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 10 

Abstract 11 

Mimachlamys varia is a sub-littoral bivalve encountered from Norway to the Mediterranean Sea, 12 

which lives mostly bissally attached to rocks. During the low tide period, M. varia individuals, located 13 

highest on the shore, may experience short time of aerial exposure and face a low availability of 14 

oxygen. Here we report a comparative metabolomic profiling of gill samples of M. varia obtained by 15 

both LC-QToF and APGC-QToF mass spectrometry, to analyze metabolic changes occurring during 16 

emersion in comparison with immersion. Scallops were grown in aquaria with a simulated intertidal 17 

environment mimicking short-duration air exposure that they might experience during extreme tides: 18 

alternating 2h emersion and 10h immersion. Our results show a switch from aerobic to anaerobic 19 

metabolism after only two hours of emersion, with the resort to different pathways: glucose-lactate, 20 

glucose-succinate and aspartate-succinate pathways. Furthermore carnitine-conjugated metabolites 21 

were found to accumulate during emersion, as well as urate. The level of tyrosine on the contrary was 22 

found to increase. These findings indicate a complex metabolic reprogramming that occurs after a two 23 

hours emersion period and upon re-immersion. Furthermore, M. varia is used as sentinel species in 24 

pollution biomonitoring, through the assay of biomarkers to evaluate the effects of pollutants. Here we 25 

show that emersion induces a significant decrease of superoxide dismutase activity, an enzyme 26 

developed by bivalves to face oxidative stress and used as biomarker. These findings have to be taken 27 

into account to normalize sampling during campaigns of environmental monitoring, by taking in situ, 28 

as far as possible only immersed individuals. 29 

 30 

Keywords: anaerobic, APGC-QToF mass spectrometry, hypoxia, intertidal, LC-QToF mass 31 

spectrometry, metabolomics, Mimachlamys varia, PLS-DA.  32 
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 36 

Introduction 37 

Mimachlamys varia, commonly known as the variegated scallop, is a marine bivalve in the family 38 

Pectinidae. It has a wide distribution from southern Norway, along the western coasts of the British 39 

Isles, France, and the Iberian Peninsula and throughout most of the Mediterranean Sea (Shumway and 40 

Parsons, 2016). This sub-littoral species occurs at depths ranging from very low intertidal to 100 m. It 41 

is mostly byssally attached to rocks or among rough ground or more rarely free-living (Duncan et al., 42 

2016). During the low tide period, M. varia individuals attached in the low intertidal area, but located 43 

at the highest positions on the shore, may experience short time of aerial exposure. During this period 44 

of emersion, they have to face a low availability of dissolved oxygen, as they have only a small 45 

reserve of seawater inside their two-part shells. Contrary to oysters and mussels, variegated scallops 46 

are unable to remain tightly closed for extended periods of time. In the absence of danger, their shells 47 

are therefore usually held slightly open, whether they are in or out of the water. This raises several 48 

questions: is the dissolved oxygen in the seawater inside the shells sufficient to allow for breathing 49 

during this short period of emersion? Is the air breathing capacity of scallops sufficient to maintain 50 

aerobic metabolic pathways? Little is known about the air-breathing capacity of scallops upon 51 

emersion (Shumway and Parsons, 2016), nor about their ability to shift towards an anaerobic 52 

metabolism during the short emersion periods they undergo. This resort to anaerobic energy 53 

production is common among intertidal bivalves upon emersion. Indeed they cannot meet their oxygen 54 

requirements in air, due to inadequate gas uptake or delivery mechanisms and the danger of 55 

desiccation when exposing moist surface. The result is that many inhabitants of the marine intertidal 56 

area, such as mussels and oysters, undergo a number of physiological and metabolic changes 57 

associated with alternating periods of immersion and emersion. These changes include a shift from 58 

aerobic to anaerobic metabolism, as scallops close shell valves to prevent desiccation and undergo a 59 

sharp decrease of dissolved oxygen availability (Akberali and Trueman, 1985; Connor and Gracey, 60 

2012; De Zwaan and Wijsman, 1976; Dudognon et al., 2013; Isani et al., 1995; Shick et al., 1986).  61 

The aim of this paper is thus to provide a global insight into the metabolic changes occurring during 62 

short aerial emergence in comparison with periods of immersion, for the particular species 63 

Mimachlamys varia. This will help in a better understanding of physiological processes in scallops 64 

upon emersion. 65 

In addition to providing insight into this physiological aspect for Mimachlamys varia, this study may 66 

contribute meaningfully to improve ecotoxicological studies using this same marine organism. Indeed, 67 
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due its relative abundance along the coasts and also because this species has been shown to have a 68 

very elevated pollutants incorporation and retention capacity, it has been proposed as a potential 69 

ecotoxicological biomonitoring species for the marine environmental watch (Metian et al., 2009a, 70 

2009b; Milinkovitch et al., 2015). However, during campaigns of environmental monitoring using M. 71 

varia as sentinel species, samples of these scallops are taken in situ on the shore at low tide at high 72 

tidal coefficient, indifferently emerged or still immerged and biomarkers are assayed to evaluate the 73 

sub-lethal effects of pollutants (Breitwieser et al., 2018, 2016). In order to provide normalized 74 

sampling methods, during environmental biomonitoring using biomarkers in M. varia, it is important 75 

to exactly know how metabolism of M. varia individuals living in the low intertidal is modified during 76 

emersion period. Indeed these metabolic changes are likely to lead to confounding factors and to 77 

increase the variability of biomarker responses. For example, it was shown that hypoxia induced 78 

tissue-specific responses in both antioxidant and immune systems in mussels (Nogueira et al., 2017). 79 

In order to reveal new insight into the metabolic adaptations to emersion of M. varia, we grew 80 

scallops in aquaria with a simulated intertidal environment and a metabolomics study was performed 81 

during six complete tidal cycles. These experimental conditions were chosen to mimic short-duration 82 

air exposure that might be experienced by variegated scallops, located highest on the foreshore, during 83 

extreme spring and autumn tides: alternating 2h air exposure and 10h immersion. A comparative 84 

metabolomics study was performed in gills samples, using both LC-QToF and APGC-QToF mass 85 

spectrometry, in order to provide a temporal overview of the relationship between tidal cycles and 86 

metabolome changes. Besides the effect of these tidal cycles on metabolome, the variation of SOD 87 

(superoxide dismutase) activity was measured all along the experiment. This enzyme is a part of the 88 

enzymatic antioxidant system developed by bivalves to face oxidative stress. It is considered as a 89 

precocious biomarker linked to this particular stress (Valavanidis et al., 2006) and it is used to monitor 90 

and evaluate the possible health impairment in marine organisms, following for example acute or 91 

chronic pollution (Breitwieser et al., 2018, 2016).  92 

 93 

 94 

Materials and Methods 95 

 96 

Animals and experimental design 97 

M. varia of 4 to 5 cm length were collected in the Pertuis Charentais (France) in December 2016. They 98 

were then maintained in aquaria in the laboratory at a constant temperature of 15°C. Food as liquid 99 

algal culture (Shellfish Diet 1800®, Reed Mariculture, Campbell, CA, USA) was added to the water. 100 

Intertidal conditions were simulated using water pumps that filled and emptied the aquaria with natural 101 

seawater. Once a day, at the end of low tide period, the seawater was totally replaced by filling the 102 

aquaria with fresh seawater. A tidal regime of alternating periods of 10 h in and 2 h out of seawater 103 



4 
 

was established. This last duration corresponds to a maximal emersion time endured by M. varia 104 

individuals living in the low intertidal area. Low tides occurred from 8:30 to 10:30 A.M. and 8:30 to 105 

10:30 PM. A light-dark cycle was also programmed with periods of darkness occurring from 8:00 PM 106 

to 8:00 AM (Figure 1). Scallops were acclimated during four weeks to alternating high and low tides, 107 

before sampling. Samples were collected 0.25 h before the change in tidal episode (at 8:15 AM, 10:15 108 

AM, 8:15 PM and 10:15 PM) during 3 days corresponding to 6 total tidal cycles. The first sampling 109 

occurred at 8:15 AM. Nine individual scallops were collected at each time point. Immediately after 110 

sampling, gill tissue was dissected from each individual, drained on absorbent paper and put in 111 

cryovial on ice. Gill tissues from three individuals were pooled, snap-frozen in liquid nitrogen and 112 

stored in liquid nitrogen. 113 

 114 

Total protein concentration and SOD activity: sample processing and assays 115 

For each pool of three individuals, 100 mg of gills were collected after dissection and mixing. They 116 

were then homogenized in ice-cold phosphate buffer (100 mM, pH 7.2, 1100 mOsm). The 117 

homogenates were centrifuged at 12,500g at 4 °C for 15 min and the supernatants were used for 118 

protein and SOD activity assays. 119 

Total protein concentrations were determined using an adaptation of the BCA Kit method 120 

(Bicinchononique Acid Kit, Sigma Aldrich). The kit contained bovine serum albumin (BSA) as a 121 

standard and involved the reduction of alkaline Cu2+ by proteins (Smith et al., 1985) at absorbance 562 122 

nm using a spectrofluorometer (SAFAS Flx-Xenius).  123 

SOD activity was assessed in the homogenate fractions using the method developed by Paoletti et al. 124 

(1986). The assay, involving EDTA, MnCl2 and mercaptoethanol, measures the decrease of 125 

nicotinamide adenine dinucleotide (NADH) oxidation. This inhibition of oxidation was monitored at 126 

340 nm (using SAFAS Flx-Xenius spectrofluorimeter) and is a function of SOD activity. Fifty percent 127 

inhibition of oxidation corresponds to one unit of SOD. The results are presented in UI of SOD/mg of 128 

proteins. Statistical analyses were carried out using R language (v. 3.1.2, R Core Team, 2016). 129 

Normality was first tested on residuals using Kolmogorov-Smirnov tests and homogeneity of 130 

variances was assessed using Bartlett tests. For SOD values, tides (low and high) were compared at 131 

two times per day for each day, using One-Sample t-tests. 132 

 133 

Sample preparation for metabolomics study 134 

The efficiency of the following technique, inspired by a metabolomics study in Phycotoxines 135 

laboratory (Ifremer, Nantes, France), has previously been established (Mondeguer et al., 2015). 136 

Samples were thawed on ice, homogenized by manual grinding with a mini pestle and then crushed 137 

with a homogenizer T 10 basic Ultra-Turrax (IKA®-Werke GmbH & Co. KG, Germany) at low 138 

speed. Each sample was precisely adjusted to 1g and 100mg of homogenized sample were also put 139 
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aside in a separate tube in order to perform SOD activity measurement. Tubes were then stored at -140 

80°C for one night before extraction procedure. 141 

Samples were then subjected to a triple solvent extraction protocol by successively using acetone 142 

twice and methanol. For each extraction, the following protocol was used: addition of 2.5 mL of 143 

solvent to the sample, resuspension and dispersion with homogenizer T 10 basic Ultra-Turrax, 144 

agitation 140 rpm 10 minutes, centrifugation at 3000 g during 5 minutes, removal of supernatant. 145 

Ultra-Turrax was rinsed in the solvent of the next step. The three supernatants were then pooled, put at 146 

4°C and subjected to centrifugation at 3000 g during 5 minutes. The supernatant was recovered and 147 

dried with a stream of nitrogen at 30°C until reduction of the volume to 50% and at 50°C until 148 

complete drying. The dry extract was finally re-suspended with 2 mL methanol/water 20/80 and stored 149 

at -80°C prior filtration with 0.2 µm filters and LCMS analysis. 150 

 151 

LC-QToF MS analysis of metabolites 152 

The analysis of metabolite compounds in gills was performed by ultra-high performance liquid 153 

chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS). Analyses were 154 

carried out using an UHPLC system “Acquity UPLC H-class” (Waters, Milford, USA) coupled to a 155 

high resolution mass spectrometer “XEVO-G2-S Q-TOF” equipped with an electrospray ionization 156 

source (Waters, Manchester, England). The UHPLC system was formed by a quaternary pump 157 

(Quaternary Solvent Manager, Waters) and an automatic injector (Sample Manager-FTN, Waters) 158 

equipped with a 10 μL injection loop. 5 μL of the samples were injected in a column “Acquity UPLC 159 

HSST3” (Waters) (2.1 × 150 mm, 1.7 μm), and the products were eluted at a flow rate of 200 μL.min-1 160 

using a gradient composed of solvents A (water/formic acid 100/0.001 (v:v)) and B (acetonitrile/ 161 

formic acid 100/0.001 (v:v)), according to the following procedure: 0–3 min, 100% A; 3–8 min 0%–162 

50% B ; 8–13 min 50% B; 13–20 min 50–95% B; 20–30 min, 95% B, 30-31 min 95-0% B, 31-36 min 163 

100% B . During the analysis, the column and the injector were maintained at 25°C and 7°C, 164 

respectively. The analyses were performed in positive and negative ionization mode with MSE 165 

function in a centroid mode. The MS parameters was applied in the ESI source for the two ionization 166 

mode were: source temperature 120°C, desolvation temperature 500°C, gas flow-rate of the cone 50 167 

L.h-1, desolvation gas flow-rate 800 L.h-1, capillary voltage 2.5 kV, sampling cone 130 V and source 168 

compensation 80 V. The instrument was adjusted for the acquisition on a 50–2100 m/z interval, with a 169 

scan time of 0.15 s. 170 

The mass spectrometer was calibrated before analysis using 0.5mM sodium formiate solution and the 171 

Leucine Enkephalin (M = 555.62 Da,1 ng. μL-1) was used as a lock-mass. 172 

Compound identification was performed by matching to a database of authentic compound standards. 173 

Metabolites were finally expressed in relative abundance, which was calculated for each metabolite by 174 

dividing the abundance in each sample by the median abundance across all the samples. 175 

 176 
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Quality Control 177 

A pool sample was prepared by combining 100 μL of each gills tissue extract. The pool sample was 178 

divided into several vials that were used as quality-control samples (QCs) and regularly injected 179 

within samples (one injection every five samples) to ensure analytical repeatability. Samples of gills 180 

tissues extracts were measured in randomized order to avoid any possible time-dependent changes in 181 

LC/MS analysis. Blanks were prepared with the last extraction solvent and injected at the beginning 182 

and at the end of the samples sequence. These blanks allowed the subsequent subtraction of 183 

contaminants or components coming from the extraction solvent.  184 

 185 

Chemicals 186 

Acetonitrile, Methanol, Acetone with HPLC grade purity were acquired from Carlo Erba. Water was 187 

prepared using a Milli-Q reagent water system. Succinate, malate, uric acid, aspartate, alanine, citrate, 188 

glutamate, propionylcarnitine , isovalerylcarnitine, isobutyrylcarnitine were purchased from Sigma-189 

Aldrich. 190 

 191 

Sample and standards preparation for APGC-QToF MS 192 

20 µL of samples prepared for metabolomics studies as described above and QC or of 10 ng µL-1 193 

standard solutions were dried under nitrogen at 40°C in vials without inserts. For methoximation–194 

trimethylsilylation (MeOx–TMS), 20 µL of a 20 mg mL-1 methoxylamine hydrochloride in pyridine 195 

solution were added to dissolve the dried extract. The vials were then vortex mixed for 15 s and heated 196 

at 80°C for 15 min in derivatization block. Vials were the removed from the block and 20 µL of 197 

MSTFA (N-methyl-N-(trimethylsilyl trifluoroacetamide)) was added to the samples and QC, vortex 198 

mixed for 15 s again and heated at 80°C for 15 min in the block. Vials were removed from the block 199 

and allowed to cool for 5 min. They were then centrifuged at 2000 rpm for 5 min. Supernatants were 200 

transferred to autosampler vials using pipet with filter tips.  201 

 202 

 203 

APGC-QToF MS analysis of metabolites 204 

Analyses were carried out using an Agilent GC 7890A (Agilent Technologies, Santa Clara, CA) 205 

coupled to a Waters Synapt G2-S ToF (Waters Corporation, Manchester, UK), equipped with APGC 206 

(atmospheric pressure gas chromatography) ionization. A DB5-MS (Agilent Technologies) analytical 207 

column (30 m × 0.25 mm i.d. x 0.25 μm film thickness consisting of 5% phényl-diméthylpolysiloxane) 208 

was used. The carrier gas was helium; it was used at constant flow equal to 1 mL min−1.  The 209 

temperature program for the gas chromatography was as follows: initial temperature 120°C for 0.5 210 

min, increase of temperature by two different rates: 8°C.min-1 up to 280°C at 22 min and 20°C.min-1 211 

up to 300°C, then temperature was held at 300 °C for 5 min. Total time for analysis was 28 min. The 212 

injector temperature was 250°C. Injection was performed in the split mode (1/50) and the injection 213 
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volume was 2µL. The parameters for APGC were: Corona current 1.3μA, probe temperature 20°C, 214 

source temperature 150°C, sampling cone 30V (different sampling cone voltages (from 10 to 40 V) 215 

were tested and 30 V was retained), source offset 80V, cone gas flow 170 L/Hr, auxillary gas flow 220 216 

L/Hr. The instrument was adjusted for the acquisition on a 50–700 m/z interval, with a scan time of 217 

0.5 s. 218 

 219 

Statistical analysis 220 

Data were obtained and treated as ion peak intensity after conversion of raw spectra (.RAW) to 221 

.NetCDF format, compatible with Galaxy software, using “Databridge” software (Waters). 222 

Metabolites data were processed on the online and freely available Workflow4Metabolomics (W4M) 223 

platform (http://workflow4metabolomics.org) for data pretreatments and analyzed with the web server 224 

MetaboAnalyst 4.0 (www.metaboanalyst.ca) for multivariate analyses processing: the data were 225 

normalized and log-transformed, and Pareto scaling was applied prior to multivariate analyses. The 226 

data were analyzed using both unsupervised (Principal Component Analysis, PCA) and supervised 227 

(Projections to Latent Structures Discriminant Analysis, PLS-DA) methods. Unsupervised method 228 

allowed to detect general spectral trends and natural clustering between samples justifying the PLS-229 

DA model reliability. It also highlighted the potential sample outliers. The supervised method is a 230 

multivariate regression and prediction based on the separation between two classes: high and low tide 231 

samples. It was used to select the metabolites involved in the class separation in order to identify 232 

metabolites with a tidal rhythmic pattern. Selection of metabolites was based on the importance of 233 

their contribution as variable in the component prediction in PLS-DA model, described as Variable 234 

Importance in Projection parameter (VIP). A variable with a VIP-value > 1 can be considered as a 235 

metabolite providing a significant contribution to the PLS-DA model. 236 

Predictability performance was evaluated for each built PLS-DA model. To assess the statistical 237 

significance, t-tests were performed on each metabolite intensities difference between low tide 238 

samples and high tide samples. Normality and homoscedasticity were previously checked. 239 

 240 

Identification and relative level of metabolites 241 

The identification of metabolites, in case of LC-MS analyses, was performed by using the human 242 

metabolome database (http://www.hmdb.ca). A research was performed with the mass value of 243 

metabolites and a limit with a mass error lower 5ppm. Moreover, corresponding analytical standards 244 

were used with the LC-MS method to verify this identification. 245 

The characterization of compound present in case of APGC analyses depends on the chemical reaction 246 

used for derivatization. Golm Metabolome Database (http://gmd.mpimp-golm.mpg.de) and the 247 

supplementary data of the paper of Jaeger et al. (2016) were used to identify metabolites of interest in 248 

APGC. In APGC mode, ion fragmentation frequently occurs, making it possible to identify 249 

compounds through their fragments. 250 

http://www.metaboanalyst.ca/
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Relative metabolite levels were expressed in relative abundance obtained by dividing each metabolite 251 

intensity by the median intensity of the same metabolite across all the samples. 252 

 253 

 254 

Results  255 

 256 

Data processing 257 

Mass spectrometry untreated analyses detected 9105 m/z features for negative ionization mode results 258 

in LCMS, 3087 for positive ionization mode and 5426 for APGC results. These large sets of data 259 

obtained for metabolomics profiling were preprocessed with a batch correction to eliminate instrument 260 

signal drift and offset differences between batches. Sample intensities were adjusted using a Lowess 261 

regression model fitting with the pool values (Van Der Kloet et al., 2009). 262 

A set of generic filters allowed to remove qualitatively blanks and pool samples and/or quantitatively 263 

variables corresponding to specific values regarding designated factors or numerical variables (as in 264 

PSL-DA). 265 

Quality metrics tool (supplied by W4M Core Development Team) provided visualization of the data 266 

matrices and supplied a rapid highlight of potential sample outliers. 267 

After preprocessing, the database of metabolites counted for 2171, 700 and 1461 compounds detected 268 

with negative and positive ionization modes in LCMS and APGC respectively. They were analyzed to 269 

highlight a potential rhythmic pattern of their intensities.  270 

 271 

PCA Analysis 272 

PCA was performed as a first-pass method to confirm metabolite composition differences between 273 

tide levels and detect eventual outlier samples. The score plots of PCA analysis are shown in Figure 2. 274 

Each point represented an individual sample, and the scatter of points indicated the similarities or 275 

differences of metabolic compositions. Samples having similar metabolite contents are clustered 276 

together, whereas those having different metabolites are dispersed. The PCA performed with datasets 277 

from both low and high tides showed that two groups were well separated according to tidal level. 278 

Thus, compound intensities, considered as variables, contributed to the separated structure observed 279 

between high and low tide samples. The two first axes accounted for 25.4%-30.3%-31% and 16.8%-280 

12.1%-5.3% of the total variability among samples for negative, positive and APGC datasets 281 

respectively. High and low tide samples were clustered and distinguished mainly along the first axis 282 

for positive ionization condition and APGC and along the second axis for negative mode. The model 283 

fitted the data well. However, too many variables were considered to highlight a specific contribution 284 

to the total variability within both datasets. 285 
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Hotelling’s T² statistic tested the presence of outliers measuring the variation within the PCA model. 286 

Samples with large Hotelling T² had an unusual variation inside the model. In this case, they were not 287 

representative of the modeled data and can be considered as outliers if P-value < 0.05. The PCA 288 

results showed three outlier samples in the negative (3B1, 6B1 and 3H2) and four outliers in the 289 

positive mode (6B1, 1H1, 2H3 and 3H2) of datasets. No outlier samples were found in APGC dataset. 290 

All outlier samples were removed from each sample matrix datasets to perform PLS-DA. 291 

 292 

PLS-DA analyses 293 

PLS-DA analyses were then performed to identify metabolites whose abundance was linked to the 294 

tidal cycle. First PLS-DA models were built to force the separation between the two tidal patterns in 295 

the three datasets (negative and positive LC-MS and APGC).  296 

The performances of the model was proven, as the results of both analyses for negative, positive 297 

modes and APGC datasets showed a relative data consistency with R2 (cumulative) = 0.99, 0.99 and 298 

0.99 respectively. Moreover, the prediction performance of the models reached Q2 (cumulative) = 299 

0.84, 0.85 and 0.67 for negative and positive modes and APGC datasets respectively, estimating a 300 

good predictive capacity. However, the permutation test was not significant (P-value > 0.05) for these 301 

first models due to the very large number of variables. 302 

To improve the prediction performance of the model and to select the variables presenting the most 303 

important contribution in the classification model, successive PLS-DA models were built selecting 304 

each time only variables with VIP > 1. Model succession was stopped when their predictive 305 

performances were the highest. In the negative mode dataset, a total of 3 successive models selecting 306 

687, 262 and then 87 metabolites with VIP > 1 were performed reaching Q2 = 0.95. In the positive 307 

mode dataset, a total of two successive models selecting 231 and 76 metabolites with VIP > 1 were 308 

performed reaching Q2 = 0.90. Finally in the APGC dataset, a total of three successive models 309 

selecting 396, 103 and 27 metabolites with VIP > 1 were performed reaching Q2 = 0.87.  310 

  311 

All these selected metabolites showed a clear tidal rhythmic pattern, with a significant  difference 312 

between low tide and high tide samples for each metabolite (t-test, P-value < 0.05). Among them, 15 313 

metabolites were identified by using one of the identification methods described in the “material and 314 

methods” section. Interestingly, the relative abundance of 14 metabolites peaked in low tide samples 315 

while only tyrosine peaked in high tide samples. 316 

 317 

Carbohydrate/energy metabolism 318 

Within the gill tissue of M. varia, succinate was found to be the most oscillating metabolite and malate 319 

to a lesser extent. Both compounds exhibited a strong rhythmic fluctuation, with high levels at the end 320 

of the two hours emersion period and lower levels at the end of the ten hours immersion periods 321 

(Figure 3A). For succinate a difference of about five in relative abundance was found between end of 322 
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emersion and immersion (P-value < 0.0001). Levels of malate, which is an intermediate metabolite 323 

formed during the reduction of oxaloacetate to succinate, also increased at low tide (P-value = 0.0016), 324 

with a difference of 2.64. Citrate presented the same oscillation pattern, with a difference of two in 325 

relative abundance (P-value = 0.01) (Figure 3A).  326 

Similarly levels of lactate oscillated and increased at the end of low tide, with a difference of about 327 

three between low and high tides (P-value < 0.0001 ) (Figure 3B).   328 

Glutamate and alanine were also found to clearly oscillate with high levels at the end of low tide and 329 

low level at the end of high tide (amplitude respectively equal to 8.4 and 1.3 and P-values respectively 330 

less than 0.0001 and 0.015) (Figure 3B).   331 

Propionate, which is produced by a further reduction of succinate, could not be detected in any of the 332 

samples. 333 

 334 

Carnitine-conjugated metabolites 335 

Another striking fact is the increase of carnitine-conjugated metabolites at the end of the two hours 336 

emersion periods, with a clear oscillating pattern of relative abundance, with high level at low tides 337 

and low level at high tides. A carnitine derivative of a short fatty acid, propionylcarnitine, was first 338 

identified as an oscillating metabolite (Figure 4A). It is a carnitine derivative of an end product of β-339 

oxidation of fatty acids. Four other derivatives of long fatty acids, stearoylcarnitine, 340 

palmitoylcarnitine, hexadecenoylcarnitine and elaidoylcarnitine were also identified and followed the 341 

same trend (Figure 4B).  Long chain acyl-CoenzymeA, like stearoyl-,palmitoyl-, hexadecenoyl- and 342 

elaidoyl-CoenzymeA cannot penetrate the mitochondrial inner membrane and have to be conjugated to 343 

carnitine, which acts as a carrier from the cytoplasm to the mitochondrion. Finally isovalerylcarnitine 344 

and isobutyrylcarnitine were also identified as metabolites with a rhythmic pattern linked to tide cycles 345 

(Figure 4A). These compounds are intermediates of leucine and valine catabolism respectively, that 346 

are conjugated to carnitine. 347 

 348 

Other metabolites 349 

Another metabolite whose abundance peaked during low tide was urate. The level of this metabolite, 350 

which is an intermediate metabolite formed during the degradation of purines in presence of the 351 

enzyme xanthine oxidase, increased at low tide (P-value < 0.0001), with a difference of about 3.5 352 

(Figure 5). 353 

Conversely, tyrosine was more abundant at high tide compared to low tide, with a ratio of relative 354 

abundance low/high equal to 0.74 with a P-value < 0.0001 (Figure 5). 355 
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 356 

Antioxidant enzyme activities 357 

The comparison of SOD specific activities measured in the gills of Mimachlamys varia between low 358 

and high tide can be made for both tidal cycle during the three days of experiment and is presented in 359 

the Figure 6. Regarding the three days, each tidal cycle presents a similar pattern between the low and 360 

the high tides. Indeed, specific activities of SOD level increases significantly (approximatively 25%) 361 

at high tide compared to low tide, even if there is a contrary result for the first tidal cycle of day 1. It 362 

was interesting to compare the first low tide of this study which has a regular signal (32.43 ± 0.89 363 

UI/mg of proteins) in comparison with the second (33.29 ± 0.33 UI/mg of proteins) and the third day 364 

(35.17 ± 0.86 UI/mg of proteins). Moreover, a down modulation in variegated scallop gills was 365 

observed at the first high tide (first day) which showed average values of 27.80 ± 1.3 UI/mg of 366 

proteins. Finally, a high modulation was noted at the second high tide of the first day (39.49 ± 1.9 367 

UI/mg of proteins), then the SOD specific activity remained relatively constant afterwards during 368 

experimentation.  369 

 370 

Discussion 371 

The gills in bivalves are the first interface between external and internal environments and thus, firstly 372 

exposed to changes in oxygen concentrations during the different phases of immersion and emersion. 373 

In the present study gill samples collected in scallops at the end of six consecutive immersion and 374 

emersion periods, simulating a tidal regime, presented significant oscillating variations in the levels of 375 

different metabolites. These variations reflected a switch from aerobic to anaerobic energy metabolism 376 

at low tide, an accumulation of many different carnitine-conjugated components and the appearance or 377 

disappearance of some other metabolites at low tide. The specific activity of SOD presented also an 378 

oscillating pattern between low and high tide. These different effects are successively discussed below. 379 

 380 

Carbohydrate/energy metabolism 381 

At low tide, the increase in succinate and malate to a lesser extent on the one hand and of lactate, 382 

glutamate and alanine on the other hand suggests that scallops resort to anaerobic energy production 383 

after a two hours’ time period of emersion. This strategy has been identified since the 1970s in 384 

bivalves that undergo periods of hypoxia (De Zwaan and Van Marrewijk, 1973; De Zwaan and 385 

Zandee, 1972; Kluytmans et al., 1977). The most used anaerobic pathways for marine bivalves over an 386 

emersion period of hours are (1) glucose-lactate pathway with lactate as end-product, (2) glucose-387 

opines pathways, with opines, such as alanopine, strombine and octopine, as end-products, (3) 388 

glucose-succinate pathway, with succinate as end-product and (4) aspartate-succinate pathway with 389 

succinate and alanine as end products (Hochachka, Peter W. and Somero, G. N., 1984).  390 
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The present study indicates that emerged scallops use alternative methods (1), (3) and (4) that do not 391 

require oxygen for producing ATP. Indeed, lactate accumulates after 2 hours of emersion, coming 392 

from the reduction of pyruvate by the enzyme lactate dehydrogenase with simultaneous oxidation of 393 

NADH (pathway 1); succinate and malate, respectively 5 and 2 times more abundant after 2 hours of 394 

emersion, are produced via the part of the Krebs cycle between oxaloacetate and succinate running in 395 

reverse (Muller et al., 2012). The transformation of oxaloacetate into malate is possible as the enzyme 396 

malate dehydrogenase that would oxidize malate into oxaloacetate during “normal” Krebs cycle, 397 

catalyze the inverse reaction in anoxic conditions (De Zwaan, 1983) (pathway 3). Finally, the pyruvate 398 

is transformed into alanine utilizing an amino group donated via transaminase reactions from 399 

aspartate; the resulting oxaloacetate is further metabolized into succinate. This leads to an increase of 400 

both alanine and succinate at the end of the emersion period (pathway 4).  401 

Energy is produced faster in pathways (1) but in a less efficient way (two moles of ATP per glucose 402 

unit) than pathways (3) and (4), which can yield two times more ATP. Pathway (2) with opines as end 403 

products has been identified in scallops in case of temporary muscle anoxia, associated for example 404 

with high energy production following burst activity, such an escape swimming (Muller et al., 2012). 405 

This pathway has not been observed in case of long term anaerobiosis (livre scallops) and opines were 406 

not identified in the present study as oscillating metabolites between low and high tides. 407 

 408 

Citrate is another metabolite that was found to accumulate at low tide in the present study. This may 409 

be because a minor proportion of malate is following the tricarboxylic acid cycle in the forward 410 

direction, while the major portion of malate is metabolized via the reverse of that portion of the Krebs 411 

cycle : malate-fumarate-succinate (De Zwaan et al., 1981). 412 

 413 

Finally, glutamate was also found to accumulate at the end of the emersion period. This metabolite is 414 

used with aspartate to maintain the glycolytic flux, through the transformation of pyruvate to alanine 415 

by transamination reactions of these free amino acids. In this process, glutamate is transformed into 416 

alanine by the action of glutamate pyruvate transaminase and regenerated from ketoglutarate in the 417 

glutamate dehydrogenase reaction (Grieshaber et al., 1994). As the relative abundance of alanine was 418 

shown to increase at low tide, it is very likely that this metabolic cycle occurs in Mimachlamys varia. 419 

This pathway is a characteristic feature of many anoxia-tolerant marine invertebrates (Muller et al., 420 

2012). Nevertheless it cannot explain the observed accumulation of glutamate at low tide, as this 421 

process involves simultaneous formation and consumption of glutamate.  422 
  423 
Furthermore, glutamate plays a key role in the catabolism of amino acids, during removal of α-amino 424 

nitrogen from almost all of the amino acids via transdeamination: amino groups from most amino 425 

acids are transferred to α-ketoglutarate to form glutamate and an α-keto-acid. Glutamate is then 426 

transported into the mitochondria, where the amino group may be removed to form ammonia. This last 427 
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compound is the major nitrogenous excretory product in bivalves, unlike in vertebrates where excess 428 

ammonia is excreted as urea or uric acid. Ammonia excreted by bivalves while immersed diffuses into 429 

the surrounding water, but bivalves in general exhibit a reduction in rate of ammonia excretion during 430 

air exposure and ammonia accumulates in the hemolymph and in the fluid trapped in the mantel cavity 431 

(De Vooys and De Zwaan, 1978; Mingoa-licuanan, 1993; Sadok et al., 1999; Thomsen et al., 2016). 432 

The increase in glutamate concentration instead of ammonia could then be a way to avoid an excessive 433 

accumulation of ammonia, which can strongly affect the animal. However this explanation remains 434 

hypothetical and requires confirmation in further studies. 435 

 436 

Propionate is a frequently observed metabolite during anaerobiosis in bivalves, in particular under 437 

conditions of prolonged anaerobiosis (Muller et al., 2012).  In the present study, the absence of 438 

propionate at the end of the 2 hours’ time period of emersion is consistent with studies performed with 439 

other bivalves, showing that propionate production is initiated only after longer periods of anoxia. In 440 

Mytilus edulis, during the early phase of hypoxia, succinate is produced via the part of the Krebs cycle 441 

between oxaloacetate and succinate running in reverse and under conditions of prolonged 442 

anaerobiosis, propionate is preferentially formed instead of succinate (Muller et al., 2012). The same 443 

delay between succinate and propionate production during hypoxia was observed in Mytillus 444 

galloprovincialis.  After exposure of this mussel to anaerobiosis in laboratory, propionate was not 445 

detected after 6 h in anoxic seawater, whereas a sevenfold increase in succinate was observed, but 446 

accumulated after 24 h of incubation. After 48 h, propionate concentrations increased by a factor of 447 

two with regard to 24 h for individuals incubated in anoxic seawater and appeared, for the first time, in 448 

emersed individuals (Babarro et al., 2007). 449 

 450 

In summary, our results show a clear signal of increased anaerobic capacity after only 2h of aerial 451 

exposure. Low oxygen concentrations during emersion will decrease the oxidative phosphorylation of 452 

ATP, which will induce the activation of alternative metabolic pathways of ATP production. This 453 

strategy does not discard other ones like, for example, lowering metabolism and the recourse to 454 

gaseous air breathing, but it means that scallops cannot meet their total energy requirements without 455 

using anaerobic metabolism.  456 

 457 

Carnitine-conjugated metabolites 458 

As shown in the results section, many carnitine-conjugated metabolites were shown to accumulate at 459 

the end of the 2 hours emersion periods. 460 

The accumulation of carnitine conjugates during low tides has already been observed in the case of 461 

Mytilus californianus (Connor and Gracey, 2012; Gracey and Connor, 2016). This was considered as a 462 

way to regulate different metabolic pathways for the organism. In particular, it prevents acyl-463 

CoenzymeA accumulation in the cytoplasm and mitochondria that could lead to serious disorders. 464 



14 
 

Concerning fatty acid metabolism, acyl-CoenzymeA molecules remain blocked in the form of acyl-465 

carnitine at low tide and therefore fatty acid metabolism seems to be paused at low tide. In the present 466 

study, propionyl-, stearoyl-, elaidoyl-, hexadecenoyl- and palmitoyl-carnitine accumulated after 2 467 

hours of emersion. Concerning branched amino acids catabolism, intermediate acyl-CoenzymeA are 468 

also stored in the form of carnitine conjugates (isovalerylcarnitine, isobutyrylcarntine in the present 469 

study). It was reported that the ratio of acetyl-CoenzymeA to CoenzymeA has important effects on 470 

overall mitochondrial metabolism and therefore the accumulation of carnitine-conjugated metabolites 471 

at low tides would be a way to regulate this ratio (Connor and Gracey, 2012). Indeed conjugation to 472 

carnitine is not a necessary step in branched amino acid catabolism, nor in the metabolism in 473 

propionyl-CoenzymeA. Nevertheless the increase of these metabolites at low tide remains cryptic 474 

(Connor and Gracey, 2012). 475 

 476 

Other metabolites 477 

Finally two supplementary metabolites were found to oscillate with tidal cycles: urate was higher at 478 

the end of the 2 hours emersion period and tyrosine higher at the end of the immersion period. 479 

Concerning the accumulation of urate during emersion, this metabolite was shown to accumulate in 480 

crustaceans, scallops and cockles during hypoxia and would arise from adenylate degradation in 481 

presence of the enzyme xanthine oxidase (XOD) (Dykens and Shick, 1988). In the catabolism of 482 

purine nucleotides, AMP is degraded to inosine and then by phosphorolysis to hypoxanthine.  In 483 

presence of XOD, xanthine is formed from oxidation of hypoxanthine. Xanthine is again oxidized by 484 

XOD to form the final product: urate and in presence of oxygen superoxide radicals (O2
-). XOD 485 

activity has been assayed in different bivalves after periods of anoxia. It was not detected in members 486 

of the orders Mytiloida and Myoida, but it was found in scallops (Pecten maximus and Placopecten 487 

magellanicus) (Dykens and Shick, 1988). So it appears that anoxia-tolerant bivalves, like Mytilus 488 

edulis, avoid accumulating hypoxanthine, because they present low activity of XOD. Conversely 489 

anoxia-sensitive (or more intolerant to anoxic-normoxic transitions) bivalves, like Pecten maximus, 490 

undergo hypoxanthine accumulation and are subjected to superoxide radicals when oxygen is available 491 

again, as they present XOD activity. 492 

So, as urate accumulates during emersion in gills of Mimachlamys varia, this species likely displays 493 

XOD activity during emersion, as urate is the end product of this enzyme. According to the study of 494 

Dykens, this is linked to a low tolerance to anoxic environment or to anoxic-normoxic transitions. This 495 

is consistent with the fact that pectinidae are not well-adapted to emersion, compared to mytilidae. 496 

They are adapted to brief functional hypoxia, for example during swimming, but do not survive 497 

prolonged environmental hypoxia (Riedel 2012). 498 

As far as the accumulation of tyrosine after 2 hours of emersion is concerned, this may be linked to the 499 

role of this amino acid in the formation of catecholamines, neurotransmitters that are present in both 500 

central nervous system and hemolymph of bivalves. The enzyme tyrosine hydroxylase enables the 501 
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conversion of tyrosine to the precursor of catecholamines L-dihydroxyphenylalanine (L-DOPA).It was 502 

shown that under the effect of unfavorable environmental factors, the quantitative catecholamine 503 

contents vary (Kotsyuba, 2011). Moreover these substances exert marked cilio-excitatory or cilio-504 

inhibitory actions when applied to the bivalve gill (Malanga et al., 1972). Lateral cilia of bivalve gills 505 

serve a vital function by generating the water currents that allow gas exchange as well as regulate food 506 

intake and waste removal. Numerous studies indicate that the beating of the lateral cilia of bivalve 507 

gills is under nervous or neurohormonal control in various bivalves. For example, lateral cilia of the 508 

gill of Mytilus edulis are controlled by a reciprocal serotonergic-dopaminergic innervation from their 509 

ganglia (Carroll and Catapane, 2007). Taking these facts into account, the accumulation of tyrosine 510 

may be linked to this regulation system, in order to enhance the beating of cilia in case of hypoxia, 511 

through a reduced transformation of tyrosine to dopamine, that would have indirectly a cilio-inhibitory 512 

effect (Carroll and Catapane, 2007). This hypothesis is however only one assumption at this stage of 513 

the study. 514 

 515 

SOD activity 516 

In the present study, SOD activity measurements shown lower levels of antioxidant enzyme specific 517 

activity during low tides, after two hours of emersion, compared to the high tides. The alternation of 518 

immersion–submersion for intertidal organisms implies fluctuations in temperature, radiation exposure 519 

and oxygen supply as well, which have an impact on free radical and reactive oxygen species (ROS) 520 

production. For example, the elevation of O2 respiration in reoxygenation during re-immersion has 521 

been suggested to result in the enhanced ROS production in intertidal organisms (Yin et al., 2017). To 522 

protect themselves against ROS, intertidal organisms have developed a system with enzymatic 523 

antioxidants, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), 524 

and ascorbate peroxidase (APX). The oxidative stress occurring when higher level of oxygen is 525 

introduced during re-immersion is intense for these organisms. Thus, it is therefore suggested that the 526 

higher level in SOD activity in gills of scallops observed in the present study could be a response of 527 

acclimation to a higher level of encountered oxidative stress upon re-immersion. In previous studies, 528 

opposite results were obtained : increased activities of SOD and CAT were shown in clams under air 529 

exposure compared to clams without air exposure (Yin et al., 2017) and an increase in antioxidant 530 

defenses was shown to be induced by short-term hypoxia in marine invertebrates including bivalves 531 

(Nogueira et al., 2017). So it appears that hypoxia associated with air exposure, is not systematically 532 

accompanied by low SOD activity level compared to normoxia obtained upon re-immersion.  533 

Nevertheless in any case, alternating periods of immersion and aerial emergence seems to be 534 

accompanied by variations of SOD activity in intertidal inhabitants. 535 

 536 

 537 
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Conclusion 538 

The purpose of this study was to investigate the metabolic strategy of Mimachlamys varia under 539 

alternating short period of emersion and longer period of immersion, mimicking conditions that might 540 

be experienced by scallops, located highest on the shore, during extreme spring and autumn tides. Our 541 

results show that there is a switch from aerobic to anaerobic metabolism after only two hours of 542 

emersion, with the resort to different pathways used by other bivalves to face hypoxia: glucose-lactate 543 

pathway with lactate as end-product, glucose-succinate pathway, with succinate as end-product and 544 

aspartate-succinate pathway. Furthermore carnitine-conjugated metabolites were found to accumulate 545 

after two hours of emersion, as well as urate. The level of tyrosine on the contrary was found to 546 

increase upon emersion. Moreover SOD activity was found to increase upon re-immersion. These 547 

different findings concerning oscillating metabolites and enzymatic response indicate a complex 548 

metabolic reprogramming that occurs after an emersion period of two hours only and upon re-549 

immersion. To our knowledge, it is the first time that this physiological adaptation to emersion is 550 

studied in Mimachlamys varia. It appears that, like many bivalve organisms undergoing hypoxia–551 

normoxia transitions, variegated scallops have developed a high metabolic flexibility and may have 552 

evolved tissue-specific abilities to deal with the abrupt exposure of gills to molecular oxygen upon re-553 

immersion. In accordance with previous studies in mussels in the same organ (Letendre et al., 2008), 554 

the gills of the variegated scallop seem to be an adapted organ to assess hypoxia response after a short 555 

emersion (two hours) for future experiments.  556 

Further studies will be required to completely elucidate this metabolic and physiologic reorganization. 557 

In particular, absolute quantification of metabolite levels and flux measurements are needed, and also 558 

the evaluation of a possible global lowering metabolism upon emersion and the measure of the exact 559 

recourse to gaseous air breathing. 560 

These findings have to be taken into account to homogenize sampling during campaigns of 561 

environmental monitoring, by taking in situ, as far as possible only individuals in immersion. The 562 

biomarker response depends as well as on the moment of the tidal cycle, and the ambient environment 563 

in which are living the bivalves. This could be related to different abiotic factors such as oxygenation 564 

and temperature conditions which change at the upper side of the shore compared to the lower part. It 565 

results in different impacts on the metabolism and per consequence on the physiology of the 566 

variegated scallop. 567 
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