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Given a compact complex n-fold X satisfying the ∂ ∂-lemma and supposed to have a trivial canonical bundle K X and to admit a balanced (=semi-Kähler) Hermitian metric ω, we introduce the concept of deformations of X that are co-polarised by the balanced class [ω n-1 ] ∈ H n-1, n-1 (X, C) ⊂ H 2n-2 (X, C) and show that the resulting theory of balanced co-polarised deformations is a natural extension of the classical theory of Kähler polarised deformations in the context of Calabi-Yau or even holomorphic symplectic compact complex manifolds. The concept of Weil-Petersson metric still makes sense in this strictly more general, possibly non-Kähler context, while the Local Torelli Theorem still holds.

Hodge decomposition and the Hodge symmetry on X, i.e. it defines canonical isomorphisms (the latter one by conjugation) :

) and H q, p (X, C) H p, q (X, C), relating the De Rham cohomology groups H k DR (X, C) (k = 0, 1, . . . , 2n) to the Dolbeault cohomology groups H p, q (X, C) (p, q = 0, 1, . . . , n). These manifolds, sometimes referred to as cohomologically Kähler, will play a key role in this work and thus deserve a name in their own right.

Definition 1.1 A compact complex manifold X will be said to be a ∂ ∂manifold if the ∂ ∂-lemma holds on X.

If, furthermore, the canonical bundle K X of X is trivial, X will be called a Calabi-Yau ∂ ∂-manifold.

Introduction

Let X be a compact complex manifold (dim C X = n). Recall that a Hermitian metric ω on X (identified throughout with the corresponding C ∞ positivedefinite (1, 1)-form ω) is said to be balanced (see [START_REF]Gauduchon -Fibrés hermitiens à endomorphisme de Ricci non négatif -Bull[END_REF] for the actual notion called semi-Kähler there, [START_REF]Michelsohn -On the Existence of Special Metrics in Complex Geometry[END_REF] for the actual term) if d(ω n-1 ) = 0, while X is said to be a balanced manifold if it carries such a metric. In dimension n ≥ 3, the balanced condition on X, besides being weaker than the Kähler one, is even weaker than the Fujiki class C condition thanks to a theorem of Alessandrini and Bassanelli [START_REF] Alessandrini | Bassanelli -Metric Properties of Manifolds Bimeromorphic to Compact Kähler Spaces[END_REF]. (Recall that a compact complex manifold X is said to be of class C if it is bimeromorphically equivalent to a compact Kähler manifold, i.e. if there exists a holomorphic bimeromorphic map µ : X → X, called modification, from a compact Kähler manifold X.)

On the other hand, all class C compact complex manifolds are known to satisfy the ∂ ∂-lemma (cf. [START_REF] Deligne | Sullivan -Real Homotopy Theory of Kähler Manifolds -Invent[END_REF]) in the following sense :

for every pure-type d-closed form on X, the properties of d-exactness, ∂exactness, ∂-exactness and ∂ ∂-exactness are equivalent.

There exist compact complex manifolds satisfying the ∂ ∂-lemma that are not of class C (see e.g. Observation 2.1), while the ∂ ∂-lemma implies the While there are plenty of examples of compact balanced manifolds that do not satisfy the ∂ ∂-lemma (e.g. the Iwasawa manifold), the answer to the question of whether non-balanced ∂ ∂-manifolds exist does not seem to be known and constitutes in our opinion a problem worth investigating. Part of the difficulty stems from the fact that neither twistor spaces (which are always balanced by [START_REF] Gauduchon | Structures de Weyl et théorèmes d'annulation sur une variété conforme autoduale[END_REF]), nor nilmanifolds (which are never ∂ ∂ unless they are Kähler), nor any other familiar class of compact complex non-Kähler manifolds (e.g. the Calabi-Eckmann manifolds are never either balanced or ∂ ∂) can produce an example.

Our main object of study in this paper will be the class of balanced ∂ ∂manifolds. The principal reason behind our interest in them stems from their remarkable stability properties under both modifications and small deformations. Indeed, if µ : X → X is a modification of compact complex manifolds, Corollary 5.7 in [START_REF] Alessandrini | Bassanelli -The class of Compact Balanced Manifolds Is Invariant under Modifications -Complex Analysis and Geometry[END_REF] (see also [START_REF] Alessandrini | Bassanelli -Modifications of Compact Balanced Manifolds -C[END_REF]) states that X is balanced if and only if X is balanced, while by [START_REF] Deligne | Sullivan -Real Homotopy Theory of Kähler Manifolds -Invent[END_REF] we know that X is a ∂ ∂-manifold whenever X is one. On the other hand, although the balanced property of X is not open under holomorphic deformations by another result of Alessandrini and Bassanelli (cf. [START_REF] Alessandrini | Bassanelli -Small Deformations of a Class of Compact Non-Kähler Manifolds[END_REF]), the ∂ ∂-property and the simultaneous occurence of the balanced and ∂ ∂-properties are both deformation open by two results of Wu (cf. [START_REF] Wu | On the Geometry of Superstrings with Torsion -thesis[END_REF], a partial survey of which can be found in [START_REF] Popovici | Deformation Openness and Closedness of Various Classes of Compact Complex Manifolds[END_REF]4.3]). Specifically, if (X t ) t∈∆ is a holomorphic family of compact complex manifolds, C.-C. Wu proved in [START_REF] Wu | On the Geometry of Superstrings with Torsion -thesis[END_REF] the following two theorems : (i) if X 0 is a ∂ ∂-manifold, then X t is a ∂ ∂-manifold for all t ∈ ∆ sufficiently close to 0 ∈ ∆;

(ii) if X 0 is a balanced ∂ ∂-manifold, then X t is a balanced ∂ ∂-manifold for all t ∈ ∆ sufficiently close to 0 ∈ ∆. This paper will hopefully provide further evidence to substantiate the view that non-Kähler, balanced Calabi-Yau ∂ ∂-manifolds form a class that is well worth studying. We point out examples of such manifolds in §.2.1.

Our first observation (cf. section 3) will be that the Kähler assumption can be weakened to the ∂ ∂ assumption in the Bogomolov-Tian-Todorov theorem. This fact, hinted at in the introduction to [START_REF] Tian | Smoothness of the Universal Deformation Space of Compact Calabi-Yau Manifolds and Its Petersson-Weil Metric -Mathematical Aspects of String Theory[END_REF], is probably known, but we take this opportunity to point out how the ∂ ∂-lemma can be solely relied upon in the proofs given in [START_REF] Tian | Smoothness of the Universal Deformation Space of Compact Calabi-Yau Manifolds and Its Petersson-Weil Metric -Mathematical Aspects of String Theory[END_REF] and [START_REF] Todorov | The Weil-Petersson Geometry of the Moduli Space of SU (n ≥ 3) (Calabi-Yau) Manifolds I[END_REF].

Theorem 1.2 (Bogomolov-Tian-Todorov for Calabi-Yau ∂ ∂-manifolds) Let X be a compact complex manifold satisfying the ∂ ∂-lemma and whose canonical bundle K X is trivial. Then the Kuranishi family of X is unobstructed.

Here, as usual, unobstructedness means that the base space of the Kuranishi family is isomorphic to an open subset of H 0,1 (X, T 1, 0 X).

Given a compact balanced Calabi-Yau ∂ ∂-manifold X of complex dimension n, by a balanced class [ω n-1 ] ∈ H n-1, n-1 (X, C) ⊂ H 2n-2 (X, C) we shall mean the Dolbeault cohomology class of type (n -1, n -1) (or the De Rham 1 cohomology class of degree 2n -2 that is the image of the former under the above canonical inclusion which holds thanks to the ∂ ∂ assumption -see e.g. Lemma 3.1) of the (n -1) st power of a balanced metric ω on X. If ∆ ⊂ H 0, 1 (X, T 1, 0 X) denotes the open subset that is the base space of the Kuranishi family (X t ) t∈∆ of X (with X 0 = X), we define in section 4 the notion of local deformations X t of X that are co-polarised by the balanced class [ω n-1 ] by requiring that the De Rham cohomology class {ω n-1 } ∈ H 2n-2 (X, C) be of type (n -1, n -1) for the complex structure J t of X t . Since all nearby fibres X t are again ∂ ∂-manifolds by Wu's first theorem [START_REF] Wu | On the Geometry of Superstrings with Torsion -thesis[END_REF], the De Rham cohomology space H 2n-2 (X, C) (which is independent of the complex structure J t ) admits for all t ∈ ∆ a Hodge decomposition H 2n-2 (X, C) = H n, n-2 (X t , C) ⊕ H n-1, n-1 (X t , C) ⊕ H n-2, n (X t , C) (1) depending on the complex structure J t and satisfying the Hodge symmetry H n, n-2 (X t , C) H n-2, n (X t , C) (after possibly shrinking ∆ about 0). The original balanced class {ω n-1 } ∈ H 2n-2 (X, R) is said to be of type (n-1, n-1) for the complex structure J t of X t if its components of types (n, n -2) and (n -2, n) in the Hodge decomposition (1) vanish. The balanced class being real, this is equivalent to either of these components vanishing. The condition is still equivalent to the De Rham class {ω n-1 } ∈ H 2n-2 (X, C) being representable by a form of J t -pure type (n -1, n -1). We denote by ∆ [ω n-1 ] ⊂ ∆ and by π :

X [ω n-1 ] → ∆ [ω n-1 ]
the open subset of local deformations of X co-polarised by the balanced class [ω n-1 ], resp. the local universal family of co-polarised deformations of X. Since all sufficiently nearby fibres X t are again balanced ∂ ∂-manifolds by Wu's second theorem [START_REF] Wu | On the Geometry of Superstrings with Torsion -thesis[END_REF], Observation 7.2 shows that the co-polarising De Rham cohomology class {ω n-1 } ∈ H 2n-2 (X, C) can still be represented by a form ω n-1 t with ω t a J t -balanced metric for every t ∈ ∆ [ω n-1 ] (after possibly shrinking ∆ about 0).

We go on to show in §.4.2 that in the special case where X is Kähler and ω is a Kähler metric on X, the local deformations of X that are co-polarised by the balanced class [ω n-1 ] ∈ H n-1, n-1 (X, C) are precisely those that are polarised by the Kähler class [ω] ∈ H 1, 1 (X, C). Thus the theory of balanced co-polarisations is a natural extension to the balanced case of the classical theory of Kähler polarisations.

The tangent space to ∆ [ω n-1 ] at 0 is isomorphic under the Kodaira-Spencer map to a subspace H 0, 1 (X, T 1, 0 X) [ω n-1 ] ⊂ H 0, 1 (X, T 1, 0 X) which, in turn, is isomorphic under the canonical isomorphism defined by the Calabi-Yau property of X to a subspace H n-1, 1 prim (X, C) ⊂ H n-1, 1 (X, C) :

T 0 ∆ [ω n-1 ] H 0, 1 (X, T 1, 0 X) [ω n-1 ] H n-1, 1 prim (X, C).
It is well known that in the case of deformations polarised by a Kähler class [ω], H n-1, 1 prim (X, C) is the space of primitive (for the Kähler class [ω]) Dolbeault classes of type (n -1, 1). In the balanced case, since ω need not be closed, the standard definition of primitive (n -1, 1)-classes is no longer meaningful, but we use the analogy with the Kähler case to define H n-1, 1 prim (X, C) in an ad hoc way (cf. Definition 4.9).

In section 5, we give two applications of this construction. The Calabi-Yau condition being deformation open when the Hodge number h n, 0 (t) := dim C H n, 0 (X t , C) does not jump in a neighbourhood of t = 0 (and this is indeed the case here since we assume X 0 to be a ∂ ∂-manifold -the nonjumping actually holds more generally if we merely assume the Frölicher spectral sequence of X 0 to degenerate at E 1 ), K Xt is still trivial for all t ∈ ∆ sufficiently close to 0, so when the complex structure J t of X varies, we get complex lines

H n, 0 (X t , C) ⊂ H n (X, C), t ∈ ∆,
varying in a fixed complex vector space in a holomorphic way with t ∈ ∆.

(The above inclusion follows from the ∂ ∂-lemma holding on X t for all t close to 0 by Wu's first theorem [START_REF] Wu | On the Geometry of Superstrings with Torsion -thesis[END_REF].) We show (cf. Theorem 5.4) that the resulting (holomorphic) period map

∆ t P -→ H n, 0 (X t , C) ∈ PH n (X, C)
in which every complex line H n, 0 (X t , C) has been identified with a point in the complex projective space PH n (X, C) is locally an immersion. This means that the Local Torelli Theorem still holds in this context.

We also propose two variants ω

(1)

W P , ω (2) 
W P (cf. Definition 5.6) of a notion of Weil-Petersson metric on ∆ [ω n-1 ] associated with a C ∞ family of balanced metrics (ω t ) t∈∆ [ω n-1 ] on the fibres X t such that each ω n-1 t lies in the copolarising balanced class {ω n-1 } ∈ H 2n-2 (X, C). The metrics ω

(1) W P and ω

(2) W P coincide if Ric(ω t ) = 0 for all t ∈ ∆ [ω n-1 ] (cf. Observation 5.7). Although in the case of Kähler polarised deformations, the Weil-Petersson metric ω W P coincides with the pullback P ω F S of the Fubini-Study metric of PH n (X, C) under the period map (hence ω W P is Kähler) by Tian's Theorem 2 in [START_REF] Tian | Smoothness of the Universal Deformation Space of Compact Calabi-Yau Manifolds and Its Petersson-Weil Metric -Mathematical Aspects of String Theory[END_REF], this need not be the case in our context of balanced co-polarised deformations. However, we can compare these two metrics (cf. Theorem 5.10 and Corollary 5.11), show that ω

(2)

W P ≥ P ω F S > 0 on ∆ [ω n-1 ]
and make the difference ω

(2) W P -P ω F S explicit. The obstruction to the identity ω

(2) W P = P ω F S holding appears now clearly to be the possible non-existence of a form that is both primitive and d-closed in an arbitrary Dolbeault cohomology class of type (n -1, 1) which is assumed to be primitive in the ad hoc balanced sense of section 4 (cf. §.4.3).

It is natural to ask whether the Weil-Petersson metric ω

(2) W P is Kähler. We ignore the answer at this stage, although we cannot see why this should be the case for balanced, non-Kähler fibres X t .

Another natural question is whether there is a canonical choice of balanced metrics ω t on the fibres X t such that each ω n-1 t lies in the co-polarising balanced class {ω n-1 } ∈ H 2n-2 (X, C) and such that Ric(ω t ) = 0 for all t. This would induce a canonical (i.e. depending only on the co-polarising balanced class {ω n-1 }) Weil-Petersson metric ω W P on ∆ [ω n-1 ] . The answer would follow from the answer to another tantalising question: Question 1.3 2 Does there exist a balanced analogue of Yau's theorem on the Calabi conjecture? In other words, is it true that every balanced class contains the (n -1) st power of a balanced metric for which the volume form has been prescribed?

In the last section 6 we briefly discuss the case of co-polarised deformations of holomorphic symplectic manifolds.

Preliminaries

Examples of non-Kähler, balanced Calabi-Yau ∂ ∂manifolds

We now pause to point out a few examples in support of the theory that will be developed in the next sections.

(1) We have seen that all class C manifolds are both balanced and ∂ ∂. However, the implications are strict and even the simultaneous occurence of the balanced and ∂ ∂ conditions does not ensure the class C property. Proof. To show that the class C property of compact complex manifolds is not deformation open, [START_REF] Campana | The Class C Is Not Stable by Small Deformations -Math[END_REF] and [START_REF] Lebrun | Kähler Manifolds, and Bimeromorphic Geometry[END_REF] exhibit holomorphic families of twistor spaces (X t ) t∈∆ in which the central fibre X 0 is Moishezon (hence is also a ∂ ∂-manifold), while, for every t ∈ ∆ \ {0} sufficiently close to 0, the fibre X t has vanishing algebraic dimension (hence is non-Moishezon, hence is not of class C since, by another result of Campana [START_REF] Campana | On Twistor Spaces of the Class C[END_REF], the Moishezon and class C properties of twistor spaces are equivalent). However, all the fibres X t are balanced since, by a result of Gauduchon [START_REF] Gauduchon | Structures de Weyl et théorèmes d'annulation sur une variété conforme autoduale[END_REF], all twistor spaces are balanced. Moreover, when t is close to 0, X t is a ∂ ∂-manifold by Wu's openness theorem for deformations of ∂ ∂-manifolds. Thus any of the fibres X t with t = 0 but t close to 0 provides an example as stated.

Notice that the above examples are not Calabi-Yau manifolds since the restriction of the canonical bundle of any twistor space to any twistor line is isomorphic to O P 1 (-4), hence it cannot be trivial.

(2) On the other hand, examples of compact non-Kähler, class C, holomorphic symplectic manifolds were constructed by Yoshioka in [Yos01, section 4.4]. In particular, Yoshioka's manifolds are compact, non-Kähler, balanced Calabi-Yau ∂ ∂-manifolds. Thus they fall into the category of manifolds that will be investigated in this paper. While Yoshioka's manifolds are of class C, it is natural to wonder whether compact, non-class C, balanced Calabi-Yau ∂ ∂-manifolds (i.e. manifolds as in Observation 2.1 having, in addition, a trivial canonical bundle) exist. They actually do (see (3) and (4) below) and it is tempting to expect that such an example could be constructed by taking our cue from e.g. [START_REF] Fu | Balanced Metrics on Non-Kähler Calabi-Yau Threefolds[END_REF]: by starting off with a compact Kähler Calabi-Yau manifold X, contracting X under a crepant map to some (possibly non-Kähler, but necessarily class C) manifold Y and then slightly deforming Y to some (possibly non-class C, but necessarily balanced Calabi-Yau ∂ ∂) manifold Y t . The stability properties of balanced ∂ ∂-manifolds under both contractions and small deformations could thus be taken full advantage of if an explicit example obtained in this way (in which Y is smooth) could be written down.

(3) We will now point out a class of examples, recently constructed in the literature, of compact balanced Calabi-Yau ∂ ∂-manifolds that are not of class C. In [FOU14, Theorem 5.2] (see also [START_REF] Kasuya | Techniques of Computations of Dolbeault Cohomology of Solvmanifolds[END_REF]), a (compact) solvmanifold M of real dimension 6 and a holomorphic family of complex structures (J a ) a∈∆ on M are constructed (where ∆ := {a ∈ C ; |a| < 1}) such that X a := (M, J a ) is a balanced Calabi-Yau ∂ ∂-manifold for every a ∈ ∆ \ {0}. Furthermore, it can be easily checked that X a = (M, J a ) is not of class C for any a ∈ ∆ by either of the next two arguments.

(a) A direct calculation shows the existence of a C ∞ positive definite (1, 1)-form ω on X a such that i∂ ∂ω ≥ 0. Then, by Theorem 2.3 in [START_REF]Chiose -Obstructions to the Existence of Kähler Structures on Compact Complex Manifolds[END_REF], if X a were of class C, it would have to be Kähler. However, a direct calculation shows that no Kähler metrics exist on any X a . This argument has kindly been communicated to the author by L. Ugarte.

(b) Since the fundamental group is a bimeromorphic invariant of compact complex manifolds, if X a were of class C, its fundamental group would also occur as the fundamental group of a compact Kähler manifold. However, this is impossible as follows from [START_REF] Campana -Orbifolds | Special Varieties and Classification Theory -Ann[END_REF] (where it is proved that the Albanese morphism α X : X → Alb(X) of any Calabi-Yau class C manifold X is surjective) combined with [START_REF] Campana | Remarques sur les groupes de Kähler nilpotents[END_REF] (where π 1 (X) is studied when α X is surjective). This argument has kindly been communicated to the author by F. Campana.

(4) Let us finally mention that in the very recent preprint [START_REF] Friedman | The ∂ ∂-Lemma for General Clemens Manifolds[END_REF], a large class of compact, non-class C, balanced Calabi-Yau ∂ ∂-manifolds obtained via a construction of Clemens's (that was subsequently used by many authors, including Friedman himself and in [START_REF] Fu | Balanced Metrics on Non-Kähler Calabi-Yau Threefolds[END_REF]) was produced. The original compact 3-fold X with trivial K X is only assumed to be ∂ ∂ (so not necessarily Kähler), to have h 0, 1 = h 0, 2 = 0 (hence also h 1, 0 = h 2, 0 = 0 thanks to the Hodge symmetry that holds on any ∂ ∂-manifold) and to have disjoint smooth rational (-1, -1)-curves C 1 , . . . , C r whose classes [C i ] ∈ H 4 (X, C) satisfy a linear dependence relation but generate H 4 (X, C). Friedman shows in [START_REF] Friedman | The ∂ ∂-Lemma for General Clemens Manifolds[END_REF] that the singular compact 3-fold obtained from any such X by contracting the C i 's has smooth small deformations that are ∂ ∂-manifolds, but are not of class C. They are not even deformation equivalent to any class C manifold. Actually, all the small deformations lying in an open dense subset of the moduli space are shown in [START_REF] Friedman | The ∂ ∂-Lemma for General Clemens Manifolds[END_REF] to be ∂ ∂-manifolds, while all small smoothings are conjectured to be. They are balanced by [START_REF] Fu | Balanced Metrics on Non-Kähler Calabi-Yau Threefolds[END_REF].

The balanced Ricci-flat Bochner principle

We collect here some known facts that will come in handy later on.

Proposition 2.2 Let (X, ω) be a compact complex Hermitian manifold with dim C X = n. Let D = D + ∂ be the Chern connection of K X equipped with the metric induced by ω and let | • | ω (resp. || • ||) be the pointwise norm (resp. the L 2 -norm) of K X -valued forms w.r.t. this metric.

If ω is balanced and Ric (ω

) = 0, every u ∈ C ∞ n, 0 (X, C) C ∞ (X, K X ) satisfies || ∂u|| 2 = ||D u|| 2 .
In particular, every holomorphic n-form u on X (i.e. u ∈ H 0 (X, K X )) is parallel (i.e. Du = 0) and satisfies

|u| 2 ω = C (hence also i n 2 u ∧ ū = C ω n ) on X (2)
for some constant C ≥ 0.

It turns out that the balanced assumption is unnecessary in the last statement of Proposition 2.2. Indeed, every holomorphic section of a flat line bundle is parallel.

Observation 2.3 Let (L, h) → X be a Hermitian holomorphic line bundle over a compact complex manifold such that the curvature form iΘ h (L) vanishes identically on X. Then any global holomorphic section σ ∈ H 0 (X, L) satisfies Dσ = 0, where D is the Chern connection of (L, h).

Both the statement and the proof of this observation have been kindly pointed out to the author by J.-P. Demailly. These facts are actually well known, cf. e.g. [START_REF] Kobayashi | On Holomorphic Sections of Certain Hermitian Vector Bundles -Math[END_REF] and [START_REF]Gauduchon -Fibrés hermitiens à endomorphisme de Ricci non négatif -Bull[END_REF], so the proofs can be omitted.

3 The Bogomolov-Tian-Todorov theorem for Calabi-Yau ∂ ∂-manifolds

In this section we prove Theorem 1.2 by adapting to the ∂ ∂ context the proofs given in [START_REF] Tian | Smoothness of the Universal Deformation Space of Compact Calabi-Yau Manifolds and Its Petersson-Weil Metric -Mathematical Aspects of String Theory[END_REF] and [START_REF] Todorov | The Weil-Petersson Geometry of the Moduli Space of SU (n ≥ 3) (Calabi-Yau) Manifolds I[END_REF] for the Kähler context. Two preliminary facts are needed. The first is a simple but very useful consequence of the ∂ ∂-lemma (also observed in [START_REF] Deligne | Sullivan -Real Homotopy Theory of Kähler Manifolds -Invent[END_REF]) that will play a key role in this paper.

Lemma 3.1 Let X be a compact ∂ ∂-manifold. Then any Dolbeault cohomology class of any type (p, q) on X can be represented by a d-closed form.

In particular, this lemma defines a canonical injection H p, q (X, C) ⊂ H p+q (X, C) (for any p, q) by mapping any Dolbeault class [u] ∈ H p, q (X, C) to the De Rham class {u} ∈ H p+q (X, C) of any of its d-closed representatives u. Fresh applications of the ∂ ∂-lemma easily show that this map is independent of the choice of the d-closed representative of the Dolbeault class and that it is injective.

Proof of Lemma 3.1. Let α be an arbitrary ∂-closed (p, q)-form on X. It represents a Dolbeault cohomology class [α] ∈ H p, q (X, C). We will show that there exists a d-closed (p, q)-form β on X that is Dolbeault cohomologous to α. In other words, we are looking for a (p, q -1)-form v on X such that

β := α + ∂v is d-closed. Since α is ∂-closed, the condition d(α + ∂v) = 0 amounts to ∂ ∂v = -∂α.
(3) Now, ∂α is both ∂-closed (even ∂-exact) and ∂-closed (since α is ∂-closed and ∂ anti-commutes with ∂), hence ∂α is d-closed. Being a ∂-exact puretype form that is d-closed, ∂α must be ∂ ∂-exact by the ∂ ∂-lemma. Hence a (p, q -1)-form v satisfying (3) exists.

The second preliminary fact is peculiar to manifolds with a trivial canonical bundle. Fix an arbitrary Hermitian metric ω on a given compact complex manifold X (n = dim C X). Thus ω is a Hermitian metric on the holomorphic vector bundle T 1, 0 X of vector fields of type (1, 0) of X. Let D denote the corresponding Chern connection of (T 1, 0 X, ω) and let D = D + D be its splitting into components of type (1, 0) and respectively (0, 1), where D = ∂ is the ∂ operator defining the complex structure of X. We denote, as usual, by D = ∂ the formal adjoint of D = ∂ w.r.t. ω and by

∆ = ∂ ∂ + ∂ ∂ : C ∞ p, q (X, T 1, 0 X) → C ∞ p, q ( 
X, T 1, 0 X) the corresponding anti-holomorphic Laplacian on T 1, 0 X-valued (p, q)-forms. Since ∆ is elliptic and ∂2 = 0, the standard three-space orthogonal decomposition holds :

C ∞ 0, 1 (X, T 1, 0 X) = ker ∆ ⊕ Im ∂ ⊕ Im ∂ . (4) 
On the other hand, a similar orthogonal decomposition holds for the space of scalar-valued (n -1, 1)-forms on X with respect to ∂ acting on scalar forms, its formal adjoint ∂ and the induced anti-holomorphic Laplacian ∆ . Suppose now that the canonical bundle K X of X is trivial. Fix a holomorphic n-form u with no zeroes on X (i.e. u is a non-vanishing holomorphic section of the trivial line bundle K X ). Thus u can be identified with the class [u] ∈ H n, 0 (X, C) C, so it is unique up to a nonzero constant factor. It is then clear that, for every q = 0, . . . , n, u defines an isomorphism (that may well be called the Calabi-Yau isomorphism) :

T u : C ∞ 0, q (X, T 1, 0 X) • u -→ C ∞ n-1, q (X, C) (5) 
mapping any θ ∈ C ∞ 0, q (X, T 1, 0 X) to T u (θ) := θ u, where the operation denoted by • combines the contraction of u by the (1, 0)-vector field component of θ with the exterior multiplication by the (0, q)-form component.

We now record the following well-known fact for future reference.

Lemma 3.2 Let X be a compact complex manifold (dim C X = n) endowed with a Hermitian metric ω such that Ric(ω) = 0. If K X is trivial and if u ∈ C ∞ n, 0 (X, C) such that ∂u = 0, u has no zeroes and

i n 2 X u ∧ ū = X dV ω , ( where 
dV ω := ω n n! ) (6) then the Calabi-Yau isomorphism T u : C ∞ 0, 1 (X, T 1, 0 X) → C ∞ n-1, 1 (X, C) (see (5) with q = 1
) is an isometry w.r.t. the pointwise (hence also the L 2 ) scalar products induced by ω on the vector bundles involved.

Proof. Fix an arbitrary point x 0 ∈ X and choose local holomorphic coordinates z 1 , . . . , z n about x 0 such that

ω(x 0 ) = i n j=1 λ j dz j ∧ dz j and u(x 0 ) = f dz 1 ∧ • • • ∧ dz n .
A simple calculation shows that for any θ, η ∈ C ∞ 0, 1 (X, T 1, 0 X), the pointwise scalar products at x 0 are related by

θ, η = λ 1 . . . λ n |f | 2 θ u, η u .
Thus having θ, η = θ u, η u at x 0 is equivalent to having |f | 2 = λ 1 . . . λ n . On the other hand, the identity

i n 2 u ∧ ū = |u| 2 ω ω n implies that |f | 2 = (n!) |u| 2 ω (λ 1 . . . λ n ).
Thus T u is an isometry w.r.t. the pointwise scalar products induced by ω if and only if

|u| 2 ω = 1 n! at every point of X. (7) 
Since we know from (2) of Proposition 2.2 and from Observation 2.3 that |u| 2 ω is constant on X, we see from the identity i n 2 u ∧ ū = |u| 2 ω ω n that the normalisation (6) of u is equivalent to (7), i.e. to T u being an isometry w.r.t. the pointwise scalar products induced by ω on the vector bundles involved.

We shall now compare in the case q = 1 the image under the operation • u of the three-space decomposition (4) of C ∞ 0, 1 (X, T 1, 0 X) with the analogous three-space decomposition of C ∞ n-1, 1 (X, C).

Lemma 3.3 Let X be a compact complex manifold (n = dim C X) such that K X is trivial. Then, for q = 1, the isomorphism T u of (5) satisfies :

T u (ker ∂) = ker ∂ and T u (Im ∂) = Im ∂. ( 8 
)
Hence T u induces an isomorphism in cohomology

T [u] : H 0, 1 (X, T 1, 0 X) • [u] -→ H n-1, 1 (X, C) (9) 
defined by T [u] ([θ]) = [θ u] for all [θ] ∈ H 0, 1 (X, T 1, 0 X).
If ω is any Hermitian metric on X such that Ric(ω) = 0, T u also satisfies :

T u (Im ∂ ) = Im ∂ and T u (ker ∆ ) = ker ∆ . (10) 
Proof. It relies on the easily checked formulae :

∂(θ u) = ( ∂θ) u + θ ( ∂u) = ( ∂θ) u, ∂(ξ u) = ( ∂ξ) u -ξ ( ∂u) = ( ∂ξ) u(11)
for all θ ∈ C ∞ 0, 1 (X, T 1, 0 X) and all ξ ∈ C ∞ (X, T 1, 0 X). Note, however, that the analogous identities for ∂ fail. These formulae imply the inclusions :

T u (ker ∂) ⊂ ker ∂ and T u (Im ∂) ⊂ Im ∂.
To prove the reverse inclusion of the former equality in (8), suppose that θ u ∈ ker ∂ for some θ ∈ C ∞ 0, 1 (X, T 1, 0 X). By (11), this means that ( ∂θ) u = 0, which is equivalent to ∂θ = 0 since the map T u of (5) is an isomorphism. (Here q = 2.)

To prove the reverse inclusion of the latter equality in (8

), let θ ∈ C ∞ 0, 1 (X, T 1, 0 X) such that θ u = ∂v for some (n -1, 0)-form v. With respect to local holo- morphic coordinates z 1 , . . . , z n on some open subset U ⊂ X, let θ = j, k θ j k dz k ⊗ ∂ ∂z j and u = f dz 1 ∧ • • • ∧ dz n ,
where f is a holomorphic function with no zeroes on U . Then

θ u = j, k (-1) j-1 f θ j k dz k ∧ dz 1 ∧ • • • ∧ dz j ∧ • • • ∧ dz n . Letting v = j v j dz 1 ∧ • • • ∧ dz j ∧ • • • ∧ dz n , the condition θ u = ∂v reads j, k (-1) j-1 f θ j k dz k ∧dz 1 ∧• • •∧ dz j ∧• • •∧dz n = j, k ∂v j ∂ zk dz k ∧dz 1 ∧• • •∧ dz j ∧• • •∧dz n , which is equivalent to θ j k = ∂ ∂ zk ((-1) j-1 v j f
) for all j, k since f is holomorphic without zeroes. Setting ξ j := (-1) j-1 v j f for all j, we get the local representative of a global vector field

ξ := j ξ j ∂ ∂z j ∈ C ∞ (X, T 1, 0 X)
satisfying θ = ∂ξ on X. Hence θ ∈ Im ∂. We have thus proved that Im ∂ ⊂ T u (Im ∂), hence the latter identity in (8).

Thus the identities (8) are proved. Then so is (9), an obvious consequence of (8).

To get (10), recall that we know from (2) of Proposition 2.2 and from Observation 2.3 that

|u| 2 ω is constant on X whenever Ric(ω) = 0. Then the proof of Lemma 3.2 shows that θ, η = Const • θ u, η u for all θ, η ∈ C ∞ 0, 1 (X, T 1, 0 X), hence θ ⊥ η if and only if θ u ⊥ η u.
(The notation is the obvious one.) This fact suffices to deduce (10) from the pairwise orthogonality of ker ∆ , Im ∂ and Im ∂ in the three-space decompositions of C ∞ 0, 1 (X, T 1, 0 X) and C ∞ n-1, 1 (X, C) and from the identities (8). The proof is complete. Now recall that the isomorphisms T u of (5) and their inverses allow one to define a Lie bracket on ⊕ q C ∞ n-1, q (X, C) by setting (cf. [Tia87, p. 631]) :

[ζ 1 , ζ 2 ] := T u T -1 u ζ 1 , T -1 u ζ 2 ∈ C ∞ n-1, q 1 +q 2 (X, T 1, 0 X) (12) 
for any forms

ζ 1 ∈ C ∞ n-1, q 1 (X, C) and ζ 2 ∈ C ∞ n-1, q 2 (X, C)
, where the operation [ , ] on the right-hand side of (12) combines the Lie bracket of the

T 1, 0 X-parts of T -1 u ζ 1 ∈ C ∞ 0, q 1 (X, T 1, 0 X) and T -1 u ζ 2 ∈ C ∞ 0, q 2 (X, T 1, 0 X
) with the wedge product of their (0, q 1 )-and respectively (0, q 2 )-form parts. The definition (12) can be reformulated as :

[Φ 1 , Φ 2 ] u = [Φ 1 u, Φ 2 u] for all Φ 1 , Φ 2 ∈ C ∞ 0, 1 (X, T 1, 0 X). ( 13 
)
The main technical ingredient in the proofs of [START_REF] Tian | Smoothness of the Universal Deformation Space of Compact Calabi-Yau Manifolds and Its Petersson-Weil Metric -Mathematical Aspects of String Theory[END_REF] and [START_REF] Todorov | The Weil-Petersson Geometry of the Moduli Space of SU (n ≥ 3) (Calabi-Yau) Manifolds I[END_REF] was the following general observation, the so-called Tian-Todorov lemma.

Lemma 3.4 (cf. Lemma 3.1. in [Tia87], Lemma 1.2.4. in [Tod89]) Let X be a compact complex manifold (n = dim C X) such that K X is trivial. Then, for every forms ζ 1 , ζ 2 ∈ C ∞ n-1, 1 (X, C) such that ∂ζ 1 = ∂ζ 2 = 0, we have [ζ 1 , ζ 2 ] ∈ Im ∂.
More precisely, the identity

[θ 1 u, θ 2 u] = ∂(θ 1 (θ 2 u)) holds for θ 1 , θ 2 ∈ C ∞ 0, 1 (X, T 1, 0 X) whenever ∂(θ 1 u) = ∂(θ 2 u) = 0.
We can now briefly review the main arguments in the proofs of [START_REF] Tian | Smoothness of the Universal Deformation Space of Compact Calabi-Yau Manifolds and Its Petersson-Weil Metric -Mathematical Aspects of String Theory[END_REF] and [START_REF] Todorov | The Weil-Petersson Geometry of the Moduli Space of SU (n ≥ 3) (Calabi-Yau) Manifolds I[END_REF] by pointing out that they are still valid when the Kähler assumption is weakened to the ∂ ∂ assumption.

Proof of Theorem 1.2. Let [η] ∈ H 0, 1 (X, T 1, 0 X) be an arbitrary nonzero class. Pick any d-closed representative w 1 of the class [η] [u] ∈ H n-1, 1 (X, C).
Such a d-closed representative exists by Lemma 3.1 thanks to the ∂ ∂ assumption on X. This is virtually the only modification of the proof compared to the Kähler case where the ∆ -harmonic representative of the class [η] [u] was chosen. Since ∆ = ∆ in the Kähler case, ∆ -harmonic forms are also ∂-closed, hence d-closed, but this no longer holds in the non-Kähler case.

Since

T u is an isomorphism, there is a unique Φ 1 ∈ C ∞ 0, 1 (X, T 1, 0 X) such that Φ 1 u = w 1 . Now ∂w 1 = 0, so the former equality in (8) implies that ∂Φ 1 = 0. Moreover, since [Φ 1 u] = [w 1 ], (9) implies that [Φ 1 ] = [η] ∈ H 0, 1 (X, T 1, 0 X)
and this is the original class we started off with. However, Φ 1 need not be the ∆ -harmonic representative of the class [η] in the non-Kaehler case (in contrast to the Kähler case of [START_REF] Tian | Smoothness of the Universal Deformation Space of Compact Calabi-Yau Manifolds and Its Petersson-Weil Metric -Mathematical Aspects of String Theory[END_REF] and [START_REF] Todorov | The Weil-Petersson Geometry of the Moduli Space of SU (n ≥ 3) (Calabi-Yau) Manifolds I[END_REF]). Meanwhile, by the choice of w 1 , we have

∂(Φ 1 u) = 0, so Lemma 3.4 applied to ζ 1 = ζ 2 = Φ 1 u yields [Φ 1 u, Φ 1 u] ∈ Im ∂. On the other hand, [Φ 1 u, Φ 1 u] ∈ ker ∂
as can be easily checked and is wellknown (see e.g. [Tod89, Lemma 1.2.5]). By the ∂ ∂-lemma applied to the

(n -1, 2)-form 1/2 [Φ 1 u, Φ 1 u], there exists ψ 2 ∈ C ∞ n-2, 1 (X, C) such that ∂∂ψ 2 = 1 2 [Φ 1 u, Φ 1 u].
We can choose ψ 2 of minimal L 2 -norm with this property (i.e. ψ 2 ∈ Im(∂ ∂) , see e.g. the explanation after Definition 5.5 in terms of the Aeppli cohomology). Put

w 2 := ∂ψ 2 ∈ C ∞ n-1, 1 (X, C). Since T u is an isomorphism, there is a unique Φ 2 ∈ C ∞ 0, 1 (X, T 1, 0 X) such that Φ 2 u = w 2 . Implicitly, ∂(Φ 2 u) = 0. Moreover, using (11), we get ( ∂Φ 2 ) u = ∂(Φ 2 u) = 1 2 [Φ 1 u, Φ 1 u] = 1 2 [Φ 1 , Φ 1 ] u,
where the last identity follows from (13). Hence (Eq. 1)

∂Φ 2 = 1 2 [Φ 1 , Φ 1 ].
We can now continue inductively. Suppose we have constructed Φ 1 , . . . ,

Φ N -1 ∈ C ∞ 0, 1 (X, T 1, 0 X) such that ∂(Φ k u) = 0 and ∂(Φ k u) = 1 2 k-1 l=1 [Φ l u, Φ k-l u], 1 ≤ k ≤ N -1.
By formulae (11), ( 13) and since T u is an isomorphism, the latter identity above is equivalent to

(Eq. (k -1)) ∂Φ k = 1 2 k-1 l=1 [Φ l , Φ k-l ], 1 ≤ k ≤ N -1.
Then it is easily seen and well known (cf. [Tod89, Lemma 1.2.5]) that 1 2

N -1 l=1 [Φ l u, Φ N -l u] ∈ ker ∂. On the other hand, since Φ 1 u, . . . , Φ N -1 u ∈ ker ∂, Lemma 3.4 gives [Φ l u, Φ N -l u] ∈ Im ∂ for all l = 1, . . . , N -1.
Thanks to the last two relations, the ∂ ∂-lemma implies the existence of a form

ψ N ∈ C ∞ n-2, 1 (X, C) such that ∂∂ψ N = 1 2 N -1 l=1 [Φ l u, Φ N -l u].
We can choose ψ N of minimal L 2 -norm with this property (i.e.

ψ N ∈ Im(∂ ∂) ). Letting w N := ∂ψ N ∈ C ∞ n-1, 1 , there exists a unique Φ N ∈ C ∞ 0, 1 (X, T 1, 0 X) such that Φ N u = w N . Implicitly ∂(Φ N u) = 0.
We also have ∂(

Φ N u) = 1 2 N -1 l=1 [Φ l u, Φ N -l u]
by construction. By formulae (11), (13) and since T u is an isomorphism, this amounts to

(Eq. (N -1)) ∂Φ N = 1 2 N -1 l=1 [Φ l , Φ N -l ].
We have thus shown inductively that the equation (Eq. k) is solvable for every k ∈ N . It is well-known (cf. [START_REF]Kuranishi -On the Locally Complete Families of Complex Analytic Structures[END_REF]) that in this case the series

Φ(t) := Φ 1 t + Φ 2 t 2 + • • • + Φ N t N + . .

. converges in a

Hölder norm for all t ∈ C such that |t| < ε 1. This produces a form Φ(t) ∈ C ∞ 0, 1 (X, T 1, 0 X) which defines a complex structure ∂t on X that identifies with ∂ -Φ(t) and is the deformation of the original complex structure ∂ of X in the direction of the originally given [η] ∈ H 0, 1 (X, T 1, 0 X). The proof is complete.

We end this section by noticing that the full force of the ∂ ∂ assumption is not needed in Theorem 1.2, but only a special case thereof, since only two applications in very particular situations have been made of it.

First, we needed any Dolbeault cohomology class

[α] ∈ H n-1, 1 (X, C) (denoted by [η] [u]
in the proof) to be representable by a d-closed form. The proof of Lemma 3.1 shows this to be equivalent to requiring that any ∂-exact (n, 1)-form ∂α for which ∂α = 0 be ∂ ∂-exact. This is equivalent to requiring the following linear map (which is always well defined)

A 1 : H n-1, 1 ∂ (X, C) -→ H n, 1 BC (X, C), [α]∂ → [∂α] BC (14) 
to vanish identically, where the subscript BC indicates a Bott-Chern cohomology group. By duality, the vanishing of A 1 is equivalent to the vanishing of its dual map

A 1 : H 0, n-1 A (X, C) -→ H 1, n-1 ∂ (X, C), [u] A → [∂u]∂, (15) 
where the subscript A indicates an Aeppli cohomology group. The other special case of the ∂ ∂ lemma needed in the proof of Theorem 1.2 was the requirement that any ∂-exact and d-closed (n -1, 2)-form β (denoted by [Φ 1 u, Φ 1 u] in the proof) be ∂ ∂-exact. This is equivalent to requiring the following linear map (which is always well defined)

B : H n-1, 2 BC (X, C) -→ H n-1, 2 ∂ (X, C), [β] BC → [β] ∂ (16) 
to be injective. From the exact sequence

H n-2, 2 A (X, C) A 2 -→ H n-1, 2 BC (X, C) B -→ H n-1, 2 ∂ (X, C),
we infer that B being injective is equivalent to the linear map A 2 vanishing identically, where

A 2 : H n-2, 2 A (X, C) -→ H n-1, 2 BC (X, C), [v] A → [∂v] BC . ( 17 
)
This discussion can be summed up as follows.

Observation 3.5 Let X be a compact complex manifold with dim C X = n whose canonical bundle K X is trivial such that the linear maps A 1 and A 2 defined in ( 14) and (17) vanish identically. Then the Kuranishi family of X is unobstructed.

4 Co-polarised deformations of balanced Calabi-Yau ∂ ∂-manifolds

4.1 Definitions Let (X, ω) be a compact balanced Calabi-Yau ∂ ∂-manifold (n = dim C X).
Denote by π : X → ∆ the Kuranishi family of X. Thus π is a proper holomorphic submersion from a complex manifold X, while the fibres X t with t ∈ ∆ \ {0} can be seen as deformations of the given manifold X 0 = X. The base space ∆ is smooth and can be viewed as an open subset of H 0, 1 (X, T 1, 0 X) (or as a ball containing the origin in C N , where

N = dim C H 0, 1 (X, T 1, 0 X))
by Theorem 1.2. Hence the tangent space at 0 is 

T 0 ∆ H 0, 1 (X, T 1, 0 X).
ω] ∈ H 1, 1 (X, C) ⊂ H 2 (X, C)
is Kähler (and is furthermore often required to be integral, but we deal with arbitrary, possibly non-rational classes here), it is standard to define the deformations of X 0 = X polarised by [ω] as those nearby fibres X t on which the De Rham class {ω} ∈ H 2 (X, C) is still a Kähler class (hence, in particular, of type (1, 1)) for the complex structure J t of X t . In the more general balanced case treated here, ω need not define a class, but ω n-1 does. Taking our cue from the standard Kähler case, we propose the following dual notion in the balanced context. 

[ω n-1 ] ∈ H n-1, n-1 (X, C) ⊂ H 2n-2 (X, C), we say that a fibre X t is co-polarised by [ω n-1 ] if the De Rham class {ω n-1 } ∈ H 2n-2 (X, C) is of type (n -1, n -1) for the complex structure J t of X t .
The restricted family π :

X [ω n-1 ] → ∆ [ω n-1
] will be called the universal family of deformations of X that are co-polarised by the balanced class [ω n-1 ],

where

∆ [ω n-1 ] is the set of t ∈ ∆ such that X t is co-polarised by [ω n-1 ] and X [ω n-1 ] = π -1 (∆ [ω n-1 ] ) ⊂ X.
After possibly shrinking ∆ [ω n-1 ] about 0, we can assume that [ω n-1 ] ∈ H n-1, n-1 (X t , C) is a balanced class for the complex structure J t of the fibre X t for every t ∈ ∆ [ω n-1 ] (cf. Observation 7.2).

Note that in the special case where ω is Kähler on X 0 = X, the (2n -2)class {ω n-1 } is a balanced class for J t whenever the 2-class {ω} is a Kähler class for J t . We shall see further down that the converse also holds, meaning that in the special Kähler case the notion of co-polarised deformations of X coincides with that of polarised deformations. Recall that when ω is Kähler, the deformations of X polarised by [ω] are parametrised by the following subspace of H 0, 1 (X, T 1, 0 X) :

H 0, 1 (X, T 1, 0 X) [ω] := [θ] ∈ H 0, 1 (X, T 1, 0 X) ; [θ ω] = 0 ∈ H 0, 2 (X, C) (18)
which is isomorphic under the restriction of T [u] (cf. ( 9)) to the space of primitive Dolbeault classes of type (n -1, 1) :

H 0, 1 (X, T 1, 0 X) [ω] T [u] -→ H n-1, 1 prim (X, C). ( 19 
)
We shall now see that the co-polarised deformations of X are parametrised by an analogous subspace.

Lemma 4.2 For a given balanced class [ω n-1 ] ∈ H n-1, n-1 (X, C), consider the following vector subspace of H 0, 1 (X, T 1, 0 X) : H 0, 1 (X, T 1, 0 X) [ω n-1 ] := [θ] ∈ H 0, 1 (X, T 1, 0 X) ; [θ ω n-1 ] = 0 ∈ H n-2, n (X, C) .(20) Then : (a) the space H 0, 1 (X, T 1, 0 X) [ω n-1 ] is well-defined (i.e. the class [θ ω n-1 ] ∈ H n-2, n (X, C) is independent of the choice of representative θ in the class [θ] ∈ H 0, 1 (X, T 1, 0 X) and of the choice of representative ω n-1 in the class [ω n-1 ] ∈ H n-1, n-1 (X, C)). We can therefore denote [θ] [ω n-1 ] := [θ ω n-1 ]. ( 21 
) (b) the open subset ∆ ⊂ H 0, 1 (X, T 1, 0 X) satisfies ∆ [ω n-1 ] = ∆ ∩ H 0, 1 (X, T 1, 0 X) [ω n-1 ] . Implicitly, T 0 ∆ [ω n-1 ] H 0, 1 (X, T 1, 0 X) [ω n-1 ] .
Proof. (a) follows from Lemma 4.3 below. Indeed, if θ + ∂ξ is another representative of the class [θ] for some vector field ξ ∈ C ∞ (X, T 1, 0 X), then

(θ + ∂ξ) ω n-1 = θ ω n-1 + ∂(ξ ω n-1 ) since ω is balanced. Hence [(θ + ∂ξ) ω n-1 ] = [θ ω n-1 ]. Similarly, if ω n-1 + ∂λ is another representative of the Dolbeault class [ω n-1 ] for some (n-1, n-2)- form λ, then θ (ω n-1 + ∂λ) = θ ω n-1 + ∂(θ λ) since ∂θ = 0. Hence [θ (ω n-1 + ∂λ)] = [θ ω n-1 ].
(b) Since X t is a ∂ ∂-manifold for every t close to 0, it admits a Hodge decomposition which in degree 2n -2 spells

H 2n-2 (X, C) = H n, n-2 (X t , C) ⊕ H n-1, n-1 (X t , C) ⊕ H n-2, n (X t , C), with H n-2, n (X t , C) H n, n-2 (X t , C).
In our case, the real De Rham class {ω n-1 } ∈ H 2n-2 (X, R) splits accordingly as

{ω n-1 } = {ω n-1 } n, n-2 t + {ω n-1 } n-1, n-1 t + {ω n-1 } n-2, n t , with {ω n-1 } n-2, n t = {ω n-1 } n, n-2 t and {ω n-1 } n-1, n-1 t real. Thus the definition of ∆ [ω n-1 ] translates to ∆ [ω n-1 ] = t ∈ ∆ ; {ω n-1 } n-2, n t = 0 ∈ H n-2, n (X t , C) . Moreover, {ω n-1 } is of type (n -1, n -1) for J 0 , so {ω n-1 } n-2, n 0 = 0 and {ω n-1 } n, n-2 0 = 0. Let t 1 , .
. . , t N be local holomorphic coordinates about 0 in ∆. So t = (t 1 , . . . , t N ) ∈ ∆ identifies with [θ] varying in an open subset of H 0, 1 (X, T 1, 0 X). Let [θ] ∈ H 0, 1 (X, T 1, 0 X) be the image of ∂ ∂t i |t i =0 under the Kodaira-Spencer map ρ : T 0 ∆ -→ H 0, 1 (X, T 1, 0 X). Then, under the Gauss-Manin connection on the Hodge bundle

∆ t → H 2n-2 (X t , C), the derivative of the class [ω n-1 ] n-2, n t ∈ H n-2, n (X t , C) in the direction of t i at t i = 0 is the class [θ ω n-1 ] ∈ H n-2, n (X, C).
Here is the lemma that has been used in the proof of (a) above.

Lemma 4.3 Let X be a compact complex manifold (dim C X = n) equipped with an arbitrary Hermitian metric ω. Then:

(i) ∂(ξ ω n-1 ) = ( ∂ξ) ω n-1 -ξ ∂ω n-1 , for every ξ ∈ C ∞ (X, T 1, 0 X). Hence, if ω is balanced, we have ∂(ξ ω n-1 ) = ( ∂ξ) ω n-1 . (ii) ∂(θ ω) = ( ∂θ) ω + θ ∂ω, for every θ ∈ C ∞ 0, 1 (X, T 1, 0 X).
Analogous identities hold for forms of any type in place of ω or ω n-1 . However, the analogous identities for ∂ in place of ∂ fail (intuitively because ∂ increases the holomorphic degree of forms, while the contraction by a vector field of type (1, 0) decreases the same holomorphic degree).

Proof. See Appendix (section 7).

Comparison to polarisations of the Kähler case

We now pause to observe that in the special case of a Kähler class [ω] ∈ H 1, 1 (X, C), co-polarised deformations of X coincide with polarised deformations. Thus, although the space H 0, 1 (X, T 1, 0 X) [ω] of (18) no longer makes sense for a non-Kähler ω, H 0, 1 (X, T 1, 0 X) [ω n-1 ] defined in (20) naturally extends its meaning to the case of a balanced class [ω n-1 ].

Proposition 4.4 Let (X, ω) be a compact Kähler manifold (n = dim C X) such that K X is trivial. Then the following identity holds :

H 0, 1 (X, T 1, 0 X) [ω] = H 0, 1 (X, T 1, 0 X) [ω n-1 ] . (22) 
Proof. We start by noticing that for any Hermitian metric ω (no assumption is necessary on ω here) and any θ ∈ C ∞ 0, 1 (X, T 1, 0 X), we have

θ ω k = k ω k-1 ∧ (θ ω) for any k. (23) 
This follows from the property θ (ω

∧ ω k-1 ) = (θ ω) ∧ ω k-1 + ω ∧ (θ ω k-1 ).
Suppose now that ω is Kähler and let [θ] ∈ H 0, 1 (X, T 1, 0 X) [ω] , i.e. θ ω is ∂-exact. Writing θ ω = ∂v for some (0, 1)-form v, from (23) we get :

θ ω n-1 = (n -1) ω n-2 ∧ ∂v = (n -1) ∂(ω n-2 ∧ v)
since ∂ω n-2 = 0 by the Kähler assumption on ω.

Thus θ ω n-1 is ∂-exact, proving that [θ] ∈ H 0, 1 (X, T 1, 0 X) [ω n-1
] . This proves the inclusion "⊂".

Proving the reverse inclusion "⊃" in (22) takes more work. Let us consider the Lefschetz operator

L n-2 ω : C ∞ 0, 2 (X, C) → C ∞ n-2, n (X, C), α → ω n-2 ∧ α, (24) 
of multiplication by ω n-2 which is well known to be an isomorphism for any Hermitian (even non-Kähler or non-balanced) metric ω (see e.g. [Voi02, lemma 6.20, p. 146]). We clearly have θ ω n-1 = (n -1) L n-2 ω (θ ω) by ( 23). The next lemma explains how the three-space decomposition (w.r.t. ω)

C ∞ 0, 2 (X, C) = ker ∆ ⊕ Im ∂ ⊕ Im ∂ transforms under L n-2 ω
and compares to the analogous decomposition of C ∞ n-2, n (X, C). Note that in C ∞ n-2, n (X, C) the subspace Im ∂ is reduced to zero for bidegree reasons.

Lemma 4.5 If ω is a Kähler metric on a compact complex manifold X with n = dim C X, then the operator (24) satisfies

L n-2 ω (ker ∆ ) = ker ∆ and L n-2 ω (Im ∂ ⊕ Im ∂ ) = Im ∂. ( 25 
)
This will follow from two formulae that have an interest of their own.

Lemma 4.6 If ω is Kähler, then for every α ∈ C ∞ 0, 2 (X, C) we have

∂ (ω n-2 ∧ α) = ω n-2 ∧ ∂ α + (n -2) ω n-3 ∧ i∂α. ( 26 
)
Proof. Using the Kähler commutation relation ∂

= -i [Λ, ∂], we get ∂ (ω n-2 ∧ α) = -i Λ(ω n-2 ∧ ∂α) + i ∂(Λ(ω n-2 ∧ α)). (27) 
In the first term on the right-hand side of (27), we have

Λ(ω n-2 ∧ ∂α) = [Λ, L n-2 ](∂α) + ω n-2 ∧ Λ(∂α) = ω n-2 ∧ Λ(∂α). ( 28 
)
The last identity follows from the well-known formula (cf. [Voi02, p. 148]) :

[L r , Λ] = r(k -n + r -1)L r-1 on k-forms, for every r, (29) 
which, when applied with r = n-2 to the 3-form ∂α, gives [Λ, L n-2 ](∂α) = 0.

In the second term on the right-hand side of (27), we have

Λ(ω n-2 ∧ α) = [Λ, L n-2 ](α) + ω n-2 ∧ Λ(α) = (n -2) ω n-3 ∧ α + ω n-2 ∧ Λ(α),
where the last identity follows again from (29) applied with r = n -2 to the 2-form α. (Note that Λα = 0, but we ignore this here.) Taking ∂ on either side of the above identity and using the Kähler assumption on ω, we get

∂(Λ(ω n-2 ∧ α)) = (n -2) ω n-3 ∧ ∂α + ω n-2 ∧ ∂Λ(α), (30) 
Thus, putting (28) and (30) together, we see that (27) transforms to

∂ (ω n-2 ∧ α) = -i ω n-2 ∧ Λ(∂α) + (n -2) ω n-3 ∧ i∂α + ω n-2 ∧ i∂Λ(α) = ω n-2 ∧ i [∂, Λ](α) + (n -2) ω n-3 ∧ i∂α = ω n-2 ∧ ∂ α + (n -2) ω n-3 ∧ i∂α.
This is what we had set out to prove. Note that we have used again the Kähler commutation relation i

[∂, Λ] = -i [Λ, ∂] = ∂ .
The next formula we need is the following.

Lemma 4.7 If ω is Kähler, then for every α ∈ C ∞ 0, 2 (X, C) we have

∆ ω (ω n-2 ∧ α) = ω n-2 ∧ ∆ ω α. (31) 
Proof. This is an immediate consequence of the commutation property

[L ω , ∆ ω ] = 0, hence [L k ω ,
∆ ω ] = 0 for all k, which in turn follows from the Kähler identities. Alternatively, we can use Lemma 4.6 and the Kähler identities to give a direct proof as follows. Since ∂(ω n-2 ∧ α) = 0 for bidegree reasons, ∆ ω (ω n-2 ∧ α) reduces to its first term, so using (26) we get

∆ ω (ω n-2 ∧ α) = ∂ ∂ (ω n-2 ∧ α) = ∂(ω n-2 ∧ ∂ α + (n -2) ω n-3 ∧ i∂α) = ω n-2 ∧ ∂ ∂ α + (n -2) ω n-3 ∧ i ∂∂α. ( 32 
)
Now, using the Kähler identity ∂ = -i [Λ, ∂], we get

ω n-2 ∧ ∂ ∂α = -i ω n-2 ∧ [Λ, ∂] ∂α = -i ω n-2 ∧ Λ(∂ ∂α) + i ω n-2 ∧ ∂Λ( ∂α) = -i ω n-2 ∧ Λ(∂ ∂α) ( 33 
)
because ∂α is of type (0, 3), so Λ( ∂α) = 0 for bidegree reasons. Meanwhile

ω n-2 ∧ Λ(∂ ∂α) = [L n-2 , Λ](∂ ∂α) + Λ(ω n-2 ∧ ∂ ∂α) = [L n-2 , Λ](∂ ∂α) = (n -2) ω n-3 ∧ ∂ ∂α. ( 34 
)
The second identity on the top line above follows from ω n-2 ∧ ∂ ∂α = 0 for bidegree reasons (since ω n-2 ∧ ∂ ∂α is of type (n -1, n + 1), hence vanishes), while the last identity follows from formula (29) with r = n -2 and k = 4. The combined identities (33) and (34) yield

ω n-2 ∧ ∂ ∂α = -(n -2) ω n-3 ∧ i∂ ∂α = (n -2) ω n-3 ∧ i ∂∂α.
This last identity combines with (32) to prove the claim.

We need yet another observation.

Lemma 4.8 For any Hermitian metric ω on X, the normalised Lefschetz operator

1 (n -2)! L n-2 ω : C ∞ 0, 2 (X, C) → C ∞ n-2, n (X, C)
is an isometry w.r.t. the L 2 scalar product induced by ω on scalar-valued forms.

Proof. We will show that for every l = 3, . . . , n, the following formula holds

ω n-2 ∧ α, ω n-2 ∧ β = (n -2)! (l -2)! (n -l)! ω n-l ∧ α, ω n-l ∧ β (35) 
for all forms α, β ∈ C ∞ 0, 2 (X, C). We have

ω n-2 ∧ α, ω n-2 ∧ β = Λ(ω n-2 ∧ α), ω n-3 ∧ β = [Λ, L n-2 ] α, ω n-3 ∧ β = (n -2) ω n-3 ∧ α, ω n-3 ∧ β ,
where in going from the first to the second line, we have used the identities

[Λ, L n-2 ] α = Λ(ω n-2 ∧ α) -ω n-2 ∧ Λ α = Λ(ω n-2 ∧ α)
since Λα = 0 for bidegree reasons, while in going from the second to the third line we have used formula (29) with r = n -2 and the anti-commutation [Λ, L n-2 ] = -[L n-2 , Λ]. This proves (35) for l = 3. We can now continue by induction on l. Suppose that (35) has been proved for l. We have

ω n-l ∧ α, ω n-l ∧ β = Λ(ω n-l ∧ α), ω n-l-1 ∧ β = [Λ, L n-l ] α, ω n-l-1 ∧ β = (n -l)(l -1) ω n-l-1 ∧ α, ω n-l-1 ∧ β
by arguments similar to those above, where formula (29) has been used with r = n -l. We thus obtain (35) with l + 1 in place of l.

It is now clear that (35) for l = n proves the contention.

End of proof of Lemma 4.5. Since the map L n-2 ω of ( 24) is an isomorphism, it follows from Lemma 4.7 that L n-2 ω (ker ∆ ω ) = ker ∆ ω . Since L n-2 ω maps any pair of orthogonal forms in C ∞ 0, 2 (X, C) to a pair of orthogonal forms in

C ∞ n-2, n (X, C) by Lemma 4.8, it follows that the orthogonal complement of ker ∆ ω in C ∞ 0, 2 (X, C) (i.e. Im ∂ ⊕ Im ∂ ) is isomorphic under L n-2 ω to the orthogonal complement of ker ∆ ω in C ∞ n-2, n (X, C) (i.e. Im ∂). Note that Im ∂ = 0 in C ∞ n-2, n (X, C
) for type reasons. The proof is complete.

End of proof of Proposition 4.4. Recall that we have yet to prove the inclusion "⊃" in (22

). Let [θ] ∈ H 0, 1 (X, T 1, 0 X) [ω n-1 ] . This means that θ ω n-1 ∈ Im ∂ ⊂ C ∞ n-2, n (X, C) (cf. ( 20 
)). Since θ ω n-1 = (n -1) L n-2 ω (θ ω) (cf. ( 23 
)
) and θ ω is of type (0, 2), we get from Lemma 4.5 that

θ ω ∈ Im ∂ ⊕ Im ∂ ⊂ C ∞ 0, 2 (X, C). ( 36 
)
On the other hand, ∂θ = 0 (since θ represents a class [θ] ∈ H 0, 1 (X, T 1, 0 X)) and ∂ω = 0 (since ω is assumed Kähler). Hence (ii) of Lemma 4.3 gives

∂(θ ω) = 0, i.e. θ ω ∈ ker ∂ = ker ∆ ω ⊕ Im ∂ ⊂ C ∞ 0, 2 (X, C). ( 37 
)
Since the three subspaces in the decomposition C ∞ 0, 2 (X, C) = ker ∆ ω ⊕Im ∂ ⊕ Im ∂ are mutually orthogonal, (36) and (37) imply that θ ω ∈ Im ∂, i.e.

[θ] ∈ H 0, 1 (X, T 1, 0 X) [ω] (cf. ( 18)).

Primitive (n -1, 1)-classes on balanced manifolds

In the case of a Kähler class [ω], primitive Dolbeault cohomology classes of type (n -1, 1) (for [ω]) play a pivotal role in the theory of deformations of X that are polarised by [ω] thanks to the isomorphism (19) induced by the Calabi-Yau isomorphism. However, if [ω] is replaced by a balanced class [ω n-1 ], primitive classes can no longer be defined in the standard way except in the case of (1, 1)-classes or, more generally, in that of De Rham 2-classes (since the definition uses then the (n -1) st power of ω that is closed by the balanced assumption). In particular, defining an (n -1, 1)-class [α] as primitive by requiring that ω ∧ α be ∂-exact would be meaningless if ω is not closed since this definition would depend on the choice of representative α of the class [α]. However, since the space H 0, 1 (X, T 1, 0 X) [ω n-1 ] carries over the meaning of H 0, 1 (X, T 1, 0 X) [ω] to the balanced case, it is natural to make the following ad hoc definition in the balanced case. Definition 4.9 Let X be a compact balanced Calabi-Yau ∂ ∂-manifold (n := dim C X). Fix a non-vanishing holomorphic (n, 0)-form u and a balanced class [ω n-1 ] on X. The space of primitive classes of type (n -1, 1) (for [ω n-1 ]) is defined as the image under the Calabi-Yau isomorphism

T [u] : H 0, 1 (X, T 1, 0 X) • [u] -→ H n-1, 1 (X, C) in (9) of the subspace H 0, 1 (X, T 1, 0 X) [ω n-1 ] ⊂ H 0, 1 (X, T 1, 0 X), i.e. H n-1, 1 prim (X, C) := T [u] H 0, 1 (X, T 1, 0 X) [ω n-1 ] ⊂ H n-1, 1 (X, C).
Explicitly, given the definition (20) of H 0, 1 (X, T 1, 0 X) [ω n-1 ] , this means :

[θ u] ∈ H n-1, 1 prim (X, C) iff [θ ω n-1 ] = 0 ∈ H n-2, n (X, C) (38) 
for any class [θ] ∈ H 0, 1 (X, T 1, 0 X).

It is clear that H n-1, 1 prim (X, C) does not depend on the choice of u (which is unique up to a constant factor), but depends on the choice of balanced class [ω n-1 ]. When ω is Kähler, the ad hoc definition of H n-1, 1 prim (X, C) coincides with the standard definition thanks to the isomorphism (19) and to Proposition 4.4.

Recall that unlike cohomology classes, primitive forms can be defined in the standard way for any Hermitian metric ω: for any k ≤ n, a k-form α on X is primitive for ω if ω n-k+1 ∧ α = 0. This condition is well known to be equivalent to Λ ω α = 0. No closedness assumption on ω is needed.

In the rest of this subsection we shall investigate the extent to which the ad hoc primitive (n -1, 1)-classes defined by a balanced class retain the properties of primitive classes standardly defined by a Kähler class. We start with the form analogue of (38). By the Calabi-Yau isomorphism (5), all (n -1, 1)-forms are of the shape θ u for some θ ∈ C ∞ 0, 1 (X, T 1, 0 X).

Lemma 4.10 Let (X, ω) be an arbitrary Hermitian compact complex manifold (n := dim C X) with K X trivial. Fix a non-vanishing holomorphic (n, 0)form u. Then for any θ ∈ C ∞ 0, 1 (X, T 1, 0 X), the following equivalences hold :

θ u is primitive for ω ⇐⇒ θ ω = 0 ⇐⇒ θ ω n-1 = 0. ( 39 
)
Proof. By the definition of primitiveness, the (n -1, 1)-form θ u is primitive for ω if and only if ω ∧ (θ u) = 0. Meanwhile

0 = θ (ω ∧ u) = (θ ω) ∧ u + ω ∧ (θ u),
where the first identity holds for type reasons since the form ω ∧ u is of type (n + 1, 1), hence vanishes. Thus the vanishing of ω ∧ (θ u) is equivalent to the vanishing of (θ ω) ∧ u which, in turn, is equivalent to the vanishing of θ ω as can be easily checked using the property u = 0 at every point of X. This proves the first equivalence in (39). The second equivalence follows from

θ ω n-1 = (n -1) ω n-2 ∧ (θ ω) (cf. ( 23 
)
) and from the map (24) being an isomorphism.

We have seen in Lemma 3.1 that every Dolbeault cohomology class on a ∂ ∂-manifold can be represented by a d-closed form (which is, of course, not unique). The question we will now address is the following. Question 4.11 Is it true that on a balanced Calabi-Yau ∂ ∂-manifold, every primitive (n -1, 1)-class (in the sense of the ad hoc Definition 4.9) can be represented by a form that is both primitive and d-closed? Should the answer to this question be affirmative, it would bear significantly on the discussion of Weil-Petersson metrics in §.5.2. It is clear that in the Kähler case the answer is affirmative : the ∆ -harmonic representative of any primitive (in the standard sense defined by the Kähler class = the ad hoc sense in the case of (n -1, 1)-classes) (p, q)-class is both primitive and d-closed. We shall now see that the balanced case is far more complicated. Lemma 4.12 Let (X, ω) be a compact Hermitian manifold (n := dim C X) and let v be an arbitrary primitive form of type (n -1, 1) on X. Then the following equivalences hold :

∂ v = 0 ⇐⇒ ∂v = 0 and ∂ v = 0 ⇐⇒ ∂v = 0. ( 40 
)
Proof. It is well-known (cf. e.g. [Dem97, VI, §. 5.1]) that ∂ = -∂ and ∂ = -∂ , where : Λ p, q T X -→ Λ n-q,n-p T X is the Hodge star operator associated with ω. On the other hand, the following formula for primitive forms is also known :

v = i n 2 +2n-2 v for all v ∈ C ∞ n-1, 1 (X, C) prim . (41) 
(Recall that for primitive forms v of arbitrary type (p, q), the formula reads v = (-1) k(k+1)/2 i p-q ω n-p-q ∧ v (n -p -q)! , where k := p + q, (42) see e.g. [Voi02, Proposition 6.29, p. 150].) Since is an isomorphism, we see that the identity ∂ v = 0 is equivalent to ∂( v) = 0, hence to ∂v = 0 by (41). The equivalence for ∂ v = 0 is inferred similarly.

Corollary 4.13 Under the assumptions of Lemma 4.12, we have :

(i) if v ∈ C ∞ n-1, 1 (X, C) prim and ∂v = 0, then dv = 0 ⇐⇒ ∆ v = 0. (ii) if v ∈ C ∞ n-1, 1 (X, C) prim and ∂v = 0, then dv = 0 ⇐⇒ ∆ v = 0. (iii) if v ∈ C ∞ n-1, 1 (X, C) prim and dv = 0, then ∆ v = 0, ∆ v = 0 and ∆v = 0.
Proof. Since X is compact, we have ker ∆ = ker ∂ ∩ ker ∂ and ker ∆ = ker ∂ ∩ ker ∂ . Since for any pure-type form v, the equivalence dv = 0 ⇐⇒ ∂v = 0 and ∂v = 0 holds, (i) and (ii) follow immediately from the two equivalences in (40). Now (i) and (ii) obviously give ∆ v = 0 and ∆ v = 0 under the assumptions of (iii). To infer that ∆v = 0, it suffices to notice that for any pure-type form v on a compact Hermitian manifold (X, ω), we have Since ∆ v = 0 and ∆ v = 0, from (43) we get ∆v, v = 0 which amounts to dv = 0 and d v = 0, hence to ∆v = 0.

∆v, v = ∆ v, v + ∆ v, v (43) 
since ∆v, v = ||d v|| 2 +||d v|| 2 , ∆ v, v = ||∂v|| 2 +||∂ v|| 2 and ∆ v, v = || ∂v|| 2 + || ∂ v|| 2 ,
The conclusion (iii) of the above Corollary 4.13 is that if an (n -1, 1)form is both primitive and d-closed, it must be harmonic for each of the Laplacians ∆ , ∆ and ∆. Thus, if a representative that is both primitive and d-closed of a primitive (n -1, 1)-class exists, it can only be the ∆harmonic representative. Fortunately we have Lemma 4.14 Let (X, ω) be a compact Hermitian manifold (n := dim C X). Suppose v is a primitive (n -1, 1)-form such that ∆ v = 0. Then ∆ v = 0 and ∆v = 0. In particular, dv = 0.

Proof. The assumption ∆ v = 0 means that ∂v = 0 and ∂ v = 0. Then (i) of Corollary 4.13 implies that dv = 0, i.e. ∂v = 0. Then (ii) of Corollary 4.13 ensures that ∆ v = 0. Then (43) ensures that ∆v = 0. Thus Question 4.11 reduces to whether on a balanced Calabi-Yau ∂ ∂manifold (X, ω), the ∆ -harmonic representative of any primitive (n -1, 1)class (in the sense of the ad hoc Definition 4.9) is a primitive form. It will then also be d-closed by Lemma 4.14. Fix therefore a primitive (n-1, 1)-class [θ u] on X, where [θ] ∈ H 0, 1 (X, T 1, 0 X). By (38), this means that

θ ω n-1 ∈ Im ∂ (44)
Suppose furthermore that ∆ (θ u) = 0. The question is whether θ u is primitive, or equivalently (cf. (39)) whether θ ω n-1 = 0. Since ker ∆ and Im ∂ are orthogonal subspaces of C ∞ n-2, n (X, C), (44) reduces the question to determining whether ∆ (θ ω n-1 ) = 0 or equivalently whether ∂ (θ ω n-1 ) = 0, (45) since ∂(θ ω n-1 ) = 0 (trivially since θ ω n-1 is of type (n -2, n)).

The next lemma transforms identity (45) whose validity we are trying to determine.

Lemma 4.15 Let X be a compact complex manifold (dim C X = n) equipped with an arbitrary Hermitian metric ω. Fix any θ ∈ C ∞ 0, 1 (X, T 1, 0 X). The following equivalence holds :

∂ (θ ω n-1 ) = 0 ⇐⇒ ∂(θ ω) = 0.
Proof. Formula (42) applied to the (primitive) (0, 2)-form v := θ ω reads :

(θ ω) = ω n-2 (n -2)! ∧ (θ ω) = θ ω n-1 (n -1)! , i.e. θ ω n-1 (n -1)! = θ ω,( 46 
)
having also used the property 2 = Id on 2-forms. Now, ∂ = -∂ , hence the condition ∂ (θ ω n-1 ) = 0 is equivalent to ∂( (θ ω n-1 )) = 0 which in turn is equivalent to ∂(θ ω) = 0 by (46). This proves the contention.

However, we can see no reason why the desired condition ∂(θ ω) = 0 should hold even if we exploit the assumption ∆ (θ u) = 0. Note that if Ric(ω) = 0, by (10) this assumption means that ∆ θ = 0, i.e. ∂ θ = 0 since we always have ∂θ = 0. The most we can make of the property ∂ θ = 0 is expressed in part (ii) of the following lemma. Parts (i) and (iii) show that more can be said about scalar-valued (0, 1)-forms v, although even if that information applied to the T 1, 0 X-valued (0, 1)-form θ, it would not suffice to deduce that ∂(θ ω) = 0. Lemma 4.16 Let X be a compact complex manifold (dim C X = n) supposed to carry a balanced metric ω. (i) For every v ∈ C ∞ 0, 1 (X, C), the following equivalence holds :

∂ v = 0 ⇐⇒ ∂v is primitive.
(ii) For every θ ∈ C ∞ 0, 1 (X, T 1, 0 X), the following equivalence holds :

∂ θ = 0 ⇐⇒ (D θ) ∧ ω n-1 = 0 ∈ C ∞ n, n (X, T 1, 0 X). (iii) Suppose, furthermore, that X is a ∂ ∂-manifold. Then, for every v ∈ C ∞
0, 1 (X, C) ∩ ker ∂, the following equivalence holds :

∆ v = 0 ⇐⇒ ∂v = 0 (⇐⇒ ∆ v = 0).
Proof. Since any (0, 1)-form is primitive, for :

C ∞ 0, 1 (X, C) → C ∞ n-1, n (X, C) formula (42) reads v = i v ∧ ω n-1 (n -1)! , v ∈ C ∞ 0, 1 (X, C). ( 47 
)
Since ∂ = -∂ , we see that the condition ∂ v = 0 is equivalent to ∂(v ∧ ω n-1 ) = 0. Since ∂ω n-1 = 0 (by the balanced assumption), the last identity is equivalent to (∂v) ∧ ω n-1 = 0, which is precisely the condition that the (1, 1)-form ∂v be primitive. This proves (i).

The proof of (ii) runs along the same lines as that of (i) using the formula ∂ = -D when ∂ acts on T 1, 0 X-valued forms and D is the (1, 0)component of the Chern connection D of (T 1, 0 X, ω). Indeed, formula (47) still holds for T 1, 0 X-valued (0, 1)-forms θ in place of v and

D (θ ∧ ω n-1 ) = (D θ) ∧ ω n-1 -θ ∧ ∂ω n-1 = (D θ) ∧ ω n-1 ,
where the last identity follows from ω being balanced.

To prove (iii), fix an arbitrary form v ∈ C ∞ 0, 1 (X, C)∩ker ∂. Since ker ∆ = ker ∂ ∩ker ∂ , the condition ∆ v = 0 is equivalent for this v to ∂ v = 0, which is equivalent to ∂v being primitive by (i). We are thus reduced to proving for this v the equivalence : ∂v is primitive ⇐⇒ ∂v = 0.

Notice that ∂(∂v) = 0 thanks to the assumption ∂v = 0. Hence the pure-type form ∂v is d-closed and ∂-exact, so by the ∂ ∂-lemma it must be ∂ ∂-exact :

∂v = i∂ ∂ϕ for some C ∞ function ϕ : X → C.
Then we have the equivalences :

∂v is primitive ⇐⇒ Λ ω (i∂ ∂ϕ) = 0 ⇐⇒ ∆ ω ϕ = 0 ⇐⇒ ϕ is constant ,
where the last equivalence follows by the maximum principle from X being compact. Meanwhile, ϕ being constant is equivalent to the vanishing of i∂ ∂ϕ, hence to the vanishing of ∂v.

The conclusion of these considerations is that Question 4.11 may have a negative answer in general in the balanced case. Let us now notice that even the answer to the following weaker question may be negative in the balanced case.

Question 4.17 Is it true that on a balanced Calabi-Yau ∂ ∂-manifold, every primitive (n -1, 1)-class (in the sense of the ad hoc Definition 4.9) can be represented by a primitive form?

Let [θ u] ∈ H n-1, 1
prim (X, C) be a primitive class in the ad hoc sense. This means that θ ω n-1 is ∂-exact (for any representative θ of the class [θ] ∈ H 0, 1 (X, T 1, 0 X) [ω n-1 ] ). Pick any representative θ and any ∂-potential w ∈ C ∞ n-2, n-1 (X, C) of θ ω n-1 , i.e. ∂w = θ ω n-1 . Since [START_REF] Voisin | Hodge Theory and Complex Algebraic Geometry[END_REF]lemma 6.20,p. 146]), since there is a Lefschetz decomposition (cf. [Voi02, proposition 6.22, p. 147])

L n-3 ω : C ∞ 1, 2 (X, C) → C ∞ n-2, n-1 (X, C), α → ω n-3 ∧ α, is an isomorphism (see e.g.
Λ 1, 2 = Λ 1, 2 prim ⊕ ω ∧ Λ 0, 1
and since every C ∞ (0, 1)-form can be written as (n -1) ξ ω for a unique vector field ξ ∈ C ∞ (X, T 1, 0 X) (because ω is non-degenerate), we see that there is a unique primitive C ∞ form α 0 of type (1, 2) and a unique C ∞ vector field ξ of type (1, 0) such that

w = ω n-3 ∧ α 0 + (n -1) ω ∧ (ξ ω) = ω n-3 ∧ α 0 + ξ ω n-1 . (48) 
Consequently,

θ ω n-1 = ∂w = ∂(ω n-3 ∧ α 0 ) + ( ∂ξ) ω n-1 since ∂(ξ ω n-1 ) = ( ∂ξ) ω n-1 -ξ ( ∂ω n-1 ) (cf. (i) of Lemma 4.
3) and here ∂ω n-1 = 0 by the balanced assumption on ω. Thus we get

(θ -∂ξ) ω n-1 = ∂(ω n-3 ∧ α 0 ).
We see that θ -∂ξ represents the class [θ] ∈ H 0, 1 (X, T 1, 0 X) [ω n-1 ] , so (θ -∂ξ) u represents the class [θ u] ∈ H n-1, 1 prim (X, C). We know from Lemma 4.10 that the primitivity condition on the form (θ -∂ξ) u is equivalent to (θ -∂ξ) ω n-1 = 0, i.e. to ∂(ω n-3 ∧ α 0 ) = 0 in this case. However, we can see no reason why this vanishing should occur, part of the obstruction being the primitive (1, 2)-form α 0 .

Thus in the balanced, non-Kähler case, the answer to Question 4.17 may be negative in general.

Period map and Weil-Petersson metrics

We now fix an arbitrary balanced Calabi-Yau ∂ ∂-manifold X, dim C X = n. All the fibres (X t ) t∈∆ in the Kuranishi family of X = X 0 are again balanced Calabi-Yau ∂ ∂-manifolds if t is sufficiently close to 0 ∈ ∆. This follows from Wu's theorem in [START_REF] Wu | On the Geometry of Superstrings with Torsion -thesis[END_REF] and from the deformation openness of the triviality of the canonical bundle K Xt when the dimension of H n, 0 (X t , C) is locally independent of t (as the ∂ ∂ assumption ensures this to be the case here). Thus H n, 0 (X t , C) is a complex line varying holomorphically with t inside the fixed complex vector space H n (X, C). The canonical injection H n, 0 (X t , C) ⊂ H n (X, C) is induced by the ∂ ∂-lemma property of X t (cf. Lemma 3.1 and comments thereafter). The associated period map ∆ t → H n, 0 (X t , C) takes values in the complex projective space PH n (X, C) after identifying each complex line H n, 0 (X t , C) with the point it defines therein.

Period domain and the local Torelli theorem

Most of the material in this subsection before Theorem 5.4 is essentially known, but we take this oportunity to stress that only minimal assumptions are needed and to fix the notation for the rest of the paper.

Let ω be a Hermitian metric on X. All the formal adjoint operators and Laplacians will be calculated w.r.t. ω. The Hodge -operator by ω on n-forms

: C ∞ n (X, C) -→ C ∞ n (X, C) satisfies 2 = (-1) n , so it induces a decomposition C ∞ n (X, C) = Λ n + ⊕ Λ n -, (49) 
where Λ n ± stand for the eigenspaces of corresponding to the eigenvalues ±1 (if n is even), ±i (if n is odd). This decomposition is easily seen to be orthogonal for the L 2 scalar product induced by ω: for any u ∈ Λ n + and any v ∈ Λ n -, one easily checks that u, v = -u, v by writing u = u (if n is even) and u = -i ( u) (if n is odd) and using the easy-to-check identity u, v = (-1) n u, v for any n-forms u, v.

When is restricted to ∆-harmonic forms, it assumes ∆-harmonic values:

: 

H n ∆ (X, C) -→ H n ∆ (X,
: H n (X, C) -→ H n (X, C) (50) 
and we get a decomposition in cohomology analogous to (49):

H n (X, C) = H n + (X, C) ⊕ H n -(X, C), (51) 
where H n ± (X, C) are the eigenspaces of corresponding to the eigenvalues

±1 (if n is even), ±i (if n is odd). Thus H n + (X, C) (resp. H n -(X, C)) consists
of the De Rham classes {α} of degree n whose ∆-harmonic representative α lies in Λ n + (resp. Λ n -). Note that no assumption whatsoever (either Kähler or balanced) is needed on the Hermitian metric ω.

On the other hand, the Hodge-Riemann bilinear form can always be defined on the De Rham cohomology of degree n :

Q : H n (X, C) × H n (X, C) -→ C, ({α}, {β}) -→ (-1) n(n-1) 2 X α ∧ β := Q({α}, {β}). ( 52 
)
It is clear that Q(•, •) is independent of the choice of representatives α and β of the respective De Rham classes of degree n since no power of ω is involved in the definition of Q, so no Kähler or balanced or any other assumption is needed on ω unlike the case of the De Rham cohomology in degree k < n. Thus Q is independent of ω and of the complex structure of X, depending only on the differential structure of X. It is also clear that Q is non-degenerate since for any ∆-harmonic n-form α, ᾱ is again ∆-harmonic and

Q({α}, { ᾱ}) = (-1) n(n-1) 2 X α ∧ ᾱ = (-1) n(n-1) 2 X α, α ω dV ω = (-1) n(n-1) 2 ||α|| 2 ω = 0 if α = 0.
Hence the associated sesquilinear form

H : H n (X, C) × H n (X, C) -→ C, ({α}, {β}) -→ (-1) n(n+1) 2 i n X α ∧ β = (-i) n Q({α}, { β}) (53)
is non-degenerate. Proof. (a) Let α be a ∆-harmonic n-form such that the class {α} ∈ H n + (X, C). If n is even, α = α, hence taking conjugates we get ᾱ = ᾱ. Thus

H({α}, {α}) = (-1) n(n+1) 2 i n X α ∧ ᾱ = X |α| 2 ω dV ω = ||α|| 2 ω > 0 if α = 0, since (-1) n(n+1) 2
i n = i n 2 +2n = 1 when n is even. (Indeed, n 2 + 2n ∈ 4Z when n is even.) If n is odd, α = i α, hence taking conjugates we get ᾱ = -i ᾱ. Equivalently, ᾱ = i ᾱ. On the other hand, (-1) n(n+1) 2

i n = i n 2 +2n = -i when n is odd since n 2 + 2n ∈ 4Z + 3 in this case. We then get as above that again H({α}, {α}) = ||α|| 2 ω > 0 if α = 0. This proves (a). The proof of (b) is very similar and is left to the reader.

(c) Let α and β be ∆-harmonic n-forms such that {α} ∈ H n + (X, C) and {β} ∈ H n -(X, C). If n is even, this means that α = α and β = -β. Using the property β = -β, we get

H({α}, {β}) = -(-1) n(n+1) 2 i n X α ∧ β = -(-1) n(n+1) 2 i n α, β ω , (54) 
while using the property α = α, we get

H({α}, {β}) = (-1) n(n+1) 2 i n X α ∧ β = (-1) n 2 (-1) n(n+1) 2 i n X β ∧ α = (-1) n(n+1) 2 i n X β, α ω dV ω = (-1) n(n+1) 2 i n α, β ω ,( 55 
)
having used the fact (-1) n 2 = 1 since n is even and the identity β, α ω = α, β ω . The expressions (54) and (55) for H({α}, {β}) are now seen to differ only by a sign, hence H({α}, {β}) = 0. When n is odd, we have α = i α (hence α = -i α) and β = -i β (hence β = -i β). Using the former and then the latter of these two pieces of information, we get as above two expressions for H({α}, {β}) that differ only by a sign. Hence H({α}, {β}) = 0. We now bring in the complex structure of X (that is supposed to have the ∂ ∂ property which induces the inclusion H n, 0 (X, C) ⊂ H n (X, C)). Lemma 5.2 Let X be a compact complex ∂ ∂-manifold (dim C X = n). Then the following inclusions hold :

H n, 0 (X, C) ⊂ H n + (X, C) if n is even, H n, 0 (X, C) ⊂ H n -(X, C) if n is odd.
In particular, the restriction

H : H n, 0 (X, C) × H n, 0 (X, C) → C of H to H n, 0 (X, C) is positive definite if n is even and is negative definite
if n is odd thanks to Lemma 5.1 (hence we get a Hermitian metric on H n, 0 (X, C) defined by the scalar product induced by H when n is even and by -H when n is odd).

Before proving this statement, we make a trivial but useful observation.

Lemma 5.3 Let (X, ω) be any compact complex Hermitian manifold (dim C X = n). For every (n, 0)-form α, the following equivalence and implication hold :

∆ α = 0 ⇐⇒ ∆ α = 0 =⇒ ∆α = 0.
Proof. Since X is compact, ker ∆ = ker ∂∩ker ∂ and ker ∆ = ker ∂∩ker ∂ . However, ∂α = 0 and ∂ α = 0 for any (n, 0)-form α for trivial bidegree reasons. Hence, for any α ∈ C ∞ n, 0 (X, C), the following equivalences hold :

∆ α = 0 ⇔ ∂ α = 0 and ∆ α = 0 ⇔ ∂α = 0.
Consequently, from the identity ∂ = -∂ (cf. e.g. [Dem97, VI, §.5.1]) and from the fact that is an isomorphism, we get the equivalence : ∆ α = 0 ⇔ ∂( α) = 0. Since α is of type (n, 0), it is primitive (w.r.t. any metric, hence also w.r.t. ω), so formula (42) applied to α reads : α = (-1) n(n+1)/2 i n α.

Thus the previous equivalence implies the following equivalence :

∆ α = 0 ⇔ ∂α = 0,
while the equivalence ∂α = 0 ⇔ ∆ α = 0 has already been observed. We have thus proved the equivalence claimed in the statement. The implication claimed in the statement now follows from identity (43) applied to the puretype form α and the fact that ∆α, α ≥ 0 with equality if and only if ∆α = 0.

Proof of Lemma 5.2. Let [α] ∈ H n, 0 (X, C) be an arbitrary Dolbeault cohomology class of type (n, 0). Since the only ∂-exact form of type (n, 0) is the zero form, the class [α] contains a unique representative α. Clearly, α is of type (n, 0) and ∆ -harmonic, so from Lemma 5.3 we get ∆α = 0. On the other hand, formula (42) applied to α (which is primitive since it is of type (n, 0)) reads:

α = (-1) n(n+1)/2 i n α = i n(n+2) α. Hence, if n is even, α ∈ Λ n + since i n(n+2) = 1, while if n is odd, α ∈ Λ n -since i n(n+2) = -i. Therefore the De Rham cohomology class {α} ∈ H n (X, C) represented by the ∆-harmonic form α must belong to H n + (X, C) when n is even, resp. to H n -(X, C) when n is odd.
Let us now consider a holomorphic family (J t ) t∈∆ of Calabi-Yau ∂ ∂ complex structures on a compact differential manifold X. We set X t := (X, J t ) and let n := dim C X t for all t ∈ ∆. Notice that Q and H (cf. ( 52) and ( 53)) depend only on the differential structure of X. Thus,

C + := {α} ∈ H n (X, C) / H({α}, {α}) > 0 ⊂ H n (X, C),
and

C -:= {α} ∈ H n (X, C) / H({α}, {α}) < 0 ⊂ H n (X, C)
are open subsets of H n (X, C) and depend only on the differential structure of X. Furthermore, if we equip the fibres X t with a C ∞ family of arbitrary Hermitian metrics (ω t ) t∈∆ , the corresponding Hodge operator = t has eigenspaces

H n + (X t , C) and H n -(X t , C) (cf. ( 51 
)) depending on the complex structure J t via the metric ω t (which is in particular a J t -type (1, 1)-form). Lemma 5.1 ensures that

H n + (X t , C) \ {0} ⊂ C + and H n -(X t , C) \ {0} ⊂ C -
for all t ∈ ∆. Moreover, Lemmas 5.1 and 5.2 imply the following inclusions :

H n, 0 (X t , C) \ {0} ⊂ H n + (X t , C) \ {0} ⊂ C + ⊂ H n (X, C) if n is even, H n, 0 (X t , C) \ {0} ⊂ H n -(X t , C) \ {0} ⊂ C -⊂ H n (X, C) if n is odd. (56)
It is clear that for any class

ϕ t = [α t ] ∈ H n, 0 (X t , C), Q(ϕ t , ϕ t ) = 0 since α t ∧ α t = 0
for any form of J t -type (n, 0). Thus the period domain, containing the complex lines H n, 0 (X t , C) varying inside H n (X, C) when J t varies, can be defined as in the standard (i.e. Kähler) case as

D = {C-line l ⊂ H n (X, C) ; ∀ϕ ∈ l \ {0}, Q(ϕ, ϕ) = 0 and H(ϕ, ϕ) > 0}
if n is even (so, in particular, l ⊂ C + whenever l ∈ D), and as

D = {C-line l ⊂ H n (X, C) ; ∀ϕ ∈ l \ {0}, Q(ϕ, ϕ) = 0 and H(ϕ, ϕ) < 0}
if n is odd (so, in particular, l ⊂ C -whenever l ∈ D). Given the natural holomorphic embedding D ⊂ PH n (X, C), the complex manifold D is projective and is contained in the quadric defined by Q in PH n (X, C).

We can now show that the local Torelli theorem holds in this context.

Theorem 5.4 Let X be a compact Calabi-Yau ∂ ∂-manifold, dim C X = n, and let π : X -→ ∆ be its Kuranishi family. Then the associated period map

P : ∆ -→ D ⊂ PH n (X, C), ∆ t → H n, 0 (X t , C),
is a local holomorphic immersion.

Proof. As usual, we denote by (X t ) t∈∆ the fibres of the Kuranishi family of X = X 0 . They are all C ∞ -diffeomorphic to X and the holomorphic family (X t ) t∈∆ can be seen as a fixed C ∞ manifold X equipped with a holomorphic family of complex structures (J t ) t∈∆ . Let (u t ) t∈∆ be a holomorphic family of nowhere vanishing n-forms on X such that for every t ∈ ∆, u t is of type (n, 0) for the complex structure J t and ∂t u t = 0. The form u t identifies with the class [u t ] it defines in H n, 0 (X t , C), hence with the whole space H n, 0 (X t , C) = C u t . Thus the period map identifies with the map ∆ t → u t .

It suffices to prove that P is a local immersion at t = 0. Recall that in the present situation the Kodaira-Spencer map ρ : T 0 ∆ → H 0, 1 (X, T 1, 0 X) is an isomorphism (thanks to Theorem 1.2) and that for any tangent vector ∂/∂t ∈ T 0 ∆, the choice of a representative θ in the class ρ(∂/∂t) = [θ] ∈ H 0, 1 (X, T 1, 0 X) determines a C ∞ trivialisation Φ : X -→ ∆ × X 0 (after possibly shrinking ∆ about 0), which in turn determines about any pre-given point x ∈ X a choice of local J t -holomorphic coordinates z 1 (t), . . . , z n (t) for every t ∈ ∆.

Denote u = u 0 . Fix an arbitrary tangent vector ∂/∂t ∈ T 0 ∆ \ {0} and choose a representative θ of the class ρ(∂/∂t) ∈ H 0, 1 (X, T 1, 0 X) such that the representative θ u of the class [θ u] ∈ H n-1, 1 (X, C) is d-closed. This is possible by the ∂ ∂ assumption on X and by Lemmas 3.1 and 3.3. The asso-

ciated local C ∞ trivialisation Φ : X → ∆ × X 0 induces C ∞ diffeomorphisms Φ -1 t : X 0 → X t , t ∈ ∆,
so the differential of the period map at t = 0 in the ∂/∂t-direction identifies with

∂(Φ -1 t ) u t ∂t |t=0 = θ u + v on X, ( 57 
)
where v is some (n, 0)-form on X = X 0 . The identity in (57) can be proved in the usual way (see e.g. [Tia87, proof of Lemma 7.2]) : having fixed an arbitrary point x ∈ X, one writes

u t = f t dz 1 (t) ∧ • • • ∧ dz n (t) (58) 
where f t is a holomorphic function in a neighbourhood of x in X t and z 1 (t), . . . , z n (t) are the local J t -holomorphic coordinates about x determined by the choice of θ in the class ρ(∂/∂t). Taking ∂/∂t at t = 0 in (58), one finds on the right-hand side the sum of the form v = (∂f t /∂t) |t=0 dz 1 (0)∧• • •∧dz n (0) of J 0 -type (n, 0) with the form θ u of J 0 -type (n -1, 1). The latter form is easily seen to be the sum of the terms obtained by deriving one of the dz j (t) in (58) since, with the above choices of θ and z 1 (t), . . . , z n (t), we have ∂ ∂t (dz j (t)) |t=0 = θ dz j (0), j = 1, . . . , n.

Now, du t = 0 for all t, hence the left-hand term in (57) is a d-closed n-form on X. Thus d(θ u + v) = 0. By our choice of θ (based on a key application of the ∂ ∂ lemma), d(θ u) = 0, hence dv = 0. In particular, v is a ∂0 -closed form of J 0 -type (n, 0), so v = c u for some constant c ∈ C.

It is now clear that if (dP) 0 (∂/∂t) = 0, then θ u = 0 and v = c u = 0, so θ = 0 (since T u (θ) = θ u and T u is an isomorphism -see (5)), hence ∂/∂t = 0 (since the Kodaira-Spencer map is an isomorphism here). This last vanishing contradicts the choice of ∂/∂t = 0. We have thus shown that P is a local immersion at t = 0.

Weil-Petersson metrics on ∆

We start with a refinement of Lemma 3.1 singling out a particular d-closed representative of a given Dolbeault cohomology class on a ∂ ∂-manifold. Definition 5.5 Let X be a compact ∂ ∂-manifold equipped with an arbitrary Hermitian metric ω. Given any Dolbeault cohomology class [α] ∈ H p, q (X, C), let α be its ∆ ω -harmonic representative and let v min ∈ Im(∂ ∂) ⊂ C ∞ p, q-1 (X, C) be the solution of minimal L 2 norm (w.r.t. ω) of equation ( 3). The d-closed (p, q)-form α min := α + ∂v min will be called the ω-minimal d-closed representative of the class [α]. (It coincides with the ∆ ω -harmonic representative if ω is Kähler.)

A word of explanation is in order. Recall that the Aeppli cohomology group of type (p, q) is standardly defined as

H p, q A (X, C) = ker(∂ ∂ : C ∞ p, q (X) → C ∞ p+1, q+1 (X)) Im(∂ : C ∞ p-1, q (X) → C ∞ p, q (X)) + Im( ∂ : C ∞ p, q-1 (X) → C ∞ p, q (X))
and that the fourth-order Aeppli Laplacian ∆p, q A : C ∞ p, q (X, C) → C ∞ p, q (X, C) (cf. [START_REF] Kodaira | Spencer -On Deformations of Complex Analytic Structures, III. Stability Theorems for Complex Structures[END_REF], also [Sch07, 2.c., p. 9-10]) defined by ∆p, q

A := ∂∂ + ∂ ∂ + (∂ ∂) (∂ ∂) + (∂ ∂)(∂ ∂) + ∂ ∂ (∂ ∂ ) + (∂ ∂ ) ∂ ∂
is elliptic and thus induces a three-space decomposition C ∞ p, q (X, C) = ker ∆p, q A ⊕ (Im∂ + Im ∂) ⊕ Im(∂ ∂) that is orthogonal w.r.t. the L 2 scalar product defined by ω and in which ker(∂ ∂) = ker ∆p, q A ⊕ (Im∂ + Im ∂),

yielding the Hodge isomorphism H p, q A (X, C) ker ∆p, q A . Since the solution v of equation (3) is unique only modulo ker(∂ ∂), the solution of minimal L 2 norm is the unique solution lying in ker(∂ ∂) ⊥ = Im(∂ ∂) . Note that if the ∆ -harmonic representative α of the class [α] happens to be d-closed (for example, this is the case if the metric ω is Kähler), then ∂α = 0 and v min = 0, so α min = α. Thus α min can be seen as the minimal d-closed correction in a given Dolbeault class of the ∆ -harmonic representative of that class.

Recall that if we fix a compact balanced Calabi-Yau ∂ ∂-manifold (X, ω) (dim C X = n), the base space ∆ [ω n-1 ] of the local universal family (X t ) t∈∆ [ω n-1 ] of deformations of X that are co-polarised by the balanced class [ω n-1 ] ∈ H n-1, n-1 (X, C) identifies to an open subset of H 0, 1 (X, T 1, 0 X) [ω n-1 ] and

T t ∆ [ω n-1 ] H 0, 1 (X t , T 1, 0 X t ) [ω n-1 ] H n-1, 1 prim (X t , C), t ∈ ∆ [ω n-1 ] .
We shall now define two Weil-Petersson metrics on ∆ [ω n-1 ] induced by pregiven balanced metrics on the fibres X t whose (n -1) st powers lie in the co-polarising balanced class.

Definition 5.6 Fix any holomorphic family of nonvanishing holomorphic n-forms (u t ) t∈∆ on the fibres (X t ) t∈∆ . Let (ω t ) t∈∆ [ω n-1 ] be a C ∞ family of balanced metrics on the fibres (X t ) t∈∆ [ω n-1 ] such that ω n-1 t ∈ {ω n-1 } for all t and ω 0 = ω. The associated Weil-Petersson metrics G

W P and G

(2) W P

on ∆ [ω n-1 ] are defined as follows. For any t ∈ ∆ [ω n-1 ] and any 

[θ t ], [η t ] ∈ H 0, 1 (X t , T 1, 0 X t ) [ω n-1 ] , let G (1) 
] ∈ H n-1, 1 (X t , C) (resp. [η t u t ] ∈ H n-1, 1 (X t , C
)), while , stands for the L 2 scalar product induced by ω t on the spaces involved.

The C ∞ positive definite (1, 1)-forms on ∆ [ω n-1 ] associated with G

W P and G

(2) W P are denoted by ω

(1)

W P > 0 and ω

(2)

W P > 0 on ∆ [ω n-1 ] .
Since every u t is unique up to a constant factor, the definition of G

(2) W P is independent of the choice of the family (u t ) t∈∆ . From Lemma 3.2 we infer Observation 5.7 If the balanced metrics can be chosen such that Ric(ω t ) = 0 for all t ∈ ∆ [ω n-1 ] , then ω (1)

W P = ω (2) W P on ∆ [ω n-1 ] .

Metric on ∆ induced by the period map

Let L = O PH n (X, C) (-1) be the tautological line bundle on PH n (X, C). We will endow the restrictions of L to two open subsets of PH n (X, C) with Hermitian fibres metrics induced by H. We set :

U n + := [l] ∈ PH n (X, C) / l is a C-line such that l ⊂ C + ⊂ PH n (X, C),
and

U n -:= [l] ∈ PH n (X, C) / l is a C-line such that l ⊂ C -⊂ PH n (X, C),
where 

ω + F S = -i Θ h + L (L |U n + ) > 0 on U n + ⊂ PH n (X, C).
Likewise, for every [l] ∈ U n -, the fibre L [l] = l ⊂ C -is endowed with the scalar product defined by the restriction of -H. Thus L |U n -has a Hermitian fibre metric h - L induced by -H. The (negative) curvature form i Θ h - L (L |U n -) defines the associated Fubini-Study metric on U n -by

ω - F S = -i Θ h - L (L |U n -) > 0 on U n -⊂ PH n (X, C).
It follows from the above discussion that ω + F S and ω - F S depend only on the differential structure of X. Composing the period map with the holomorphic embedding D ι → PH n (X, C), we obtain a local holomorphic immersion ι•P : ∆ → PH n (X, C) (cf. Theorem 5.4). From (56), we get :

Im (ι • P) ⊂ U n + if n is even, Im (ι • P) ⊂ U n -if n is odd.
Taking the inverse image of ω + F S when n is even, resp. of ω - F S when n is odd, we get a Hermitian metric (i.e. a positive definite C ∞ (1, 1)-form) γ on ∆ which is actually Kähler :

γ := (ι • P) (ω + F S ) > 0 if n is even, γ := (ι • P) (ω - F S ) > 0 if n is odd.
Computation of γ. We can compute γ at any point t ∈ ∆ (e.g. at t = 0) in the same way as in [Tia87, §.7]. We spell out the details for the reader's convenience. Let (u t ) t∈∆ be a holomorphic family of nonvanishing holomorphic n-forms on the fibres (X t ) t∈∆ . Recall that a tangent vector (∂/∂t) |t=0 to ∆ at 0 identifies via the Kodaira-Spencer map with a class [θ] ∈ H 0, 1 (X, T 1, 0 X). Fix any such class [θ]. We will compute γ 0 ([θ], [θ]).

We have: t) , where ρ denotes the local weight function of the fibre metric t) , where ρ denotes the local weight function of the fibre metric

L ut = C • u t = H n, 0 (X t , C). Thus: (i) if n is even, then L ut ⊂ H n + (X t , C) and (-i) n Q(u t , ūt ) = H(u t , u t ) = |u t | 2 h + L = e -ρ(
h + L of L |U n + . We get ρ(t) = -log((-i) n Q(u t , ūt )); (ii) if n is odd, then L ut ⊂ H n -(X t , C) and -(-i) n Q(u t , ūt ) = -H(u t , u t ) = |u t | 2 h - L = e -ρ(
h - L of L |U n -. We get ρ(t) = -log(-(-i) n Q(u t , ūt )
). Now suppose that n is even. The curvature form of (L, h + L ) on a C-line C•t in a small neighbourhood of 0 equals i∂ t ∂t ρ(t), which in turn equals :

-i∂ t ∂t log((-i) n Q(u t , ūt )) = -i ∂ 2 log((-i) n Q(u t , ūt )) ∂t ∂ t dt ∧ d t,
This means that for [θ] = ρ(∂/∂t |t=0 ), using the fact that ∂ut ∂ t = 0 (since u t varies holomorphically with t), we get :

γ 0 ([θ], [θ]) = - ∂ 2 log((-i) n Q(u t , ūt )) ∂t ∂ t |t=0 = - ∂ ∂t (-1) n Q(u t , ∂ ūt ∂ t ) Q(u t , ūt ) |t=0 = (-1) n+1 Q( ∂ut ∂t |t=0 , ∂ ūt ∂ t |t=0 ) Q(u 0 , ū0 ) - Q( ∂ut ∂t |t=0 , ū0 ) • Q(u 0 , ∂ ūt ∂ t |t=0 ) Q(u 0 , ū0 ) 2 .
Now recall that in the proof of Theorem 5.4 a key application of the ∂ ∂ lemma enabled us to choose the representative θ of the class [θ] such that d(θ u) = 0. With this choice, if u:= u 0 , in formula (57) we had v = c u and

∂u t ∂t |t=0 = θ u + c u,
where c ∈ C is a constant, if we identify u t with (Φ -1 t ) u t when Φ t : X t → X 0 (t ∈ ∆) denote the C ∞ isomorphisms induced by the choice of θ in [θ]. Using this, the above formula for γ

0 ([θ], [θ]) translates to γ 0 ([θ], [θ]) = (-1) n+1 Q(u, ū) • Q(θ u, θ u) + |c| 2 Q(u, ū) 2 -|c| 2 Q(u, ū) 2 Q(u, ū) 2 = (-1) n+1 Q(θ u, θ u) Q(u, ū) = -H({θ u}, {θ u}) i n 2 X u ∧ ū .
In the case when n is odd, the formula for γ 0 ([θ], [θ]) gets an extra (-1) factor. The conclusion of these calculations is summed up in the following Lemma 5.8 The Kähler metric γ defined on ∆ by γ := (ι • P) (ω + F S ) > 0 when n is even and by γ := (ι • P) (ω - F S ) > 0 when n is odd, is independent of the choice of any metrics on (X t ) t∈∆ and is explicitly given by the formula :

γ t ([θ t ], [θ t ]) = - X (θ t u t ) ∧ (θ t u t ) i n 2 X u t ∧ ūt = -H({θ t u t }, {θ t u t }) i n 2 X u t ∧ ūt , if n is even, γ t ([θ t ], [θ t ]) = -i X (θ t u t ) ∧ (θ t u t ) i n 2 X u t ∧ ūt = H({θ t u t }, {θ t u t }) i n 2 X u t ∧ ūt , if n is odd, for every t ∈ ∆ and every [θ t ] ∈ H 0, 1 (X t , T 1, 0 X t ).
In particular, we see that

γ t ([θ t ], [θ t ]) is independent of the choice of repre- sentative θ t in the class [θ t ] ∈ H 0, 1 (X t , T 1, 0 X t ) such that θ t u t is d-closed.
Since for every t ∈ ∆, u t is unique up to a constant factor, γ is independent of the choice of holomorphic family (u t ) t∈∆ of J t -holomorphic n-forms.

Notice that i n 2 u t ∧ ūt > 0 at every point of X t for any non-vanishing (n, 0)-form u t . On the other hand, it follows from Lemma 5.9 below that H({θ t u t }, {θ t u t }) < 0 when n is even and that H({θ C) can be chosen to be primitive. This reproves that γ t ([θ t ], [θ t ]) > 0 in this case (which does occur if primitivess is taken w.r.t. a Kähler metric).

t u t }, {θ t u t }) > 0 when n is odd if a d-closed representative θ t u t of the class [θ t u t ] ∈ H n-1, 1 (X t , C) ⊂ H n (X,

Comparison of metrics on ∆

We shall now compare the Weil-Petersson metric ω

(2) W P with the period-map metric γ on ∆ [ω n-1 ] . We need a general fact first. Let X be a compact complex manifold (dim C X = n) equipped with a Hermitian metric ω and let : Λ n-1, 1 → Λ n-1, 1 be the Hodge operator defined by ω on (n -1, 1)-forms. (Here Λ n-1, 1 stands for the space C ∞ n-1, 1 (X, C) of global smooth forms of bidegree (n -1, 1) on X although acts even pointwise on forms.) Since 2 = (-1) n , induces a decomposition that is orthogonal for the L 2 scalar product defined by ω on X (cf. §.5.1) :

Λ n-1, 1 = Λ n-1, 1 - ⊕ Λ n-1, 1 + (the duality decomposition), (62) 
where Λ n-1, 1 ± stand for the eigenspaces of corresponding to the eigenvalues ±1 (if n is even), ±i (if n is odd). On the other hand, the Hermitian metric ω induces the Lefschetz decomposition (cf. [Voi02, proposition 6.22, p. 147])

L n-1 ω : H 1, 1 (X, C) → H n, n (X, C) C, [α] → [ω n-1 ∧ α], (71) 
is well defined because, thanks to the balanced assumption on ω, ∂(ω n-1 ∧α) = 0 whenever ∂α = 0 and ω n-1 ∧ α = ∂(ω n-1 ∧ β) whenever α = ∂β is ∂-exact. We can then call primitive those classes that are in the kernel of L n-1 ω , i.e.

H 1, 1 prim (X, C) := {[α] ∈ H 1, 1 (X, C) ; ω n-1 ∧ α is ∂ -exact}. ( 72 
)
Analogous definitions can be made for De Rham 2-classes and Dolbeault (2, 0) and (0, 2)-classes, but all (2, 0) and (0, 2)-classes are primitive for trivial bidegree reasons. Thus, if the ∂ ∂-lemma is supposed to hold on X, the Hodge decomposition

H 2 (X, C) = H 2, 0 (X, C) ⊕ H 1, 1 (X, C) ⊕ H 0, 2 (X, C)
shows that only the H 1, 1 (X, C) component supports a nontrivial notion of primitivity. Notice that for k > 2, there is no corresponding notion of primitive k-classes if ω is only balanced since ω n-k+1 is not closed unless ω is Kähler. It had to be replaced in bidegree (n -1, 1) by the ad-hoc definition 4.9 using the Calabi-Yau isomorphism when K X was assumed to be trivial.

Lemma 6.1 Let (X, ω) be a compact, balanced manifold (dim C X = n). Then a class [α] ∈ H 1, 1 (X, C
) is primitive if and only if it can be represented by a primitive form.

Proof. By the standard definition (applicable to any Hermitian metric ω), a (1, 1)-form α is primitive if ω n-1 ∧ α = 0. It is thus obvious that any class representable by a primitive form is primitive. To see the converse, pick any class [α] ∈ H 1, 1 prim (X, C) and any representative α. We have to prove the existence of a (1, 0)-form u such that the representative α + ∂u of [α] is primitive. This amounts to ω n-1 ∧ (α + ∂u) = 0, which is equivalent to ∂(ω n-1 ∧ u) = -ω n-1 ∧ α thanks to the balanced assumption ∂ω n-1 = 0. Now, ω n-1 ∧ α is ∂-exact by the primitivity assumption on the class

[α]. Pick any w ∈ C ∞ n, n-1 (X, C) such that ∂w = -ω n-1 ∧ α.
It thus suffices to prove the existence of a (1, 0)-form u such that ω n-1 ∧ u = w. The linear operator

L n-1 ω : C ∞ 1, 0 (X, C) → C ∞ n, n-1 (X, C), u → ω n-1 ∧ u, (73) 
is an isomorphism (for any Hermitian metric ω), so there is a unique (1, 0)form u such that ω n-1 ∧ u = w.

The primitive representative of a primitive class [α] ∈ H 1, 1 (X, C) need not be unique, but we can single out a particular one that is uniquely determined by the metric ω in the given primitive class in the following way. Lemma 6.3 Let X be a compact complex manifold (dim C X = n) admitting a holomorphic symplectic structure σ that is unique up to a constant factor. (i) The linear map defined by σ as

T σ : C ∞ 0, 1 (X, T 1, 0 X) • σ -→ C ∞ 1, 1 (X, C), θ → T σ (θ) := θ σ, (74) 
is an isomorphism satisfying the following properties :

T σ (ker ∂) = ker ∂ and T σ (Im ∂) = Im ∂. ( 75 
)
Consequently, T σ induces an isomorphism in cohomology

T [σ] ; H 0, 1 (X, T 1, 0 X) • [σ] -→ H 1, 1 (X, C) (76) 
defined by T [σ] ([θ]) = [θ σ] for all [θ] ∈ H 0, 1 (X, T 1, 0 X). (ii) If ω is a balanced metric on X, then the image under T [σ] of the sub- space H 0, 1 (X, T 1, 0 X) [ω n-1 ] ⊂ H 0, 1 (X, T 1, 0 X) defined in (20) is the subspace H 1, 1 prim (X, C) ⊂ H 1, 1 (X, C) of primitive (1, 1)-classes defined in (72), i.e. T [σ] : H 0, 1 (X, T 1, 0 X) [ω n-1 ] -→ H 1, 1 prim (X, C). (77) 
Proof. It is clear that T σ is an isomorphism. As in the proof of Lemma 3.3, the rest of (i) follows from the easy-to-check formulae The remaining inclusion in the former identity of (75) is proved in a similar way.

∂(θ σ) = ( ∂θ) σ + θ ( ∂σ) = ( ∂θ) σ, ∂(ξ σ) = ( ∂ξ) σ -ξ ( ∂σ) = ( ∂ξ) σ(78) for all θ ∈ C ∞ 0, 1 (X, T 1, 0 X) and all ξ ∈ C ∞ (X, T 1, 0 X)
The proof of (ii) will run in two steps. First we prove the inclusion

T [σ] H 0, 1 (X, T 1, 0 X) [ω n-1 ] ⊂ H 1, 1 prim (X, C), (79) 
which amounts to proving that for every class [θ] ∈ H 0, 1 (X, T 1, 0 X) for which θ ω n-1 is ∂-exact, ω n-1 ∧ (θ σ) is also ∂-exact. Now, we always have 0 = θ (ω n-1 ∧ σ) = (θ ω n-1 ) ∧ σ + ω n-1 ∧ (θ σ),

where the first identity follows from the fact that ω n-1 ∧ σ is of type (n + 1, n -1), hence vanishes. Thus (θ ω n-1 ) ∧ σ = -ω n-1 ∧ (θ σ) for all θ ∈ C ∞ 0, 1 (X, T 1, 0 X). Now, if θ ω n-1 is supposed to be ∂-exact, then (θ ω n-1 ) ∧ σ is ∂-exact, too, since σ is ∂-closed. Hence ω n-1 ∧(θ σ) is ∂-exact whenever θ ω n-1 is, proving the inclusion (79).

Since T [σ] is injective by (i), it suffices to prove the dimension equality dim H 0, 1 (X, T 1, 0 X)

[ω n-1 ] = dim H 1, 1 prim (X, C) (80) 
to be able to conclude that the inclusion (79) is actually an identity. By definition (72), we have

H 1, 1 prim (X, C) = ker L n-1 ω : H 1, 1 (X, C) → H n, n (X, C) C .
The linear map (71) cannot vanish identically, so it is surjective. Hence dim H 1, 1 prim (X, C) = h 1, 1 -1, (

where h 1, 1 := dim H 1, 1 (X, C). Meanwhile, definition (20) translates to H 0, 1 (X, T 1, 0 X) [ω n-1 ] = ker H 0, 1 (X, T 1, 0 X) [θ]

T [ω n-1 ]
-→ [θ ω n-1 ] ∈ H n-2, n (X, C) , while H n-2, n (X, C) H 2, 0 (X, C) C by Serre duality and the uniqueness (up to a constant factor) assumption on the holomorphic symplectic structure [σ] ∈ H 2, 0 (X, C). It is clear that the linear map T [ω n-1 ] does not vanish identically, so it must be surjective. Thus we get dim H 0, 1 (X, T 1, 0 X) [ω n-1 ] = dim H 0, 1 (X, T 1, 0 X)

-1 = h 1, 1 -1, ( 82 
)
where the last identity follows from the isomorphism (76) dealt with under (i). It is now clear that the dimension equality (80) is a consequence of the combined identities (81) and (82). The proof is complete.

The use of the isomorphism T [σ] in (76) in the holomorphic symplectic case may be an alternative to the use of the isomorphism T [u] in (9) of the more general Calabi-Yau case while running the construction of the Weil-Petersson metrics of section 5.

Appendix

We start by briefly recalling Wu's argument in [START_REF] Wu | On the Geometry of Superstrings with Torsion -thesis[END_REF] proving the deformation openness of the simultaneous occurence of the ∂ ∂ and balanced properties (and even more).

Theorem 7.1 (C.-C. Wu [START_REF] Wu | On the Geometry of Superstrings with Torsion -thesis[END_REF]) Let (X t ) t∈∆ be a holomorphic family of compact complex manifolds.

If the fibre X 0 is a balanced ∂ ∂-manifold, the fibre X t is again a balanced ∂ ∂-manifold for every t ∈ ∆ sufficiently close to 0.

Moreover, every balanced metric ω 0 on X 0 deforms to a family of balanced metrics ω t on X t varying in a C ∞ way with t for t in a small enough neighbourhood of 0.

Proof. We reproduce Wu's arguments in a slightly different notation. Let (γ t ) t∈∆ be an arbitrary C ∞ family of Hermitian metrics on the fibres (X t ) t∈∆ . If ∆ BC (t) denotes the Bott-Chern Laplacian (cf. [START_REF] Kodaira | Spencer -On Deformations of Complex Analytic Structures, III. Stability Theorems for Complex Structures[END_REF]) induced by the metric γ t , the following 3-space orthogonal decomposition is well-known (see e.g. [START_REF] Schweitzer | Autour de la cohomologie de Bott-Chern[END_REF] or [START_REF] Popovici -Aeppli | Cohomology Classes Associated with Gauduchon Metrics on Compact Complex Manifolds -Bull[END_REF] for some background) in every bidegree (p, q): Let ω 0 be a balanced metric on X 0 and n the complex dimension of X t . Then ω n-1 0 ∈ ker ∂ 0 ∩ ker ∂0 , so ω n-1 0 = F 0 ω n-1 0 + ∂ 0 ∂0 (∂ 0 ∂0 ) ∆ -1 BC (0) ω n-1 0 . Extend ω 0 in an arbitrary way to Hermitian metrics ω t varying in a C ∞ way with t on the nearby fibres X t such that ω 0 = ω 0 . Put Ω t := Re (F t ω n-1 t

C ∞ p,
+ ∂ t ∂t (∂ t ∂t ) ∆ -1 BC (t) ω n-1 t ), t ∈ ∆.
By construction, every Ω t is a C ∞ , real, J t -type (n -1, n -1)-form on X t such that dΩ t = 0 for every t. Moreover, Ω 0 = ω n-1 0 . Now, since X 0 is a ∂ ∂-manifold, the fibres X t are again ∂ ∂-manifolds for every t close to 0 by Wu's first main result in [START_REF] Wu | On the Geometry of Superstrings with Torsion -thesis[END_REF] and the dimensions h p, q (t) of the Bott-Chern cohomology spaces H p, q BC (t) are independent of t close to 0 by Wu's main technical preliminary result. Thanks to the Hodge isomorphism H p, q BC (t) ker ∆ BC (t) and to the classical Kodaira-Spencer theory for smooth families of elliptic operators, this implies that the operators F t and ∆ BC (t) -1 vary in a C ∞ way with t. Therefore, the real differential forms Ω t vary in a C ∞ way with t. Since Ω 0 = ω n-1 0 > 0, we get by continuity that Ω t > 0 for every t sufficiently close to 0.

Taking the (unique) (n -1) st root ω t > 0 of Ω t > 0 for t close to 0, we get a C ∞ family of balanced metrics ω t on the fibres X t whose element corresponding to t = 0 coincides with the original ω 0 .

We can now prove the following observation that was used in the paper. While independent of the above approach of Wu, the proof uses similar techniques and, in particular, reproves Theorem 7.1. Observation 7.2 Let (X t ) t∈∆ be a holomorphic family of n-dimensional compact complex manifolds such that the fibre X 0 is a balanced ∂ ∂-manifold. We denote by X the differentiable manifold underlying the fibres X t (after possibly shrinking ∆ about 0.)

Let ω 0 be a balanced metric on X 0 and suppose that the De Rham class {ω n-1 0 } DR ∈ H 2n-2 DR (X, C) is of type (n -1, n -1) for the complex structure J t of X t for all t close to zero and lying on a path through 0 in ∆.

Similar calculations yield

( ∂ξ) ω n-1 = (-1) n i n-1 β j<α (-1) β (-1) j ∂ξ j ∂ zβ γ αβ -(-1) α ∂ξ α ∂ zβ γ jβ dz j ∧ dz α ,(85)

showing that ( ∂ξ) ω n-1 equals the sum of the second and fourth groups of terms in the expression (84) for ( ∂ξ) ω n-1 . On the other hand, we get Thus ξ ∂ω n-1 equals the sum multiplied by (-1) of the first and third groups of terms in the expression (84) for ∂(ξ ω n-1 ). Combining with (84) and (85), we get the identity claimed in (i). Similar calculations prove (ii).

Observation 2. 1

 1 There exist compact balanced ∂ ∂-manifolds that are not of class C. In other words, the class of compact balanced ∂ ∂-manifolds strictly contains Fujiki's class C.

  Definition 4.1 Having fixed a balanced class

  C) since ∆ := dd + d d commutes with as is well known to follow from the standard formula d = -d . Thus the Hodge isomorphism H n (X, C) H n ∆ (X, C) mapping any De Rham class to its ∆-harmonic representative extends the definition of to the De Rham cohomology of degree n :

Lemma 5. 1

 1 (a) H({α}, {α}) > 0 for every class {α} ∈ H n + (X, C) \ {0}. Hence H defines a positive definite sesquilinear form (i.e. a Hermitian metric) on H n + (X, C). (b) H({α}, {α}) < 0 for every class {α} ∈ H n -(X, C) \ {0}. (c) H({α}, {β}) = 0 for every class {α} ∈ H n + (X, C) and every class {β} ∈ H n -(X, C). Hence the decomposition (51) is orthogonal for H.

  which readily imply the inclusions T σ (ker ∂) ⊂ ker ∂ and T σ (Im ∂) ⊂ Im ∂.Let us prove, for example, the identity Im ∂ = T σ (Im ∂). This amounts to proving that θ is ∂-exact if and only if θ σ is ∂-exact. Having fixed local holomorphic coordinates z 1 , . . . , z n on some open subset U ⊂ X, letθ = α dz β and σ = α, δ σ α, δ dz α ∧ dz δ ,where the coefficients σ α, δ are holomorphic functions (since σ is holomorphic) and the matrix (σ α, δ ) α, δ is invertible at every point since σ is non-degenerate at every point. Thenθ σ = α, β, δ θ α β (σ α, δ -σ δ, α ) dz β ∧dz δ . Thus θ σ is ∂-exact if and only if there exists a (1, 0)-form v = δ v δ dz δ such that θ σ = ∂v, which amounts to α, β, δ θ α β (σ α, δ -σ δ, α ) dz β ∧dz δ = δ, β ∂v δ ∂ zβ dz β ∧dz δ ⇔ α θ α β (σ α, δ -σ δ, α ) = ∂v δ ∂ zβ for all β, δ. The last identity is equivalent to θ α β = δ ∂v δ ∂ zβ (σ δ, α -σ α, δ ) = ∂ ∂ zβ ( δ (σ δ, α -σ α, δ ) v δ) for all α, β, where the matrix (σ δ, α ) α, δ is the inverse of (σ α, δ ) α, δ . (We have used the fact that the σ δ, α 's are holomorphic functions since the σ α, δ 's are.) This, in turn, is equivalent to θ = ∂(α ( δ (σ δ, ασ α, δ ) v δ ) ∂ ∂z α ), i.e.to θ being ∂-exact. We have thus proved that θ σ is ∂-exact if and only if θ is ∂-exact, i.e. the latter identity in (75).

  ∂ω n-1 = (-1) n i n-1 α,β (-1) β ∂γ αβ ∂ zβ dz α , leading to ξ ∂ω n-1 = (-1) n i n-1 β j<α (-1) j+β-1 ξ j ∂γ αβ ∂ zβ dz j ∧ dz α + (-1) n i n-1 β j>α (-1) j+β ξ j ∂γ αβ ∂ zβ dz α ∧ dz j = (-1) n i n-1 β j<α (-1) β (-1) j-1 ξ j ∂γ αβ ∂ zβ + (-1) α ξ α ∂γ jβ ∂ zβ dz j ∧ dz α .

  while ||dv|| 2 = ||∂v|| 2 + || ∂v|| 2 (because ∂v and ∂v are pure-type forms of different types, hence orthogonal) and similarly ||d v|| 2 = ||∂ v|| 2 + || ∂ v|| 2 (because ∂ v and ∂ v are orthogonal for the same reason).

  (resp. η t ) is chosen in its class [θ t ] (resp. [η t ]) such that θ t u t (resp. η t u t ) is the ω t -minimal d-closed representative of the class [θ t u t

	W P ([θ t ], [η t ]) :=	θ t , η t dV ωt	, (where dV ωt :=	ω n t n!	)	(60)
		Xt				
	G (2) W P ([θ t ], [η t ]) :=	θ t u t , η t u t i n 2 Xt u t ∧ ūt	,			(61)
	where θ t					

  [l] denotes the point in PH n (X, C) defined by the line l ⊂ H n (X, C). It follows from the discussion of C + and C -in §.5.1 that U n + and U n -are open subsets of PH n (X, C) and depend only on the differential structure of X.Moreover, for every [l] ∈ U n + , the fibreL [l] = l ⊂ C + isendowed with the scalar product defined by the restriction of H. Thus L |U n + has a Hermitian fibre metric h + L induced by H. The (negative) curvature form i Θ h +

	defines the associated Fubini-Study metric on U n + by	L	(L |U n + )

  q (X t , C) = ker ∆ BC (t) ⊕ Im (∂ t ∂t ) ⊕ (Im ∂ t + Im ∂ t ), t ∈ ∆, (83) where ker ∂ t ∩ ker ∂t = ker ∆ BC (t) ⊕ Im (∂ t ∂t ). Letting F t stand for the orthogonal projection w.r.t. the L 2 γt inner product onto ker ∆ BC (t) and letting ∆ -1 BC (t) stand for the Green operator of the elliptic operator ∆ BC (t), every form α t ∈ C ∞ p, q (X t , C) splits uniquely as α t = F t α t + ∆ BC (t)∆ -1 BC (t)α t . Moreover, if α t ∈ ker ∂ t ∩ ker ∂t , this splitting reduces to α t = F t α t + ∂ t ∂t (∂ t ∂t ) ∆ -1 BC (t) α t . (See Wu's original argument or the later Theorem 4.1 in [Pop15].)

Dolbeault cohomology classes will be denoted by [ ], De Rham cohomology classes will be denoted by { }.

Since the first version of this paper was posted on the arXiv, an analogue of this problem for Gauduchon metrics in the context of the Aeppli cohomology has been introduced in[START_REF] Popovici -Aeppli | Cohomology Classes Associated with Gauduchon Metrics on Compact Complex Manifolds -Bull[END_REF], also considered in[START_REF] Tosatti | Weinkove -Hermitian Metrics, (n -1, n -1)-forms and Monge-Ampère Equations[END_REF] and completely solved in[START_REF] Székelyhidi | Weinkove -Gauduchon Metrics with Prescribed Volume Form[END_REF], but the balanced case put forward here currently seems out of reach.

which is again orthogonal for the L 2 scalar product defined by ω on X, where Λ n-1, 1 prim denotes the space of primitive (n-1, 1)-forms u (i.e. those u ∈ Λ n-1, 1 for which ω ∧ u = 0 or, equivalently, Λu = 0), while ω ∧ Λ n-2, 0 denotes the space of forms ω ∧ v with v an arbitrary form of bidegree (n -2, 0). Lemma 5.9 The decompositions (62) and (63) coincide up to order, i.e.

Proof. It suffices to prove the inclusions :

Let u ∈ Λ n-1, 1 prim . Formula (42) gives u = (-1) n(n+1)/2 i n-2 u = i n 2 +2n-2 u.

This proves inclusions (A).

To prove inclusions (B), we first prove the following formula

On the other hand, the following formula holds

where for the first identity we have used the fact that L 2 u = 0 since L 2 u is of type (n + 1, 3), while for the second identity we have used the standard formula (29) with r = 2 and k = n. Applying (66) on the top line below, for every u ∈ Λ n-1, 1 we get

where the last identity on the second line above has followed from the formula

It is clear that the combination of ( 65) and (67) proves formula (64).

With (64) in place, inclusions (B) follow immediately. Indeed, if n is even,

For any θ ∈ C ∞ 0, 1 (X, T 1, 0 X), we denote by

the decomposition of θ u ∈ Λ n-1, 1 induced by the Lefschetz decomposition (63). Thus θ u ∈ Λ n-1, 1 prim and ζ ∈ Λ n-2, 0 . By orthogonality we have Theorem 5.10 Let X be a compact balanced Calabi-Yau ∂ ∂-manifold of complex dimension n. Then the metrics G

(2) W P and γ on the base space ∆ [ω n-1 ] of the local universal family of deformations of X that are co-polarised by a given balanced class

] by the formulae (see notation (68)) :

) (where the ω t ∈ {ω n-1 } are balanced metrics in the co-polarising balanced class given beforehand).

Proof. We may assume that t = 0. Formula (69) follows immediately from (61) and from the above considerations. To get (70), notice that Lemma 5.9 shows that if n is even, then θ u = (-θ u + ω ∧ ζ), from which we get

Now (70) follows from these expressions and from Lemma 5.8.

hence the Hermitian metric ω

(2)

W P is bounded below by the Kähler metric γ.

It is now clear that the obstruction to the metrics ω

(2) W P and γ coinciding on ∆ [ω n-1 ] is the possible negative answer to Question 4.11 in the case of balanced, non-Kähler fibres. Indeed, if every class in H n-1, 1 prim (X t , C) could be represented by a form η t u t that is both primitive and d-closed, we would have, thanks to Lemma 5.9, that (η t u t ) = c (η t u t ) with c = -1 (if n is even), c = -i (if n is odd). Hence, from Lemma 5.8, we would get ω

(2) W P = γ as in the case of Kähler polarised deformations of [START_REF] Tian | Smoothness of the Universal Deformation Space of Compact Calabi-Yau Manifolds and Its Petersson-Weil Metric -Mathematical Aspects of String Theory[END_REF] since formula (61) can be re-written in the following obvious way :

) enables one to define the notion of primitive 2-classes on X in the same way as in the standard Kähler case. Indeed, at the level of Dolbeault cohomology, the linear operator Choice of a primitive representative : given a primitive (1, 1)-class, let α be its ∆ ω -harmonic representative. Then choose w ∈ C ∞ n n-1 (X, C) to be the solution of minimal L 2 -norm (w.r.t. ω) of the equation ∂w = -ω n-1 ∧ α. Since the map (73) is an isomorphism, the (1, 0)-form u such that ω n-1 ∧u = w is uniquely determined by w. Since the above choices of α and w make them unique, the primitive representative α + ∂u of the primitive class [α] is uniquely determined in this way by ω and

When ω is Kähler, the ∆ ω -harmonic representative α of a primitive class is a primitive form, a standard fact that follows from ∆ ω and L ω commuting (as can be easily seen from the Kähler identities). Thus ω n-1 ∧ α = 0, hence w = 0 is the minimal L 2 -norm solution of equation ∂w = -ω n-1 ∧ α. Consequently, u = 0 and α+ ∂u = α, showing that our choice ( ) of primitive representative coincides with the standard ∆ ω -harmonic choice when ω is Kähler. However, when ω is only balanced, it is not clear whether the ∆ ωharmonic representative of a primitive class is a primitive form. This accounts for the need of introducing the choice ( ).

Co-polarised deformations of holomorphic symplectic manifolds

Let (X, ω) be a compact, balanced ∂ ∂-manifold (dim C X = n). Suppose there exists a C ∞ ∂-closed (2, 0)-form σ that is non-degenerate at every point of X and that such a σ is unique up to a nonzero constant factor. Thus H 2, 0 (X, C) C and σ defines a holomorphic symplectic structure on X. The form σ naturally identifies with the class [σ] ∈ H 2, 0 (X, C).

It follows from the ∂ ∂-assumption on X that σ is actually d-closed by the following observation which is standard when X is Kähler (and probably also under the weaker ∂ ∂-assumption). The standard Kähler-case proof, using the Laplacian equality ∆ = ∆ , no longer holds in the ∂ ∂-case for which we spell out the argument below for the sake of completeness. Lemma 6.2 Every holomorphic p-form is d-closed on any compact complex ∂ ∂-manifold X for any 0 ≤ p ≤ n = dim C X.

Proof. Fix any p and let α ∈ C ∞ p, 0 (X, C) be ∂-closed. To show that dα = 0, it suffices to show that ∂α = 0. Now, ∂α is ∂-closed since α is, while ∂ and ∂ anti-commute. Thus ∂α is a d-closed, ∂-exact form of pure type (p+1, 0). By the ∂ ∂-lemma, ∂α must be ∂ ∂-exact, i.e. ∂α = ∂ ∂β for some (p, -1)-form β. Since β must vanish for type reasons, ∂α vanishes.

We are now ready to connect the primitive (1, 1)-cohomology to the parameter space of co-polarised deformations defined by a balanced class via the natural isomorphism associated with the holomorphic symplectic structure.

Then, the De Rham class {ω n-1 0 } DR contains a J t -balanced metric for every t as above sufficiently close to 0.

Proof. Since X t is a ∂ ∂-manifold for every t close to 0, there are canonical isomorphisms H p, q BC (X t , C) H p, q A (X t , C) (for every (p, q)) and

be the splitting of ω n-1 0 into components of pure J t -types. In particular, Ω n-1, n-1 t is a real J t -type (n -1, n -1)-form that varies in a C ∞ way with t and is positive definite for every t sufficiently close to 0 since Ω n-1, n-1

Meanwhile, since dω n-1 0 = 0, it is easy to see (cf. e.g. [START_REF] Popovici -Aeppli | Cohomology Classes Associated with Gauduchon Metrics on Compact Complex Manifolds -Bull[END_REF]) that

) defined by the latter cohomology splitting above.

To construct the image of

), we can proceed as in [START_REF] Popovici -Aeppli | Cohomology Classes Associated with Gauduchon Metrics on Compact Complex Manifolds -Bull[END_REF] and look for the "most economic choice" of a

If we choose v t := ūt , the latter equation becomes redundant, while the minimal L 2 γt -norm solution of the former equation (which is solvable since X t is a ∂ ∂-manifold) is given by the following Neumann-type formula (see [START_REF] Wu | On the Geometry of Superstrings with Torsion -thesis[END_REF] or [START_REF] Popovici -Aeppli | Cohomology Classes Associated with Gauduchon Metrics on Compact Complex Manifolds -Bull[END_REF]):

after possibly shrinking ∆ about 0 to ensure that X t is a ∂ ∂-manifold. (As usual, we have fixed an arbitrary C ∞ family (γ t ) t∈∆ of Hermitian metrics on the fibres (X t ) t∈∆ .) Then, for all t close to 0, we get

= 0 (the last identity being a consequence of ω 0 being balanced), so the minimal L 2 -norm solution of this equation is u 0 = 0. Note that u t , hence also Ω n-1, n-1 t , depends in a C ∞ way on t for the same reason as in Wu's proof of Theorem 7.1: the ∂ ∂-assumption implies the invariance w.r.t. t of the Bott-Chern numbers h p, q BC (t), which implies the smooth dependence on t of ∆ -1 BC (t).

We have thus constructed a C ∞ family of real d-closed J t -(n -1, n -1)forms Ω n-1, n-1 t such that Ω n-1, n-1 0 = ω n-1 0 > 0. By continuity, we must have Ω n-1, n-1 t > 0, hence Ω n-1, n-1 t defines a balanced metric on X t , for all t close to 0. (In particular, this gives another proof of Wu's Theorem 7.1.)

Moreover,

} DR for all t sufficiently close to 0 and lying on the path through 0 in ∆ along which {ω n-1 0 } DR is assumed to be of J t -type (n -1, n -1). Thus, the class {ω n-1 0 } DR contains the J t -balanced metric Ω n-1, n-1 t for all these t's.

The other issue dealt with in this appendix is the following computation. (-1) j-1 ξ j γ αβ (dz j ∧ dz α ∧ dz β ) + i n-1 β j>α (-1) j ξ j γ αβ (dz α ∧ dz j ∧ dz β ) = i n-1 β j<α (-1) j-1 ξ j γ αβ + (-1) α ξ α γ jβ (dz j ∧ dz α ∧ dz β ),

where we have used the notation (dz j ∧ dz α ∧ dz β ) :

Hence, by applying ∂, we get ∂(ξ ω n-1 ) = i n-1 β j<α (-1) n+β-1 (-1)