
HAL Id: hal-01976413
https://hal.science/hal-01976413

Submitted on 10 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian Inversion by ω-Complete Cone Duality
Fredrik Dahlqvist, Vincent Danos, Ilias Garnier, Ohad Kammar

To cite this version:
Fredrik Dahlqvist, Vincent Danos, Ilias Garnier, Ohad Kammar. Bayesian Inversion by ω-Complete
Cone Duality. 27th International Conference on Concurrency Theory (CONCUR 2016), Aug 2016,
Quebec CIty, Canada. 15 p., �10.4230/LIPIcs.CONCUR.2016.1�. �hal-01976413�

https://hal.science/hal-01976413
https://hal.archives-ouvertes.fr


Bayesian Inversion by ω-Complete Cone Duality∗

Fredrik Dahlqvist1, Vincent Danos2, Ilias Garnier3, and
Ohad Kammar4

1 University College London
f.dahlqvist@ucl.ac.uk

2 Ecole Normale Supérieure
vincent.danos@ens.fr

3 University of Edinburgh
igarnier@inf.ed.ac.uk

4 University of Oxford
ohad.kammar@cl.cam.ac.uk

Abstract
The process of inverting Markov kernels relates to the important subject of Bayesian modelling
and learning. In fact, Bayesian update is exactly kernel inversion. In this paper, we investigate
how and when Markov kernels (aka stochastic relations, or probabilistic mappings, or simply
kernels) can be inverted. We address the question both directly on the category of measurable
spaces, and indirectly by interpreting kernels as Markov operators:

For the direct option, we introduce a typed version of the category of Markov kernels and
use the so-called ‘disintegration of measures’. Here, one has to specialise to measurable spaces
borne from a simple class of topological spaces -e.g. Polish spaces (other choices are possible).
Our method and result greatly simplify a recent development in Ref. [4].
For the operator option, we use a cone version of the category of Markov operators (kernels
seen as predicate transformers). That is to say, our linear operators are not just continuous,
but are required to satisfy the stronger condition of being ω-chain-continuous.1 Prior work
shows that one obtains an adjunction in the form of a pair of contravariant and inverse
functors between the categories of L1- and L∞-cones [3]. Inversion, seen through the operator
prism, is just adjunction.2 No topological assumption is needed.
We show that both categories (Markov kernels and ω-chain-continuous Markov operators)
are related by a family of contravariant functors Tp for 1 ≤ p ≤ ∞. The Tp’s are Kleisli
extensions of (duals of) conditional expectation functors introduced in Ref. [3].
With this bridge in place, we can prove that both notions of inversion agree when both defined:
if f is a kernel, and f† its direct inverse, then T∞(f)† = T1(f†).
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1:2 Bayesian Inversion by ω-Complete Cone Duality

1 Introduction

Before we get in the technicalities, we review informally the central notions of interest: kernels,
kernels as operators, and Bayesian update. We also take the opportunity to introduce some
of the notations used in the remainder of the paper.

A kernel is a (measurable) map from some measurable space X to the set of probability
distributions on another measurable space Y . Probability distributions have to be equipped
with a set of mesasurables for this to make sense. We will write X → GY or equivalently
X _ Y for the type of such X, Y kernels, where GX is the set of probability distributions over
X. With the appropriate constructions, G is a monad over Mes, the category of measurable
spaces and measurable maps [9].

Kernels are often used as models of probabilistic behaviour. If X = Y is finite, then this is
but the familiar notion of probabilistic state machine (or finite discrete-time Markov chain),
where one jumps probabilistically from one state to the next with no dependence on the
past. We say a kernel f : X → GY is deterministic3 if it factorises in Mes as f = δY ◦ f ′d
for some fd : X → Y , where δX : X _ X sends x to δx the Dirac measure at x. Intuively
determinism means that f allows only one possible jump at each x in X. In particular, δX is
a deterministic kernel itself (with an identical jump).

One can also use a kernel as a family of probabilities over Y parameterised by X. Each
probability in the range of the kernel can be thought as a competing description of a hidden
true probability. Given an additional probability p on the parameter space X, a prior, one
can specify how much ‘trust’ one has in any particular description offered. This is the
Bayesian model of quantification of uncertain probabilities: the prior describes our beliefs
and ‘Bayesian update’ is a process by which new data (minted by the true random source)
can be incorporated to modify the prior, and update our beliefs. The hope is that in the
long run the successive priors will take us closer to the truth.

Kernels as operators

Yet another standpoint on kernels is to look at them as linear maps. Indeed, a finite
f : X → GY can be seen as a transition matrix T(f) of type X × Y with the x, y-entry
specifying the probability that being at x in X one jumps to y in Y .4 Thus, one can think
of f : X → GY as a linear map from the free vector space over Y to that over X. Clearly
T(δX) = IX . In particular, a probability p over X, ie a map from 1 → GX, is a matrix
T(p) of type 1 × X (a row vector). This new standpoint gives a ready access to the key
operation of kernel composition, written ◦G. Because G is a monad (known as the Giry
monad), one knows how to compose kernels for general reasons using the so-called Kleisli
composition (see Section 2). In the operator interpretation, Kleisli composition is just plain
matrix multiplication. E.g. the composition f ◦G p of p and f is represented as T(p)T(f), a
new row vector of type 1× Y . The T (contravariant) functor can be extended to arbitrary
measurable kernels, using the machinery of Banach cones of real functions (see Section 4.4).5

3 Or a deterministic map, following the terminology of Lawvere in his seminar handout notes on the
“category of probabilistic mappings” (1962).

4 Of course the transpose representation is also possible as will be clear in the duality of the operator
interpretation.

5 This predicate transformer view was first championed by Kozen for probabilistic programs [12].
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Importantly, we will deal not with ‘naked’ Markov kernels, but with ‘typed’ ones of the
form:6

1
p

?z�

q

��$
X

f � ,2Y

(X, p) f � ,2(Y, q)

where the triangle (above, left) is drawn in the Kleisli category of G in Mes and assumed to
commute. The simpler diagram (above, right) is just a more compact notation for the same.
(Recall that we use blocky arrows to remind us that these are Kleisli arrows.) Either diagram
means that in addition to f , we are given probabilities p on X, q on Y with f ◦G p = q.

This category of typed kernels has a natural subcategory where f is deterministic.
The typing simply amounts to saying that q is the push-forward of p along g.7 E.g. δX :
(X, p) _ (X, p) for any p in GX. This subcategory is (equivalent to) the familiar category of
probabilistic triples and measurable measure-preserving maps.8

Bayesian update or inversion

Our main question is as folllows. Given a typed kernel f , we wish to build and characterise a
‘weak’ inverse f†:

(X, p)

f

� %,
(Y, q)

f†
�fm

In the Bayesian world, f† should be the update map we mentioned above. Given a data input
y in Y , this map returns a posterior f†(y) which represents our updated set of beliefs. It is
therefore central to the theory to obtain good and general descriptions of f†. We will access
such descriptions of f† following two routes. The direct route uses the non-trivial notion of
disintegration (aka regular conditional probabilities) which solves the inversion problem in
the special case of a deterministic f . A clever construction based on couplings allows one to
generalise it to any kernel. This is done in Section 3.3 and follows the construction of Ref. [4]
while being markedly simpler. The other route goes the operator way. As alluded to in the
abstract, we use a domain theoretic variant of the usual interpretation which carries a perfect
duality (which one does not have in the standard interpretation). Then, as the notation
suggests, we can just define T(f)† as the adjoint of T(f) (this is done in Section 4). Bayesian
inversion is cone duality! Whence the title. We then show that through our functorial bridge,
T (really a family Tp), both routes agree (Section 5).

The paper is almost self-contained. The only pieces of mathematics borrowed are the
disintegration and the cone duality results and some of the most basic definitions. We now
turn to the technical preliminaries.

6 In category-theoretical words, our arrows are in the ‘category under 1’ of the Kleisli of G.
7 Because in this case f ◦G p = (δ ◦ fd) ◦G p = µ ◦ G(δ ◦ fd) ◦ p = µ ◦ G(δ) ◦ G(fd) ◦ p = G(fd) ◦ p; as follows

from the monad structure equation µ ◦ G(δ) = I.
8 Richer categories of kernels were considered before; for instance, to obtain a notion of almost sure
bisimilarity on labelled kernels (aka labelled Markov processes) Ref. [6, Section 7] equips kernels with
ideals of negligibles.
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1:4 Bayesian Inversion by ω-Complete Cone Duality

2 Preliminaries

Measurable and Polish spaces

We refer to Ref. [1] for the definitions of measurable spaces and maps, and Ref. [11] for an
introduction to the theory of Polish spaces (completely metrisable and separable topological
spaces). Where convenient, we will denote measurable spaces and related structures by their
underlying set. If X is a set, (Y,Λ) a measurable space and f : X → Y a function, we denote
by σ(f) its initial σ-algebra, which is the smallest σ-algebra that makes it measurable. As
seen earlier, the category of measurable spaces and measurable maps is denoted by Mes,
and that of Polish spaces and continuous maps by Pol. There is a functor B : Pol→Mes
associating any Polish space to the measurable space with same underlying set equipped
with the ‘Borel’ σ-algebra (generated by open sets), and interpreting continuous maps as
measurable ones. Measurable spaces in the range of B are the standard Borel spaces.

A measure p on a measurable space (X,Σ) is a set function Σ→ R which is σ-additive
and such that p(∅) = 0. One says p is a finite measure whenever p(X) <∞, and a probability
measure if p(X) = 1. A property holds p-almost surely (p-a.s) if its negation holds on a set
of measure 0. A measure space is a triple (X,Σ, p) such that (X,Σ) is a measurable space
and p is a finite measure on (X,Σ). We denote by p|Λ the restriction of p to a sub-σ-algebra
Λ ⊆ Σ. A Borel measurable real-valued function f : (X,Σ, p) → R is called integrable if∫
X
|f | dp <∞.

Radon-Nikodym and conditional expectations

Let (X,Σ) be some measurable space. For p, q finite measures, we say that p is absolutely
continuous with respect to q if for all B measurable, q(B) = 0 implies p(B) = 0. This will be
denoted by p� q. The Radon-Nikodym theorem tells us that we can express p in terms of
its derivative with respect to q:

I Theorem 1 (Radon-Nikodym). If p � q there exists a q-a.s. unique positive integrable
function denoted by dp

dq : (X,Σ, q)→ R such that p = B 7→
∫
B
dp
dqdq.

The function dp
dq is called the Radon-Nikodym derivative of p with respect to q.

Let us denote f · p = B ∈ Λ 7→
∫
B
f dp. Clearly f · p� p. The following two identities

follow from Theorem 1: (i) df ·p
dp = f (ii) dp

dq · q = p. We refer the reader to [1] for further facts
about Radon-Nikodym derivatives. Conditional expectations can be implemented in terms of
Radon-Nikodym derivatives.

IDefinition 2 (Conditional expectation ([10])). Let (X,Σ, p) be a measure space and let Λ ⊆ Σ
be a sub-σ-algebra. The conditional expectation of an integrable function f : (X,Σ, p)→ R
with respect to Λ is the p-a.s. unique integrable function E [f | Λ] : (X,Λ, p|Λ) → R that
verifies for all B ∈ Λ the identity

∫
B
E [f | Λ] dp =

∫
B
f dp.

Theorem 1 implies the existence of conditional expectations: letting f · p = B ∈ Λ 7→∫
B
f dp, we have for all B ∈ Λ the characteristic identity

∫
B
df ·p
dp|Λ dp|Λ =

∫
B
f · p =

∫
B
fdp.

Probability functors

The endofunctor G : Mes → Mes associates to any measurable space X the set of all
probability measures on X with the smallest σ-algebra that makes the evaluation functions
evB : G(X) → R = p 7→ p(B) measurable, for B a measurable set in X. If f : X → Y is
measurable, the action of the functor is defined by G(f)(P ) = P ◦ f−1. This functor can be
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endowed with the structure of the Giry monad (G, µ, δ). The multiplication µ : G2 ⇒ G is
defined at a component X by µX(P )(B) =

∫
G(X) evBdP while the unit δ : Id⇒ G is defined

at X by δX(x) = δx, where δx(B) = 1 if and only if x ∈ B.
The Kleisli category of G will be denoted by K`. It has the same objects as Mes. For

all X,Y measureable spaces, a Kleisli arrow f : X _ Y in K` is a kernel f : X → G(Y )
in Mes. The Kleisli composition of the kernel f : X _ Y with g : Y _ Z is given by
g ◦G f = µY ◦ G(g) ◦ f .

3 Bayesian inversion

Let D be a space representing some space of data and let t ∈ G(D) be the truth, a unknown
probability measure that we wish to discover by sampling repeatedly from it. In order to
make this search analytically or computationally tractable, or more generally to reflect some
additional knowledge or assumptions held about the truth, one might wish to parameterise
the search through a space H of parameters and a measurable likelihood function f : H _ D.
The uncertainty about which parameter best matches the truth is represented by a probability
p ∈ G(H) called the prior. The composite of the two arrows q = f ◦G p is called the marginal
likelihood.

Bayesian inversion is the construction from these data of a posterior map g : D _ H, also
called the inference map. Upon observing a sample d ∈ D, this inference map will produce an
updated prior g(d). In good cases (e.g. H and D finite, and q absolutely continuous w.r.t. t),
sampling independently and identically from the truth t and iterating this Bayesian update
will make the marginal likelihood converge (in some topology to be chosen carefully) to t.
The key step in the above process is the construction of the posterior g, which relies crucially
on disintegrations.

Culbertson & Sturtz give in [4] a nice categorical account of Bayesian inversion in a
setting close to K`. In the following, we provide a streamlined view of their work by defining
a category of kernels where disintegration and Bayesian inversion admit rather elegant
statements.

3.1 Categories of kernels
Let F : Mes → K` be the functor embedding Mes into the Kleisli category of G. It acts
identically on spaces and maps measurable arrows f : X → Y to Kleisli arrows F (f) = δY ◦f .
1 ↓ F is the category having as objects probabilities p : 1 _ X, denoted by (X, p), and
as morphisms f : (X, p) _δ (Y, q) degenerate Kleisli arrows F (f) : X _ Y such that
q = F (f)◦G p = G(f)(p). As said, these correspond to the usual notion of measure-preserving
map. 1 ↓ K` is the category having the same objects as 1 ↓ F but where arrows are non-
degenerate, i.e. an arrow from (X, p) to (Y, q) as above is any Kleisli arrow f : X _ Y such
that q = f ◦G p. Clearly, 1 ↓ F is a subcategory of 1 ↓ K` with the same objects (aka lluf).

The following result ensures that for an arrow f : (X, p) _ (Y, q), there are p-negligibly
many points jumping to q-negligible sets (it corresponds to the condition of non-singularity
of [3]).

I Lemma 3. If f : (X, p) _ (Y, q) is an arrow in 1 ↓ K`, then f(x)� q p-a.s.

Proof. By definition of 1 ↓ K`, q(B) =
∫
X
f(x)(B) dp. Assume q(B) = 0, then having

f(x)(B) > 0 on a set of strictly positive p-measure implies that the integral is strictly
positive, yielding a contradiction. J

CONCUR 2016



1:6 Bayesian Inversion by ω-Complete Cone Duality

For all objects (X, p), (Y, q), let R(X,p),(Y,q) be the smallest equivalence relation on
Hom1↓K`(X,Y ) such that (f, f ′) ∈ R(X,p),(Y,q) if f and f ′ are p-a.s. equal.

I Lemma 4. R defines a congruence relation on 1 ↓ K`.

Proof. We must show that for all g : (X ′, p′) _ (X, p) and all h : (Y, q) _ (Y ′, q′),
(h◦Gf◦Gg, h◦Gf

′◦Gg) ∈ R(X′,p′),(Y ′,q′). First, let us prove that (f◦Gg, f
′◦Gg) ∈ R(X′,p′),(X,p).

By Lemma 3, g(x′)� p p′-a.s., hence the following equation holds for p′-almost all x′:

(f ◦G g)(x′) = BY 7→
∫
x∈X

f(x)(BY )dg(x′) = BY 7→
∫
x∈X

f ′(x)(B)dg(x′) = (f ′ ◦G g)(x′)

It remains to prove that h ◦G f ◦G g is p′-a.s. equal to h ◦G f ′ ◦G g. We have:

(h ◦G f ◦G g)(x′) = BY ′ 7→
∫
y′∈Y ′ h(y′)(BY ′)d(f ◦G g)(x′)

= BY ′ 7→
∫
y′∈Y ′ h(y′)(BY ′)d(f ′ ◦G g)(x′) p′-a.s.

= (h ◦G f ′ ◦G g)(x′) p′-a.s.

which concludes the proof. J

This congruence relation allows us to consider R-equivalence classes of 1 ↓ K` arrows as
proper morphisms in the corresponding quotient category (Section 2.8, [13]):

I Definition 5. The category Krn is the quotient category (1 ↓ K`)/R, with subcategory
Krnδ = (1 ↓ F )/R.

In other terms, an arrow f : (X, p) _ (Y, q) in Krn is an equivalence class of kernels that
are p-a.s. equal.

3.2 Disintegrations
Disintegrations are also called regular conditional probabilities and correspond to measurable
families of conditional probabilities. Working in the setting of standard Borel spaces ensures
their existence, and the corresponding statement admits a particularly elegant form in Krn:

I Theorem 6 (Disintegration, [8]). Let X and Y be standard Borel spaces, and let f :
(X, p) _δ (Y, q) be an arrow in Krnδ. There exists a unique Krn arrow f† : (Y, q) _ (X, p)
that verifies f†(y)(f−1({y})) = 1 q-a.s.

We call f† the disintegration of p along f . We will show in Section 5 that disintegrations
and more generally Bayesian inverses are adjoints, hence the use of the −† notation. The last
condition can be equivalently stated as the fact that f ◦ f† = id(Y,q). In order to bridge our
crisp statement of Theorem 6 with the usual measure-theoretic one, let us unfold the objects
at play. If we inspect the type of the arrows f : (X, p) _δ (Y, q) and f† : (Y, q) _ (X, p) we
see that by definition of composition in K`, we have the equation q = (µY ◦ G(δY ◦ f))(p) =
G(f)(p). The existence of the disintegration arrow f† : (Y, q) _ (X, p) implies the equation
p = (µY ◦ G(f†))(q) which corresponds to

p = B 7→
∫

G(Y ) evB dG(f†)(q)
= B 7→

∫
y∈Y f

†(y)(B) dq (Change of variables) (1)

We recall that the uniqueness of f† claimed in Theorem 6 is really that of a q-equivalence
class of kernels. Note also that disintegrations do not in general exist in Pol as they need
not be continuous (even when disintegrating along a continuous map).
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Disintegration, as said above, is a measurable family of conditional probabilities. The sub-
σ-algebras against which the conditionings are performed are encoded through the measurable
map f along which the disintegration is computed. Simple calculations make explicit how
conditional expectation underpins disintegration: for all h : (X, p)→ R integrable,∫

X
h dp =

∫
y∈Y

(∫
X
h df†(y)

)
dq (Equation 1)

=
∫
y∈Y

(∫
f−1(y) h df

†(y)
)
dq (Theorem 6)

The last equation corresponds to the usual measure-theoretic characteristic identity of
disintegrations. Let us consider a measurable set B ∈ σ(f) and let us apply this identity to
the function h · 1B . Applying a change of variables on q = G(f)(p), we get:∫

B
h dp =

∫
x∈X

(∫
f−1(f(x)) h · 1B df

†(f(x))
)
dp (Change of variables)

=
∫
x∈B

(∫
f−1(f(x)) h df

†(f(x))
)
dp (1B constant on fibers)

We recognise the characteristic identity of conditional expectations (Definition 2). This
implies that the following identity holds p-almost everywhere:

E [h | σ(f)] = x 7→
∫
f−1(f(x))

h df†(f(x)) (2)

3.3 Bayesian inversion
Bayesian inversion is a reformulation of the disintegration theorem where the map f is
allowed to be any arrow of Krn (and not just a deterministic one). To formulate our Bayesian
inversion theorem we will define two Set-valued functors and two natural transformations
between them. The first functor is simply the functor Hom((X, p),−) : Krn → Set for a
given (X, p) in Krn. For notational clarity, we will abbreviate objects (X, p), (Y, q), (Y ′, q′)
in Krn to X,Y, Y ′ with the understanding that they come equipped with measures p, q, q′. It
is useful to explicitly write the action of Hom(X,−) on morphisms g : Y _ Y ′. By definition
Hom(X,−)(g) : Hom(X,Y )→ Hom(X,Y ′) maps f ∈ Hom(X,Y ) to the kernel:

Hom(X,−)(g)(f) , g ◦G f : X _ Y ′ defined by (g ◦G f)(x)(BY ′) =
∫
y∈Y

g(y)(BY ′) df(x)

Given X in Krn, our second functor Γ(X,−) : Krn → Set is defined on objects as
follows: we define Γ(X,Y ) ⊆ G(X × Y ) to be the set of couplings of p and q, corresponding
to measures γ such that G(πX)(γ) = p and G(πY )(γ) = q. Couplings corresponds to elements
γ such that the following diagram commutes in K`:

1
γ

_�� q

d��

p

Z	�

X × Y
πY

δ
� �'

πX

δ

7w�
X Y

(3)

On morphisms g : Y _ Y ′, Γ(X, g) is defined as the map Γ(X, g) = ⊗ ◦G (δ × g) ◦G − such
that Γ(X, g)(γ) is the composite

1 γ // X × Y
⊗◦(δX×g) // X × Y ′

CONCUR 2016



1:8 Bayesian Inversion by ω-Complete Cone Duality

where ⊗ : GX × GY ′ → G(X × Y ′) is the product measure bifunctor and δX is the Giry unit
at X. By unravelling the definitions we get

Γ(X, g)(γ)(BX ×BY ′) =
∫

(x,y)∈X×Y
δX(x)(BX) · g(y)(BY ′) dγ

The proof that Γ(X,−) commutes with composition follows from the disintegration theorem.
We now define a transformation αX : Hom(X,−)→ Γ(X,−) defined at Y by

αXY (f)(BX ×BY ) =
∫
x∈BX

f(x)(BY ) dp

I Proposition 7. αX is natural

Proof. Let g : (Y, q)→ (Y ′, q′), we calculate

Γ(X, g)(αXY (f))(BX ×BY ′)
(1)=
∫

(x,y)∈X×Y
δX(x)(BX)g(y)(BY ′) dαXY (f)

(2)=
∫
x∈X

δX(x)(BX)
(∫

y∈Y
g(y)(BY ′)df(x)

)
dp

=
∫
x∈BX

(∫
y∈Y

g(y)(BY ′) df(x)
)
dp

(3)= αXY ′(Hom(X, g)(f))(BX ×BY ′)

where (1) follows from the definition of Γ, (2) follows from the fact that αXY constructs a
coupling in an explicitly disintegrated form, and (3) follows from the definition of αX and
Hom(X,−). J

Our second natural transformation goes in the opposite direction and is given by the
disintegration along the first projection (which exists by Theorem 6), i.e. we define DX :
Γ(X,−)→ Hom(X,−) at Y in Krn by:

DX
Y (γ) = G(πY ) ◦ π†X , such that γ(BX ×BY ) =

∫
BX

DX
Y (γ)(x)(BY )dp(dx)

I Proposition 8. DX is natural.

Proof. Let g : (Y, q) → (Y ′, q′) and γ ∈ Γ(X,Y ). For notational clarity, for any h ∈
Hom(X,Y ) let us write h̃ = Hom(X,−)(g)(h), and let us define f , DX

Y (γ). We now
calculate:

Γ(X, g)(γ)(BX ×BY ′)
(1)=
∫

(x,y)∈X×Y
δX(x)(BX)g(y)(BY ′) dγ

(2)=
∫
x∈X

δX(x)(BX)
(∫

y∈Y
g(y)(BY ′) df(x)

)
dp

=
∫
x∈BX

(∫
y∈Y

g(y)(BY ′) df(x)
)
dp

(3)=
∫
x∈BX

f̃(x)(BY ′) dp

where (1) follows by definition of Γ(X,−), (2) is by definition of f and the Disintegration
Theorem 6, and (3) by definition of Hom(X,−). It follows immediately that f̃ factors through
the disintegration of Γ(X, g)(γ) along the first projection, i.e. that

DX
Y ′(Γ(X, g)(γ)) = Hom(X, g)(DX

Y (γ))

J
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I Theorem 9 (Bayesian Inversion Theorem). There exists a bijection:

−† : HomKrn((X, p), (Y, q))→ HomKrn((Y, q), (X, p))

Proof. It is immediate from the definitions above that αXY : Hom(X,Y ) → Γ(X,Y ) and
DX
Y : Γ(X,Y )→ Hom(X,Y ) are inverse of one another, and thus bijective. Moreover, it is

also clear that the permutation map G(π2 × π1) : Γ(X,Y )→ Γ(Y,X) being its own inverse
is a bijection. It follows that Hom(X,Y ) ' Γ(X,Y ) ' Γ(Y,X) ' Hom(Y,X). And we can
set −† = DY

X ◦ G(π2 × π1) ◦ αXY . J

4 ω-complete normed cones

We recall some facts pertaining to the categories of ω-complete normed cones introduced
in [14]. The main object of this section is to give a functional analytic account of kernels
as operators on ω-complete normed cones, in the style of [3]. We improve on the latter by
presenting the transformation from kernels to operators functorially. In Section 5, we will use
the machinery developed here to interpret Bayesian inversion in this domain-theoretic setting.
We first recall some general definitions about ω-complete normed cones and the associated
category ωCC. We then concentrate on the duality existing between the subcategories of
cones of integrable and bounded functions. Proofs not provided here can be found in Ref. [3].

4.1 Basic definitions
Cones are axiomatisations of the positive elements of (real) vector spaces.

I Definition 10 (Cones). A cone (V,+, ·, 0) is a set V together with an associative and
commutative operation + with unit 0 and with a multiplication by real positive scalars ·
distributive over +. We have two more axioms: the cancellation law ∀u, v, w ∈ V, v + u =
w + u⇒ v = w and the strictness ∀v, w ∈ V, v + w = 0⇒ v = w = 0.

Any cone C admits a natural partial order structure ≤ defined as follows: u ≤ v if and
only if there exists w such that v = u+w. We will consider normed cones which are complete
with respect to increasing sequences (chains) in this order which are of bounded norm.

I Definition 11 (Normed cones, ω-complete). A normed cone C is a cone together with a
function ‖−‖ : C → R+ satisfying (i) ∀v ∈ C, ‖v‖ = 0⇔ v = 0; (ii) ∀r ∈ R+, v ∈ C, ‖r · v‖ =
r ‖v‖; (iii) ∀u, v ∈ C, ‖u+ v‖ ≤ ‖u‖+ ‖v‖; (iv) u ≤ v ⇒ ‖u‖ ≤ ‖v‖. A cone is ω-complete if
(i) for all chain (un)n∈N such that {‖un‖}n∈N is bounded, there exists a least upper bound
(lub)

∨
n un and (ii) ‖

∨
n un‖ =

∨
n ‖un‖.

Note that the norm ‖−‖ is ω-continuous. All the cones we are going to consider in the
following are ω-complete and normed. ω-continuous linear maps form the natural notion of
morphism between such structures. Note that linearity implies monotonicity in the natural
order.

I Definition 12 (ω-continuous linear maps). For C,D ω-complete normed cones, an ω-
continuous linear map f : C → D is a linear map such that for every chain (un)n∈N for which∨
n un exists,

∨
n f(un) exists and is equal to f(

∨
n un).

The dual of an ω-complete normed cone is defined in the usual way. We will admit the
following result:

CONCUR 2016



1:10 Bayesian Inversion by ω-Complete Cone Duality

I Proposition 13 (ω-complete dual). If C is an ω-complete normed cone, the cone of ω-
continuous linear maps {φ : C → R+} with the norm ‖φ‖ = infv {c ≥ 0 | |φ(v)| ≤ c ‖v‖} is
ω-complete.

ω-complete normed cones and ω-continuous linear maps form a category denoted by
ωCC. The dual operation gives rise to a contravariant endofunctor −∗ : ωCC→ ωCC. If
f : C → D is an ωCC arrow, f∗ : D∗ → C∗ is defined by f∗(φ) = φ ◦ f . For all φ ∈ D∗ and
x ∈ C, one has

‖f∗(φ)(x)‖ = ‖(φ ◦ f)(x)‖
≤ ‖φ‖ ‖f(x)‖ (φ ω-continuous)
≤ ‖φ‖ ‖f‖ ‖x‖ (f ω-continuous)

Therefore, ‖f∗‖ ≤ ‖f‖. We now introduce the cones we are going to work with in the
remainder of the paper.

4.2 Cones of measures and of measurable functions
Let us fix a measure space (X,Σ, p) with p finite. Much of the constructions in the rest of the
paper rely on dualities between the cones of measurable functions L+

1 (X,Σ, p), L+
∞(X,Σ, p)

and cones of measuresM�p(X,Σ),Mp
UB(X,Σ). Let us introduce these cones in more detail.

Cones of measurable functions

Two positive measurable maps f, f ′ : (X,Σ, p) → R+ are said to be p-equivalent if
p {x | f(x) 6= f ′(x)} = 0. Such as map f : (X,Σ)→ R is p-integrable if

∫
X
f dp <∞. Clearly,

being p-integrable is preserved by p-equivalence. The elements of the cone L+
1 (X,Σ, p) are

p-equivalence classes of real-valued integrable maps. L+
1 (X,Σ, p) is normed by ‖f‖1 =

∫
X
f dp.

The dominated convergence theorem implies that L+
1 (X,Σ, p) is an ω-complete normed cone.

A positive measurable map f is p-essentially bounded if there exists C ≥ 0 such that
p {x | f(x) > C} = 0. The elements of the cone L+

∞(X,Σ, p) are p-equivalence classes of real-
valued essentially bounded maps. The norm is given by ‖f‖∞ = inf {C ≥ 0 | f(x) ≤ C p-a.s.}.

Cones of measures

Closely related to the cones above are cones of absolutely continuous measuresM�p(X,Σ)
and bounded measuresMp

UB(X,Σ).M�p(X,Σ) is the cone of finite measures which are
absolutely continuous with respect to p, with norm given by ‖q‖� = q(X).Mp

UB(X,Σ) is
the cone of finite measures which are uniformly bounded by a finite multiple of p, with norm
given by ‖q‖UB = inf {c ≥ 0 | q ≤ cp}. The ω-completeness of these cones will appear as a
byproduct of the duality to be proved in the next.

4.3 Duality between L1 and L∞ cones
In the following, we will denote by L+

1 the full subcategory of ωCC having as objects cones
L+

1 (X,Σ, p) and by L+
∞ the full subcategory of ωCC having as objects cones L+

∞(X,Σ, p). As
indicated before, the construction of the duality goes through cones of absolutely continuous
measuresM�p(X,Σ) and bounded measuresMp

UB(X,Σ).

I Theorem 14. M�p(X,Σ) is isometrically isomorphic to L+
1 (X,Σ, p) andMp

UB(X,Σ) is
isometrically isomorphic to L+

∞(X,Σ, p).
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Proof. The Radon-Nikodym derivative induces a map q ∈ M�p(X,Σ) 7→ dq
dp which is

linear, injective and norm-preserving, as is its inverse map u ∈ L+
1 (X,Σ, p) 7→ u · p. There-

fore, M�p(X,Σ) is isometrically isomorphic to L+
1 (X,Σ, p). The isomorphism between

Mp
UB(X,Σ) and L+

∞(X,Σ, p) is proved similarly. We only show that d−
dp is norm preserving.

For q ∈Mp
UB(X,Σ), we have

∥∥∥ dqdp∥∥∥∞ = inf
{
C ≥ 0 | dqdp ≤ C p-a.s.

}
. If dqdp ≤ C then q ≤ C ·p.

By definition, the least such C is ‖q‖UB . J

As a consequence, both cones of finite measures are ω-complete. We are now in position
to state the following variant of the Riesz representation theorem for ω-complete cones:

I Theorem 15. We have the following isometric isomorphisms: L+,∗
1 (X,Σ, p) ∼=Mp

UB(X,Σ)
and L+,∗

∞ (X,Σ, p) ∼=M�p(X,Σ).

We will only prove the first isomorphism, the second one being proved similarly.

Proof. We construct an isometric isomorphism ι : L+,∗
1 (X,Σ, p)→Mp

UB(X,Σ). Let us set
ι(φ) = B 7→ φ(1B). It is clearly linear. Let us show that ι(φ) is countably additive. For
(Bn)n∈N a countable family of pairwise disjoint subsets, we have ι(φ)(∪n∈NBn) = φ(1∪n∈NBn

).
Clearly, the family λk =

∑k
i=1 1Bn

is increasing, measurable and is bounded by 1X . Therefore∨
λk =

∑
n 1Bn exists and by ω-continuity of φ, φ(1∪n∈NBn) =

∑
n φ(1Bn). ι is injective: let

v ∈ L+
1 (X,Σ, p) s.t. φ(v) 6= φ′(v). v, being integrable can be approximated by an increasing

sequence of simple functions. We deduce there must exists B such that φ(1B) 6= φ′(1B).
Let us prove that ι(φ) ∈ Mp

UB(X,Σ). A monotone convergence argument shows that for
all v ∈ L+

1 (X,Σ, p), we have the identity φ(v) =
∫
X
v dι(φ) <∞. We also have p(B) = 0⇒

ι(φ)(B) = 0 hence ι(φ)� p. We deduce from the two previous facts that dι(φ)
dp ∈ L

+
∞(X,Σ, q),

which by Theorem 14 implies that ι(φ) ∈Mp
UB(X,Σ). It remains to prove that ι is surjective:

for q ∈Mp
UB(X,Σ), we have trivially for φq = v 7→

∫
X
v dq that ι(φq) = q. J

An immediate consequence is that L+,∗
1 (X,Σ, p) ∼= L+

∞(X,Σ, p) and reciprocally. This is
notoriously false in the case of general Banach spaces. What makes everything work here is
that we restrict to ω-continuous linear functionals.

Theorem 15 gives rise to a pairing between the spaces of integrable and bounded functions.

I Definition 16 (Pairing). The pairing of L+
∞(X,Σ, p) and L+

1 (X,Σ, p) is a bilinear map
〈·, ·〉X : L+

∞(X,Σ, p)× L+
1 (X,Σ, p)→ R given by 〈u, v〉X =

∫
X
u · v dp. It is continuous and

ω-continuous in both arguments.

This pairing gives rise to a notion of adjoint:

I Proposition 17 (Adjoints). The duality functor −∗ : ωCC → ωCC restricts to a
contravariant functor −† : L+

1 → L+
∞ such that for all L+

1 arrow A : L+
1 (X,Σ, p) →

L+
1 (Y,Λ, q), A† : L+

∞(Y,Λ, q) → L+
∞(X,Σ, p) is the unique adjoint arrow such that for all

u ∈ L+
1 (X,Σ, p), v ∈ L+

∞(Y,Λ, q), 〈v,Au〉Y = 〈A†v, u〉X .
Conversely, for all A : L+

∞(Y,Λ, q) → L+
∞(X,Σ, p) there is a unique adjoint †A :

L+
1 (X,Σ, p)→ L+

1 (Y,Λ, q) such that the equation above is verified.

We will not prove Proposition 17 here but simply sketch how adjoints are constructed.
Given A : L+

1 (X,Σ, p)→ L+
1 (Y,Λ, q) and using that L+

∞(X,Σ, p) ∼= L+,∗
1 (X,Σ, p) we set:

A† = v ∈ L+
∞(Y,Λ, q) 7→

(
u ∈ L+

1 (X,Σ, p) 7→ 〈v,Au〉
)

(4)

Note that A†(v) is written in dual form. The adjoint of †A : L+
∞(Y,Λ, q)→ L+

∞(X,Σ, p) is
defined similarly. Finally, observe that setting Y to be the one point space in Proposition 17
implies Theorem 15.
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4.4 Operator interpretations of kernels
In [3], it is shown that kernels that respect a condition of “non-singularity” correspond
to particular linear operators between cones. This view on kernels allows to leverage the
language of functional analysis to approximate and reason on these objects. We improve on
this by showing that the functional interpretation of a non-singular kernel corresponds to
functors defined on Krn and valued in L+

1 and L+
∞. These new developments will be put to

use in Section 5 where we will show that Bayesian inversion (Theorem 9) maps through this
functorial correspondence to the adjunction of Proposition 17.

We introduce contravariant functors T∞ : Krn → L+
∞ and T1 : Krn → L+

1 mapping
kernels into norm 1 ω-continuous operators. T∞ is defined on objects (X, p) by T∞(X, p) =
L+
∞(X, p), while T1(X, p) = L+

1 (X, p). For f : (X, p) _ (Y, q) a Krn arrow, we set

T∞(f) = v ∈ L+
∞(Y, q) 7→

(
x 7→

∫
Y

v df(x)
)
. (5)

Note that this is well-defined, as f(x) is p-a.s. absolutely continuous with respect to q

(Lemma 3). T1(f) is defined similarly but acts on L+
1 (Y, q).

I Proposition 18. T∞ and T1 are functors T∞ : Krn→ L+
∞ and T1 : Krn→ L+

1 ranging
in operators of norm 1.

Proof. We first check that T∞ and T1 are well-typed. Let us fix f : (X, p) _ (Y, q) in Krn.
T∞(f) and T1(f) as defined above are clearly linear. We start with T1. We have for all
v ∈ L+

1 (Y, q) that

‖T1(f)(v)‖1 =
∫
X

(∫
Y

v df(x)
)
dp =

∫
Y

v d(µY ◦ G(f))(p) =
∫
Y

v dq = ‖v‖1

Therefore ‖T1(f)‖ = 1. Prop. 5.2 of [3] ensures that T1(f) is ω-continuous. Let us treat the
case of T∞. For all v ∈ L+

∞(Y, q), the inequality
∫
Y
v df(x) ≤ ‖v‖∞ is verified. This implies

‖T∞(f)(v)‖∞ = inf
{
C ≥ 0 |

∫
Y

v df(x) ≤ C p-a.s.
}
≤ ‖v‖∞

therefore ‖T∞(f)‖ ≤ 1. The upper bound is reached for v = 1Y , therefore ‖T∞(f)‖ = 1.
ω-continuity of T∞(f) follows from the dominated convergence theorem. In the following,
both T1 and T∞ are denoted by T. If we denote by id′ = δ◦id an identity in K`, T(id′)(v) = v.
Let f : (X, p) _ (Y, q), g : (Y, q) _ (Z, r) be two arrows in Krn. By definition of T and
using naturality of µ, we get:

T(g ◦ f)(v)(x) =
∫
Z

v d(g ◦M f(x)) =
∫
y∈Y

(∫
Z

v dg(y)
)
df(x) = (T(f)T(g))(v)(x)

Therefore, T is a well-defined functor. J

We will call operators in the range of T∞ and T1 abstract Markov kernels. Postcomposing
T∞ with †− (or T1 with −†) yields the covariant (“forward”) interpretation of Krn arrows,
called Markov operators. The restriction of T∞ to Krnδ is familiar, as it reduces in this case to
the precomposition functor P∞ : Krnδ → L+

∞ acting on Krnδ (hence deterministic) arrows
f : (X, p) _δ (Y, q) by P∞(f) = v 7→ v ◦f . Postcomposing P∞ with †− yields the conditional
expectation functor E1 : L+

1 → L+
1 . Similarly, functors P1 and E∞ can are constructed

by considering T1 instead of T∞. We invite the reader to compare our developments with
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Section 3 and 4 of [3] for more details. We sum up the developments so far in the following
(non-commuting) diagram:

L+
∞

†−

��

Krnδ

E∞=−†◦T1
//

E1=†−◦T∞ //

� � // Krn

T∞
<<

T1 ""
L+

1

−†

GG
(6)

We conclude this section by indicating that the duality between L+
1 and L+

∞ generalises to
arbitrary dual pairs L+

p ,L+
q [2]. We conjecture that the functors T1,T∞ have counterparts in

this more general setting. In the next section, we give a functional interpretation of Bayesian
inversion through these functors.

5 Bayesian inversion as duality

As shown in Section 3, Bayesian inversion is a symmetrised disintegration, which by Equation 2
corresponds to a measurable family of conditional probabilities. As these are a fundamental
tool of the modern probabilistic toolkit, a natural question is to find a corresponding process
in the functional analytic setting of norm-1 operators between the ω-complete cones L+

1 and
L+
∞. It is well-known that conditional expectation can be framed as a projection operator

(e.g. in the L2 case, see [10]). The result we are about to prove provides a fresh perspective
on this classical problem: the Bayesian inverse of a kernel corresponds to the adjoint of its
functional form.

I Theorem 19 (Inversion as duality). Let X,Y be standard Borel spaces and f : (X, p) _ (Y, q)
a Krn arrow. We have:

†T∞(f) = T1(f†)

I.e. T∞(f) is adjoint to T1(f†).

Proof. Let us recall the types of the objects:

T∞(f) : L+
∞(Y, q)→ L+

∞(X, p)
†T∞(f) : L+

1 (X, p)→ L+
1 (Y, q)

It is enough to prove that for all u ∈ L+
1 (Y, q), for all v ∈ L+

∞(X, p),

〈v,T∞(f)(u)〉X = 〈T1(f†)(v), u〉Y

Unfolding, we must prove:∫
X
vT∞(f)(u)dp =

∫
Y

T1(f†)(v)udq
⇔

∫
x∈X v(x)

(∫
Y
udf(x)

)
dp =

∫
y∈Y

(∫
X
v df†(y)

)
u(y)dq

⇔
∫
x∈X

(∫
y∈Y v(x)u(y)df(x)

)
dp =

∫
y∈Y

(∫
x∈X v(x)u(y)df†(y)

)
dq

Let γ ∈ Γ(p, q) be the coupling corresponding to f : (X, p) _ (Y, q). Continuing the string of
equivalences above, we must prove:∫

x∈X

(∫
y∈Y v(x)u(y)df(x)

)
dG(πX)(γ) =

∫
y∈Y

(∫
x∈X v(x)u(y)df†(y)

)
dG(πY )(γ)
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Now, recall that by Equation 1, the disintegration theorem gives us for all integrable
e : (X × Y, γ)→ R that∫

X×Y edγ =
∫
x∈X

(∫
π−1

X
(x) e df(x)

)
dG(πX)(γ) (disintegrating γ along πX)

1=
∫
x∈X

(∫
Y
e(x,_) df(x)

)
dG(πX)(γ) (disintegrations live on the fiber)

=
∫
y∈Y

(∫
π−1

Y
(y) e df

†(y)
)
dG(πY )(γ) (disintegrating γ along πY )

2=
∫
y∈Y

(∫
X
e(_, y) df†(y)

)
dG(πY )(γ) (disintegrations live on the fiber)

Taking e(x, y) = v(x)u(y) and using equations marked 1 and 2 above concludes the proof. J

Some comments are in order. Note that the disintegration and Bayesian inversion theorems
rely on some strong assumptions on the underlying spaces–here, we assume the spaces to be
standard Borel; Culbertson & Sturtz [4] work in the setting of perfect measure spaces and
equiperfect kernels. However, the cone duality works for any measure space! We conjecture
that these regularity conditions are necessary if one wishes to extract a measurable kernel
from a Markov operator or dually from an abstract Markov kernel.

6 Conclusion

We have established that the functional representation of measurable kernels as operators
acting on ω-complete cones presented in [3] is functorial. Two variants of the functor exist,
mapping kernels to operators acting either on bounded functions or on integrable ones. The
category of ‘typed’ kernels on which these functors are defined allows to state elegantly
the famous disintegration theorem and its generalisation, Bayesian inversion. What’s more,
we uncovered the categorical underpinnings of Bayesian inversion as particular natural
transformations mapping kernels to couplings and reciprocally. Finally, we have shown that
Bayesian inversion amounts in the functional world to adjunction.

Several further developments suggest themselves. First of all, It remains to be seen whether
our construction generalises from the duality L+

1 /L
+
∞ to arbitrary pair of dual cones L+

p /L
+
q

(e.g. the pair p = q = 2 which allows one to talk about reversible kernels), and can prove
a stronger statement, namely Tp(f†) = Tq(f)† for all conjugate exponents p, q. Another
line of thought is to connect these results with some of the authors recent’s work [7, 5]. In
particular, instantiating the kernel-theoretic framework with the Dirichlet process [7], might
provide insight into the operator-theoretic counterpart of so-called nonparametric methods in
Bayesian learning. On a different note, this process has the type of a natural and continuous
kernel and admits a convenient finitary characterisation. We are eager to study how these
properties map through the operator interpretation.
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