
HAL Id: hal-01976276
https://hal.science/hal-01976276v3

Submitted on 19 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-Stabilizing Distributed Cooperative Reset
Stéphane Devismes, Colette Johnen

To cite this version:
Stéphane Devismes, Colette Johnen. Self-Stabilizing Distributed Cooperative Reset. [Research Re-
port] Université Grenoble Alpes (France). 2019. �hal-01976276v3�

https://hal.science/hal-01976276v3
https://hal.archives-ouvertes.fr

Self-Stabilizing Distributed Cooperative Reset∗

Stéphane Devismes† and Colette Johnen‡

† Université Grenoble Alpes, VERIMAG, UMR 5104, France
‡ Université de Bordeaux, LaBRI, UMR 5800, France

Abstract

Self-stabilization is a versatile fault-tolerance approach that characterizes the ability of a system to
eventually resume a correct behavior after any finite number of transient faults. In this paper, we propose
a self-stabilizing reset algorithm working in anonymous networks. This algorithm resets the network in
a distributed non-centralized manner, i.e., it is multi-initiator, as each process detecting an inconsistency
may initiate a reset. It is also cooperative in the sense that it coordinates concurrent reset executions in
order to gain efficiency. Our approach is general since our reset algorithm allows to build self-stabilizing
solutions for various problems and settings. As a matter of fact, we show that it applies to both static
and dynamic specifications since we propose efficient self-stabilizing reset-based algorithms for the (1-
minimal) (f, g)-alliance (a generalization of the dominating set problem) in identified networks and the
unison problem in anonymous networks. Notice that these two latter instantiations enhance the state of
the art. Indeed, in the former case, our solution is more general than the previous ones; while in the latter
case, the time complexity of the proposed unison algorithm is better than that of previous solutions of
the literature.

Keywords: Distributed algorithms, self-stabilization, reset, alliance, unison.

1 Introduction

In distributed systems, a self-stabilizing algorithm is able to recover a correct behavior in finite time, regard-
less of the arbitrary initial configuration of the system, and therefore also after a finite number of transient
faults, provided that those faults do not alter the code of the processes.

For more than 40 years, a vast literature on self-stabilizing algorithms has been developed. Self-
stabilizing solutions have been proposed for many kinds of classical distributed problems, e.g., token circu-
lation [34], spanning tree construction [17], clustering [14], routing [27], propagation of information with
feedback [12], clock synchronization [19], etc. Moreover, self-stabilizing algorithms have been designed
to handle various environments, e.g., wired networks [34, 17, 14, 27, 12, 19], WSNs [8, 39], peer-to-peer
systems [15, 13], etc. Drawing on this experience, general methodologies for making distributed algorithms
self-stabilizing have been proposed. In particular, Katz and Perry [36] give a characterization of problems
admitting a self-stabilizing solution. Precisely, they describe a general algorithm that transforms almost
all algorithms (specifically, those algorithms that can be self-stabilized) into their corresponding stabilizing

∗This study was partially supported by the French ANR projects ANR-16-CE40-0023 (DESCARTES) and ANR-16 CE25-
0009-03 (ESTATE).

1

version. However, this so-called transformer is, by essence, inefficient both in terms of space and time
complexities: actually, its purpose is only to demonstrate the feasibility of the transformation.

Interestingly, many proposed general methods [36, 7, 4, 5] are based on reset algorithms. Such algo-
rithms are initiated when an inconsistency is discovered in the network, and aim at reinitializing the system
to a correct (pre-defined) configuration.

A reset algorithm may be centralized at a leader process (e.g., see [4]), or fully distributed, meaning
multi-initiator (as our proposal here). In the former case, either the reset is coupled with a snapshot algo-
rithm (which makes a global checking of the network), or processes detecting an incoherence (using local
checking [6]) should request a reset to the leader. In the fully distributed case, resets are locally initiated by
processes detecting inconsistencies. This latter approach is considered as more efficient when the concur-
rent resets are coordinated. In other words, concurrent resets have to be cooperative (in the sense of [37]) to
ensure the fast convergence of the system to a consistent global state.

Self-stabilization makes no hypotheses on the nature (e.g., memory corruption or topological changes)
or extent of transient faults that could hit the system, and a self-stabilizing system recovers from the effects
of those faults in a unified manner. Now, such versatility comes at a price, e.g., after transient faults cease,
there is a finite period of time, called the stabilization phase, during which the safety properties of the system
are violated. Hence, self-stabilizing algorithms are mainly compared according to their stabilization time,
the maximum duration of the stabilization phase.

General schemes and efficiency are usually understood as orthogonal issues. We tackle this problem
by proposing an efficient self-stabilizing reset algorithm working in any anonymous connected network.
Our algorithm is written in the locally shared memory model with composite atomicity, where executions
proceed in atomic steps (in which a subset of enabled processes move, i.e., update their local states) and the
asynchrony is captured by the notion of daemon. The most general daemon is the distributed unfair daemon.
So, solutions stabilizing under such an assumption are highly desirable, because they work under any other
daemon assumption.

The stabilization time is usually evaluated in terms of rounds, which capture the execution time accord-
ing to the speed of the slowest processes. But, another crucial issue is the number of local state updates,
i.e. the number of moves. Indeed, the stabilization time in moves captures the amount of computations an
algorithm needs to recover a correct behavior.

The daemon assumption and time complexity are closely related. To obtain practical solutions, the
designer usually tries to avoid strong assumptions on the daemon, like for example, assuming all executions
are synchronous. Now, when the considered daemon does not enforce any bound on the execution time
of processes, the stabilization time in moves can be bounded only if the algorithm works under an unfair
daemon. For example, if the daemon is assumed to be distributed and weakly fair (a daemon stronger than
the distributed unfair one) and the studied algorithm actually requires the weakly fairness assumption to
stabilize, then it is possible to construct executions whose convergence is arbitrarily long in terms of atomic
steps (and so in moves), meaning that, in such executions, there are processes whose moves do not make the
system progress in the convergence. In other words, these latter processes waste computation power and so
energy. Such a situation should be therefore prevented, making the unfair daemon more desirable than the
weakly fair one.

There are many self-stabilizing algorithms proven under the distributed unfair daemon, e.g., [2, 21, 31].
However, analyzes of the stabilization time in moves is rather unusual and this may be an important is-
sue. Indeed, recently, several self-stabilizing algorithms which work under a distributed unfair daemon have
been shown to have an exponential stabilization time in moves in the worst case, e.g., the silent leader elec-
tion algorithms from [21] (see [2]) and the Breadth-First Search (BFS) algorithm of Huang and Chen [33]

2

(see [22]).

1.1 Contribution

We propose an efficient self-stabilizing reset algorithm working in any anonymous connected network. Our
algorithm is written in the locally shared memory model with composite atomicity, assuming a distributed
unfair daemon, i.e., the most general scheduling assumption of the model. It is based on local checking
and is fully distributed (i.e., multi-initiator). Concurrent resets are locally initiated by processes detecting
inconsistencies, these latter being cooperative to gain efficiency.

As a matter of fact, our algorithm makes an input algorithm recovering a consistent global state within
at most 3n rounds, where n is the number of processes. During a recovering, any process executes at
most 3n + 3 moves. Our reset algorithm allows to build efficient self-stabilizing solutions for various
problems and settings. In particular, it applies to both static and dynamic specifications. In the static case,
the self-stabilizing solution we obtain is also silent [28]: a silent algorithm converges within finite time
to a configuration from which the values of the communication registers used by the algorithm remain
fixed. Silence is a desirable property. Indeed, as noted in [28], the silent property usually implies more
simplicity in the algorithm design. Moreover, a silent algorithm may utilize less communication operations
and communication bandwidth.

To show the efficiency of our method, we propose two reset-based self-stabilizing algorithms, respec-
tively solving the unison problem in anonymous networks and the 1-minimal (f, g)-alliance in identified
networks.

Our unison algorithm has a stabilization time in O(n) rounds and O(∆.n2) moves. Actually, its stabi-
lization times in round matches the one of the previous best existing solution [11]. However, it achieves a
better stabilization time in moves, since the algorithm in [11] stabilizes inO(D.n3+α.n2) moves (as shown
in [23]), where α is greater than the length of the longest chordless cycle in the network.

As explained before, our 1-minimal (f, g)-alliance algorithm is also silent. Its stabilization time is
O(n) rounds and O(∆.n.m) moves, where D is the network diameter and m is the number of edges in
the network. To the best of our knowledge, until now there was no self-stabilizing algorithm solving that
problem without any restriction on f and g.

1.2 Related Work

Several reset algorithms have been proposed in the literature. In particular, several solutions, e.g., [7, 6], have
been proposed in the I/O automata model. In this model, communications are implemented using message-
passing and assuming weakly fairness. Hence, move complexity cannot be evaluated in that model. In these
papers, authors additionally assume links with known bounded capacity. In [7], authors introduce the notion
of local checking, and propose a method that, given a self-stabilizing global reset algorithm, builds a self-
stabilizing solution of any locally checkable problem (i.e., a problem where inconsistency can be locally
detected) in an identified network. The stabilization time in rounds of obtained solutions depends on the
input reset algorithm. In [6], authors focus on an restrictive class of locally checkable problems, those that
are also locally correctable. A problem is locally correctable if the global configuration of the network can
be corrected by applying independent corrections on pair neighboring processes. Now, for example, the 1-
minimal (f, g) alliance problem is not locally correctable since there are situations in which the correction
of a single inconsistency may provoke a global correction in a domino effect reaction. Notice also that
processes are not assumed to be identified in [6], however the considered networks are not fully anonymous

3

either. Indeed, each link has one of its incident processes designated as leader. Notice also that authors show
a stabilization time in O(H) when the network is a tree, where H is the tree height.

Self-stabilization by power supply [1] also assumes message-passing with links of known bounded ca-
pacity and process identifiers. Using this technique, the stabilization time is in O(n) rounds in general.
Now, only static problems, e.g. leader election and spanning tree construction, are considered.

Fully anonymous networks are considered in [5] in message-passing systems with unit-capacity links
and assuming weakly fairness. The proposed self-stabilizing reset has a memory requirement in O(log?(n))
bits per process. But this small complexity comes at the price of a stabilization time in O(n log n) rounds.

Finally, Arora and Gouda have proposed a mono-initiator reset algorithm in the locally shared memory
model with composite atomicity. Their self-stabilizing reset works in identified networks, assuming a dis-
tributed weakly fair daemon. The stabilization time of their solution is in O(n + ∆.D) rounds, where ∆ is
the degree of the network.

1.3 Roadmap

The remainder of the paper is organized as follows. In the next section, we present the computational model
and basic definitions. In Section 3, we present, prove, and analyze the time complexity of our reset algorithm.
In the two last sections, we propose two efficient instances of our reset-based method, respectively solving
the unison problem in anonymous networks and the 1-minimal (f, g)-alliance in identified networks.

2 Preliminaries

2.1 Network

We consider a distributed system made of n interconnected processes. Information exchanges are assumed
to be bidirectional. Henceforth, the communication network is conveniently modeled by a simple undirected
connected graph G = (V,E), where V is the set of processes and E a set of m edges {u, v} representing
the ability of processes u and v to directly exchange information together. We denote by D the diameter of
G, i.e., the maximum distance between any two pairs of processes. For every edge {u, v}, u and v are said
to be neighbors. For every process u, we denote by δu the degree of u inG, i.e., the number of its neighbors.
Let ∆ = maxu∈V δu be the (maximum) degree of G.

2.2 Computational Model

We use the composite atomicity model of computation [24] in which the processes communicate using a
finite number of locally shared registers, simply called variables. Each process can read its own variables
and that of its neighbors, but can write only to its own variables. The state of a process is defined by the
values of its variables. A configuration of the system is a vector consisting of the states of each process.

Every process u can access the states of its neighbors using a local labeling. Such labeling is called
indirect naming in the literature [42]. All labels of u’s neighbors are stored into the set N(u). To simplify
the design of our algorithms, we sometime consider the closed neighborhood of a process u, i.e., the set
including u itself and all its neighbors. Let N [u] be the set of labels local to u designating all members of
its closed neighborhood, including u itself. In particular, N(u) (N [u]. We assume that each process u can
identify its local label αu(v) in the sets N(v) of each neighbor v and N [w] of each member w of its closed
neighborhood. When it is clear from the context, we use, by an abuse of notation, u to designate both the
process u itself, and its local labels (i.e., we simply use u instead of αu(v) for v ∈ N [u]).

4

A distributed algorithm consists of one local program per process. The program of each process consists
of a finite set of rules of the form

〈label〉 : 〈guard〉 → 〈action〉

Labels are only used to identify rules in the reasoning. A guard is a Boolean predicate involving the state of
the process and that of its neighbors. The action part of a rule updates the state of the process. A rule can be
executed only if its guard evaluates to true; in this case, the rule is said to be enabled. A process is said to
be enabled if at least one of its rules is enabled. We denote by Enabled(γ) the subset of processes that are
enabled in configuration γ.

When the configuration is γ and Enabled(γ) 6= ∅, a non-empty set X ⊆ Enabled(γ) is activated by a
so-called daemon; then every process of X atomically executes one of its enabled rules,1 leading to a new
configuration γ′, and so on. The transition from γ to γ′ is called a step. The possible steps induce a binary
relation over the set of configurations, denoted by 7→. An execution is a maximal sequence of configurations
e = γ0γ1 · · · γi · · · such that γi−1 7→ γi for all i > 0. The term “maximal” means that the execution is either
infinite, or ends at a terminal configuration in which no rule is enabled at any process.

Each step from a configuration to another is driven by a daemon. We define a daemon as a predicate
D over executions. A daemon D may restrain the set of possible executions (in particular, it may forbid
some steps), i.e., only executions satisfying D are possible. We assume here the daemon is distributed and
unfair. “Distributed” means that while the configuration is not terminal, the daemon should select at least
one enabled process, maybe more. “Unfair” means that there is no fairness constraint, i.e., the daemon might
never select an enabled process unless it is the only enabled process. In other words, the distributed unfair
daemon is defined by the predicate true (i.e. it is the most general daemon), and assuming that daemon,
every execution is possible and 7→ is actually the set of all possible steps.

2.3 Self-Stabilization and Silence

Let A be a distributed algorithm. Let P and P ′ be two predicates over configurations of A. Let C and C ′ be
two subsets of CA, the set of A’s configurations.

• P (resp. C) is closed by A if for every step γ 7→ γ′ of A, P (γ)⇒ P (γ′) (resp. γ ∈ C ⇒ γ′ ∈ C).

• A converges from P ′ (resp. C ′) to P (resp. C) if each of its executions starting from a configu-
ration satisfying P ′ (resp. in a configuration of C ′) contains a configuration satisfying P (resp. a
configuration of C).

• P (resp. C) is an attractor for A if P (resp. C) is closed by A and A converges from true (resp. from
CA) to P (resp. to C).

Let SP be a specification, i.e., a predicate over executions. Algorithm A is self-stabilizing for SP (under the
unfair daemon) if there exists a non-empty subset of its configurationsL, called the legitimate configurations,
such that L is an attractor for A and every execution of A that starts in a configuration of L satisfies SP .
Configurations of CA \ L are called the illegitimate configurations.

In our model, an algorithm is silent [28] if and only if all its possible executions are finite. Let SP ′ be an
predicate over configurations of A. Usually, silent self-stabilization is (equivalently) reformulated as follows.
A is silent and self-stabilizing for the SP ′ if all its executions are finite and all its terminal configurations
satisfy SP ′. Of course, in silent self-stabilization, the set of legitimate configurations is chosen as the set of
terminal configurations.

1In case of several enabled actions at the activated process, the choice of the executed action is nondeterministic.

5

2.4 Time Complexity

We measure the time complexity of an algorithm using two notions: rounds [26, 18] and moves [24]. We
say that a process moves in γi 7→ γi+1 when it executes a rule in γi 7→ γi+1.

The definition of round uses the concept of neutralization: a process v is neutralized during a step γi 7→
γi+1, if v is enabled in γi but not in configuration γi+1, and it is not activated in the step γi 7→ γi+1.

Then, the rounds are inductively defined as follows. The first round of an execution e = γ0γ1 · · · is
the minimal prefix e′ = γ0 · · · γj , such that every process that is enabled in γ0 either executes a rule or is
neutralized during a step of e′. Let e′′ be the suffix γjγj+1 · · · of e. The second round of e is the first round
of e′′, and so on.

The stabilization time of a self-stabilizing algorithm is the maximum time (in moves or rounds) over
every possible execution (starting from any initial configuration) to reach a legitimate configuration.

2.5 Composition

We denote by A ◦ B the composition of the two algorithms A and B which is the distributed algorithm where
the local program (A ◦ B)(u), for every process u, consists of all variables and rules of both A(u) and B(u).

3 Self-Stabilizing Distributed Reset Algorithm

3.1 Overview of the Algorithm

In this section, we present our distributed cooperative reset algorithm, called SDR. The formal code of SDR,
for each process u, is given in Algorithm 1. This algorithm aims at reinitializing an input algorithm I
when necessary. SDR is self-stabilizing in the sense that the composition I ◦ SDR is self-stabilizing for
the specification of I. Algorithm SDR works in anonymous networks and is actually is multi-initiator: a
process u can initiate a reset whenever it locally detects an inconsistency in I, i.e., whenever the predicate
¬P ICorrect(u) holds (i.e., I is locally checkable). So, several resets may be executed concurrently. In
this case, they are coordinated: a reset may be partial since we try to prevent resets from overlapping.

3.2 The Variables

Each process umaintains two variables in Algorithm SDR: stu ∈ {C,RB,RC}, the status of uwith respect
to the reset, and du ∈ N, the distance of u in a reset.

Variable stu. If u is not currently involved into a reset, then it has status C, which stands for correct. Oth-
erwise, u has status either RB or RF , which respectively mean reset broadcast and reset feedback. Indeed,
a reset is based on a (maybe partial) Propagation of Information with Feedback (PIF) where processes reset
their local state in I (using the macro reset) during the broadcast phase. When a reset locally terminates
at process u (i.e., when u goes back to status C by executing rule C(u)), each member v of its closed
neighborhood satisfies P reset(v), meaning that they are in a pre-defined initial state of I. At the global
termination of a reset, every process u involved into that reset has a state in I which is consistent w.r.t. that
of its neighbors, i.e., P ICorrect(u) holds. Notice that, to ensure that P ICorrect(u) holds at the end of
a reset and for liveness issues, we enforce each process u stops executing I whenever a member of its closed
neighborhood (in particular, the process itself) is involved into a reset: whenever ¬P Clean(u) holds, u is
not allowed to execute I.

6

Variable du. This variable is meaningless when u is not involved into a reset (i.e., when u has status C).
Otherwise, the distance values are used to arrange processes involved into resets as a Directed Acyclic Graph
(DAG). This distributed structure allows to prevent both livelock and deadlock. Any process u initiating a
reset (using rule rule R(u)) takes distance 0. Otherwise, when a reset is propagated to u (i.e., when
rule RB(u) is executed), du is set to the minimum distance of a neighbor involved in a broadcast phase
plus 1; see the macro compute(u).

3.3 Typical Execution

Assume the system starts from a configuration where, for every process u, stu = C. A process u detecting
an inconsistency in I (i.e., when ¬P ICorrect(u) holds) stops executing I and initiates a reset using
rule R(u), unless one of its neighbors v is already broadcasting a reset, in which case it joins the broadcast
of some neighbor by rule RB(u). To initiate a reset, u sets (stu, du) to (RB, 0) meaning that u is the root
of a reset (see macro beRoot(u)), and resets its I’s variables to an pre-defined state of I, which satisfies
P reset(u), by executing the macro reset(u). Whenever a process v has a neighbor involved in a broadcast
phase of a reset (status RB), it stops executing I and joins an existing reset using rule RB(v), even if its
state in I is correct, (i.e., even if P ICorrect(v) holds). To join a reset, v also switches its status to RB
and resets its I’s variables (reset(v)), yet it sets dv to the minimum distance of its neighbors involved in
a broadcast phase plus 1; see the macro compute(v). Hence, if the configuration of I is not legitimate,
then within at most n rounds, each process receives the broadcast of some reset. Meanwhile, processes
(temporarily) stop executing I until the reset terminates in their closed neighborhood thanks to the predicate
P Clean.

When a process u involved in the broadcast phase of some reset realizes that all its neighbors are involved
into a reset (i.e., have status RB or RF), it initiates the feedback phase by switching to status RF , using
rule RF(u). The feedback phase is then propagated up in the DAG described by the distance value: a
broadcasting process u switches to the feedback phase if each of its neighbors v has not status C and if
dv > du, then v has status RF . This way the feedback phase is propagated up into the DAG within at most
n additional rounds. Once a root of some reset has status RF , it can initiate the last phase of the reset: all
processes involves into the reset has to switch to status C, using rule C, meaning that the reset is done.
The values C are propagated down into the reset DAG within at most n additional rounds. A process u can
executing I again when all members of its closed neighborhood (that is, including u itself) have status C,
i.e., when it satisfies P Clean(u).

Hence, overall in this execution, the system reaches a configuration γ where all resets are done within
at most 3n rounds. In γ, all processes have status C. However, process has not necessarily kept a state
satisfying P reset (i.e., the initial pre-defined state of I) in this configuration. Indeed, some process may
have started executing I again before γ. However, the predicate P Clean ensures that no resetting process
has been involved in these latter (partial) executions of I. Hence, SDR rather ensures that all processes are
in I’s states that are coherent with each other from γ. That is, γ is a so-called normal configuration, where
P Clean(u) ∧P ICorrect(u) holds for every process u.

3.4 Stabilization of the Reset

If a process u is in an incorrect state of Algorithm SDR (i.e., if P R1(u) ∨ P R2(u) holds), we proceed
as for inconsistencies in Algorithm I. Either it joins an existing reset (using rule RB(u)) because at least
one of its neighbors is in a broadcast phase, or it initiates its own reset using rule R(u). Notice also that

7

starting from an arbitrary configuration, the system may contain some reset in progress. However, similarly
to the typical execution, the system stabilizes within at most 3n rounds to a normal configuration.

Algorithm SDR is also efficient in moves. Indeed, in Sections 6 and 5 we will give two examples of
composition I ◦ SDR that stabilize in a polynomial number of moves. Such complexities are mainly due
to the coordination of the resets which, in particular, guarantees that if a process u is enabled to initiate
a reset (P Up(u)) or the root of a reset with status RB, then it satisfies this disjunction since the initial
configuration (cf., Theorem 3, page 12).

3.5 Requirements on the Input Algorithm

According to the previous explanation, Algorithm I should satisfy the following prerequisites:

1. Algorithm I should not write into the variables of SDR, i.e., variables stu and du, for every process
u.

2. For each process u, Algorithm I should provide the two input predicates P ICorrect(u) and P reset(u)
to SDR, and the macro reset(u). Those inputs should satisfy:

(a) P ICorrect(u) does not involve any variable of SDR and is closed by Algorithm I.
(b) P reset(u) involves neither a variable of SDR nor a variable of a neighbor of u.
(c) If ¬P ICorrect(u)∨¬P Clean(u) holds (n.b. P Clean(u) is defined in SDR), then no rule

of Algorithm I is enabled at u.
(d) If P reset(v) holds, for every v ∈ N [u], then P ICorrect(u) holds.
(e) If u performs a move in γ 7→ γ′, where, in particular, it modifies its variables in Algorithm I by

executing reset(u) (only), then P reset(u) holds in γ′.

4 Correctness and Complexity Analysis

4.1 Partial Correctness

Lemma 1 In any terminal configuration of SDR, ¬P R1(u)∧¬P R2(u)∧P Correct(u) holds for every
process u.

Proof. Let u be any process and consider any terminal configuration of SDR. Since rule RB(u)
and rule R(u) are disabled, ¬P RB(u) and ¬P Up(u) hold. Since ¬P RB(u) ∧ ¬P Up(u) implies
¬P R1(u) ∧ ¬P R2(u) ∧P Correct(u), we are done. �

Since ¬P R2(u) ≡ stu = C ∨P reset(u), we have the following corollary.

Corollary 1 In any terminal configuration of SDR, stu = C ∨P reset(u) holds for every process u.

Lemma 2 In any terminal configuration of SDR, stu 6= RB for every process u.

Proof. Assume, by the contradiction, that some process u satisfies stu = RB in a terminal configuration
of SDR. Without the loss of generality, assume u is a process such that stu = RB with du maximum.
First, P reset(u) holds by Corollary 1. Then, every neighbor v of u satisfies stv 6= C, since otherwise
rule RB(v) is enabled. So, every v satisfies stv ∈ {RB,RF}, stv = RB ⇒ distv ≤ du (by definition of
u), and stv = RF ⇒ P reset(v) (by Corollary 1). Hence, rule RF(u) is enabled, a contradiction. �

8

Algorithm 1 Algorithm SDR, code for every process u

Inputs:
• P ICorrect(u) : predicate from the input algorithm I
• P reset(u) : predicate from the input algorithm I
• reset(u) : macro from the input algorithm I

Variables:
• stu ∈ {C,RB,RF} : the status of u
• du ∈ N : the distance value associated to u

Predicates:
• P Correct(u) ≡ stu = C ⇒ P ICorrect(u)
• P Clean(u) ≡ ∀v ∈ N [u], stu = C
• P R1(u) ≡ stu = C ∧ ¬P reset(u) ∧ (∃v ∈ N(u) | stv = RF)
• P RB(u) ≡ stu = C ∧ (∃v ∈ N(u) | stv = RB)
• P RF(u) ≡ stu = RB ∧P reset(u)∧

(∀v ∈ N(u), (stv = RB ∧ dv ≤ du) ∨ (stv = RF ∧P reset(v)))
• P C(u) ≡ stu = RF∧

(∀v ∈ N [u],P reset(v) ∧ ((stv = RF ∧ dv ≥ du) ∨ (stv = C)))
• P R2(u) ≡ stu 6= C ∧ ¬P reset(u)
• P Up(u) ≡ ¬P RB(u) ∧ (P R1(u) ∨P R2(u) ∨ ¬P Correct(u))

Macros:
• beRoot(u) : stu := RB; du := 0;
• compute(u) : stu := RB; du := argmin(v∈N(u) ∧ stv=RB)(dv) + 1;

Rules:
rule RB(u) : P RB(u) → compute(u); reset(u);
rule RF(u) : P RF(u) → stu := RF ;
rule C(u) : P C(u) → stu := C;
rule R(u) : P Up(u) → beRoot(u); reset(u);

9

Lemma 3 In any terminal configuration of SDR, stu 6= RF for every process u.

Proof. Assume, by the contradiction, that some process u satisfies stu = RF in a terminal configuration
of SDR. Without the loss of generality, assume u is a process such that stu = RF with du minimum. First,
every neighbor v of u satisfies stv 6= RB, by Lemma 2. Then, every neighbor v of u such that stv = C also
satisfies P reset(v), since otherwise P R1(v) holds, contradicting then Lemma 1. Finally, by definition of
u and by Corollary 1, every neighbor v of u such that stv = RF both satisfies distv ≥ du and P reset(v).
Hence, rule C(u) is enabled, a contradiction. �

Theorem 1 For every configuration γ of SDR, γ is terminal if and only if P Clean(u) ∧P ICorrect(u)
holds in γ, for every process u.

Proof. Let u be any process and assume γ is terminal. By Lemmas 2 and 3, stu = C holds in γ. So,
P Clean(u) holds in γ. Moreover, since P Correct(u) holds (Lemma 1), P ICorrect(u) also holds in
γ, and we are done.

Assume now that for every process u, P Clean(u) ∧ P ICorrect(u) holds in γ. Then, stu = C
for every process u, and so rule C(u), rule RB(u), and rule RF(u) are disabled for every u. Then,
since every process has status C, ¬P R1(u) ∧ ¬P R2(u) holds, moreover, P ICorrect(u) implies
P Correct(u), so rule R(u) is also disabled in γ. Hence γ is terminal, and we are done. �

4.2 Termination

From Requirements 1 and 2a, we know that Algorithm I does not write into stu and P ICorrect(u) is
closed by I, for every process u. Hence follows.

Remark 1 For every process u, predicate P Correct(u) (defined in SDR) is closed by I.

Requirements 1, 2b, and 2c ensures the following property.

Lemma 4 For every process u, predicates ¬P R1(u), ¬P R2(u), and P RB(u) are closed by I.

Proof. Let γ 7→ γ′ be any step of I.

• Assume that ¬P R1(u) holds at some process p in γ.

If stu 6= C ∨ (∀v ∈ N(u) | stv 6= RF) in γ, then stu 6= C ∨ (∀v ∈ N(u) | stv 6= RF) still holds
in γ′ by Requirement 1, and we are done.

Otherwise, stu = C ∧ P reset(u) ∧ (∃v ∈ N(u) | stv = RF) holds in γ. In particular,
¬P Clean(u) holds in γ. Hence, no rule of I is enabled at u in γ, by Requirement 2c. Conse-
quently, P reset(u) still holds in γ′. Since, P reset(u) implies ¬P R1(u), we are done.

• Assume that ¬P R2(u) holds at some process u in γ. If stu = C holds in γ, then stu = C holds in
γ′ by Requirement 1, and so ¬P R2(u) still holds in γ′. Otherwise, stu 6= C ∧P reset(u) holds in
γ. In particular, ¬P Clean(u) holds in γ. Hence, no rule of I is enabled at u, by Requirement 2c,
and by Requirement 2b, P reset(u), and so ¬P R2(u), still holds in γ′.

• By Requirement 1, P RB(u) is closed by I.

10

�

Recall that two rules are mutually exclusive if there is no configuration γ and no process u such that both
rules at enabled u in γ. Two algorithms are mutually exclusive if their respective rules are pairwise mutually
exclusive. Now, whenever a process u is enabled in SDR, ¬P ICorrect(u)∨¬P Clean(u) holds and, by
Requirement 2c, no rule of I is enabled at u. Hence, follows.

Remark 2 Algorithms SDR and I are mutually exclusive.

Lemma 5 Rules of Algorithm SDR are pairwise mutually exclusive.

Proof. Since P RB(u) implies stu = C, P RF(u) implies stu = RB, and P C(u) implies stu = RF ,
we can conclude that rule RB(u), rule RF(u), and rule C(u) are pairwise mutually exclusive.

Then, since P Up(u) implies ¬P RB(u), rules rule R(u) and rule RB(u) are mutually exclusive.
P C(u) implies P Correct(u)∧P reset(u) which, in turn, implies ¬P Up(u). Hence, rule R(u)

and rule C(u) are mutually exclusive.
P RF(u) implies stu = RB ∧P reset(u). Now, P Up(u) implies stu = C ∨¬P reset(u). Hence,

rule R(u) and rule RF(u) are mutually exclusive. �

Lemma 6 For every process u, predicates ¬P R1(u) and ¬P R2(u) are closed by I ◦ SDR.

Proof. By Remark 2 and Lemma 4, to prove this lemma it is sufficient to show that ¬P R1(u) and
¬P R2(u) are closed by SDR, for every process u.

Predicate ¬P R2(u) only depends on variables of u by Requirement 2b. So, if u does not move,
¬P R2(u) still holds. Assume ¬P R2(u) holds in γ and u executes a rule of SDR in γ 7→ γ′. If u executes
rule RB(u) or rule R(u), then u modifies its variables in I by executing reset(u). Hence, in both cases,
P reset(u) holds in γ′ by Requirement 2e and as P reset(u) implies ¬P R2(u), we are done. Otherwise,
u executes rule RF(u) or rule C(u). In both cases, P reset(u) holds in γ and so in γ′ by Requirement
2b, and we are done.

Assume now that the predicate ¬P R1(u) holds in γ and consider any step γ 7→ γ′. Assume first that
u moves in γ 7→ γ′. If u executes rule RB(u), rule RF(u), or rule R(u), then stu 6= C in γ′, hence
¬P R1(u) holds in γ′. If u executes rule C(u) in γ 7→ γ′, u satisfies P reset(u) in γ, and so in γ′ by
Requirement 2b. Since P reset(u) implies ¬P R1(u), we are done. Assume now that u does not move in
γ 7→ γ′. In this case, P R1(u) may become true only if at least a neighbor v of u switches to status RF , by
executing rule RF(v). Now, in this case, stu 6= C in γ, and so in γ′. Consequently, ¬P R1(u) still holds
in γ′. �

Theorem 2 For every process u, P Correct(u) ∨ P RB(u) is closed by I ◦ SDR.

Proof. By Remarks 1 and 2, and Lemma 4, to prove this lemma it is sufficient to show that P Correct(u)
∨ P RB(u) is closed by SDR, for every process u.

Let γ 7→ γ′ be any step of SDR such that P Correct(u) ∨ P RB(u) holds in γ.

• Assume P Correct(u) holds in γ. By Requirement 2a, if P ICorrect(u) holds in γ, then P ICorrect(u)
still holds in γ′, and as P ICorrect(u) implies P Correct(u), we are done.

Assume now ¬P ICorrect(u) holds in γ. Then, P Correct(u)∧¬P ICorrect(u) implies stu 6=
C in γ. Since P C(u) implies P ICorrect(u) by Requirement 2d, rule C(u) is disabled in γ, and
Consequently, stu 6= C in γ′, which implies that P Correct(u) still holds in γ′.

11

• Assume P RB(u) holds in γ. If u moves in γ 7→ γ′, then u necessarily executes rule RB(u); see
Lemma 5. In this case, stu = RB in γ′, which implies P Correct(u) in γ′.

If u does not move, then at least one neighbor of u should switch its status from RB to either C or
RF so that ¬P RB(u) holds in γ′. Any neighbor v of u satisfying stv = RB may only change its
status by executing rule RF(v) in γ 7→ γ′. Now, rule RF(v) is necessarily disabled in γ since
stu = C. Hence, P RB(u) still holds in γ′ in this case.

�

From Lemma 6 and Theorem 2, we can deduce the following corollary.

Corollary 2 For every process u, ¬P Up(u) is closed by I ◦ SDR.

4.2.1 Roots.

If the configuration is illegitimate w.r.t. the initial algorithm, then some processes locally detect the incon-
sistency by checking their state and that of their neighbors (using Predicate P ICorrect). Such processes,
called here roots, should initiates a reset. Then, each root u satisfies stu 6= C all along the reset processing.
According to its status, a root is either alive or dead, as defined below.

Definition 1 Let P root(u) ≡ stu = RB ∧ (∀v ∈ N(u), stv = RB ⇒ dv ≥ du).

• A process u is said to be an alive root if P Up(u) ∨P root(u).

• A process u is said to be an dead root if stu = RF ∧ (∀v ∈ N(u), statusv 6= C ⇒ dv ≥ du).

By definition, follows.

Remark 3 For every process u, if P C(u) holds, then u is a dead root.

The next theorem states that no alive root is created during an execution.

Theorem 3 For every process u, ¬P root(u) ∧ ¬P Up(u) is closed by I ◦ SDR.

Proof. By Requirement 1 and Corollary 2, ¬P root(u)∧¬P Up(u) is closed by I. Hence, by Remark 2,
it is sufficient to show that ¬P root(u) ∧ ¬P Up(u) is closed by SDR.

Let γ 7→ γ′ be any step of SDR such that ¬P root(u) ∧ ¬P Up(u) holds in γ. By Corollary 2,
¬P Up(u) holds in γ′. To show that ¬P root(u) holds in γ′, we now consider the following cases:

stu = RF in γ: In this case, rule RB(u) and rule R(u) are respectively disabled in γ since stu 6= C
and ¬P Up(u) hold in γ. So, stu 6= RB in γ′, which implies that ¬P root(u) still holds in γ′.

stu = RB in γ: Then, ¬P root(u) in γ implies that there is a neighbor v of u such that stv = RB∧dv <
du in γ. Let α be the value of dv in γ. Since ¬P Up(u) holds in γ, u may only execute rule RF(u)
in γ 7→ γ′ and, consequently, du > α in γ′. Due to the value of du, v may only execute rule R(v)
in γ 7→ γ′. Whether or not v moves, stv = RB ∧ dv ≤ α in γ′. Hence, stv = RB ∧ dv < du in γ′,
which implies that ¬P root(u) still holds in γ′.

12

stu = C in γ: If u does not moves in γ 7→ γ′, then ¬P root(u) still holds in γ′. Otherwise, since
¬P Up(u) holds in γ, u can only execute rule RB(u) in γ 7→ γ′. In this case, P RB(u) im-
plies that there is a neighbor v of u such that stv = RB in γ. Without the loss of generality, assume
v is the neighbor of u such that stv = RB with the minimum distance value in γ. Let α be the value
of dv in γ. Then, stu = RB and du = α + 1 in γ′. Moreover, since stu = C and stv = RB in γ, v
may only execute rule R(v) in γ 7→ γ′. Whether or not v moves, stv = RB ∧ dv ≤ α in γ′. Hence,
stv = RB ∧ dv < du in γ′, which implies that ¬P root(u) still holds in γ′.

�

4.2.2 Move Complexity.

Definition 2 (AR) Let γ be a configuration of I ◦ SDR. We denote by AR(γ) the set of alive roots in γ.

By Theorem 3, follows.

Remark 4 Let γ0 · · · γi · · · be any execution of I ◦ SDR. For every i > 0, AR(γi) ⊆ AR(γi−1).

Based on the aforementioned property, we define below the notion of segment.

Definition 3 (Segment) Let e = γ0 · · · γi · · · be any execution of I ◦ SDR.

• If for every i > 0, |AR(γi−1)| = |AR(γi)|, then the first segment of e is e itself, and there is no other
segment.

• Otherwise, let γi−1 7→ γi be the first step of e such that |AR(γi−1)| > |AR(γi)|. The first segment of
e is the prefix γ0 · · · γi and the second segment of e is the first segment of the suffix of e starting in γi,
and so forth.

By Remark 4, follows.

Remark 5 Every execution of I ◦ SDR contains at most n+1 segments where n is the number of processes.

We now study how a reset propagates into the network. To that goal, we first define the notion of reset
parent. Roughly speaking, the parents of u in a reset are its neighbors (if any) that have caused its reset.

Definition 4 (Reset Parent and Children) RParent(v, u) holds for any two processes u and v if v ∈
N(u), stu 6= C, P reset(u), du > dv, and (stu = stv ∨ stv = RB).

Whenever RParent(v, u) holds, v (resp., u) is said to be a reset parent of u in (resp., a reset child of v).

Remark that in a given configuration, a process may have several reset parents. Below, we define the
reset branches, which are the trails of a reset in the network.

Definition 5 (Reset Branch) A reset branch is a sequence of processes u1, . . . , uk for some integer k ≥ 1,
such that u1 is an alive or dead root and, for every 1 < i ≤ k, we have RParent(ui−1, ui). The process ui
is said to be at depth i−1 and ui, · · · , uk is called a reset sub-branch. The process u1 is the initial extremity
of the reset branch u1, . . . , uk.

Lemma 7 Let u1, . . . , uk be any reset branch.

13

1. k ≤ n,

2. If stu1 = C, then k = 1. Otherwise, stu1 · · · stuk ∈ RB∗RF ∗.

3. ∀i ∈ {2, . . . , k}, ui is neither an alive, not a dead root.

Proof. Let i and j such that 1 ≤ i < j ≤ k. By definition, dui < duj and so ui 6= uj . Hence, in a reset
branch, each node appears at most once, and Lemma 7.1 holds.

Let i ∈ {2, . . . , k}. Lemma 7.2 immediately follows from the following three facts, which directly
derive from the definition of reset parent.

• stui 6= C.

• stui = RB ⇒ stui−1 = RB.

• stui = RF ⇒ stui−1 ∈ {RB,RF}.

Lemma 7.3 immediately follows from those two facts.

• ui is not a dead root, since ui−1 ∈ N(ui) ∧ stui−1 6= C ∧ dui−1 < dui .

• ui is not an alive root, indeed

– ¬P root(u) holds, since ui−1 ∈ N(ui) ∧ (stui = RB ⇒ stui−1 = RB) ∧ dui−1 < dui .

– ¬P Up(ui) holds since¬P R1(u)∧¬P R2(u) holds because P reset(u) holds, and P Correct(u)
holds because stu 6= C.

�

Remark 6 In a configuration, a process u may belong to several branches. Precisely, u belongs to at least
one reset branch, unless stu = C ∧P ICorrect(u) holds.

Lemma 8 Let γx 7→ γx+1 be a step of I ◦ SDR. Let u1, . . . , uk be a reset branch in γx. If u1 is an alive
root in γx+1, then u1, . . . , uk is a reset branch in γx+1.

Proof. We first show the following two claims:

Claim 1: If u1 moves in γx 7→ γx+1, then u1 necessarily executes rule R in γx 7→ γx+1.

Proof of the claim: Since u1 is an alive root in γx+1, u1 is an alive root in γx, by Theorem 3. As-
sume now, by the contradiction, that u1 moves, but does not execute rule R in γx 7→ γx+1. Then,
¬P Up(uk) holds in γx, by Remark 2 and Lemma 5. So, by definition of alive root, stu = RB in γx
and, from the code of SDR and Requirement 2c, u1 executes rule RF in γx 7→ γx+1. Consequently,
stu = RF . Now, ¬P Up(uk) still holds in γx+1, by Corollary 2. Hence, u1 is not an alive root in
γx+1, a contradiction.

Claim 2: For every i ∈ {2, . . . , k}, if ui moves γx 7→ γx+1, then ui executes rule RF in γx 7→ γx+1 and
in γx we have stui = RB and i < k ⇒ stui+1 = RF .

Proof of the claim: We first show that only rule RF may be enabled at ui in γx.

14

• By definition, stui 6= C and so ¬P Clean(ui) holds in γx. Thus, by Requirement 2c, all rules
of I that are disabled at ui in γx.

• rule RB(ui) is disabled in γx since stui 6= C (by definition).

• The fact that ui is not a dead root in γx (Lemma 7) implies that rule C(ui) is disabled in γx
(Remark 3).

• rule R(ui) is disabled in γx since ui is not an alive root (Lemma 7).

Hence, ui can only executes rule RF in γx 7→ γx+1. In this case, stui = RB in γx; see the guard of
rule RF(ui). Moreover, if i < k, then stui = RB∧RParent(ui, ui+1) implies that ui+1 ∈ N(ui),
stui+1 ∈ {RB,RF}, and dui < dui+1 . Now, if ui+1 ∈ N(ui), stui+1 = RB, and dui < dui+1 , then
rule RF(ui) is disabled. Hence, if ui moves γx 7→ γx+1 and i < k, then ui executes rule RF and
so stui+1 = RF in γx.

Then, we proceed by induction on k. The base case (k = 1) is trivial. Assume now that k > 1. Then,
by induction hypothesis, u1, . . . , uk−1 is a reset branch in γx+1. Hence, to show that u1, . . . , uk is a reset
branch in γx+1, it is sufficient to show that RParent(uk−1, uk) holds in γx+1. Since, RParent(uk−1, uk)
holds in γx, we have stuk 6= C in γx. So, we now study the following two cases:

• stuk = RB in γx. By Claim 2, uk may only execute rule RF in γx 7→ γx+1. Consequently,
stuk ∈ {RB,RF} ∧ P reset(uk) ∧ duk = d holds in γx+1, where d > 0 is the value of duk in γx.
Consider now process uk−1. Since stuk = RB in γx, stuk−1

= RB too in γx (Lemma 7).

If uk−1 does not move in γx 7→ γx+1, then RParent(uk−1, uk) still holds in γx+1, and we are done.

Assume now that uk−1 moves in γx 7→ γx+1. Then, we necessarily have k = 2 since otherwise,
Claim 2 applies for i = k − 1: uk−1 moves in γx 7→ γx+1 only if stuk = RF in γx. Now, k = 2
implies that uk−1 executes rule R in γx 7→ γx+1 (by Claim 1), so stuk−1

= RB and duk−1
= 0 < d

in γx+1. Consequently, RParent(uk−1, uk) still holds in γx+1, and we are done.

• stuk = RF in γx.

By Claim 2, uk does not move in γx 7→ γx+1. So, stuk = RF ∧ P reset(uk) ∧ duk = d holds in
γx+1, where d > 0 is the value of duk in γx.

If uk−1 does not move in γx 7→ γx+1, we are done. Assume, otherwise, that uk−1 moves in γx 7→
γx+1.

Then, if k = 2, then uk−1 executes rule R in γx 7→ γx+1 (by Claim 1), so stuk−1
= RB and

duk−1
= 0 < d in γx+1, and so RParent(uk−1, uk) still holds in γx+1.

Otherwise (k > 2), uk−1 necessarily executes rule RF in γx 7→ γx+1 (by Claim 2): stuk−1
=

RF and duk−1
< duk in γx+1 (n.b., neither duk−1

nor duk is modified in γx 7→ γx+1). Hence,
RParent(uk−1, uk) still holds in γx+1, and we are done.

�

Lemma 9 Let u be any process. During a segment S = γi · · · γj of execution of I ◦ SDR, if u executes the
rule rule RF, then u does not execute any other rule of SDR in the remaining of S.

15

Proof. Let γx 7→ γx+1 be a step of S in which u executes rule RF. Let γy 7→ γy+1 (with y > x)
be the next step in which u executes its next rule of SDR. (If γx 7→ γx+1 or γy 7→ γy+1 does not exist,
then the lemma trivially holds.) Then, since rule RF(u) is enabled in γx, ¬P Up(u) holds in γx, by
Lemma 5. Consequently, ¬P Up(u) holds forever from γx, by Corollary 2. Hence, from the code of SDR
and Requirement 2c, u necessarily executes rule C in γy 7→ γy+1 since stu = RF ∧ ¬P Up(u) holds in
γy. In γx, since stu = RB, u belongs to some reset branches (Remark 6) and all reset branches containing u
have an alive root (maybe u) of status RB (Lemma 7). Let v be any alive root belonging to a reset branch
containing u in γx. In γy, u is the dead root, since P C(u) holds (Remark 3). By Lemma 7, either u = v or
u no more belong to a reset branch whose initial extremity is v. By Lemma 8 and Theorem 3, v is no more
an alive root in γy. Still by Theorem 3, the number of alive roots necessarily decreased between γx and γy:
γx 7→ γx+1 and γy 7→ γy+1 belong to two distinct segments of the execution. �

Theorem 4 The sequence of rules of SDR executed by a process u in a segment of execution of I ◦ SDR
belongs to the following language:

(rule C + ε) (rule RB + rule R + ε) (rule RF + ε)

Proof. From the code of SDR and Requirement 2c, we know that after any execution of rule C(u), the next
rule of SDR u will execute (if any), is either rule RB or rule R. Similarly, immediately after an execution
of rule RB(u) (resp., rule R(u)), stu = RB ∧P reset(u) holds (see Requirement 2e) and P reset(u)
holds while u does not switch to status C (Requirements 2b and 2c). So the next rule of SDR u will execute
(if any) is rule RF. Finally, immediately after any execution of rule RF(u), stu = RF ∧ P reset(u)
holds until (at least) the next execution of a rule of SDR since P reset(u) holds while u does not switch to
status C (Requirements 2b and 2c). Then, the next rule of SDR u will execute (if any) is rule C. However,
if this latter case happens, rule RF(u) and rule C(u) are executed in different segments, by Lemma 9.
�

Since a process can execute rules of I only if its status is C, we have the following corollary.

Corollary 3 The sequence of rules executed by a process u in a segment of execution of I ◦ SDR belongs
to the following language:

(rule C + ε) words I (rule RB + rule R + ε) (rule RF + ε)

where words I is any sequence of rules of I.

From Remark 5 and Theorem 4, follows.

Corollary 4 Any process u executes at most 3n+ 3 rules of SDR in any execution of I ◦ SDR.

Let S = γ0 · · · γj · · · be a segment of execution of I ◦ SDR. Let cSI be the configuration of I in which
every process u has the local state cSI (u) defined below.

1. cSI (u) = γ0|I(u), if u never satisfies stu = C in S,

2. cSI (u) = γi|I(u) where γi is the first configuration such that stu = C in S, otherwise.

The following lemma is a useful tool to show the convergence of I ◦ SDR.

16

Lemma 10 Let S = γ0 · · · γj · · · be a segment of execution of I ◦ SDR. For every process u, let words I(u)
be the (maybe empty) sequence of rules of I executed by u in S. There is a prefix of execution of I starting
in cSI that consists of the executions of words I(u), for every process u.

Proof. For every process u, for every i ≥ 0, let prewords I(γi, u) be the prefix of words I(u) executed
by process u in the prefix γ0 · · · γi of S. For every i ≥ 0, let cw I(γi) be the configuration of I in which
every process u has the local state cw I(γi)(u) defined below.

• cw I(γi)(u) = cSI (u), if prewords I(γi, u) = ∅,

• cw I(γi)(u) = swhere s is the state assigned to u by the execution of its last rule of prewords I(γi, u)
in the prefix γ0 · · · γi of S, otherwise.

The lemma is immediate from the following induction: for every i ≥ 0, there is a possible prefix of ex-
ecution of I that starts from cSI , ends in cw I(γi), and consists of the executions of prewords I(γi, u),
for every process u. The base case (i = 0) is trivial. Assume the induction holds for some i ≥ 0 and
consider the case i + 1. For every process u, either u does not execute any rule of I in γi 7→ γi+1

and prewords I(γi+1, u) = prewords I(γi, u), or u executes some rule Ru of I in γi 7→ γi+1 and
prewords I(γi+1, u) = prewords I(γi, u) · Ru. If all processes satisfy the former case, then, by in-
duction hypothesis, we are done. Otherwise, by induction hypothesis, it is sufficient to show the transi-
tion from cw I(γi)(u) to cw I(γi+1)(u) consisting of the execution of Ru by every process u such that
prewords I(γi+1, u) = prewords I(γi, u) · Ru is a possible step of I. To see this, consider any pro-
cess u such that prewords I(γi+1, u) = prewords I(γi, u) · Ru. Since u executes Ru in γi 7→ γi+1,
P Clean(u) holds in γi meaning that every member v of N [u] (in particular, u) satisfies stv = C in γi.
Then, by Corollary 3, every v (in particular, u) is in the state cw I(γi)(u). Hence, as Ru is enabled in γi,
Ru is enabled in cw I(γi) too, and we are done. �

4.2.3 Round Complexity.

Below, we use the notion of attractor, defined at the beginning of the section.

Definition 6 (Attractors)

• Let P1 a predicate over configurations of I ◦ SDR which is true if and only if ¬P Up(u) holds, for
every process u.

• Let P2 a predicate over configurations of I ◦ SDR which is true if and only if (1) P1 holds and (2)
¬P RB(u) holds, for every process u.

• Let P3 a predicate over configurations of I ◦ SDR which is true if and only if (1) P2 holds and (2)
stu 6= RB, for every process u.

• P4 a predicate over configurations of I ◦ SDR which is true if and only if (1) P3 holds and (2)
stu 6= RF , for every process u.

In the following, we call normal configuration any configuration satisfying P4.

Lemma 11 P1 is an attractor for I ◦ SDR. Moreover, I ◦ SDR converges from true to P1 within at most
one round.

17

Proof. First, for every process u, ¬P Up(u) is closed by I ◦ SDR (Corollary 2). Consequently, P1 is
closed by I ◦ SDR. Moreover, to show that I ◦ SDR converges from true to P1 within at most one round,
it is sufficient to show that any process p satisfies ¬P Up(u) during the first round of any execution of I ◦
SDR. This property is immediate from the following two claims.

Claim 1: If P Up(u), then u is enabled.

Proof of the claim: By definition of rule R(u).

Claim 2: If P Up(u) holds in γ and u moves in the next step γ 7→ γ′, then ¬P Up(u) holds in γ′.

Proof of the claim: First, by Remark 2, Lemma 5, and the guard of rule R(u), rule R(u) is ex-
ecuted in γ 7→ γ′. Then, immediately after rule R(u), stu = RB and P reset(u) holds (see
Requirement 2e), now stu = RB and P reset(u) implies ¬P Up(u).

�

Lemma 12 P2 is closed by I ◦ SDR.

Proof. By Requirement 1, ¬P RB(u) is closed by I, for every process u. So, by Lemma 11 and
Remark 2, it is sufficient to show that for every step γ 7→ γ′ of I ◦ SDR such that P2 holds in γ, for every
process u, if u executes a rule of SDR in γ 7→ γ′, then ¬P RB(u) still holds in γ′.

So, assume any such step γ 7→ γ′ and any process u.

• If stu = C in γ, then ∀v ∈ N(u), stv 6= RB in γ, since γ satisfies P2. Now, no rule rule RB
or rule R can be executed in γ 7→ γ′ since γ satisfies P2. So, ∀v ∈ N(u), stv 6= RB in γ′, and
consequently ¬P RB(u) still holds in γ′.

• If stu 6= C in γ′, then ¬P RB(u) holds in γ′.

• Assume now that stu 6= C in γ and stu = C in γ′. Then, u necessarily executes rule C in γ 7→ γ′.
In this case, ∀v ∈ N(u), stv 6= RB in γ. Now, no rule rule RB or rule R can be executed in
γ 7→ γ′ since γ satisfies P2. So, ∀v ∈ N(u), stv 6= RB in γ′, and consequently ¬P RB(u) still
holds in γ′.

Hence, in all cases, ¬P RB(u) still holds in γ′, and we are done. �

Lemma 13 I ◦ SDR converges from P1 to P2 within at most n− 1 rounds.

Proof. Let u be any process of status RB. Then, u belongs to at least one reset branch (Remark 6). Let
md(u) be the maximum depth of u in a reset branch it belongs to. Then, md(u) < n, by Lemma 7.

Consider now any execution e = γ0 · · · γi · · · of I ◦ SDR such that γ0 satisfies P1. Remark first that
from γ0, rule R(v) is disabled forever, for every process v, since P1 is closed by I ◦ SDR (Lemma 11).

Claim 1: If some process u satisfies stu = RB in some configuration γi (i ≥ 0), then from γi, while
stu = RB, md(u) cannot decrease.

Proof of the claim: Consider any γi 7→ γi+1 where stu = RB both in γi and γi+1. This in particular
means that u does not move in γi 7→ γi+1. Let u1, . . . , uk = u be a reset branch in γi such that
k = md(u). ∀x ∈ {1, . . . , k − 1}, ux has a neighbor (ux+1) such that stx+1 = RB ∧ dx+1 > du in
γi, by Lemma 7 and the definition of a reset branch. Hence, every ux is disabled in γi. Consequently,
u is still at depth at least k in a reset branch defined in γi+1, and we are done.

18

Claim 2: For every process u that executes rule RB(u) in some step γi 7→ γi+1 of the jth round of e, we
have stu = RB ∧md(u) ≥ j in γi+1.

Proof of the claim: We proceed by induction. Assume a process u executes rule RB(u) in some
step γi 7→ γi+1 of the first round of e. In γi, there is some neighbor v of u such that stv = RB.
Since stu = C in γi, v is disabled in γi. Consequently, RParent(v, u) holds in γi+1, and so stu =
RB ∧md(u) ≥ 1 holds in γi+1. Hence, the claim holds for j = 1.

Assume now that the claim holds in all of the j first rounds of e, with j ≥ 1.

Assume, by the contradiction, that some process u executes rule RB in a step γi 7→ γi+1 of the
(j + 1)th round of e, and does not satisfy stu = RB ∧md(u) ≥ j + 1 in γi+1. Then, by definition
of rule RB(u), stu = C in γi and stu = RB ∧ md(u) < j + 1 in γi+1. Let x be the value of
md(u) in γi+1. We have x < j + 1. Without the loss of generality, assume that no process satisfies
this condition before u in the (j + 1)th round of e and any process v that fulfills this condition in the
same step as u satisfies stv = RB ∧ x ≤ md(v) < j + 1 in γi+1. Then, by definition md(u) and
Lemma 7, there is a neighbor v of u such stv = RB and md(v) = x− 1 < j in γi+1. Moreover, by
definition of u and Claim 1, stv = RB and md(v) ≤ x− 1 < j since (at least) the first configuration
of the (j + 1)th round of e, which is also the last configuration of the jth round of e. So, by induction
hypothesis, stv = RB and md(v) ≤ x − 1 < j since (at least) the end of the (x − 1)th round of
e. If stu 6= C in the last configuration of the (x − 1)th round of e, then stu 6= C continuously until
γi (included) since meanwhile rule C(u) is disabled because stv = RB. Hence, u cannot execute
rule RB(u) in γi 7→ γi+1, a contradiction. Assume otherwise that stu = C in the last configuration
of the (x − 1)th round of e. Then, u necessarily executes rule RB during the xth round of e, but
not in the (j + 1)th round of e since stv = RB continuously until γi (included), indeed, after the
execution of rule RB(u) in the xth round, the two next rules executed by u (if any) are necessarily
rule RF followed by rule C, but rule C(u) is disabled while stv = RB. Hence, rule RB(u) is
not executed in γi 7→ γi+1, a contradiction.

By Claim 2, no process executes rule RB during the nth round of e. Now, along e, we have:

• If P RB(u) holds, then u is enabled (see rule RB(u)), and

• If P RB(u) holds in γi (with i ≥ 0) and u moves in the next step γi 7→ γi+1, then ¬P RB(u) holds
in γi+1.

Indeed, u necessarily executes rule RB(u) in γi 7→ γi+1 (Remark 2 and Lemma 5) and, conse-
quently, stu = RB in γi+1, which implies that ¬P RB(u) holds in γi+1.

Hence, we can conclude that the last configuration of the (n− 1)th round of e satisfies P2, and we are done.
�

Lemma 14 P3 is closed by I ◦ SDR. Moreover, I ◦ SDR converges from P2 to P3 within at most n rounds.

Proof. By Requirement 1, no rule of I can set the status of a process to RB. Then, let γ be a configuration
of I ◦ SDR such that P3(γ) holds. Since P1(γ) and P2(γ) also holds, no rule rule R or rule RB is
enabled in γ. Hence, after any step from γ, there is still no process of status RB and we can conclude that
P3 is closed by I ◦ SDR since we already know that P2 is closed by I ◦ SDR (Lemma 12).

Let γ be any configuration satisfyingP2 but notP3. To show the convergence from fromP2 toP3 within
at most n rounds, it is sufficient to show that at least one process u switches from stu = RB to stu 6= RB

19

within the next round from γ, since we already know that once stu 6= RB after γ, stu 6= RB holds forever
(recall that all configurations reached from γ satisfies P2; see Lemma 12).

Let mu be a process of status RB with a maximum distance value in γ. Since ¬P Up(mu) ∧
¬P RB(mu) ∧ stmu 6= C holds, P reset(mu) holds in γ. Let v be any neighbor of mu. Since
¬P RB(v) ∧ stmu = RB holds, stv 6= C in γ. Again, since ¬P Up(v) ∧ ¬P RB(v) ∧ stv 6= C holds,
P reset(v) holds in γ. According to the definition of mu, we have (stv = RB ∧ dv ≤ dmu) ∨ stv = RF .
We can conclude that along any execution from γ, rule RF(mu) is enabled until mu executes this rule. In
this case, rule RF(mu) will be executed in the next move of mu by Remark 2 and Lemma 5. So, during
the next round from γ, rule RF(mu) is executed, i.e., stmu is set to RF , and we are done. �

Let γ by any configuration of I ◦ SDR. We denote by γ|SDR the projection of γ over variables of SDR.
By definition, γ|SDR is a configuration of SDR.

Lemma 15 For every configuration γ of I ◦ SDR, γ ∈ P4 (i.e., γ is a normal configuration) if and only if
γ|SDR is a terminal configuration of SDR.

Proof. Let γ be a configuration of I ◦ SDR. By definition of P4, if γ ∈ P4, then γ|SDR is a terminal
configuration of SDR. Then, if γ|SDR is a terminal configuration of SDR, then γ ∈ P4 by Lemmas 1, 2, and
3. �

Lemma 16 P4 is closed by I ◦ SDR. Moreover, I ◦ SDR converges from P3 to P4 within at most n rounds.

Proof. By Requirement 1, no rule of I can set the status of a process to RF . So, by Lemma 15, we can
conclude that P4 is closed by I ◦ SDR.

Let γ be any configuration satisfyingP3 but notP4. To show the convergence from fromP3 toP4 within
at most n rounds, it is sufficient to show that at least one process u switches from stu = RF to stu 6= RF
within the next round from γ, since we already know that once stu 6= RF after γ, stu 6= RF holds forever
(recall that all configurations reached from γ satisfies P3 by Lemma 14, and only process of status RB may
switch to status RF).

Letmu be a process of statusRF with a minimum distance value in γ. Since¬P Up(mu)∧¬P RB(mu)∧
stmu 6= C holds, P reset(mu) holds in γ. Let v be any neighbor of mu. By definition of P3, stv 6= RB in
γ. Moreover, since ¬P Up(v) ∧ ¬P RB(v) and v has a neighbor of status RF (mu), P reset(v) holds
in γ. According to the definition of mu, we have (stv = RF ∧dv ≥ dmu)∨ stv = C. We can conclude that
along any execution from γ, rule C(mu) is enabled until mu executes this rule. In this case, rule C(mu)
will be executed in the next move of mu by Remark 2 and Lemma 5. So, during the next round from γ,
rule C(mu) is executed, i.e., stmu is set to C, and we are done. �

By Lemmas 11-16 and Theorem 1, follows.

Corollary 5 A4 is an attractor for I ◦ SDR. Moreover, I ◦ SDR converges from true to P4 within at most
3n rounds. For every configuration γ of I ◦ SDR, γ satisfies A4 (i.e. γ is a normal configuration) if and
only if P Clean(u) ∧P ICorrect(u) holds in γ, for every process u.

5 Asynchronous Unison

5.1 The Problem

We now consider the problem of asynchronous unison (introduced in [20]), simply referred to as unison in
the following. This problem is a clock synchronization problem: each process u holds a variable (usually

20

an integer variable) called clock, here noted cu. Then, the problem is specified as follows:

• Each process should increment its clock infinitely often. (liveness)

• The difference between clocks of every two neighbors should be at most one increment at each instant.
(safety)

Notice that we consider here periodic clocks, i.e., the clock incrementation is modulo a so-called period,
here noted K.

5.2 Related Work

The first self-stabilizing asynchronous unison for general connected graphs has been proposed by Couvreur
et al. [20]. It is written in the locally shared memory model with composite atomicity assuming a central
unfair daemon and a period K > n2. No complexity analysis was given. Another solution which stabilizes
in O(n) rounds has been proposed by Boulinier et al. in [11]. This solution is also written in the locally
shared memory model with composite atomicity, however it assumes a distributed unfair daemon. In this
solution, the period K should satisfy K > CG and another parameter α should satisfy α ≥ TG − 2. CG is
the cyclomatic characteristic of the network and TG is the length of the longest chordless cycle. Boulinier
also proposed in his PhD thesis [10] a parametric solution which generalizes both the solutions of [20] and
[11]. In particular, the study of this parametric algorithm reveals that the solution of Couvreur et al. [20]
still works assuming a distributed unfair daemon and has a stabilization time in O(D.n) rounds, where D is
the network diameter.

5.3 Contribution

We first propose a distributed algorithm, called U. Starting from a pre-defined configuration, U implements
the unison problem in anonymous networks, providing that the period K satisfies K > n. U is not self-
stabilizing, however we show that the composite algorithm U ◦ SDR is actually an efficient self-stabilizing
unison algorithm. Indeed, its stabilization times in round matches the one of the best existing solution [11].
Moreover, it achieves a better stabilization time in moves, since it stabilizes in O(D.n2) moves, while the
algorithm in [11] stabilizes in O(D.n3 + α.n2) moves; as shown in [23].

5.4 Algorithm U

Overview. We consider here anonymous (bidirectional) networks of arbitrary connected topology. More-
over, every process has the period K as input. K is required to be (strictly) greater than n, the number of
processes. The formal code of Algorithm U is given in Algorithm 2. Informally, each process maintains a
single variable, its clock cu, using a single rule rule U(u).

In the following, we assume that the system is initially in the configuration γinit where every process u
satisfies cu = 0 ∧ stu = C. Basically, starting from γinit, a process u can increment its clock cu modulo
K (using rule rule U(u)) if it is on time or one increment late with each of its neighbors; see predicate
P Up(u).

Correctness. Below, we focus on configurations of U satisfying P ICorrect(u) ∧ P Clean(u), for
every process u. Indeed, γinit belongs to this class of configurations. Moreover, a configuration of U ◦ SDR

21

Algorithm 2 Algorithm U, code for every process u

Inputs:
• stu ∈ {C,RB,RF} : variable of SDR
• P Clean(u) : predicate of SDR
• K : a constant from the system satisfying K > n

Variables:
• cu ∈ N : the clock of u

Predicates:
• P Ok(u, v) ≡ cv ∈ {(cu − 1)%K, cu, (cu + 1)%K}
• P ICorrect(u) ≡ (∀v ∈ N(u),P Ok(u, v))
• P reset(u) ≡ cu = 0
• P Up(u) ≡ (∀v ∈ N(u), cv ∈ {cu, (cu + 1)%K})

Macros:
• reset(u) : cu := 0;

Rules:
rule U(u) : P Clean(u) ∧P Up(u) → cu := (cu + 1)%K;

is normal if and only if P Clean(u) ∧ P ICorrect(u) holds for every process u. Hence, the properties
we exhibit now will be, in particular, satisfied at the completion of SDR.

Consider any two neighboring processes u and v such that P Ok(u, v) in some configuration γ, i.e.,
cv ∈ {(cu − 1)%K, cu, (cu + 1)%K}. Without the loss of generality, assume that cv ∈ {cu, (cu + 1)%K}
(otherwise switch the role of u and v). Let γ 7→ γ′ be the next step. If cv = cu in γ, then cv ∈ {(cu −
1)%K, cu, (cu+1)%K} in γ′ since each clock increments at most once per step, i.e., P Ok(u, v) still holds
in γ′. Otherwise, cv = (cu + 1)%K} in γ, and so v is disabled and only u may move. If u does not move,
then cv = (cu + 1)%K} still holds in γ′, otherwise cv = cu in γ′. Hence, in both cases, P Ok(u, v) still
holds in γ′. Hence, follows.

Lemma 17 P ICorrect(u) is closed by U, for every process u.

Since Algorithm U does not modify any variable from Algorithm SDR, we have

Remark 7 P Clean(u) is closed by U, for every process u.

Corollary 6 P ICorrect(u) ∧P Clean(u) is closed by U, for every process u.

Corollary 7 Any execution of U, that starts from a configuration where P ICorrect(u) ∧ P Clean(u)
holds for every process u, satisfies the safety of the unison problem.

Lemma 18 Any configuration where P ICorrect(u) ∧P Clean(u) holds for every process u is not ter-
minal.

Proof. Assume, by the contradiction, a terminal configuration γ where P ICorrect(u) ∧ P Clean(u)
for every process u. Then, every process u has at least one neighbor v such that cv = (cu − 1)%K. Since
the number of processes is finite, in γ there exist elementary cycles u1, . . . , ux such that

22

1. for every i ∈ {1, . . . , x− 1}, ui and ui+1 are neighbors, and cui = (cui+1 − 1)%K; and

2. u1 and ux are neighbors and cux = (cu1 − 1)%K.

By transitivity, Case 1 implies that cu1 = (cux − (x − 1))%K. So, from Case 2, we obtain cux = (cux −
x)%K. Now, by definition x ≤ n and K > n so cux 6= (cux − x)%K, a contradiction. Hence, γ is not
terminal. �

Lemma 19 Any execution of U, that starts from a configuration where P ICorrect(u) ∧ P Clean(u)
holds for every process u, satisfies the liveness of the unison problem.

Proof. Let e be any execution of U that starts from a configuration where P ICorrect(u)∧P Clean(u)
holds for every process u. Assume, by the contradiction, that e does not satisfy the liveness of unison. Then,
e contains a configuration γ from which some processes (at least one) never more executes rule U. Let F
be the non-empty subset of processes that no more move from γ. Let I = V \ F . By Lemma 18, I is not
empty too. Now, since the network is connected, there are two processes u and v such that u ∈ I and v ∈ F .
Now, after at most 3 increments of u from γ, P Ok(u, v) no more holds, contradicting Lemma 17. �

Consider now any execution e of U starting from γinit. In γinit, we have P Clean(u)∧P ICorrect(u)
for every process u. Hence, by Corollary 7 and Lemma 19, follows.

Theorem 5 U is distributed (non self-stabilizing) unison.

Properties of U. Consider any execution e of U starting from a configuration γ which does not satisfy
P Clean(u) ∧ P ICorrect(u) for every process u. Then, there exists at least one process u satisfying
¬P Clean(u) ∨ ¬P ICorrect(u) in γ, and u is disabled forever in e. Indeed, if ¬P Clean(u), then
¬P Clean(u) holds forever since U does not write into SDR’s variables. If ¬P ICorrect(u) holds, then
there is a neighbor v such that ¬P Ok(u, v) holds, both u and v are disabled, hence so ¬P Ok(u, v) holds
forever, which implies that ¬P Up(u) forever. Now, since u is disabled forever, each neighbor of u moves
at most three times in e. Inductively, every node at distance d from u moves at most 3d times. Overall, we
obtain the following lemma.

Lemma 20 In any execution of U starting from a configuration which does not satisfy P Clean(u) ∧
P ICorrect(u) for every process u, each process moves at most 3D times, where D is the network diam-
eter.

5.5 Algorithm U ◦ SDR

Requirements. To show the self-stabilization of U ◦ SDR, we should first establish that U meets the re-
quirements 1 to 2d, given in Subsection 3.5.

Requirement 2a is satisfied since P ICorrect(u) does not involve any variable of SDR and is closed
by U (Lemma 17). All other requirements directly follow from the code of U.

Self-stabilization and Move Complexity. We define the legitimate configurations of U ◦ SDR as the set of
configurations satisfying P Clean(u)∧P ICorrect(u) for every process u. This set actually corresponds
to the set of normal configurations (see Corollary 5, page 20) and is closed by Algorithm U ◦ SDR, by

23

Remark 2 (page 11), Theorem 1 (page 10), and Corollary 6. Then, from any normal configuration, the
specification of the unison holds, by Corollary 7 and Lemma 19. So, it remains to show the convergence.

Let u be a process. Let e be an execution of U ◦ SDR. By Corollary 3 (page 16), the sequence of rules
executed by a process u in a segment of e belongs to the following language:

(rule C + ε) words I (rule RB + rule R + ε) (rule RF + ε)

where words I be any sequence of rules of U.
Let assume that e contains s segments. Recall that s ≤ n + 1; see Remark 5, page 13. Let call

regular segment any segment that starts in a configuration containing at least one abnormal alive root. A
regular segment contains no normal configuration, so, by Lemma 10 (page 17) and Lemma 20, the sequence
words I of u is bounded by 3D in S. Thus, u executes at most 3D + 3 moves in S and, overall a regular
segment contains at most (3D + 3).n moves and necessarily ends by a step where the number of abnormal
alive root decreases. Hence, all s − 1 first segments are regular and the last one is not. Overall, the last
segment Slast starts after at most (3D + 3).n.(s− 1) moves. Slast contains no abnormal alive root and so,
the sequence of rules executed by u in Slast belongs to the following language: (rule C + ε) words I.2

If the initial configuration of Slast contains no process of status RF , then it is a normal configuration and
so s = 1, i.e., e is initially in a normal configuration. Otherwise, let v be a process such that stv = RF
in the initial configuration of Slast and no other process executes rule C later than v. Following the same
reasoning as in Lemma 20, while v does not execute rule C, each process other than v can execute at most
3D rules of U and one rule C. Hence, there are at most (3D + 1).(n − 1) + 1 moves in Slast before the
system reaches a normal configuration.

Since, in the worst case s = n + 1, overall e reaches a normal configuration in at most (3D + 3).n2 +
(3D + 1).(n− 1) + 1 moves, and we have the following theorem.

Theorem 6 U ◦ SDR is self-stabilizing for the unison problem. Its stabilization time is in O(D.n2) moves.

Round Complexity. By Corollary 5 (page 20), follows.

Theorem 7 The stabilization time of U ◦ SDR is at most 3n rounds.

6 (f, g)-alliance

6.1 The Problem

The (f, g)-alliance problem has been defined by Dourado et al. [29]. Given a graph G = (V,E), and two
non-negative integer-valued functions on nodes f and g, a subset of nodes A ⊆ V is an (f, g)-alliance of
G if and only if every node u /∈ A has at least f(u) neighbors in A, and every node v ∈ A has at least
g(v) neighbors in A. The (f, g)-alliance problem is the problem of finding a subset of processes forming an
(f, g)-alliance of the network. The (f, g)-alliance problem is a generalization of several problems that are
of interest in distributed computing. Indeed, consider any subset S of processes/nodes:

1. S is a domination set [9] if and only if S is a (1, 0)-alliance;

2. more generally, S is a k-domination set [9] if and only if S is a (k, 0)-alliance;

2Otherwise, stu = RB in some configuration of Slast, and that configuration contains an abnormal root, by Lemma 7 (page
13), a contradiction.

24

3. S is a k-tuple dominating set [38] if and only if S is a (k, k − 1)-alliance;

4. S is a global offensive alliance [40] if and only if S is a (f, 0)-alliance, where f(u) = d δu+1
2 e for all

u;

5. S is a global defensive alliance [41] if and only if S is a (1, g)-alliance, where g(u) = d δu+1
2 e for all

u;

6. S is a global powerful alliance [46] if and only if S is a (f, g)-alliance, such that f(u) = d δu+1
2 e and

g(u) = d δu2 e for all u.

We remark that (f, g)-alliances have applications in the fields of population protocols [3] and server alloca-
tion in computer networks [32].

Ideally, we would like to find a minimum (f, g)-alliance, namely an (f, g)-alliance of the smallest pos-
sible cardinality. However, this problem is NP-hard, since the (1, 0)-alliance (i.e., the domination set
problem) is known to be NP-hard [30]. We can instead consider the problem of finding a minimal (f, g)-
alliance. An (f, g)-alliance is minimal if no proper subset of A is an (f, g)-alliance. Another variant is the
1-minimal (f, g)-alliance. A is a 1-minimal (f, g)-alliance if deletion of just one member of A causes A
to be no more an (f, g)-alliance, i.e., A is an (f, g)-alliance but ∀u ∈ A, A \ {u} is not an (f, g)-alliance.
Surprisingly, a 1-minimal (f, g)-alliance is not necessarily a minimal (f, g)-alliance [29]. However, we
have the following property:

Property 1 (Dourado et al. [29]) Given two non-negative integer-valued functions f and g on nodes

1. Every minimal (f, g)-alliance is a 1-minimal (f, g)-alliance, and

2. if f(u) ≥ g(u) for every process u, then every 1-minimal (f, g)-alliance is a minimal (f, g)-alliance.

6.2 Contribution

We first propose a distributed algorithm called FGA. Starting from a pre-defined configuration, FGA com-
putes a 1-minimal (f, g)-alliance in any identified network where δu ≥ max(f(u), g(u)), for every process
u. Notice that this latter assumption ensures the existence of a solution. FGA is not self-stabilizing, how-
ever we show that the composite algorithm FGA ◦ SDR is actually an efficient self-stabilizing 1-minimal
(f, g)-alliance algorithm.

6.3 Related Work

Recall that the (f, g)-alliance problem has been introduced by Dourado et al. [29]. In that paper, the authors
give several distributed algorithms for that problem and its variants, but none of them is self-stabilizing.

In [16], Carrier et al. proposes a silent self-stabilizing algorithm that computes a minimal (f, g)-alliance
in an asynchronous network with unique node IDs, assuming that every node u has a degree at least g(u)
and satisfies f(u) ≥ g(u). Their algorithm is also safely converging in the sense that starting from any
configuration, it first converges to a (not necessarily minimal) (f, g)-alliance in at most four rounds, and
then continues to converge to a minimal one in at most 5n + 4 additional rounds, where n is the size of
the network. The algorithm is written in the locally shared memory model with composite atomicity. It is
proven assuming a distributed unfair daemon and takes O(n ·∆3) moves to stabilize, where ∆ is the degree
of the network.

25

There are several other self-stabilizing solutions for particular instances of (f, g)-alliances proposed in
the locally shared memory model with composite atomicity, e.g., [25, 35, 43, 44, 45, 46].

Algorithms given in [43, 45] work in anonymous networks, however, they both assume a central dae-
mon. More precisely, Srimani and Xu [43] give several algorithms which compute minimal global offensive
and 1-minimal defensive alliances in O(n3) moves. Wang et al. [45] give a self-stabilizing algorithm to
compute a minimal k-dominating set in O(n2) moves.

All other solutions [25, 35, 44, 46] consider arbitrary identified networks. Turau [44] gives a self-
stabilizing algorithm to compute a minimal dominating set in 9n moves, assuming a distributed unfair
daemon. Yahiaoui et al. [46] give self-stabilizing algorithms to compute a minimal global powerful alliance.
Their solution assumes a distributed unfair daemon and stabilizes inO(n·m) moves, wherem is the number
of edges in the network.

A safely converging self-stabilizing algorithm is given in [35] for computing a minimal dominating set.
The algorithm first computes a (not necessarily minimal) dominating set in O(1) rounds and then safely
stabilizes to a minimal dominating set in O(D) rounds, where D is the diameter of the network. However,
a synchronous daemon is required. A safely converging self-stabilizing algorithm for computing minimal
global offensive alliances is given in [25]. This algorithm also assumes a synchronous daemon. It first
computes a (not necessarily minimal) global offensive alliance within two rounds, and then safely stabilizes
to a minimal global offensive alliance within O(n) additional rounds.

To the best of our knowledge, until now there was no self-stabilizing algorithm solving the 1-minimal
(f, g)-alliance without any restriction on f and g.

6.4 Algorithm FGA

Overview. Recall that we consider any network where δu ≥ max(f(u), g(u)), for every process u. More-
over, we assume that the network is identified, meaning that each process u can be distinguished using a
unique constant identifier, here noted idu. The formal code of FGA is given in Algorithm 3. Informally, each
process u maintains the following four variables.

colu: a Boolean variable, the output of FGA. Process u belongs to the (f, g)-alliance if and only if colu.

scru: a variable, whose domain is {−1, 0, 1}. scru ≤ 0 if and only if no u’s neighbor can quit the alliance.

canQu: a Boolean variable. ¬canQu if u cannot quit the alliance (in particular, if u is out of the alliance).

ptru: a pointer variable, whose domain is N [u] ∪ {⊥}. Either ptru = ⊥ or ptru designates the member of
its closed neighborhood of smallest identifier such that canQu.

In the following, we assume that the system is initially in the configuration γinit where every process u
has the following local state:

colu = true, scru = 1, canQu = true, ptru = ⊥, stu = C.

In particular, this means that all processes are initially in the alliance. Then, the idea of the algorithm is
reduced the alliance until obtaining a 1-minimal (f, g)-alliance. A process u leaves the alliance by executing
rule Clr(u). To leave the alliance, u should have enough neighbors in the alliance (#InAll(u) ≥ f(u)),
approve itself, and have a full approval from all neighbors. Process v approves u if ptrv = u. Moreover,
the approval of v is full if scrv = 1. Notice that, the ptr pointers ensure that removals from the alliance are
locally central: in the closed neighborhood of any process, at most one process leaves the alliance at each
step.

26

Algorithm 3 Algorithm FGA, code for every process u

Inputs:
• stu ∈ {C,RB,RF} : variable of SDR
• P Clean(u) : predicate of SDR
• idu : identifier of u, constant from the system

Variables:
• colu : Boolean
• scru ∈ {−1, 0, 1} : The score of u
• canQu : Boolean
• ptru ∈ N [u] ∪ {⊥} : Closed Neighborhood Pointer

Predicates:
• P ICorrect(u) ≡ realScr(u) ≥ 0 ∧

[(scru = realScr(u) = 1) ∨ ptru = ⊥∨
(ptru 6= ⊥ ∧ scru = 1 ∧ ¬colptru)]

• P reset(u) ≡ colu ∧ ptru = ⊥ ∧ canQu ∧ scru = 1
• P canQuit(u) ≡ colu ∧#InAll(u) ≥ f(u) ∧ (∀v ∈ N(u), scrv = 1)
• P toQuit(u) ≡ P canQuit(u) ∧ (∀v ∈ N [u], ptrv = u)
• P updPtr(u) ≡ ¬P toQuit(u) ∧ ptru 6= bestP tr(u)

Macros:
• reset(u) : colu := true; ptru := ⊥; canQu := true; scru := 1;
• #InAll(u) : |{w ∈ N(u) | colw}|

•

realScr(u) = −1 if #InAll(u) < f(u) ∧ ¬colu
realScr(u) = −1 if #InAll(u) < g(u) ∧ colu
realScr(u) = 0 if #InAll(u) = f(u) ∧ ¬colu
realScr(u) = 0 if #InAll(u) = g(u) ∧ colu
realScr(u) = 1 if #InAll(u) > f(u) ∧ ¬colu
realScr(u) = 1 if #InAll(u) > g(u) ∧ colu

• cmpV ar(u) : scru := realScr(u); canQu := P canQuit(u);
• bestP tr(u) : if (scru ≤ 0) return ⊥;

if (∀v ∈ N [u],¬canQu) then return ⊥;
else return argmin(v∈N [u]|canQu)(idu);

• upd(u) : cmpV ar(u); ptru := bestP tr(u) ;

Rules:
rule Clr(u) : P Clean(u) ∧P ICorrect(u)∧ → colu := false;

P toQuit(u) upd(u);

rule P1(u) : P Clean(u) ∧P ICorrect(u)∧ → ptru := ⊥;
P updPtr(u) ∧ ptru 6= ⊥ cmpV ar(u);

rule P2(u) : P Clean(u) ∧P ICorrect(u)∧ → upd(u);
P updPtr(u) ∧ ptru = ⊥

rule Q(u) : P Clean(u) ∧P ICorrect(u)∧ → cmpV ar(u);
¬P toQuit(u) ∧ ¬P updPtr(u)∧ if realScr(u) ≤ 0 then
(scru 6= realScr(u) ∨ canQu 6= P canQuit(u)) ptru = ⊥;

27

To ensure the liveness of the algorithm, a process u gives its approval (by executing rule P2(u), maybe
preceded by rule P1(u)) to the member of its closed neighborhood having the smallest identifier among
the ones requiring an approval (i.e., the processes satisfying canQ).

To ensure that realScr(v) ≥ 0 is a closed predicate, a process v gives its approval to another process
u only if realScr(v) = 1 and none of its neighbor can leave the alliance (i.e., ptru /∈ N(v)). This latter
condition ensures that no neighbor of v leaves the alliance simultaneously to a new approval of v. It is
mandatory since otherwise the cause for which v gives its approval may be immediately outdated. Hence,
any approval switching is done either in one step when the process leaves the alliance, or in two atomic
steps where ptrv first takes the value ⊥ (rule rule P1(u)) and then points to the suitable process, (rule
rule P2(u)).

Finally, the rule rule Q(u) refreshes the values of scru, ptru, and canQu after a neighbor left the
alliance or updated its scr variable.

Properties of FGA. Below, we show some properties of Algorithm FGA that will be used for showing both
its correctness and the self-stabilization of its composition with Algorithm SDR.

First, by checking the rules of FGA, we can remark that each time a process u sets scru to a value other
than 1, it also sets ptru to ⊥, in the same step. Hence, by construction we have the following lemma.

Lemma 21 scru = 1 ∨ ptru = ⊥ is closed by FGA, for every process u.

Since Algorithm FGA does not modify any variable from Algorithm SDR, we have

Remark 8 P Clean(u) is closed by FGA, for every process u.

Lemma 22 Let u be any process. Let γ be a configuration where P Clean(u) ∧ P ICorrect(u) holds.
Let γ′ be any configuration such that γ 7→ γ′. In γ′, realScr(u) ≥ 0.

Proof. By definition of P toQuit, at most one process of N [u] executes rule Clr in γ 7→ γ′. If no
process of N [u] executes rule Clr, we are done. If rule Clr(u) is executed, then #InAll(u) ≥ f(u) in
γ (see P canQuit(u)) and so #InAll(u) ≥ f(u) in γ′ too and thus realScr(u) ≥ 0 in γ′. Otherwise,
let v ∈ N(u) such that rule Clr(v) is executed in γ 7→ γ′. In γ, colv = true and P toQuit(v) holds
with, in particular, ptru = v 6= ⊥, i.e., colptru holds. Hence, P ICorrect(u), ptru 6= ⊥, and colptru imply
realScr(u) = 1 in γ, and so realScr(u) ≥ 0 in γ′. �

By definition of FGA, we have

Remark 9 Let u be any process. Let γ be a configuration where ptru = v with v 6= u. Let γ′ be any
configuration such that γ 7→ γ′. In γ′, we have ptru ∈ {v,⊥}.

Lemma 23 Let u be any process. Let γ be a configuration where P Clean(u)∧P ICorrect(u) holds. Let
γ′ be any configuration such that γ 7→ γ′ is a step where v ∈ N(u) executes rule Clr(v). P ICorrect(u)
holds in γ′

Proof. Since rule Clr(v) is enabled in γ, we have ptru = v and scru = 1. So, if u does not move in
γ 7→ γ′, we have ptru 6= ⊥, scru = 1, and ¬colptru . Hence, P ICorrect(u) holds in γ′ by Lemma 22.

Otherwise, either rule P1(u) or rule Q(u) is executed in γ 7→ γ′. In the former case, ptru = ⊥ in γ′

and by Lemma 22, P ICorrect(u) holds in γ′. In the latter case, in γ′ either ptru = v 6= ⊥, scru = 1 (by
Lemma 21), and ¬colptru , or ptru = ⊥. In either case, P ICorrect(u) holds in γ′ by Lemma 22, and we
are done. �

28

Lemma 24 Let u be any process. Let γ be a configuration where P Clean(u) ∧ P ICorrect(u) holds.
Let γ′ be any configuration such that γ 7→ γ′ is a step where u executes an action and none of its neighbor
executes rule Clr. P ICorrect(u) holds in γ′.

Proof. Since no neighbor of u executes rule Clr in γ 7→ γ′, we have scru = realScr(u) in γ′, and by
Lemmas 21 and 22, we are done. �

By Remark 8 and Lemmas 23-24, follows.

Corollary 8 P Clean(u) ∧P ICorrect(u) is closed by FGA, for every process u.

Since u is disabled in FGA if ¬P Clean(u) holds. ¬P Clean(u)∧P ICorrect(u) is also closed by
FGA, for every process u. Hence, follows.

Corollary 9 P ICorrect(u) is closed by FGA, for every process u.

Partial Correctness. As for Algorithm U, we focus on configurations of FGA satisfying P ICorrect(u)∧
P Clean(u), every process u. Indeed, again, γinit belongs to this class of configurations, and a configura-
tion of FGA ◦ SDR is normal if and only if P Clean(u) ∧P ICorrect(u) holds for every process u. So,
the properties we exhibit now will be, in particular, satisfied at the completion of SDR.

Consider any terminal configuration of FGA where P Clean(u) ∧ P ICorrect(u) holds for every
process u. By checking the code of Algorithm FGA, we can remark that every process u satisfies

scru = realScr(u) ∧ canQu = P canQuit(u) ∧
ptru = bestP tr(u) ∧ ¬P toQuit(u).

Based on this, one can easily establish that in such a terminal configuration, the set A = {u ∈ V | colu}
is a 1-minimal (f, g) alliance of the network. Indeed, for every process u, since P ICorrect(u) holds,
realScr(u) ≥ 0, which in turn implies that A is an (f, g) alliance. Assume then, by the contradiction, that
A is not 1-minimal in some terminal configuration of FGA where P Clean(u) ∧ P ICorrect(u) holds
for every process u. Let m be the process of minimum identifier such that A − {m} is an (f, g) alliance.
First, by definition, colm ∧#InAll(m) ≥ f(m) holds. Then, ∀u ∈ N [m], scru = realScr(u) = 1 since
A − {m} is an (f, g) alliance. So, P canQuit(m) holds, which implies that canQm = true. Finally,
by minimality of the m’s identifier, ∀u ∈ N [m], ptru = bestP tr(u) = m. Hence, P toQuit(m) holds,
which in turn implies that rule Clr(m) is enabled, a contradiction. Hence, follows.

Theorem 8 In any terminal configuration of FGA where P Clean(u) ∧ P ICorrect(u) holds for every
process u, the set A = {u ∈ V | colu} is a 1-minimal (f, g) alliance of the network.

Consider now any execution e of FGA starting from γinit. In γinit, we have P Clean(u)∧P ICorrect(u)
for every process u. Then, P Clean(u)∧P ICorrect(u), for every process u, is invariant in e, by Corol-
lary 8. Hence, we have the following corollary.

Corollary 10 Let e be any execution of FGA starting from γinit. If e terminates, then the set A = {u ∈
V | colu} is a 1-minimal (f, g) alliance of the network in the terminal configuration of e.

29

Termination. We now show that any execution of FGA (starting from any arbitrary configuration) even-
tually terminates. Let v be any process. Let e be any execution of FGA. First, rule Clr(v) switches colv
from true to false and no rule of FGA sets colv from false to true. So,

(1) rule Clr(v) is executed at most once in e.

Moreover, this implies that

(2) the value of the macro #InAll(v) is monotonically non-increasing in e.

If realScr(u) < 0 holds for some process u in some configuration of e, then P ICorrect(u) does not hold
and so u is disabled. Moreover, by (2), u is disabled forever in e. Assume, otherwise, that realScr(u) ≥ 0.
Then, realScr(u) may increase at most once in e: when rule Clr(u) is executed while #InAll(u) >
f(u). So,

(3) Every process u updates the value of scru at most 4 times in e.

Hence, overall (by (1)-(3)), the value of P canQuit(v) changes at most 4δv + 2 in e, and thus

(4) v updates the value of canQv at most 4δv + 3 in e.

By (3) and (4)

(5) rule Q(v) is executed at most most 4δv + 7 times in e.

The value of bestP tr(v) may change only when a process u in the closed neighborhood of v changes the
value of its variable canQu or when v updates scrv. So, by (3) and (4), the value of bestP tr(v) changes at
most δv.(4∆ + 3) + 4δv + 7 times. So,

(6) v executes rule P1 and rule P2 at most δv.(4∆ + 3) + 4δv + 8 times each in e.

Overall (by (1), (5), and (6)), follows.

Lemma 25 A process v executes at most 8δv∆ + 18δv + 24 moves in an execution of FGA.

Corollary 11 Any execution of FGA contains at most 16.∆.m+ 36.m+ 24.n moves, i.e., O(∆.m) moves.

By Corollaries 10 and 11 , we can conclude with the following theorem.

Theorem 9 FGA is distributed (non self-stabilizing) 1-minimal (f, g)-alliance algorithm which terminates
in at most O(∆.m) moves.

Round Complexity. We already know that in any execution of FGA, each process executes rule Clr at
most once. So, along any execution there are at most n steps containing the execution of some rule Clr.
We now say that a step is Color-restricted, if no rule rule Clr is executed during that step. Similarly, we
say that a round is Color-restricted if it only consists of Color-restricted steps. In the sequel, we show
that any execution that starts from a configuration where P Clean(u) ∧ P ICorrect(u) holds for every
process u contains at most 4 consecutive Color-restricted rounds. Hence, the number of rounds in any
execution starting from γinit is bounded by 5n+ 4. To that goal, we first specialize the notion of closure. A
predicate P over configurations of FGA is Color-restricted closed if for every Color-restricted step γ 7→ γ′,
P (γ)⇒ P (γ′).

We then consider the following predicates over configurations of FGA.

30

• P5 is true if and only if every process u satisfies P Clean(u) ∧P ICorrect(u).

• P6 is true if and only if P5 holds and every process u satisfies scru = realScr(u).

• P7 is true if and only if P6 holds and every process u satisfies canQu = P canQuit(u).

• P8 is true if and only if P7 holds and every process u satisfies ptru ∈ {bestP tr(u),⊥}.

• P9 is true if and only if P8 holds and every process u satisfies ptru = bestP tr(u).

Lemma 26 P6 is Color-restricted closed. Moreover, after one Color-restricted round from any configura-
tion satisfying P5, a configuration satisfying P6 is reached.

Proof. Let u be a process. The value of realScr(u) stays unchanged during a Color-restricted step.
So, the predicate scru = realScr(u) is Color-restricted closed, and so P6 is. Let γ be a configuration
satisfying P5. Recall that P5 is closed, by Corollary 8. So, P Clean(u) ∧ P ICorrect(u) holds forever
from γ. If scru 6= realScr(u) in γ, then u is enabled in FGA. Now, if u moves in a Color-restricted step,
then scru = realScr(u) in the reached configuration. Hence, scru = realScr(u) holds, for every process
u, within at most one round from γ, and we are done. �

Lemma 27 P7 is Color-restricted closed. Moreover, after one Color-restricted round from any configura-
tion satisfying P6, a configuration satisfying P7 is reached.

Proof. Let u be a process. Let γi 7→ γi+1 be a Color-restricted step such that P6(γi) holds. For every
process v, the value of colv, scrv, and #InAll(v) stay unchanged during γi 7→ γi+1. Therefore, the value
of P canQuit(u) stays unchanged during γi 7→ γi+1 for every process u. So, the predicate P6∧ canQu =
P canQuit(u) is Color-restricted closed, and so P7 is. Assume now that, canQu 6= P canQuit(u)
holds in γi. Then, u is enabled in γi and if u moves in γi 7→ γi+1, canQu = P canQuit(u) holds in in
γi+1. Indeed, the value of P canQuit(u) stays unchanged during the step. Therefore, after at most one
Color-restricted round from γi, we have canQu = P canQuit(u) for every process u, and so P7 holds.
�

Lemma 28 P8 is Color-restricted closed. Moreover, after one Color-restricted round from any configura-
tion satisfying P7, a configuration satisfying P8 is reached.

Proof. Let u be a process. Let γi 7→ γi+1 be a Color-restricted step such that P7(γi) holds. During
that step, only rules rule P1 or rule P2 are executed. Moreover, for every process v, the value of colv
and canQv stay unchanged during γi 7→ γi+1. So, the value of bestP tr(u) stays unchanged as well. So,
the predicate P7 ∧ ptru ∈ {bestP tr(u),⊥} is Color-restricted closed, and so P8 is. Assume now that,
ptru /∈ {bestP tr(u),⊥} holds in γi. Then, u is enabled in γi and if u moves in γi 7→ γi+1, ptru ∈
{bestP tr(u),⊥} in γi+1. Indeed, the value of bestP tr(u) stays unchanged during the step. Therefore,
after at most one Color-restricted round from γi, we have ptru ∈ {bestP tr(u),⊥} for every process u, and
so P8 holds. �

Lemma 29 P9 is Color-restricted closed. Moreover, after one Color-restricted round from any configura-
tion satisfying P8, a configuration satisfying P9 is reached.

31

Proof. Let u be a process. Let γi 7→ γi+1 be a Color-restricted step such that P8(γi) holds. During
that step, only rules rule P2 are executed. Moreover, for every process v, the value of colv and canQv
stay unchanged during γi 7→ γi+1. So, the value of bestP tr(u) stays unchanged as well. So, the predicate
P8 ∧ ptru = bestP tr(u) is Color-restricted closed, and so P9 is. Assume now that, ptru 6= bestP tr(u)
holds in γi. Then, u is enabled in γi and if u moves in γi 7→ γi+1, ptru = bestP tr(u) in γi+1. Indeed, the
value of bestP tr(u) stays unchanged during the step. Therefore, after at most one Color-restricted round
from γi, we have ptru = bestP tr(u) for every process u, and so P8 holds. �

Theorem 10 Starting from any configuration satisfying P5, Algorithm FGA terminates in at most 5n + 4
rounds.

Proof. According to Lemmas 26-29, after any 4 consecutive Color-restricted rounds, every process u
satisfies:

scru = realScr(u) ∧ canQu = P canQuit(u) ∧ ¬P updPtr(u)

So only rule Clr(u) may be enabled at u. We conclude that an execution of rule Clr occurs at least every
5 rounds, unless the system reaches a terminal configuration. Since, along any execution, there are at most
n steps containing the execution of some rule Clr, the theorem follows. �

Since γinit satisfies P5, we have the following corollary.

Corollary 12 Starting from γinit, Algorithm FGA terminates in at most 5n+ 4 rounds.

6.5 Algorithm FGA ◦ SDR

Requirements. To show the self-stabilization of FGA ◦ SDR, we should first establish that FGA meets the
requirements 1 to 2d, given in Subsection 3.5.

1. From the code of FGA, we can deduce that Requirements 1, 2b, 2c, and 2e are satisfied.

2. Requirement 2a is satisfied since P ICorrect(u) does not involve any variable of SDR and is closed
by FGA (Corollary 9).

3. Finally, recall that δu ≥ max(f(u), g(u)), for every process u. So, if P reset(v) holds, for every
v ∈ N [u], then realScr(u) = 1 and so P ICorrect(u) holds, by definition. Hence, Requirement 2d
holds.

Partial Correctness. Let γ be any terminal configuration of FGA ◦ SDR. Then, γ|SDR is a terminal con-
figuration of SDR and, by Theorem 1, P Clean(u) ∧ P ICorrect(u) holds in γ, and so γ|SDR, for every
process u. Moreover, γ|FGA is a terminal configuration of FGA. Hence, by Theorem 8, follows.

Theorem 11 In any terminal configuration of FGA ◦ SDR. the set {u ∈ V | colu} is a 1-minimal (f, g)
alliance of the network.

32

Termination and Self-Stabilization. Let u be a process. Let e be an execution of FGA ◦ SDR. By Corol-
lary 3 (page 16), the sequence of rules executed by a process u in a segment of e belongs to the following
language:

(rule C + ε) words I (rule RB + rule R + ε) (rule RF + ε)

where words I be any sequence of rules of FGA. Moreover, by Lemma 10 (page 17) and Lemma 25,
words I is bounded by 8δu∆ + 18δu + 24. Thus, u executes at most 8δu∆ + 18δu + 27 moves in any
segment of e and, overall each segment of e contains at most 16m∆ + 36m+ 27n moves. Since, e contains
at most n+ 1 segments (Remark 5, page 13), e contains at most (n+ 1).(16m∆ + 36m+ 27n) moves, and
we have the following theorem.

Theorem 12 Any execution of FGA ◦ SDR terminates in O(∆.n.m) moves.

By Theorems 11 and 12, we can conclude:

Theorem 13 FGA ◦ SDR is self-stabilizing for the 1-minimal (f, g)-alliance problem. Its stabilization time
is in O(∆.n.m) moves.

Round Complexity. Corollary 5 (page 20) establishes that after at most 3n rounds a normal configuration
of FGA ◦ SDR is reached. Then, since the set of normal configuration is closed (still by Corollary 5), all
rules of SDR algorithm are disabled forever from such a configuration, by Lemma 15 (page 20). Moreover,
in a normal configuration, P Clean(u) ∧ P ICorrect(u) holds, for every process u (still by Corollary
5). Hence, after at most 5n + 4 additional rounds, a terminal configuration of FGA ◦ SDR is reached, by
Theorem 10, and follows.

Theorem 14 The stabilization time of FGA ◦ SDR is at most 8n+ 4 rounds.

References

[1] Yehuda Afek and Anat Bremler-Barr. Self-stabilizing unidirectional network algorithms by power
supply. Chicago J. Theor. Comput. Sci., 1998, 1998.

[2] Karine Altisen, Alain Cournier, Stéphane Devismes, Anaı̈s Durand, and Franck Petit. Self-stabilizing
leader election in polynomial steps. Inf. Comput., 254:330–366, 2017.

[3] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power of popu-
lation protocols. Distributed Computing, 20(4):279–304, 2007.

[4] Anish Arora and Mohamed G. Gouda. Distributed reset. IEEE Trans. Computers, 43(9):1026–1038,
1994.

[5] Baruch Awerbuch and Rafail Ostrovsky. Memory-efficient and self-stabilizing network {RESET}
(extended abstract). In James H. Anderson, David Peleg, and Elizabeth Borowsky, editors, Proceed-
ings of the Thirteenth Annual ACM Symposium on Principles of Distributed Computing, Los Angeles,
California, USA, August 14-17, 1994, pages 254–263. ACM, 1994.

[6] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-stabilization by local checking and
correction (extended abstract). In 32nd Annual Symposium on Foundations of Computer Science, San
Juan, Puerto Rico, 1-4 October 1991, pages 268–277. IEEE Computer Society, 1991.

33

[7] Baruch Awerbuch, Boaz Patt-Shamir, George Varghese, and Shlomi Dolev. Self-stabilization by local
checking and global reset (extended abstract). In Distributed Algorithms, 8th International Workshop,
WDAG ’94, Terschelling, The Netherlands, September 29 - October 1, 1994, Proceedings, volume 857
of Lecture Notes in Computer Science, pages 326–339. Springer, 1994.

[8] Jalel Ben-Othman, Karim Bessaoud, Alain Bui, and Laurence Pilard. Self-stabilizing algorithm for
efficient topology control in wireless sensor networks. Journal of Computational Science, 4(4):199 –
208, 2013.

[9] C. Berge. The Theory of Graphs. Dover books on mathematics. Dover, 2001.

[10] Christian Boulinier. L’Unisson. PhD thesis, Université de Picardie Jules Vernes, France, 2007.

[11] Christian Boulinier, Franck Petit, and Vincent Villain. When graph theory helps self-stabilization.
In Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing
(PODC), July 25-28, 2004, pages 150–159, 2004.

[12] Alain Bui, Ajoy Kumar Datta, Franck Petit, and Vincent Villain. Optimal PIF in tree networks. In Yuri
Breitbart, Sajal K. Das, Nicola Santoro, and Peter Widmayer, editors, Distributed Data & Structures 2,
Records of the 2nd International Meeting (WDAS 1999), Princeton, USA, May 10-11, 1999, volume 6
of Proceedings in Informatics, pages 1–16. Carleton Scientific, 1999.

[13] Eddy Caron, Florent Chuffart, and Cédric Tedeschi. When self-stabilization meets real platforms: An
experimental study of a peer-to-peer service discovery system. Future Generation Computer Systems,
29(6):1533 – 1543, 2013.

[14] Eddy Caron, Ajoy Kumar Datta, Benjamin Depardon, and Lawrence L. Larmore. A self-stabilizing
k-clustering algorithm for weighted graphs. J. Parallel Distrib. Comput., 70(11):1159–1173, 2010.

[15] Eddy Caron, Frédéric Desprez, Franck Petit, and Cédric Tedeschi. Snap-stabilizing prefix tree for
peer-to-peer systems. Parallel Processing Letters, 20(1):15–30, 2010.

[16] Fabienne Carrier, Ajoy Kumar Datta, Stéphane Devismes, Lawrence L. Larmore, and Yvan Rivierre.
Self-stabilizing (f, g)-alliances with safe convergence. J. Parallel Distrib. Comput., 81-82:11–23, 2015.

[17] Nian-Shing Chen, Hwey-Pyng Yu, and Shing-Tsaan Huang. A self-stabilizing algorithm for construct-
ing spanning trees. Inf. Process. Lett., 39(3):147–151, 1991.

[18] Alain Cournier, Ajoy K. Datta, Franck Petit, and Vincent Villain. Snap-stabilizing PIF algorithm in
arbitrary networks. In Proceedings of the 22nd International Conference on Distributed Computing
Systems (ICDCS’02), pages 199–206, 2002.

[19] Jean-Michel Couvreur, Nissim Francez, and Mohamed G. Gouda. Asynchronous unison (extended
abstract). In Proceedings of the 12th International Conference on Distributed Computing Systems,
Yokohama, Japan, June 9-12, 1992, pages 486–493. IEEE Computer Society, 1992.

[20] Jean-Michel Couvreur, Nissim Francez, and Mohamed G. Gouda. Asynchronous unison (extended
abstract). In Proceedings of the 12nd International Conference on Distributed Computing Systems
(ICDCS’92), pages 486–493, 1992.

34

[21] Ajoy K. Datta, Lawrence L. Larmore, and Priyanka Vemula. An O(N)-time self-stabilizing leader
election algorithm. JPDC, 71(11):1532–1544, 2011.

[22] Stéphane Devismes and Colette Johnen. Silent self-stabilizing BFS tree algorithms revisited. JPDC,
97:11 – 23, 2016.

[23] Stéphane Devismes and Franck Petit. On efficiency of unison. In 4th Workshop on Theoretical Aspects
of Dynamic Distributed Systems, (TADDS ’12), pages 20–25, 2012.

[24] Edsger W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control. Commun. ACM,
17(11):643–644, 1974.

[25] Yihua Ding, James Z. Wang, and Pradip K. Srimani. Self-stabilizing minimal global offensive alliance
algorithm with safe convergence in an arbitrary graph. In T. V. Gopal, Manindra Agrawal, Angsheng
Li, and S. Barry Cooper, editors, Theory and Applications of Models of Computation - 11th Annual
Conference (TAMC), volume 8402 of Lecture Notes in Computer Science, pages 366–377, Chennai,
India, April 11-13 2014. Springer.

[26] S Dolev, A Israeli, and S Moran. Self-stabilization of dynamic systems assuming only Read/Write
atomicity. Distributed Computing, 7(1):3–16, 1993.

[27] Shlomi Dolev. Self-stabilizing routing and related protocols. Journal of Parallel and Distributed
Computing, 42(2):122 – 127, 1997.

[28] Shlomi Dolev, Mohamed G. Gouda, and Marco Schneider. Memory requirements for silent stabiliza-
tion. Acta Informatica, 36(6):447–462, 1999.

[29] Mitre Costa Dourado, Lucia Draque Penso, Dieter Rautenbach, and Jayme Luiz Szwarcfiter. The
south zone: Distributed algorithms for alliances. In Xavier Défago, Franck Petit, and Vincent Villain,
editors, Stabilization, Safety, and Security of Distributed Systems - 13th International Symposium,
(SSS), volume 6976 of Lecture Notes in Computer Science, pages 178–192, Grenoble, France, October
10-12 2011. Springer.

[30] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[31] Christian Glacet, Nicolas Hanusse, David Ilcinkas, and Colette Johnen. Disconnected components
detection and rooted shortest-path tree maintenance in networks. In SSS’14, pages 120–134, 2014.

[32] Anupam Gupta, Bruce M. Maggs, Florian Oprea, and Michael K. Reiter. Quorum placement in net-
works to minimize access delays. In Marcos Kawazoe Aguilera and James Aspnes, editors, Proceed-
ings of the Twenty-Fourth Annual ACM Symposium on Principles of Distributed Computing (PODC),
pages 87–96, Las Vegas, NV, USA, July 17-20 2005. ACM.

[33] Shing-Tsaan Huang and Nian-Shing Chen. A self-stabilizing algorithm for constructing breadth-first
trees. IPL, 41(2):109–117, 1992.

[34] Shing-Tsaan Huang and Nian-Shing Chen. Self-stabilizing depth-first token circulation on networks.
Distributed Computing, 7(1):61–66, 1993.

35

[35] Hirotsugu Kakugawa and Toshimitsu Masuzawa. A self-stabilizing minimal dominating set algorithm
with safe convergence. In 20th International Parallel and Distributed Processing Symposium (IPDPS),
pages 8.–, Rhodes Island, Greece, 25-29 April 2006. IEEE.

[36] Shmuel Katz and Kenneth J. Perry. Self-stabilizing extensions for message-passing systems. Dis-
tributed Computing, 7(1):17–26, 1993.

[37] Yonghwan Kim, Junya Nakamura, Yoshiaki Katayama, and Toshimitsu Masuzawa. A cooperative
partial snapshot algorithm for checkpoint-rollback recovery of large-scale and dynamic distributed
systems. In CANDAR’18, pages 285–291, 11 2018.

[38] Chung-Shou Liao and Gerard J. Chang. k-tuple domination in graphs. Inf. Process. Lett., 87(1):45–50,
2003.

[39] Gerry Siegemund, Volker Turau, Christoph Weyer, Stefan Lobs, and Jörg Nolte. Brief announcement:
Agile and stable neighborhood protocol for wsns. In Proceedings of the 15th International Sympo-
sium on Stabilization, Safety, and Security of Distributed Systems (SSS’13), pages 376–378, November
2013.

[40] J.M. Sigarreta and J.A. Rodrı́guez. On the global offensive alliance number of a graph. Discrete
Applied Mathematics, 157(2):219 – 226, 2009.

[41] Jose Maria Sigarreta and Juan Alberto Rodrı́guez-Velazquez. On defensive alliances and line graphs.
Appl. Math. Lett., 19(12):1345–1350, 2006.

[42] M Sloman and J Kramer. Distributed systems and computer networks. Prentice Hall, 1987.

[43] Pradip K. Srimani and Zhenyu Xu. Distributed protocols for defensive and offensive alliances in
network graphs using self-stabilization. In International Conference on Computing: Theory and Ap-
plications (ICCTA), pages 27–31, Kolkata, India, March 5-7 2007. IEEE Computer Society.

[44] Volker Turau. Linear self-stabilizing algorithms for the independent and dominating set problems
using an unfair distributed scheduler. Inf. Process. Lett., 103(3):88–93, 2007.

[45] Guangyuan Wang, Hua Wang, Xiaohui Tao, and Ji Zhang. A self-stabilizing algorithm for finding
a minimal k-dominating set in general networks. In Yang Xiang, Mukaddim Pathan, Xiaohui Tao,
and Hua Wang, editors, Data and Knowledge Engineering, Lecture Notes in Computer Science, pages
74–85. Springer Berlin Heidelberg, 2012.

[46] Saı̈d Yahiaoui, Yacine Belhoul, Mohammed Haddad, and Hamamache Kheddouci. Self-stabilizing
algorithms for minimal global powerful alliance sets in graphs. Inf. Process. Lett., 113(10-11):365–
370, 2013.

36

