which acts on
morphisms by pre-composition. As we will now see, BLσ is
the category in which predicate and state transformers are
most naturally defined.

4 From Borel kernels to Banach lattices
The functors Sp and Tp . For 1 ≤ p ≤ ∞, the operation
which associates to a Krn-object (X , µ) the space Lp (X , µ)
can be thought of as either a contravariant or a covariant
functor. We define the functors Sp : Krn→ BLopσ , 1 ≤ p ≤ ∞
as expected on objects, and on Krn-morphisms f : X _ Y
via the well-known ‘predicate transformer’ perspective:

Sp (f ) : Lp (Y ,ν ) → Lp (X , µ),ϕ 7→ λx .

∫
Y
ϕ d f (x) = ϕ • f

For a proof that this defines a functor see [6]. We define
the covariant functors Tp : Krn → BLσ , 1 ≤ p ≤ ∞ as
Tp = Sp ◦ (−)†.

The functor M≪·. An ideal of a Riesz space V is a sub-
vector space U ⊆ V with the property that if |u | ≤ |v | and
v ∈ U thenu ∈ U . An idealU is called a band when for every
subset D ⊆ U if

∨
D exists in V , then it also belongs to U .

Every band in a Banach lattice is itself a Banach lattice. Of
particular importance is the bandBv generated by a singleton
{v}, which can be described explicitly as

Bv = {w ∈ V | (|w | ∧ n |v |) ↑ |w |}

Example 19. Let X be an SB-space and ca(X ) denote the set
of measures of bounded variation on X . It can be shown ([2,
Th 10.56]) that ca(X ) is a Banach lattice. The linear structure
on ca(X ) is as expected, the Riesz space structure is given by
(µ ∨ ν )(A) = sup{µ(B) + ν (A \ B) | B measurable ,B ⊆ A}
and the dual definition for the meet operation. The norm is
given by the total variation i.e.

∥µ∥ = sup

{
n∑
i

|µ(Ai )|
����{A1, . . . ,An} a meas. partition of X

}
Given µ ∈ ca(X ), the band Bµ generated by µ is just the set of
measures of bounded variation which are absolutely continuous
w.r.t. µ. In particular Bµ is a Banach lattice.

We can now define the functorM≪· : Krn→ BLσ by:{
M≪·(X , µ) := Bµ

M≪· f :M≪·(X , µ) → M≪·(Y ,ν ), ρ 7→ f • ρ
We will usually writeM≪·(X , µ) asM≪µ (X ).

Proposition 20. Let f : (X , µ)_ (Y ,ν ) be a Krn arrow. Let
ρ be a finite measure on X such that ρ ≪ µ. Then f • ρ ≪ ν ,
and thusM≪· defines a functor.

Radon-Nikodym is natural. We now present a first pair
of natural transformations which will establish a natural
isomorphism between the functors T1 andM≪·. First, we
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define the Radon-Nikodym transformation rn :M≪· → T1
at each Krn-object (X , µ) by the map

rn(X ,µ) :M≪µ (X ) → L1(X , µ), rn(X ,µ)(ρ) =
dρ

dµ
where dρ/dµ is of course the Radon-Nikodym derivative of ρ
w.r.t. µ. The fact that this transformation defines a positive op-
erator between Banach lattices is simply a restatement of the
usual Radon-Nikodym theorem [13, III.10.7.], combined with
the well-known linearity property of the Radon-Nikodym
derivative. To see that it is also σ -order-continuous, con-
sider a monotone sequence µn ↑ µ converging in order to
µ in M≪ν (X ). This means that for any measurable set A
of X , limn→∞ µn(A) = µ(A). Since (dµn/dν)n∈N is bounded
in L1-norm the function д =

∨
n dµn/dν exists and is simply

the pointwise limit д(x) = limn→∞ dµn/dν(x). It now follows
from the monotone convergence theorem (MCT) that∫
A
дdν =

∫
A
lim
n→∞

dµn
dν

dν = lim
n→∞

∫
A

dµn
dν

dν = lim
n→∞

µn(A)= µ(A)

in other words, д = dµ/dν and rn is well-defined. That rn is
also natural has – to our knowledge – never been published.

Theorem 21. The Radon-Nikodym transformation is natural.

Secondly, we define the Measure Representation transfor-
mation mr : T1 → M≪· at each Krn-object (X , µ) by the
map mr(X ,µ) : T1(X , µ) → M≪·(X , µ) defined as

mr(X ,µ)(f )(BX ) =
∫
BX

f dµ

This is a very well-known construction in measure theory,
and the fact that mr(X ,µ) is a σ -order continuous operator
between Banach lattices is immediate from the linearity of
integrals and the MCT.

Theorem 22. The Measure Representation transformation is
natural.

Riesz representations are natural. We now present a sec-
ond pair of natural transformations which will establish a
natural isomorphism between (−)σ ◦ S∞ andM≪·. First, we
define the Riesz Representation transformation rr : (−)σ ◦
S∞ → M≪· at each Krn-object (X , µ) by the map rr(X ,µ) :
(−)σ ◦ S∞(X , µ) → M≪·(X , µ) defined as

rr(X ,µ)(F )(BX ) = F (1BX )
This construction is key to a whole collection of results in
functional analysis commonly known as Riesz Representa-
tion Theorems (see [2] Chapter 14 for an overview). One can
readily check that the Riesz Representation transformation
is well-defined: rr(X ,µ)(F )(∅) = F (0) = 0 and the σ -additivity
of rr(X ,µ)(F ) follows from the σ -order-continuity of F . To
see that rr(X ,µ)(F ) ≪ µ, assume that µ(BX ) = 0, then clearly
1BX = 0 µ-a.e., i.e. 1BX = 0 in L∞(X , µ), and thus F (1BX ) = 0.

Theorem 23. The Riesz Representation transformation is nat-
ural.

Finally, we define the Functional Representation transfor-
mation fr at each Krn-object (X , µ) by the map fr(X ,µ) :
M≪·(X , µ) → (−)σ ◦ S∞(X , µ) by

fr(X ,µ)(µ)(ϕ) =
∫
X
ϕdµ

This construction is also completely standard in measure
theory, although it has never to our knowledge been seen as
a natural transformation.

Theorem 24. The Functional Representation transformation
is well-defined, i.e. fr(X ,µ) is a σ -order continuous positive op-
erator, and is natural.

Natural Isomorphisms We have now defined the follow-
ing four natural transformations:

T1
mr +3M≪·
rn

ks
fr +3 (S∞)σ
rr

ks

In fact, both pairs form natural isomorphisms, and these can
be restricted to arbitrary Hölder conjugate pairs (p,q).

Theorem 25. rn and mr are inverse of one another, in par-
ticular there exists a natural isomorphism betweenM≪µ (X )
and L1(X , µ).

Theorem 26. rr and fr are inverse of each other, in particu-
lar there exists a natural isomorphism betweenM≪µ (X ) and
(L∞(X , µ))σ .

We can now conclude that the isomorphism proved in
Theorem 6 of [6] is in fact natural.

Corollary 27. There exists a natural isomorphism between
T1 := S1 ◦ (−)† and (−)σ ◦ S∞.

We can in fact restrict this result to any Hölder conjugate
pair (p,q):

Theorem 28. For 1 ≤ p ≤ ∞ with Hölder conjugate q, the
natural transformation rn ◦ rr restricts to a natural transfor-
mation (−)σ ◦ Sq → Tp .

The correspondence between the various categories and func-
tors discussed in this section are summarized as follows:

BLσ

BLopσ

(−)σ

==

rr
+3

rn
+3

frks Krnop

S1

aa

mrks

Krn

(−)†

<<

S∞

aa

M≪·

OO (7)



Borel Kernels and their Approximation, CategoricallyPre-print, Pre-print, March 2018

5 Approximations
In this section we develop a scheme for approximating ker-
nels which follows naturally from the †-structure of Krn.
Consider f : (X , µ) _ (Y ,ν ) and a pair of deterministic
maps p : (X , µ) → (X ′,p∗µ) and q : (Y ,ν ) → (Y ′,q∗ν ) (typi-
cally these maps coarsen the spaces X and Y ).

(X , µ)
f � ,2

f p,q
� ,2

p

s��

(Y ,ν )

q

s��
(X ′,p∗µ) � ,2

p†µ

sU^

fp,q

� ,2(Y ′,q∗ν )

q†ν

sU^
(8)

The †-structure of Krn allows us to define the new kernels
f p,q := q†ν • q • f • p†µ • p : X _ Y (9)

fp,q := q • f • p†µ : X ′ _ Y ′ (10)
The supscript notation is meant to indicate that the approxi-
mation lives ‘upstairs’ in Diagram (8) and conversely for the
subscripts. Intuitively, fp,q and f p,q take the average of f
over the fibres given by p,q according to µ and ν (see Section
7 for concrete calculations). The advantage of (10) is that we
can approximate a kernel on a huge space by a kernel on
a, say, finite one. The advantage of (9) is that although it is
more complicated, it is morally equivalent and has the same
type as f , which means that we can compare it to f .

A very simple consequence of our definition is that Bayesian
inversion commutes with approximations. We shall use this
in §7.1 to perform approximate Bayesian inference.

Theorem 29. Let f : (X , µ) _ (Y ,ν ), let p : X → X ′ and
q : Y → Y ′n be a pair of deterministic maps, then

(f †)q,p = (f p,q)† and (f †)q,p = (fp,q)†

In practice we will often consider endo-kernels f : X _ X
with a single coarsening map p : X → X ′ to a finite space. In
this case (9) simplifies greatly.

Proposition 30. Under the situation described above
f p := p†ν • p • f • p†µ • p = f • p†µ • p (11)

In the case covered by Proposition 30, the interpretation
of f p is very natural: for each x ∈ X the measure f (x)
is approximated by its average over the fibre to which x
belongs, conditioned on being in the fibre. For fibres with
strictly positive µ-probability, this is simply

f p (x)(A) =

∫
y∈p−1(p(x )) f (y)(A) dµ

µ(p−1(p(x))
However (11) also covers the case of µ-null fibres. Note also
that in the case where f p = f , the map p corresponds to
what is known as a strong functional bisimulation for f .

Approximating is non-expansive. It is well-known that
conditional expectations are non-expansive and we know

fromLemma 8 that pre-composing byp†µ•p as in (11) amounts
to conditioning. The following lemma is an easy consequence.

Lemma 31. Let f : (X , µ) _ (Y ,ν ) and q : X → X ′ be a
deterministic quotient, then for all 1 ≤ p ≤ ∞ andϕ ∈ Lp (Y ,ν )

Sp f q(ϕ)

p ≤ 

Sp f (ϕ)

p
Compositionality of approximations In the case where
we wish to approximate a composite kernel д • f , it might be
convenient, for modularity reasons, to approximate f and
д separately. This does not entail any loss of information
provided the quotient maps are hemi-bisimulations, in the
following sense. Let p : X → X ′,q : Y → Y ′, r : Z → Z ′

be deterministic quotients and let f : (X , µ) _ (Y ,ν ),д :
(Y ,ν ) _ (Z , ρ) be composable kernels. We say that q is a
left hemi-bisimulation for f if f = q† •q • f , and conversely
that it is a right hemi-bisimulation for д if д = д • q† • q
holds. In either case, one can verify using Theorems 7 and 29
that approximation commutes with composition, i.e. that
(д • f )p,r = дq,r • f p,q .

Discretization schemes We will use (10) and (11) to build
sequences of arbitrarily good approximations of kernels. For
this we introduce the following terminology.

Definition 32. We define a discretization scheme for an SB-
space X to be a countable co-directed diagram (ccd) of finite
spaces for which X is a cone (not necessarily a limit).

If (Xi )i ∈I is a discretization scheme ofX and pi : X → Xi are
the maps making X a cone, then it follows from the defini-
tion that if i < j, σ (pi ) ⊆ σ (pj ) where σ (pi ) is the σ -algebra
generated by pi . For each i ∈ I the finite quotient pi de-
fines a measurable partition of X whose disjoint components
p−1i ({k}),k ∈ Xi we will call cells.

By Theorem 1 every SB-space has a discretization scheme
for which it is not just a cone but a limit.
In practice we will work with discretization schemes lin-

early ordered by N. In this case the sequence (X ,σ (pn))n∈N
defines what probabilists call a filtration and we will denote
the approximation f pn given by (11) simply by f n .

6 Convergence
We now turn to the question of convergence of approxima-
tions. There appears to be little literature on the subject of
the convergence of approximations of Markov kernels. One
rare reference is [5]. Via the functor Sp defined above in
Sections 3 and 4 we can seek a topology in terms of the oper-
ators associated to a sequence of kernels. Indeed, following [5],
we will prove convergence results for the Strong Operator
Topology (SOT).

Definition 33. We will say that a sequence of kernels f n :
X _ Y converges to f : X _ Y in strong operator topology,
and write f n−→s f , if S1 f n converges to S1 f in the strong
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operator topology, i.e. if
lim
n→∞
∥S1 f n(ϕ) − S1 f (ϕ)∥1 = 0

Proving convergence. We start with the following key lemma
which is a consequence of Lévy’s upward convergence The-
orem ([25, Th. 14.2]) .

Lemma 34. Let f : (X , µ)_ (Y ,ν ) be a Krn-morphism and
let pn : X → Xn ,n ∈ N be a discretization scheme such that
for BX the Borel σ -algebra of X we have

BX = σ
(⋃

n

σ (pn)
)

and let A ⊆ Y be measurable, then for f n := f • p†n • pn
lim
n→∞

f n(x)(A) = f (x)(A)
for µ-almost every x ∈ X . Moreover,

lim
n→∞
∥S1 f n(1A) − S1 f (1A)∥1 = 0

Theorem 35 (Convergence of Approximations Theorem).
Under the conditions of Lemma 34, for µ-almost every x ∈ X

lim
n→∞

f n(x)(A) = f (x)(A)
for all Borel subsets A. Moreover,

lim
n→∞
∥S1 f n(ϕ) − S1 f (ϕ)∥1 = 0

for any ϕ ∈ L1(X ,ν ). In other words f n−→s f .

Note that operators of the shape Sp f n obtained from a
discretization scheme are finite rank operators. Thus, we,
in fact, also obtained a theorem to approximate stochastic
operators by stochastic operators of finite rank for the SOT
topology. In general, we cannot hope for convergence in the
stronger norm topology since the identity operator – which
is stochastic – is a limit of operators of finite rank in the
norm topology iff the space is finite dimensional.

Note also that the various relationships established in Sec-
tion 4 allow us to move from an approximation of a kernel
to an approximation of the corresponding Markov opera-
tor. Since a discretization scheme making f n−→s f will also
make (f †)n−→s f

†, it follows from Theorem 25 that we get a
finite rank approximation of the Markov operatorM≪·(f ).

7 Applications
7.1 Approximate Bayesian Inference

Consider again the inference problem from the introduction.
There one needed to invert f (x) = N(x , 1) with prior µ =
N(0, 1). We can use Theorem 29 to see how our approximate
Bayesian inverse compares to the exact solution which in
this simple case is known to be f †µ (0.5) = N(1/4, 1/2). To do
this, we use a doubly indexed discretization scheme:

qmn : R→ 2 ×m × n + 2
defining a window of width 2m centred at 0 divided in 2mn
equal intervals; with the remaining intervals (−∞,−m] and
(m,∞) each sent to a point (hence the +2 above).

Figure 1. Approximate posteriors

Since all classes induced by qmn have positive µ-mass,
approximants can be computed simply as:

f m,n([k])([l]) = µ[k]−1
∫
x ∈[k ]

N(x , 1)([l]) dµ

where [k], [l] range over classes of qmn . The corresponding
stochastic matrices are shown in Fig. 2 and 3 form,n = 5, 3
and 6, 10 respectively.

Since these approximants are finite, their Bayesian inverse
can be computed directly by Bayes theorem (i.e. taking the
adjoint of the stochastic matrices):

f m,n†([l])([k]) = µ[k] · f m,n([k])([l])
ν [l] (12)

with ν = f∗(µ). Commutation of inversion and approxima-
tion guarantees that the f m,n† converge to f †.

Indeed, Fig. 1 shows the the Lebesgue density of f m,n†(0.5)
for m,n = 3, 2 (in dashed blue) and 7, 5 (dashed red). The
latter approximant is already hardly distinguishable from
the exact solution (solid black).

It must be emphasized that this example is meant only as
an illustration and does not constitute a universal solution
to the irreducibly hard (not even computable in general [1])
problem of performing Bayesian inversion. Also, not all quo-
tients are equally convenient: what makes the approach com-
putationally tractable is that the fibres are easily described
and the measure conveniently evaluated on such fibres.

7.2 Approximating the Kleene star of ProbNetKAT

ProbNetKAT ([14, 22]) is a probabilistic network specification
language extending Kleene Algebras with Tests ([18]) with
network primitives and a binary probabilistic choice operator
⊕λ , λ ∈ [0, 1]. For the purpose of the example shown here we
will not need to introduce the full syntax and semantics of
ProbNetKAT, rather we will focus on a single ProbNetKAT
program which we will call cantor and is given by:

cantor := p; (dup; p)∗ where p := π0! ⊕1/2 π1! (13)
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inf2.930.86-1.21-3.28-inf

inf

2.93

0.86

-1.21

-3.28

-inf

Figure 2. Log-likelihood of f 5,3

inf3.581.16-1.26-3.68-inf

inf

3.58

1.16

-1.26

-3.68

-inf

Figure 3. Log-likelihood of f 6,10

The program acts on sets of finite sequences of 0 and 1, which
can be thought of as packet histories. We will write H for
the set {0, 1}∗ of all packet histories and Hn for the set of
histories of length as most n. A ProbNetKAT program is
always interpreted as a kernel 2H → G2H . Programs with
both dup and ∗ revealed to be quite complex from the earliest
development of the language. As we will describe, cantor
denotes a continuous distribution and hence having a way
to approximate it is crucial for practical uses of the language.
The denotation of π0! on a single sequence {(a0, . . . , an)} is:

Jπ0!K({(a0, . . . , an)}) = δ {(0,a1, ...,an)}
in other words π0! overwrites the first entry in the sequence
with 0. Similarly, π1! overwrites the first entry with 1. This
semantics is extended to sets of sequences in the obvious
way by taking direct images. The semantics of p is thus:

JpK(a) = 0.5δJπ0!K(a) + 0.5δJπ1!K(a)
The denotation of dup is given on singleton histories by

JdupK({(a0, . . . , an)}) = δ {(a0,a0, ...,an)}
i.e. dup shifts the history to the right and duplicates the
first entry. Again, this is extended to sets of histories by
taking direct images. The sequential composition operator ;
is interpreted by Kleisli composition.

The interpretation of the Kleene star is more involved, and
we here describe it categorically. To avoid any confusion we
will not use Kleisli arrows in this construction, i.e. all kernels
will be explicitly typed as kernels. Note first that the infinite
product (2H )ω can be defined as the limit of the ccd given
by the maps qn+1,n : (2H )n+1 → (2H )n dropping the last
component. By Bochner’s theorem ([7]) this also holds of
G((2H )ω ). Next, consider any program r. We turn 2H into a
cone for the diagram with limit G((2H )ω ) via the inductively
defined maps:

a1 = η ⊗ JrK • ∆1 : 2H → G(2H × 2H ) (14)

an = an−1 ⊗ JrK • ∆n : (2H )n → G((2H )n × 2H ) (15)
where ∆n : (2H )n → (2H )n × 2H is the map copying the
last entry. It is easy to check qn+1,n • an • an−1 • . . . • a1 =
an−1 • . . . • a1, and the diagram described by the morphisms

bn := an • . . . • a1 : 2H → G(2H )n makes 2H a cone for
lim←−−G(2

H )n . There must therefore exist a unique morphism

JrK∞ : 2H → G
(
(2H )∞

)
.

For each input, this kernel builds a distribution on the sample
paths of the discrete-time stochastic processes associated
with r and this input. We now define

Jr∗K := G
(⋃)

◦ JrK∞
where

⋃
: (2H )∞ → 2H is the map taking infinitary unions.

Since the definition above makes sense for any kernel f on
2H , we will overload the Kleene star and put f ∗ := G

⋃ ◦f∞.
Given the input (0), a sample path of cantor will draw uni-
formly a history of size 1, then a history of size 2 whose
suffix matches the size 1 history drawn at the previous step,
and so on for every integer. The distribution JcantorK(0)
associates to a measurable collection of sets of historiesA the
probability that the union of a sample path from (0) belongs
to A. For example JcantorK(0){A | (01) ∈ A} = 1/4, since
there’s a 1/4 chance that a sample path will have drawn (01)
amongst the histories of size 2.
We start by turning 2H into a Krn-object. Consider the

countable directed diagram given by all injections imn :
Hm → Hn ,n > m, then H = lim−−→Hn , and it follows that
2H = lim←−− 2

Hn since 2− turns colimits into limits. We know
from Bochner’s theorem that G2H = lim←−−G2

Hn , and we use
this fact to place a canonical measure on 2H as follows: since
each 2Hn is finite with cardinality cn := 2

∑n
i 2i = 22n+1−1, and

can thus be equipped with the uniform measure 1/cn , we can
find a limit measure µ on 2H with the pleasing property that
for all history truncating maps pn : 2H → 2Hn , the pushfor-
ward µn := (pn)∗µ is the uniform measure on Hn . It is clear
that these maps define a discretization scheme on 2H which
satisfies the condition of Theorem 35. We will now show
that if f n−→s f , then (f n)∗−→s f

∗. To prove this we need
the following lemma which is interesting in its own right.

Lemma 36. The monoidal structure of Krn is continuous for
the SOT, i.e. f n−→s f and дn−→sд implies f n ⊗ дn−→s f ⊗ д.
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Theorem37. Under the set-up described above, for any kernel
f : (2H , µ)_ (2H ,ν ) we have (f n)∗−→s f

∗

The advantage of working over finite spaces is that (f n)∗
can, in principle at least, be computed for kernels defined in
ProbNetKAT. Let us examine this in the case of cantor and
of the discretization scheme pn : 2H → 2Hn .
In the case n = 3 the underlying Markov chain has 27

states, but has an interesting property which means we need
not consider them all: when we compute JpK; J(dup; p)K3∞,
the process necessarily lands in an ergodic component of
the chain consisting of the singletons of histories of length
exactly 3. The reason is that once the process reaches histo-
ries of length 3 it starts randomly re-writing the histories,
and with probability 1 any two histories will eventually get
re-written to the same thing. Once a set of histories has
decreased in cardinality by one, it can never go back, thus
eventually any set of histories gets re-written to a single
length 3 history, and then loops among length 3 singletons
indefinitely. The situation is represented from the initial state
(0) in Figure 4 where, for clarity’s sake, the ergodic compo-
nent is symbolized by common double-sided arrows to a new
state.

(0)

(0)

(1)

(00)

(10)

(01)

(11)

(000)

(100)

(010)

(110)

(001)

(101)

(011)

(111)

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Figure 4. JpK; J(dup; p)K3∞) starting at (0)

By post-composing with G
⋃

we have
JpK; (J(dup; p)K3)∗(a)(A) = 0

if A does not contain all histories of length 3. We have mean-
ingful answers to questions about histories up to length 2:

JpK; (J(dup; p)K3)∗((0))({A | (1) ∈ A}) = 0.5

JpK; (J(dup; p)K3)∗((0))({A | (10) ∈ A}) = 0.25

In other words, at n = 3 we have the first two steps in
the construction of the Cantor distribution towards which
cantor converges.

8 Conclusion
We have presented a framework for the exact and approx-
imate semantics of first-order probabilistic programming.
The semantics can be read off either in terms of kernels be-
tween measured spaces, or in terms of operators between Lp
spaces. Either forms come with related involutive structures:
Bayesian inversion for (measured) kernels between Standard
Borel spaces, and Köthe duality for positive linear and σ -
continuous operators between Banach lattices. Functorial
relations between both forms can themselves be related by
way of natural isomorphisms. Our main result is the conver-
gence of general systems of finite approximants in terms of
the strong operator topology (the SOT theorem). Thus, in
principle, one can compute arbitrarily good approximations
of the semantics of a probabilistic program of interest for
any given (measurable) query. Future work may allow one
to derive stronger notions of convergences given additional
Lipschitz control on kernels, or to develop approximation
schemes that are adapted to the measured kernel of interest.
More ambitiously perhaps, one could investigate whether
MCMC sampling schemes commonly used to perform ap-
proximate Bayesian inference in the context of probabilistic
programming could be seen as randomized approximations
of the type considered in this paper.
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A Appendix
Proof of Theorem 1.
This is a consequence of the Isomorphism Theorem (Theo-
rem 15.6 of [16]): two SB spaces are isomorphic iff they have
the same cardinality. Uncountable SB spaces are thus all iso-
morphic to the Cantor space 2N which is the limit of the
countable co-directed diagram (2n)n∈N with the connecting
morphisms pn+1,n : 2n+1 → 2n truncating binary words of
length n + 1 at length n. Similarly all SB-spaces of cardinal-
ity ℵ0 are isomorphic to the one-point compactification of
N, which is the limit of the countable co-directed diagram
(n)n∈N with the connecting morphisms pn+1,n : n + 1 →
n, i 7→ min(i,n). The case of finite SB spaces is trivial.

■

Proof of Lemma 3.
By Dinkyn’s π -λ theorem, two finite measures are equal
if and only if they agree on a π -system generating the σ -
algebra. Any standard Borel space admits such a countable π -
system (any countable basis for a Polish topology generating
the σ -algebra). Let {Bn}n∈N be such a π -system. Then, for
all x ∈ X , д(x) , д′(x) ⇔ ∃n.д(x)(Bn) , д′(x)(Bn). Hence,

N (д,д′) = ∪n{x ∈ X | д(x)(Bn) , д′(x)(Bn)}
= ∪n{x ∈ X | evBn (д(x)) , evBn (д′(x))}
= ∪n(evBn ◦ д − evBn ◦ д′)−1(R \ {0})

By definition of the measurable structure of G(Y ), evBn ◦д −
evBn ◦ д′ is measurable, hence N (д,д′) is also measurable.

■

Proof of Proposition 4.
We first show that if д ∼ д′, then h • д ∼ h • д′. Clearly,
for any space V and any deterministic function u : Y → V ,
N (u◦д,u◦д′) ⊆ N (д,д′). By definition of the Kleisli category,
h • д = mZ ◦ G(h) ◦ д and similarly for h • д′. Taking u =
mZ ◦ G(h), we obtain that µ(N (h • д,h • д′)) ≤ µ(N (д,д′)).

It is now enough to show that λ(N (д • f ,д′ • f )) = 0. Let
us reason contrapositively. We have:

λ(N (д • f ,д′ • f )) > 0
⇔

∫
w ∈W 1N (д•f ,д′•f )(w) dλ > 0

→
∫
w ∈W

∑
n∈N 1(д•f )(w )(Bn ),(д′•f )(w )(Bn ) dλ > 0

∃n→
∫
w ∈W 1(д•f )(w )(Bn ),(д′•f )(w )(Bn ) dλ > 0

→
∫
w ∈W |(д • f )(w)(Bn) − (д

′ • f )(w)(Bn)| dλ > 0
⇔

∫
w ∈W

∫
x ∈X |д(x)(Bn) − д

′(x)(Bn)| d f (w) dλ > 0
⇔

∫
x ∈X |д(x)(Bn) − д

′(x)(Bn)| dµ > 0
∃X +⊆X→

∫
x ∈X + д(x)(Bn) − д

′(x)(Bn) dµ > 0
→

∫
x ∈X + 1д(−)(Bn )>д′(−)(Bn )(x) dµ > 0

→
∫
x ∈X + 1N (д,д′)(x) dµ > 0

The last line implies µ(N (д,д′)) > 0, a contradiction.

■

Proof of Theorem 6.
If ϕ is ν -integrable, there exists a monotone sequence {ϕn} of
simple functions such that ϕn ↑ ϕ and

∫
Y ϕndν →

∫
Y ϕdν <

∞. By definition each ϕn =
∑k

i=0 αi1Bi , and by unravelling
the definition we have∫

Y
1Bidν = ν (Bi )

=

∫
X
f (x)(Bi )dµ

=

∫
X

∫
Y
1Bid f (x)dµ

=

∫
X
(1Bi • f )dµ

From which it follows that∫
Y
ϕndν =

∫
X

∫
Y

k∑
i=0

αi1Bid f (x)dµ =
∫
X
(ϕn • f )dµ

and the result follows from the Monotone Convergence The-
orem (MCT).

■

Proof of Theorem 9.
It follows by definition of f † and from the disintegration
theorem that∫

y∈Y
f †(y)(A) · 1B (y) dν = γf (A × B), (16)
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from which Eq. 4 follows easily. It remains to prove that this
uniquely characterizes f †. Let us reason contrapositively.
Assume there exists д : (Y ,ν )_ (X , µ) verifying for all A,B
measurable

∫
y∈Y д(y)(A) · 1B (y) = γf (A× B) as in Eq. 16 and

such that ν (N (f †,д)) > 0 (assuming we take some represen-
tative of f †). Let {An}n∈N be a countable π -system generat-
ing the σ -algebra of X . It is enough to test equality of mea-
sures on X on this π -system. Therefore, N (f †,д) = ∪n{y |
f †(y)(An) , д(y)(An)}. Since ν (N (f †,д)) > 0, there must
exist a k ∈ N such that ν ({y | f †(y)(Ak ) , д(y)(Ak )}) > 0.
Therefore, N +k = {y | f

†(y)(Ak ) > д(y)(Ak )} must also have
positive measure for ν . But then,

∫
y∈Y д(y)(Ak ) · 1N +k (y) ,

γf (Ak × N +k ), a contradiction.

■

Proof of Theorem 10.
Let us first show that (−)† is a functor Krn → Krnop, i.e.
that id†(X ,µ) = id(X ,µ) and that for any f : (X , µ) _ (Y ,ν )
and д : (Y ,ν )_ (Z , ρ) we have (д • f )† = f † ◦ д†.
Let (X , µ) be an object of Krn and idX ,µ the correspond-

ing identity. By Th. 9, it is enough to prove, for all A,A′
measurable subsets of X , that∫
x ∈X

1A(x) · idX ,µ (x)(A′) dµ =
∫
x ∈X

idX ,µ (x)(A) · 1A′(x) dµ .

We have:∫
x ∈X

1A(x)·idX ,µ (x)(A′)dµ =
∫
x ∈X

1A(x)·1A′ dµ = µ(A∩A′)

The same calculation on the right hand side of the first equa-
tion yields trivially the same result. Hence the equality is
verified.

Now, on to compatibility w.r.t. composition. In sight of
Th. 9, it is enough to show that for all A ⊆ X , C ⊆ Z ,∫
x ∈X
(д• f )(x)(C) ·1A(x) dµ =

∫
z∈Z

1C (z) · (f † •д†)(z)(A) dρ

In the following, for X a measurable space, we denote by
SF (X ) the set of simple functions over X (finite linear com-
binations of indicator functions of measurable sets). We will
use repeatedly the monotone convergence theorem (MCT).
The left hand side of the above equation can be re-written
as: ∫

x ∈X

(∫
y∈Y д(y)(C) d f (x)

)
· 1A(x) dµ

(1)
=

∫
x ∈X

(∫
y∈Y limn→∞ дn(y) d f (x)

)
· 1A(x) dµ

(2)
=

∫
x ∈X limn→∞

(∫
y∈Y дn(y) d f (x)

)
· 1A(x) dµ

where (1) is because дn ↑ д(−)(C),дn ∈ SF (Y ) and (2) by
monotone convergence. Note that the n-indexed family x 7→

∫
y∈Y дn(y) d f (x) is pointwise increasing. Therefore,
(∗) limn→∞

∫
x ∈X

(∫
y∈Y дn(y) d f (x)

)
· 1A(x) dµ

(1)
= limn→∞

∫
x ∈X

(∑kn
i=1 α

n
i f (x)(Cn

i )
)
· 1A(x) dµ

= limn→∞
∑kn

i=1 α
n
i

∫
x ∈X f (x)(Cn

i ) · 1A(x) dµ
(2)
= limn→∞

∑kn
i=1 α

n
i

∫
y∈Y 1Cn

i
(y) · f †(y)(A) dν

(∗)
=

∫
y∈Y д(y)(C) · f

†(y)(A) dν
(3)
=

∫
y∈Y д(y)(C) · limn fn(y) dν

(∗)
= limn

∑kn
i=1 β

n
i

∫
y∈Y д(y)(C) · 1Dn

i
(y) dν

(2)
= limn

∑kn
i=1 β

n
i

∫
z∈Z 1C (z) · д†(z)(Dn

i ) dρ
= limn

∫
z∈Z 1C (z) ·

∫
y∈Y

∑kn
i=1 β

n
i 1Dn

i
(y) dд†(z) dρ

(∗)
=

∫
z∈Z 1C (z) ·

∫
y∈Y f †(y)(C) dд†(z) dρ

=
∫
z∈Z 1C (z) · (f † • д†)(z)(A) dρ

where (∗) is by monotone convergence, (1) is because дn ∈
SF (Y ), (2) is by Th. 9 and (3) is because fn ↑ f †(−)(A), fn ∈
SF (Y ). We have proved the sought identity.

Finally let us show that (−)† is involutive, i.e. that for any
f : (X , µ) _ (Y ,ν ), (f †)† = f . This follows easily by two
applications of Th. 9): we have∫

x ∈X 1A(x) · (f †)†(x)(B) dµ =
∫
y∈Y f †(y)(A) · 1B (y) dν

=
∫
x ∈X 1A(x) · f (x)(B) dµ;

and since adjoints are unique, f = (f †)†.
The fact that (f ⊗д)† = f † ⊗д† follows immediately from

the definitions and the property of disintegrations given
by Th. 9. The fact that the associator, unitors and braiding
transformations are unitary follows immediately from the
fact that they are deterministic isomorphisms and Th. 7.

■

Proof of Proposition 20.
Let B ⊆ Y be a measurable set. By definition, we have (f •
ρ)(B) =

∫
X evB ◦ f dρ where we recall that evB : G(X ) → R+

is the evaluation morphism. Let { f Bn }n∈N be an increasing
chain of simple functions converging pointwise to evB ◦ f
such that for each n, f Bn =

∑kn
i=1 α

n
i 1Ani with αni ≥ 0. By the

MCT,

(f • ρ)(B) = lim
n

∫
X
f Bn dρ = lim

n

kn∑
i=1

αni ρ(An
i ).

Similarly,

ν (B) = (f • µ)(B) = lim
n

∫
X
f Bn dµ = lim

n

kn∑
i=1

αni µ(An
i ).

Notice that since the integral is linear and the sequence
{ f Bn }n is increasing, the sequences {

∫
X f Bn dρ}n and {

∫
X f Bn dµ}n

are also increasing. Assumeν (B) = 0. Then for alln,
∫
X f Bn dµ =

0. We deduce that for all n, for all 1 ≤ i ≤ kn , either αni = 0
or µ(An

i ) = 0. Using that ρ ≪ µ, we deduce that for all
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1 ≤ i ≤ kn , either αni = 0 or ρ(An
i ) = 0, from which we con-

clude that for all n,
∫
X f Bn dρ = 0 and finally, (f • ρ)(B) = 0.

Hence, f • ρ ≪ ν .
■

Proof of Theorem 21.
We start by proving the following Lemma

Lemma 38. For any f : (X , µ) _ (Y ,ν ), ϕ ∈ L1(Y ,ν ), and
BX ⊆ X measurable∫

BX

(∫
Y
ϕd f (x)

)
dµ =

∫
Y
ϕ(y)f †(y)(BX ) dν

Proof. We start by showing the equation on characteristic
functions. If BY is measurable in Y , we have∫

BX

(∫
Y
1BYd f (x)

)
dµ =

∫
BX

f (x)(BY ) dµ

=

∫
Y
1BY (y)f †(y)(BX ) dν Eq. (4)

Since ϕ is measurable and integrable, there exists a sequence
ϕn ↑ ϕ of simple functions such that limn

∫
Y ϕn dν < ∞, and

the results follows by the linearity of integration and the
MCT. □

We can now prove the naturality of rn. Let f : (X , µ)_ (Y ,ν )
be a morphism in Krn; we have on the one hand

rn(Y ,µ) ◦M≪·(f )(ρ)(y) = rn(Y ,ν )(
∫
X
f (x)(−) dρ)(y)

=
d
∫
X f (x)(−)dρ

dν
(y) (∗)

and on the other

T1(f †) ◦ rn(X ,µ)(ρ)(y) = Tp (f †)
(
dρ

dµ

)
(y)

=

∫
X

dρ

dµ
d f †(y) (∗∗)

To show the equality of these two maps in L1(Y ,ν ) it is
enough to show that they are equalν -a.e. To see this, we show
that (∗∗) satisfies the condition to be the Radon-Nikodym
derivative (∗). Let BY be a measurable subset of Y . We have
from the well-known property of Radon-Nikodym deriva-
tives: ∫

BY

d
∫
X f (x)(−) dρ

dν
dν =

∫
x ∈X

f (x)(BY ) dρ

Moreover, we have∫
BY

∫
X

dρ

dµ
d f †(y) dν (1)=

∫
x ∈X

dρ

dµ
(x)f (x)(BY ) dµ

(2)
=

∫
x ∈X

f (x)(B) dρ

where (1) is by Lemma 38 and (2) is a well-known property
of Radon-Nikodym derivatives.

■

Proof of Theorem 22.
We start with the following elementary lemma.

Lemma 39. Ifψ ,ϕ ∈ L1(X , µ) then∫
X
ψϕ dµ =

∫
X
ψ d(mr(M,µ)ϕ)

Proof. The proof of naturality now follows easily: it is enough
to show the equality in the case where ψ = 1BX for a mea-
surable subset BX of X , and the result then extends to all
measurable functions by linearity of integrals and the MCT.
We have∫

X
1BXϕ dµ =

∫
BX

ϕdµ := mr(M,µ)(ϕ)(BX )

=

∫
X
1BX d(mr(M,µ)(ϕ))

□

To show naturality we now let f : (X , µ) _ (Y ,ν ) be a
Krn-morphism, ϕ ∈ L1(X , µ) and BY measurable in Y

mr(Y ,ν )T1(f †)(ϕ)(BX )
= mr(Y ,ν )(ϕ • f †)(BY )

=

∫
BY
ϕ • f † dν

=

∫
BY

∫
X
ϕd f †(y) dν

=

∫
X
f (x)(BY )ϕ(x) dµ Lemma 38

=

∫
X
f (x)(BY ) d((.mr(X ,µ)(ϕ)) Lemma 39

=M≪· f ◦mr(X ,µ)(ϕ)(BY )

■

Proof of Theorem 23.
Again, we start with a simple but helpful Lemma.

Lemma 40. Let F ∈ (S∞(X , µ)σ and ϕ ∈ S∞(X , µ), then

F (ϕ) =
∫
X
ϕ d(rr(X ,µ)(F ))

Proof. Starting with characteristic functions, let ϕ = 1B for
some measurable subset B of X . We then have

F (1B ) := rr(X ,µ)(F )(B) =
∫
X
1B d(rr(X ,µ)(F ))

We can then extend the result to simple functions by linearity
and then to all functions in L∞(X , µ) by the MCT. □

To show naturality we now let f : (X , µ)_ (Y ,ν ) be a Krn-
morphism, F ∈ (S∞(X , µ))σ and BY measurable in Y . We
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have

M≪· f ◦ rr(X ,µ)(F )(BY ) =
∫
X
f (x)(BY ) d(rr(X ,µ)(F ))

= F (f (·)(BY )) Lemma 40

= F (
∫
X
1BYd f (·))

= F (1BY • f )
= rr(Y ,ν )(F (− • f ))(BY )
= rr(Y ,ν ) ◦ (T1 f )σ (F )(BY )

■

Proof of Theorem 24.
We start by showing that fr is well defined. The linearity of
fr(X ,µ) is easily checked on simple functions and extended by
the CMT. Positivity is also immediate. For the σ -order conti-
nuity, let µm ↑ µ, ϕ ∈ L∞(X , µ), and ϕn ↑ ϕ be a monotone
approximation of ϕ by simple functions. We need to show
that

lim
m→∞

∫
X
ϕ dµm =

∫
X
ϕ dµ

For note first that the doubly indexed series
∫
X ϕndµm is

monotonically increasing inm, since the µm are monotoni-
cally increasing. Note also that the differences

dmn :=
∫
X
ϕn dµm+1 −

∫
X
ϕn dµm

are monotonically increasing in n. Indeed we have(∫
X
ϕn+1 dµm+1 −

∫
X
ϕn+1 dµm

)
−

(∫
X
ϕndµm+1 −

∫
X
ϕn dµm

)
=

∫
X
(ϕn+1 − ϕn) dµm+1 −

∫
X
(ϕn+1 − ϕn) dµm > 0

since the sequences ϕn and µm are monotonically increasing.
Since dmn is monotonically increasing in n we can apply
the CMT to dmn seen as a function ofm w.r.t. the counting
measure, i.e.

lim
n→∞

∞∑
m

dmn =

∞∑
m

lim
n→∞

dmn

which is to say, by taking partial sums

lim
n→∞

lim
m→∞

m∑
k=1

dkn = lim
n→∞

lim
m→∞

∫
X
ϕn dµm

= lim
m→∞

m∑
k=1

lim
n→∞

dkn

= lim
m→∞

lim
n→∞

∫
X
ϕn dµm

which concludes the proof that fr is well-defined.
We now prove naturality. Let f : (X , µ) _ (Y ,ν ) be a

Krn-morphism, ρ ∈ M≪µ (X ) and ϕ ∈ S∞(Y ,ν ) we then

have

fr(Y ,ν ) ◦M≪· f (ρ)(ϕ) =
∫
Y
ϕ d(M≪· f (ρ)(ϕ))

=

∫
Y
(ϕ • f ) dρ Theorem 6

= S∞(f )
(∫

Y
(−) dρ

)
(ϕ)

= S∞(f ) ◦ fr(X ,µ)(ρ)(ϕ)

■

Proof of Theorem 25.
The fact that rn(X ,µ) and mr(X ,µ) are inverse of each other
is just a restatement of the two well-known equalities for
Radon-Nikodym derivatives:

d
∫
− ϕ dµ

dµ
= ϕ and

∫
BX

dρ

dµ
dµ = ρ(BX )

■

Proof of Theorem 26.
Let (X , µ) be a Krn-object, let F ∈ (L∞(X , µ))σ and let ϕ ∈
L∞(X , µ). We have

fr(X ,µ) ◦ rr(X ,µ)(F )(ϕ) =
∫
X
ϕ d(rr(X ,µ)(F )) = F (ϕ)

where the last equality follows from Lemma 40. Similarly,
we have

rr(X ,µ)◦fr(X ,µ)(ρ)(BX ) = fr(X ,µ)(ρ)(1BX ) =
∫
X
1BXdρ = ρ(BX )

■

Proof of Theorem 28.
The case p = 1 has been treated already, for the case of
1 < p < ∞, see for example the proof of Theorem 4.4.1 of
[3]. Finally for the case of p = ∞, see Proposition 3.3 of [4].

■

Proof of Proposition 30.
Note in (11) that we disintegrate p with respect to two differ-
ent measures. For notational clarity let us define the endo-
kernels

a := p†µ • p
b := p†ν • p

The kernel a associates to each x ∈ X in a fibre p−1({i})
the measure π †µ (i) supported by this fibre. In particular it
is constant on each fibre, and similarly for b. We can now
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compute:
f p (x)(A)
:= b • f • a(x)(A)

=

∫
y∈X

b(y)(A) d(f • a)(x)

(1)
=

∑
i ∈X ′

∫
y∈p−1(i)

b(y)(A) d(f • a)(x)

(2)
=

∑
i ∈X ′

p†ν (i)(A ∩ p−1(i))f • a(x)(p−1(i))

=
∑
i ∈X ′

p†ν (i)(A ∩ p−1(i))
∫
y∈X

f (y)(p−1(i)) da(x)

(3)
=

∑
i ∈X ′

p†ν (i)(A ∩ p−1(i))
∫
y∈p−1(p(x ))

f (y)(p−1(i)) dp†µ (p(x))

where (1) follows by decomposing X in fibres, (2) is be-
cause b(y)(A) is constant on fibres, and (3) uses the fact
that a(x) := p†µ (p(x)) is supported on the fibre of p(x). We
can considerably simplify the expression above. Note first
that by definition of the disintegration

ν (A ∩ p−1(i)) = p†ν (i)(A ∩ p−1(i))ν (p−1(i)) (17)
Similarly, by definition of the disintegration, for i, j ∈ X ′∫

p−1(j)
f (x)(p−1(i)) dµ

=

∫
X
1p−1(j)(x)f (x)(p−1(i)) dµ

=
∑
k ∈X ′

µ(p−1(k))
∫
p−1(k )

1p−1(j)(x)f (x)(p−1(i)) dp†µ (k)

= µ(p−1(j))
∫
p−1(j)

f (x)(p−1(i)) dp†µ (j) (18)

where the last step uses the fact that p†µ (k) is supported by
the fibre over k . By multiplying the LHS of (17), (18) we get

ν (A ∩ p−1(i))
∫
p−1(j)

f (x)(p−1(i))dµ

=

∫
X
f (x)(A ∩ p−1(i))dµ

∫
p−1(j)

f (x)(p−1(i)) dµ

=

∫
p−1(j)

f (x)(A ∩ p−1(i)) dµ
∫
X
f (x)(p−1(i)) dµ

= µ(p−1(j))
∫
p−1(j)

f (x)(A ∩ p−1(i)) dp†µ (j)
∫
X
f (x)(p−1(i)) dµ

= µ(p−1(j))ν (p−1(A))
∫
p−1(j)

f (x)(A ∩ p−1(i)) dp†µ (j) (19)

It now follows from (17), (18), and (19) that

µ(p−1(j))ν (p−1(A))
∫
p−1(j)

f (x)(A ∩ p−1(i)) dp†µ (j)

= p†ν (i)(A ∩ p−1(i))ν (p−1(i))µ(p−1(j))
∫
p−1(j)

f (x)(p−1(i)) dp†µ (j)

Which simplifies to∫
p−1(j)

f (x)(A ∩ p−1(i)) dp†µ (j)

= p†ν (i)(A ∩ p−1(i))
∫
p−1(j)

f (x)(p−1(i)) dp†µ (j) (20)

We can now use (20) to get
b • f • a(x)(A)

=
∑
i ∈X ′

∫
p−1(π (x ))

f (x)(A ∩ p−1(i)) dp†µ (p(x))

=

∫
p−1(p(x ))

f (x)(A) dp†µ (p(x)) = f • a(x)(A) (21)

■

Proof of Lemma 34.
The map f (−)(A) : X → R defines a random variable, and
the discretization scheme defines a filtration σ (pn) ⊆ σ (pn+1)
whose union is BX . Following Lemma 8 and Proposition 30
we have

f n(x)(A) := f (x)(A) • p†n • pn = E [f (x)(A) | σ (pn)]
We thus have a sequence f n(−)(A) of random variables
X → R which is adapted to the filtration σ (pn),n ∈ N by
construction. We can now compute for anym < n

E [f n(x)(A) | σ (pm)]
=f (x)(A) • p†n • pn • p†m • pm
(1)
= f (x)(A) • p†n • pn • (pnm • pn)† • pm
(2)
= f (x)(A) • p†n • pn • p†n • p†nm • pm
(3)
= f (x)(A) • p†m • pm = f m(x)(A)

where (1) is by definition (??), (2) is by Thm (10) and (3)
is by Theorem (7). We have thus shown that f n(−)(A) is
a martingale for the filtration generated by the discretiza-
tion scheme, and the result now follows from Lévy’s up-
ward convergence Theorem ([25, Th. 14.2]) since f (x)(A) =
E [f (x)(A) | σ (⋃n σ (pn))].

■

Proof of Theorem 35.
Let (Bn)n∈N be a countable basis for the Borel σ -algebra of
X , which we assume w.l.o.g. is closed under finite unions
and intersections. It follows from Lemma 34 that for each
Bn , limk f k (x)(Bn) = f (x)(Bn) for all x ∈ X \ Nn where
µ(Nn) = 0. It follows that for every x ∈ X \⋃i Ni

lim
k→∞

f k (x)(Bn)= f (x)(Bn)
for all basic Borel sets Bn , and µ(

⋃
i Ni ) = 0. Now we use the

π − λ-lemma with (Bn)n∈N as our π -system. We define
L := {C | f n(x)(C) → f (x)(C) for all x ∈ X \ ∪iNi }

and show that it is a λ-system. Clearly each Bn ∈ L. Suppose
C ∈ L, it is then immediate that Cc ∈ L. Now consider a
sequence Ci ∈ L with Ci ⊆ Ci+1, and let C∞ := ∪∞i=1Ci . We
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want to show that
lim
n

f n(x)(C∞) = lim
n

lim
m

f n(x)(Cm)
(∗)
= lim

m
lim
n

f n(x)(Cm)

= lim
m

f (x)(Cm)

= f (x)(C∞)
where (∗) is the only step we need to justify. To show that
the iterated limits can be switched, note first that since
| f n(x)(Cm) − f (x)(C∞)|
= | f n(x)(Cm) − f (x)(Cm) + f (x)(Cm) − f (x)(C∞)|
≤ | f n(x)(Cm) − f (x)(Cm)| + | f (x)(Cm) − f (x)(C∞)|

since the two terms converge separately, for any ϵ > 0we can
find N > 0 s. th. for allm,n ≥ N , | f n(x)(Cm) − f (x)(C∞)| <
ϵ/2 + ϵ/2 = ϵ . Thus lim(m,n)→∞ f n(x)(Cm) = f (x)(C∞).

Now note also that for allm0 ∈ N the sequence f n(x)(Cm0 )
converges to f (x)(Cm0 ) (by definition ofL), and it is not hard
to see that f (x)(Cm) converges to f (x)(C∞). Conversely for
all n0 ∈ N, the sequence f n0 (x)(Cm) converges to f n0 (C∞)
(by virtue of f n0 (x) being a measure). For ϵ/2 > 0 we can find
N > 0 such that for allm,n > N , | f n(x)(Cm) − f (x)(C∞)| <
ϵ/2. We can also find M > 0 such that for all m > M ,
| f n(x)(Cm) − f n(x)(C∞)| < ϵ/2. By taking the maximum
of N andM it is clear that for allm,n above this maximum
| f n(x)(C∞) − f (x)(C∞)|
≤ | f n(x)(C∞) − f n(x)(Cm)| + | f n(x)(Cm) − f (x)(C∞)| < ϵ
We have thus shown that
lim
m→∞

lim
n→∞

f n(x)(Cm) = lim
(m,n)→∞

f n(x)(Cm)

= f (x)(C∞) = lim
n→∞

lim
m→∞

f n(x)(Cm).
Thus L is a λ-system, and it follows from the π − λ-lemma
that σ ((Bn)n∈N) ⊆ L which concludes the proof of pointwise
almost everywhere convergence.

For the proof of L1-convergence we start by showing that
lim
n→∞



Sp f n(1A) − Sp (1A)

1 = 0 (22)
for any Borel subset A. For this we use exactly the same
reasoning as above. The only difference is that we need to
check that

lim
n→∞

∫
X
| f n(x)(C∞) − f (x)(C∞)| dµ = 0

For this we use the fact that we have just shown f n(x)(C∞) →
f (x)(C∞) pointwise almost everywhere, and that | f n(x)(C∞)−
f (x)(C∞)| ≤ 1 with 1 µ-integrable. It follows by dominated
convergence that

lim
n→∞

∫
X
| f n(x)(C∞) − f (x)(C∞)| dµ

=

∫
X

lim
n→∞
| f n(x)(C∞) − f (x)(C∞)| dµ = 0

which concludes the proof of (22). To extend the result to
simple functions and then to arbitrary functions ϕ ∈ L1(X ,ν )
is routine.

■

Proof of Lemma 36.
Let f n , f : (X1, µ1)_ (Y1,ν1),дn ,д : (X2, µ2)_ (Y2,ν2), we
need to show that for any ϕ ∈ L1(Y1 × Y2,ν1 ⊗ ν2)∫

X1×X2

��∫
Y1×Y2

ϕ(y1,y2)d(f n ⊗ дn)(x1,x2)− (23)∫
Y1×Y2

ϕ(y1,y2)d(f ⊗ д)(x1,x2)
�� dµ1 ⊗ dµ2 → 0

To show this it is enough to show that∫
Y1×Y2
ϕ(y1,y2) d(f n ⊗дn)(x1,x2) →

∫
Y1×Y2
ϕ(y1,y2) d(f ⊗д)(x1,x2)

pointwise almost everywhere and that

sup
n





∫
Y1×Y2

ϕ(y1,y2)d(f n ⊗ дn)(x1,x2)





1
< ∞ (24)

Since in these circumstances pointwise convergence almost
everywhere implies L1-convergence.
To show (23) we proceed as usual: we start with simple

functions and use monotone convergence. Let us first con-
sider any measurable A ⊆ Y1 × Y2, then∫

(y1,y2)∈Y1×Y2
1A(y1,y2) d(f n ⊗ дn)(x1,x2)

=

∫
y1∈Y1

дn(x2)({y2 | (y1,y2) ∈ A}) d f n(x1)

(1)
→

∫
y1∈Y1

д(x2)({y2 | (y1,y2) ∈ A}) d f n(x1)

=

∫
(y1,y2)∈Y1×Y2

1A(y1,y2) d(f ⊗ д)(x1,x2)

where (1) is by assumption on f n ,дn , Theorem 35 and dom-
inated convergence. The result extends completely straight-
forwardly to all simple functions. Finally for an arbitrary
ϕ ∈ L1(Y1 × Y2,ν1 ⊗ ν2) we construct a monotone approxi-
mating sequence of simple functions si ↑ ϕ and use the usual
3ϵ argument to conclude.
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To show (24) we suppose w.l.o.g. that ϕ(x ,y) ≥ 0 and
compute using Fubini and Lemma 31



∫

Y1×Y2
ϕ(y1,y2) d(f n ⊗ дn)(x1,x2)






1

=

∫
X1

∫
X2

∫
Y1

∫
Y2
ϕ(y1,y2) dдn(x2) d f n(x1) dµ2 dµ1

=

∫
X1

∫
Y1

∫
X2

∫
Y2
ϕ(y1,y2) dдn(x2) dµ2 d f n(x1) dµ1

≤
∫
X1

∫
Y1

∫
X2

∫
Y2
ϕ(y1,y2) dд(x2) dµ2 d f n(x1) dµ1

=

∫
X2

∫
Y2

∫
X1

∫
Y1
ϕ(y1,y2) d f n(x1) dµ1 dд(x2) dµ2

≤
∫
X2

∫
Y2

∫
X1

∫
Y1
ϕ(y1,y2) dд(x2) d f (x1) dµ1 dµ2

=





∫
Y1×Y2

ϕ(y1,y2) d(f ⊗ д)(x1,x2)





1
< ∞

The last step is by definition of ν1,ν2.

■

Proof of Theorem 37.
By definition of (−)∗ we need to show that f n∞−→s f∞ and
that post-composing with G

⋃
is continuous for the SOT.

In fact, we can shown both by proving that composition is
jointly continuous for the SOT and operators in the image of
Sp . Note that in general composition is not jointly continuous
for the SOT, but stochastic operators form a bounded set of
operators and on these composition is jointly continuous in
the SOT. Assume дn−→sд for kernels дn ,д : (X , µ)_ (Y ,ν )
and hn−→sh for kernels hn ,h : (Y ,ν ) _ (Z , ρ). We then
have for any ϕ ∈ L1(Z , ρ):
∥S1дn(S1hn(ϕ)) − S1д(S1h(ϕ))∥
= ∥(S1дn − S1д)(S1h(ϕ)) + (S1дn(S1hn(ϕ) − S1h(ϕ)))∥
≤ ∥(S1дn − S1д)(S1h(ϕ))∥ + ∥(S1дn(S1hn(ϕ) − S1h(ϕ)))∥
≤ ∥S1дn − S1д)(S1(h(ϕ))∥ + ∥S1дn ∥ ∥S1hn(ϕ) − S1h(ϕ)∥

where the last step follows from Hölder’s inequality and the
fact that S1дn , being a stochastic operator, is bounded.
Continuity under post-composition by G

⋃
now follows

easily. For the continuity of the (−)∞ construction, we first
work inductively on the construction of the maps ak defined
in (14) and (15). We denote by ank the kernels generated by
f n and ak those generated by f , k ∈ N. By definition (14)
an1 = η ⊗ f n • ∆1 and it follows from Lemma 36 and SOT
continuity of composition that an1−→sa1. Now assuming that
ank−1−→sak−1, the exact same argument show that ank−→sak .
Finally, the joint continuity of composition gives

bnk := ank • . . . • a
n
1−→sbk := ak • . . . • a1 (25)

for every k ∈ N.
Having shown that the maps bnk defining f n∞ converge to

themapsbk defining f∞wenow show that


Sp f n∞(ϕ) − Sp f∞(ϕ)

1

converges to 0 for any ϕ ∈ L1((2H )ω , µω ). As usual we start

with simple functions: let ϕ =
∑

i αi1Bi be a simple function.
For any Bi we have

Bi ⊆
∞∏
k

πk [Bi ] ⇒ µ∞(Bi ) ≤
∞∏
k

µ(πk )

and thus there can only exist finitely many indices for which
the corresponding projection of Bi has not got full measure.
Since the simple function is a finite sum, this means that ϕ
is defined by measurable sets with non-trivial measure on
only a finite set of coordinates. Let N be the largest of these
coordinates, we then have:

Sp f n∞(ϕ) − Lp f op f∞(ϕ)

1

=

∫
2H

��∫
(2H )ω

ϕ d f n∞(x) −
∫
(2H )ω

ϕ d f∞(x)
��dµ

=

∫
2H

��∫
(2H )N

ϕ dbnN (x) −
∫
(2H )N

ϕ db(x)
�� dµ

and the result follows from (25). Extending to arbitrary maps
is completely straightforward.

■
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