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Abstract Systems biology is today such a widespread discipline that it be-
comes difficult to propose a clear definition of what it really is. For some, it
remains restricted to the genomic field. For many, it designates the integrated
approach or the corpus of computational methods employed to handle the
vast amount of biological or medical data and investigate the complexity of
the living. Although defining systems biology might be difficult, on the other
hand its purpose is clear: systems biology, with its emerging subfields systems
medicine and systems pharmacology, clearly aims at making sense of complex
observations/experimental and clinical datasets to improve our understanding
of diseases and their treatments without putting aside the context in which
they appear and develop. In this short review, we aim to specifically focus
on these new subfields with the new theoretical tools and approaches that
were developed in the context of cancer. Systems pharmacology and medicine
now give hope for major improvements in cancer therapy, making personalized
medicine closer to reality. As we will see, the current challenge is to be able
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to improve the clinical practice according to the paradigm shift of systems
sciences.

Keywords big data - precision medicine - personalized medicine - drug
development - multi-scale approach

1 Introduction

Systems biology aims at considering biological problems in an integrated way.
It is commonly opposed to the reductionist view on the principle that inter-
actions between biological entities are as important as the properties of the
entities themselves which taken alone are insufficient to describe the system’s
behaviour. A striking example was the gene-centred view of life according to
which genes alone contained all the necessary information to explain the fea-
tures, and hence, behaviours of all living entities including the emergence and
development of diseases. The race for genome sequencing was then bearing the
hopes to at last identify the roots of major diseases such as cancer but these
expectations were never met. Following these disillusions, it became clear that
the answers do not lie only in genes. Systems biology, that emerged at the be-
ginning of the new millennium from the human genome project itself, followed
the development of bioinformatics as a mean to process the huge amount of
genomic data produced. To make sense of the data, the relationships between
genes, proteins and their function in signalling and metabolism were identified
and interpreted in biological networks, thus marking the transition from bioin-
formatics (data processing and statistical analysis) to systems biology (data
integration). Although genomics, proteomics, metabolomics and other -omics
remain at the heart of systems biology (Fig. 1), it has developed much beyond
these fields making it now more difficult to define. The paradigm shift to think
biology beyond the genome became more obvious as pointed out in the recent
special issue "From the century of the genome to the century of the organism:
New theoretical approaches” [83].
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Fig. 1 Cloud of the 50 most cited words from paper abstracts extracted in Pubmed with
research term ”systems biology”. Cell, gene and protein remain at the heart of this field.
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There is no universally acknowledged definition for systems biology [62],
and is systems biology truly holistic? The term Holism has a variety of accep-
tations and is generally opposed to Reductionism. The first occurrence of the
term in English is in J C Smuts’ book Holism and Evolution [80]. In Smuts’ own
words, ”Holism is a process of creative synthesis”, and it is the very essence
of the concept of the whole that the parts are together in a combination, in a
specific internal relatedness, in a creative synthesis which differentiates it from
all other forms of combination or togetherness.” It is claimed that some prop-
erties of a given system cannot be explained or predicted by its constituting
parts and their interactions alone (although some other properties can).

These ideas are controversial and discussing this issue goes beyond the
purpose of this manuscript. Let us just point out that the practice of Systems
Biology, Medicine and Pharmacology (SBMP), as we will see it in this review,
does not match the conception summarized above. In SBMP the system is
defined by its constituents and their interactions (plus the interactions with
the environment) and all the system properties are assumed to derive from
them. There is no need to invoke a mysterious ”creative synthesis” in this
approach.

In SBMP the emphasis is on the System as opposed to classical molecular
biology which focused on individual genes and proteins. But conceptually, this
is close to what physicists do. The representation of the world given by Physics
is stratified into levels (elementary particles, nucleus, atoms, molecules, etc.).
Each level is associated to a subfield of physics, with its own set of concepts
and laws, and one of the goals of physical theory is to understand how these
entities and laws emerge from the lower level. The situation is identical in
Systems Biology: understand how dynamical properties of cells emerge from
the web of interactions at the molecular level. This is expressed explicitly in
Pollard, 2003 [71]: " The reductionist tasks include an inventory of the relevant
molecules, determination of molecular structures, identification of molecular
partners, measurement of rate and equilibrium constants for each reaction,
localization of the molecules in live cells, physiological tests for participation
in cellular processes and formulation of mathematical models to understand
the system’s behaviour.”

That said, one should keep in mind that cells contribute to build their (mi-
cro)environment. For example cells embedded in a tissue have an influence on
the mechanical properties of the extracellular matrix by synthesizing fibers or
by secreting proteases which cut fibers (ECM remodelling). In the other direc-
tion (from higher level to cell level) mechanosensitive molecules and cellular
components, such as integrins and cytoskeletal filaments, have been shown
to contribute to mechanotransduction pathways, i.e. signalling pathways by
which cells convert mechanical signals into a biochemical response. In that
way mechanical changes in the cellular microenvironment (tissue level) may
influence cellular behaviour [29,37]. In this example there is thus a bidirec-
tional coupling between two levels of organization, cell and tissue levels. This
coupling also involves different time scales, the cells at a given time residing
in a tissue produced at previous times. The modelling of such system on long
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time scales would requires multi-scale approach. To gain insight one must in-
tegrate various data types, integrate levels of organization, integrate organs
to reason on the whole body. We could therefore argue that SBMP is in fact
reductionist and integrative.

The Pioneer 100 Wellness Project (P100) [73] is a prominent early example
of Systems Medicine. The study involved several omics technologies and activ-
ity measurements using wearable devices to generate a data cloud associated
to each participant. The authors use the term ’"holistic approach’, so we would
like to make another comment on its use. The meaning here is presumably
different from the one presented above. It seems to be related rather to the
use of several data types of different natures (omics data, clinical tests, ac-
tivity tracking) in an effort to encompass several dimensions of the life of an
individual. Without entering the debate about the benefit of the approach, we
would like to point out that there is in fact kind of a paradox to claim that it
is holistic when the patient is reduced to a cloud of data points (the patient is
reified). Vogt et al. (2016) [87] call techno-scientific holism this new "holism”.
There is an instrumental rationality at work which seems to reduce the pa-
tient as a subject. A patient is a human being with an individual life history
and may not be reduced to a data cloud when her/his health is concerned.
If holism can be called for, it is indeed here. The patient should be consid-
ered as a whole, with her/his life history, culture and emotional states, her/his
family environment, work conditions, social status, etc. The biopsychosocial
model [27,18] proposes to integrate biological factors (genetic, biochemical,
etc.), with psychological and social factors.

Problems are not all necessarily solved with new technological devices. A
broad reflection must take place in order to make the most of the new tech-
nologies (omics, wearable devices, Artificial Intelligence, Internet of Things,

Despite controversies the consensus to define systems biology remains on
the concept of integration. Systems biology is now often assimilated to the
corpus of methods that allow to probe complex systems, i.e. a system that
cannot be understood based on the knowledge of its sub-parts alone. Theo-
retical modelling, including computational biology, is one such very efficient
method to investigate these systems. Systems biology then naturally bears the
idea of in silico modelling as a mean to test new hypotheses and to build
coherent frameworks to elaborate new theories.

Systems biology is today hugely involved in cancer research and bears new
hopes for deciphering the roots of this disease [82]. It also appears as a mean
to achieve personalized medicine [62] following the rise of precision medicine
(Fig. 2). Systems medicine and systems pharmacology recently emerged as
new major subfields [8], which in the context of cancer, allow to consider
both treatment efficacy and tolerability in individual patients in a longitudinal
manner, thus accounting for the emergence of all types of acquired resistance.

In this short review, we mainly focus on the context of cancer. In section
2, we will first present and describe the fast-rising fields of systems medicine
and systems pharmacology. We will focus in section 3 on the new tools that
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Fig. 2 First occurrence and rise of systems sciences and related precision/personalized
medicine.

were developed to acquire and treat the data in these fields. The approaches
and model types that now form the corpus of methods of systems biology will
be described in section 4. The impacts on research, formation and society will
be discussed in section 5.

2 The emerging fields
Systems Medicine: precision and personalized medicine

Systems medicine stems from the groundwork of systems biology and systems
pharmacology, implementing and translating the more basic approaches to ap-
plied clinical research and practice. Systems medicine involves the implementa-
tion of such theoretical approaches in medical concepts, research and practice,
through iterative and reciprocal feedback exchanges between clinicians, biol-
ogist, pharmacologists, bioinformaticians and mathematicians. Thus, systems
medicine is indissociable from the other systems approaches, integrating at its
very core reciprocal interplay with computational modelling of multidimen-
sional sources of information. Accordingly, the driving force of ultimately im-
proving patients outcomes goes through reiterated exchanges between bedside
investigations, experimental models and computational analyses [14,21]. This
has been emphasized in the Roadmap of the Coordinated Action for Systems
Medicine (CaSyM) from the European Union (https://www.casym.eu) [22],
and in other international consortia [40,89,3,2,24,5]. The final aim is a mea-
surable improvement of patient health through systems-based approaches and
practice [17]. One such instance of amelioration of standard of care through
systems medicine is provided by the new classification of pediatric allergic
diseases through an extensive translational approach spanning prediction, di-
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agnosis, prevention and therapeutics [19]. Another international effort result-
ing in beneficial changes in clinical practice involved chronic pulmonary dis-
eases, whose temporal patterns can now be more accurately predicted and
thus treated with the multidimensional systems approach [85]. Additionally,
heterogeneous and challenging disorders such as irritable bowel disease have
also beneficed from a systems-based modelling [58]. The fastest growing body
of systems-driven data which will ultimately lead to improved treatment con-
cerns nevertheless cancer, which is the paradigmatic example of heterogeneous
and evolving pathology, whose morbidity, mortality and drug attrition rates
are most defying for current medicine [28,78,44,54].

In complement to this integrated approach of systems biology and pharma-
cology applied to clinics, systems medicine encompasses the aspects of ”antic-
ipatory” and precision medicine, recapitulated in the 4P medicine conceptual
framework [81,34]. The 4Ps stand for personalized, predictive, preventive and
participatory medicine. This kind of rapidly emerging and expanding approach
goes above and beyond the simple single-biomarker stratification, up to a con-
cept of N=1 study, where the intervention is fully tailored to the individual
patient, disease and moment in time on the clinical evolution [90,61]. In order
to be able to obtain such a degree of accuracy and ”precision”, multiple data
sources are required, whose model-based integration provides a systemic and
dynamical clinical picture, ultimately leading to the identification of the opti-
mal intervention in terms of benefit and safety [49,30]. Figure 3 displays the
conceptual outlook of the main innovative features of systems medicine which
ought to drastically improve the clinical management of individuals.

Systems Pharmacology

The outcome of any therapeutic strategy may be largely affected by both
patient- and disease-specific genetic or epigenetic alterations. For instance,
cancer management is complicated by large inter-patient variabilities in both
cancer molecular profiles and dynamics and drug response of healthy and tu-
mour tissues. Consequently, treatment personalisation is required to ensure
optimal therapeutic index. To this end, multi-type and multi-scale datasets
are nowadays produced in cell cultures, in laboratory animals and in clinical
investigations involving populations of patients or individual subjects. These
large volumes of data which are thus generated across species require dedi-
cated approaches to properly analyse each individual dataset, to handle the
complexity arising from multiple data types and dimensions, and to finally
translate the results into optimal therapies. Thus, systems pharmacology in-
volves the use of biological, clinical, mathematical and computational means
to critically improve drug development and pharmacotherapy personalization.

Systems pharmacology approaches are usually based on the host phys-
iology and the molecular aspects of the disease. Hence, such investigations
do not subdivide living organisms into independent components, but rather,
recognise that genes, proteins, cells and organs interact with each other and
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Fig. 3 Innovative hallmarks of Systems Medicine. It depicts the systems approach involv-
ing the four hallmarks (blue circle), the cross-disciplinary tools pertinent to each hallmark
(yellow icons) and the features to be implemented to maximize the impact (orange clouds).

with the environment in complex ways that can vary over time. Further, the
mathematical models aim to predict drug toxicity and efficacy which are ulti-
mately determined by the response of gene and protein networks involved in
the drug pharmacokinetics (PK) and pharmacodynamics (PD) in different cell
populations - healthy or diseased - located in different organs. Hence, theoret-
ical models of whole-body drug PK and cell type-specific regulatory pathways
involved in drug PD constitute a reliable physiological basis from which the
treatment can be optimized. Such detailed molecular and dynamical math-
ematical models further allow for the direct integration of the patients and
diseased tissues molecular profiles into treatment decision. However, this com-
plex physiology and its temporal organization are unlikely to be completely
assessed in individual patients due to the invasive and potentially unethical na-
ture of the clinical measurements that would be required. One strength of these
physiologically-based models is the possibility to design human models though
multi-scale pipelines [69]. Indeed, the mathematical models are based on the
molecular physiology and their variables and parameters do have a physical
meaning which is conserved across considered scales. Hence, sub-model struc-
tures and parameter values may be validated in in vitro and pre-clinical studies
and further integrated in models for patient populations or individual patients.
Overall, multi-scale systems pharmacology approaches integrate experimental
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results in cell culture, rodent and clinical investigations to ultimately design
human subpopulation- or patient-specific drug combinations and /or schedules.

A recent systems pharmacology use case was provided by SymCyp Ltd
(Certara, UK) for studying the impact of patient genotype on the PK-PD of
Rosuvastatin, a drug that lower cholesterol levels [74]. A physiologically-based
PK-PD model of the drug was designed incorporating both the drug PD in the
liver as the main site of drug action. The study focused on patient polymor-
phisms in the organic anion-transporting polypeptide 1B1 (OATP1B1) which
is involved in the cellular uptake of rosuvastatin. Clinical data showed that
although the area under the plasma concentration-time curve was increased
by more than 60% in patients presenting certain genotypes, the cholesterol
synthesis response was unchanged in these same patients. The PK-PD model
provided molecular insights into the whole-body drug fate which allowed to
quantitatively explain this observed disconnect in between PK and PD patient
datasets [74].

3 The new tools
”Big Data” and Domomedicine

The multi-scale integrative modelling underpinning systems approaches ne-
cessitate the acquisition, storage and complex analysis of data from multiple
sources [75,45]. The various omics which can be dissected with extreme resolu-
tion [86], the possible multi-scale physiological models which can incorporate
a broad range of parameters [60] and the vast array of human behaviour which
can be monitored [48,53,73,79] alongside the accurate forecasting of the indi-
vidualized impact of pharmacological and non-pharmacological interventions
over time [46,67], all require sound technological tools. Thus, the dense and
dynamic data needed for precise modelling should be acquired with minimal
intrusiveness into the subjects life. The rapid emergence of accurate biosen-
sors, wearables and trackers, smart appliances and formal medical devices, all
interweaved within the Internet of Things, can provide a plethora of biometric
and behavioural data which can be remotely accessed and analysed [23,4,31]
and completed and expanded with other subjective data [12,50]. One of the
challenges ahead is the optimal integration of these multi-source data, with
the precise and personalized identification of relevant ones, to minimize the
risk of undue sensitive and private information to be at risk of inappropriate
access [76]. One great advantage of such inclusive multi-source evaluation of
the health status of a patient is the dynamic integration of data across the
24-hour span, thus accounting for overlooked time frames (mainly night) in
research and practice to date, especially in cancer [39]. Thus, the variations
of human physiology and behaviour, spanning from the cellular till the whole
organism level, across the 24-h period can be monitored and predicted with
a systems approach to optimize interventions, especially in cancer [70,10,1].
Another advantage of such approach is the possibility of maintaining the pa-
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tients within their home environment, while collecting the appropriate data
for decision making. This domomedicine approach has the potential to im-
prove healthcare system performance, healthcare professionals workload and
patients wellbeing and outcomes [38]. A recent illustration of the efficiency of
domomedicine is the study by Basch et al. (2017) [12] which demonstrated
a b-month increase in the survival of metastatic cancer patients by the sole
use of a web-based platform tele transmitting patient-reported symptoms to
clinicians [13]

Moreover, non-invasive recording of rest-activity rhythms over several con-
secutive days through wrist-actigraphy performed in colorectal cancer patients
either before or during chemotherapy demonstrated that circadian rhythms
disruption was associated with worse prognosis [10]. These domomedicine stud-
ies highlighted the predictive power of circadian rhythms monitoring in can-
cer patients initiating the development of several technological plateforms.
For instance, the European Project INCASA (http://www.incasa-project.eu)
monitored at home over an average duration of 58 days, 31 metastatic can-
cer patients on treatment. Individual data on self-measured body weight,
self-rated symptoms, and circadian rest-activity rhythm recorded by a wrist-
accelerometer were tele-transmitted daily to a server via the Internet, using a
dedicated platform. Further, the French PiCADo project [57] aimed to develop
a multi-pathology telecommunicating platform integrating several lightweight
and portable technologies made interoperable (sensor, collector, geolocation
watch, digital tablet, digital pen collector, information systems, electronic
health records). This technological development allowed for noninvasive and
automatic collection of different markers of the patients biological rhythms
and health status, that could be transmitted to the physicians.

State-of-the-art Mathematical tools

Apart from experimental and technological developments, new mathematical
tools have been designed for systems medicine in the very last decades. First,
physiologically-based models representing specific intracellular pathways and
their drug response in single cells or in homogenous cell populations may be
based on ordinary differential equations (ODEs). Genes and proteins of regula-
tory networks of interest such as the cell cycle or cell death through apoptosis
are the model state variables whereas model parameters are rate constants
[10]. Next, the drug PK-PD may be represented at the cellular or whole-body
level by ODE-based models. Equations then compute: i) the concentrations
of the parent drug and its metabolites over time resulting from biochemical
events such as activation, detoxification, passive diffusion or active transport,
i1) the drug activity on intracellular pathways of interest.

A typical system of ODE-equations thus allows to compute the time evo-
lution of different quantities that depends on one another. It takes the form
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of coupled equations such as:

dA
dB
— =k A—kyB 2
e~ @)

Where A and B are the quantities of interest - called ”state variables” - and
can represent a variety of things, for example the concentrations of two pro-
teins A and B that activate/inhibit one another; the concentration of two
molecules where A degrades or transforms into B; the concentrations of a
drug in the compartments A and B following the drug use, uptake and degra-
dation through the organism. Accordingly « represents the activation of the
system as an external stimulus or initial inputs (administration or injection)
that increases A. The coefficients k are constants that governs the transi-
tion/transformation/transport rates between A and B or in/out of A and/or
B: —k1 A in the first equation is a loss for the quantity A that is a gain for
the quantity B since this term is positive in the second equation. It typi-
cally traduces the transformation of A into B or activation/stimulation of
B by A; —koB is typically a decay/degradation/elimination term of B or
through B. Depending on the context the system of equations can become
very complex if many interacting variables needs to be considered. Moreover
the reaction/transfer rates are not always constant and can be represented
with more or less complex functions. This means that most of the time these
systems of equations do not have analytical solutions. The solutions can only
be approximated numerically through the models simulations. However the
low computational cost associated to those ODE-based models allow for their
use in parameter estimation and therapeutic optimization procedures.

The above-mentioned ODE-based models are helpful for simulating short-
term cell dynamics or effect of therapies. For optimization over several days
or weeks, it is required to model the cell divisions and death at the level of a
heterogeneous cell population. Partial derivative equations (PDEs) structured
in time (¢) and age (a) of the cell in its current cell cycle phase are then
often used [9,15]. The models may account for several cell types with that
may differentiate from one to another [7]. For each cell population, the model
account for cell cycle entry and progression through the different cell cycle
phases, cell division, cell differentiation and cell death.

If we consider two cell populations P; and P; - as the cells progress in the
cell cycle - with P; the cells in the initial phases G1S and P> the cells in the
remaining phases Go M, then the system of equations is given by:

oP, oP,

)+ S (t0) = (1 Pr(t,0) ®)
O () + G2(00) = g, Paft,a) @

In that example case, when a cell in P; reaches its age limit then it is trans-
ferred into the P, population. Similarly when a cell in P, reaches the age
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corresponding to the cell cycle duration then the cell P, leads to two new
cells in P;, thus accounting for cell division at the end of the M-phase. The
functions f and g are formulated so as to account adequately for cell pro-
gression, differentiation and death as required and might therefore involve
other variables (i.e. other cell populations). PDE models can be connected
to ODE-based cellular models through %) transition functions from one cell
cycle phase to another- representing the control of the circadian clock on the
cell cycle [26], or the cell cycle arrest upon drug exposure [15] ii) cell death
rates thus accounting for drug-induced apoptosis. Apart from being based on
the physiology, these PDE-based models also present the advantage to have a
low computational cost which is a prerequisite for being utilized in parameter
estimation and therapeutic optimization procedures.

PDEs are also used to integrate spatiality in the models. In some circum-
stances, it can be useful to describe the drug distribution in the tumour tissue
since it can be highly heterogeneous due to i) variations in the drug diffusion it-
self that depends on the cells density (tissue compaction) and to 4) local drug
uptake by tumour cells driven by the expression of membrane transporters
which may vary according to cell types (different clones) and cell states (cell
cycle or circadian phases).

The partial differential equation used to follow the evolution in space (Z
is the space vector) and time (¢) of a diffusive drug of concentration C(Z,t)
takes the following form:

%—f:DVQC—&-a—BC—an (5)

Where V? is the Laplacian operator (space variations); D is the diffusion coef-
ficient of the drug; « is a source term (drug administration), here represented
as a constant, but it can take a variety of forms and can depend on other
parameters or variables; —8C accounts for a spontaneous decay; —ynC' is the
uptake by the targeted cells with n(Z,t) their concentration.

To represent this huge variability in cells (states, clones, etc.), it has be-
come common to use an agent-based representation for the cells to account
for the individual properties of each single cell, thus providing an explicit de-
scription of the cell evolution such as progression in its cycle, state transitions
or mutations [20,72]. This means that the cell concentration n(z,t) described
above is replaced by nj which represents the individual cell k£ at one specific
location. This cell is given individual properties in terms of migrating ability,
cell cycle duration, uptake rate of nutrients or drugs, etc. Integrating both the
drug heterogeneous spatial distribution through PDEs and the tumour cells
through a multi-agent representation requires to interface two model types of
different mathematical nature, the first being continuous, the second often dis-
crete. This led to the development of hybrid model formulations that allows to
transfer information between the two sub-models [84]. More generally, hybrid
approaches became very useful to combine many different model types:
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— continuous/discrete, i.e. consideration of a cell population - a tumour mass
for example - while distinguishing individual cells properties (to differenti-
ate sub-clones);

— fast/slow, i.e. integration of different temporal scales such as the diffusion
of a drug (seconds) and its long term effect (up to days);

— microscopic/macroscopic, i.e. integration of different spatial scale from cells
interactions resulting in overall tissue organization;

— stochastic/deterministic, most cell events - like cell division or apoptosis for
example - occur with some degree of variability from one cell to another.
Those events can either be represented using probabilities (stochasticity) or
deterministic rules (is some conditions are reached). Computing stochastic
events has a higher cost than computing deterministic events, so depend-
ing on the context it might be more efficient and sufficient to implement
deterministic rules for some of those events.

These are only a few model types examples. Those different model types in-
volve a range of formalisms such as boolean networks, ODEs, PDEs, cellular
automaton, multi-agents, etc. These approaches are fast developing in the spe-
cific context of systems biology since they provide tools to integrate the many
heterogeneous components of the systems in order to study it as a whole.

For example the virtual heart developed by Denis Noble is integrating many
different aspects including elements of cell metabolism, electro-physiology and
tissue anatomy to account for wave front spreading and the reconstruction of
the heart beat phases [66]. In a similar way, modelling tumour growth requires
to integrate the tumour environment which is now known to play a crucial role
in the tumour development [20]. It is characterized not only by its chemical
nature (growth factors, enzymes, etc.) but also by its mechanical nature as
a dense network of deformable fibers. This requires highly integrated model
formulations that couple the chemistry to the mechanics [52].

4 The theoretical approaches
4.1 Multi-scale approaches
Ezxplicit spatio-temporal multi-scale

”Multi-scale” can designates two different approaches. The first is to explic-
itly consider different metric scales temporally or spatially. For the temporal
multi-scale case, fast events like chemical reactions, that occur in terms of
microseconds or faster, can produce some effects on the system that can only
be observed and measured at a long time scale, in terms of hours or even
days. To deal with this specific multi-temporality, the standard strategy is to
compute events from fast to slow while ensuring that the absolute time (or
reference time) and time sequence of events are respected. On the spatial side,
it is common to integrate events occurring from the sub-cellular scale (nano
to micro-scale) to the tissue scale (millimetre scale), where the cell is often
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the hub for integration [84]. More precisely, intracellular molecular/genetic
networks will define cells reactions/sensitivity to extracellular signals (drug
diffusion field for example). Each mechanism is computed at its own specific
scale and output/input variables of interest are identified and transmitted
through the scales. Transferred data can be transmitted as is or might require
to be transformed, processed or converted to make it usable at a different
scale. Typically, interpolations can be used for downwards conversion of data
and reciprocally calculation of a mean can be used for an upwards conversion.

Functional multi-scale

The second multi-scale approach does not consider the scales in terms of met-
rics but in terms of functional units. This approach is also often referred to as
multi-level. It is usually used to design physiological models for humans which
incorporates molecular details of the studied physiology and/or of the pharma-
cology of drugs of interest. Such models involve many kinetic parameters, so
that the main challenge does not necessarily lay in achieving a close fit to the
data which is facilitated by the large number of degrees of freedom inherent to
the models, but rather in computing realistic values of parameters though care-
ful estimation procedures. Indeed, those numerous parameters are unlikely to
be directly measurable in individual patients so that a multi-scale approach is
required for the design of clinically-relevant models. In physiologically-based
models, parameters do have a physical meaning that can be independently
evaluated in preclinical studies and subsequently scaled to humans. Thus, in
order to arrive at the final patient-specific model, a pipeline of in vitro, in vivo
and clinical investigations is needed. In vitro investigations allow the design of
detailed models at the cellular level and mouse studies serve to design repre-
sentations at the whole organism. Next, a model for average men and women
cancer patient can be obtained by keeping the structure of the mouse model
and resizing the parameters for humans. Mathematical models which are not
based on the physiology only allow for allometric animal-to-human scaling typ-
ically using body weight or body surface area. These methods have been proven
inaccurate in part because they do not consider the species-specific metabolic
rates and expression of transporters and intracellular proteins. Current trends
lay into the development of mechanistic approaches such as physiologically-
based scaling, which are promising procedures to integrate preclinical data
into clinical modelling, yet they are still under development [6,22]. As an ex-
ample, model parameters can be scaled from mouse to human as follows: i)
sex-specific organ volumes can be inferred from literature for each species [25,
59], it) intracellular reaction rates are usually kept unchanged from the pre-
clinical models, i) protein activities can be proportionally scaled according
to inter-species in vitro studies, iv) blood/organ transport and drug clearance
parameters are intended to be scaled using physiological information although
such methods are still under development [11,16,42,47].

Such multi-scale approach was undertaken to design of a physiologically-
based model of temozolomide (TMZ) brain disposition in humans [11]. The
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study pipeline included PK investigations in buffer solutions, cell culture, mice,
and patients. The pH-dependent conversion of TMZ into 5-(3-methyltriazen-1-
yl)imidazole-4-carboxamide(MTIC) and MTIC subsequent fragmentation into
4-amino-5-imidazole-carboxamide (AIC) and a methyldiazonium cation - the
active species - were represented in a model integrating experimental PK re-
sults in buffer solutions. Next, TMZ cellular PK was represented through a
two-compartment model incorporating the buffer solution model in both the
extra- and intracellular medium. Model parameters were estimated from TMZ,
MTIC, and AIC concentrations measured in U87 glioma cells. Next, a model
of TMZ brain disposition in mice was developed and incorporated the cellular
model of TMZ PK. The extra- and intracellular compartments of the latter
now correspond to the interstitial fluid and tumour cells within the brain tu-
mour. tumour cell membrane transport parameters were scaled from the in
vitro model proportionally to volumes, and all intracellular parameters were
inferred from the cellular study. Finally, the human model was obtained by
keeping the mouse model structure and intracellular parameter estimates and
scaling all transport parameters according to volumes. However, this naive
model calibration led to an overestimation of observed TMZ concentrations in
the brain interstitial fluid of cancer patients by up to fivefold.

4.2 Data-driven and model-driven approaches

Different systems investigations exist which differ by the scale of the produced
information. Two main types of such studies can be distinguished: i) data-
driven approaches and i) model-driven approaches.

Data-driven approach

The first is the most recent and is mainly associated to so-called omics tech-
nologies. The suffix -omics is used to refer to the study of large sets of bi-
ological molecules, or pieces of information, and are based on high through-
put experimental methods. A large number of omics technologies have been
developed in the last two decades, including genomics, genotyping, transcrip-
tomics, proteomics, metabolomics, fluxomics, interactomics, epigenomics and
many others (an ever expanding list...) Using such technologies, it is possible
to characterize for example the set of proteins contained in a given cell type
in given conditions (at least the soluble proteins), or identify the set of over-
or under-expressed genes by comparing two conditions. They are wide-ranging
and shallow, in the sense that they do not provide a detailed mechanistic un-
derstanding of a specific phenomenon but rather give a broad view of a domain
(set of expressed genes, set of proteins, set of protein-protein interactions, etc).
High-throughput (omics) data often lead to lists (e.g. the proteome of a given
cell type), maps (e.g. protein-DNA and protein-protein interaction maps) or
statistical associations (e.g. mutation associated to a given pathology). Most
of the data types produced are static. A data set is associated to a cell type and
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state in a given experimental setting. There is no kinetic or time-related con-
tent, except of course in the case of microarray time-series data (time-course
gene expression data) and fluxomics (metabolic fluxes). Multi-omics datasets
combine several data types, e.g. Williams et al., 2016 [88] combine quantitative
proteomics with genomics, transcriptomics and metabolomics, but the infor-
mation obtained is still static, namely statistical correlations between traits
and genomic variations across a population. The multi-omics approach are also
used to characterize intra-tumour heterogeneity [68,77]. However multi-omics
approaches, by assembling different pieces of information at several time points
and several disease relevant tissues, have the potential to uncover molecular
processes involved in the development of diseases, and distinguish those that
are causal from others which are consequences [33]. And of course the same
can be said about the mechanisms of resistance to treatments. Mathematical
and computational models being natural frameworks to integrate data (see
next section), it is likely that data-driven and model-driven approaches will
get closer in the near future and become more and more complementary.

A deeper understanding of disease processes should thus lead to better qual-
ity biomarkers, new drug targets, and better patient stratification. It seems
however unlikely that wide-ranging omics data collection (e.g. whole genomes,
whole proteomes etc.) will be appropriate at the bedside. After the research
phase (discovery) it is more cost-effective to perform focused tests, maybe on
a wider scale than presently practiced, using array technologies. Another is-
sue is the integration of molecular-level omics data with data on other levels:
clinical physiological, behavioral, psychological. A step in that direction is the
Pioneer 100 Wellness Project [73] already mentioned above, but in that study
the data are interpreted by coaches in an informal way. New methods and
tools will be needed to integrate all the data in a systematic and automated
way in order to take into account human and environmental variability and
design personalized treatment on this basis.

Model-driven approach

The second category of systems approaches are broadly speaking based on data
from dedicated experiments and aimed at elucidating the biological mecha-
nisms at work in the phenomenon of interest. Such approaches are focused on
the specific phenomenon studied, and deep, in the sense that they go deeply
into deciphering the molecular networks. They are based on mechanistic mod-
els which can be expressed in a variety of formalisms (such as ODEs, PDEs,
Thomas network, stochastic differential equations) allowing to simulate the
time evolution of a system. With the rise of the Systems view in Biology the
concept of network has taken center stage. A network can be used to describe a
regulatory structure (e.g. Gene Regulatory Network) or describe flows within
a system (e.g. metabolic networks). Mechanistic models are necessary to ra-
tionalize and make sense of the vast array of experimental data. Such models
constitute a framework to assemble in a consistent manner data of various
types. Models represent in a formal way a state of knowledge and hypotheses
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at a given moment in the discovery process, and can be used to generate new
hypotheses and choose the most relevant and informative experiments to be
performed next. The discovery process is thus an iteration of experimentation
and modelling steps, producing improved models at each iteration of the cycle.
The drawback of mechanistic models is that they contain many parameters
the value of which must be determined in order to able to perform simulations.
Molecular network models are particularly complex to build and parametrize.
This is due to the fact that the data with kinetic contents are still scarce,
as mentioned above. This might seem paradoxical considering the plethora of
omics data in general. A big challenge today is still to build mechanistic mod-
els of molecular networks from high-throughput data but examples do exist in
the context of systems medicine [56].

5 Impacts on Health Stakeholders
On drug development and clinical trial design

Clinical attrition is a major bottleneck to transfer drug candidates from bench
to clinical practice. Only approximately 10% of all compounds reaching phase
I will eventually obtain authorization by the US Food and Drug Administra-
tion (FDA). Failure rates are in the 30% range in phase I, in the 60% range in
phase II, 30 to 40% in phase III, and around 10% at the FDA submission to
approval stage [51]. Oncology has the highest failure rate with over 93% of se-
lected compounds being eventually rejected. To help addressing this issue, the
NIH hosted several workshops on quantitative systems approaches for drug
development and conclusions were published in a white paper in 2011 [32].
This publication highlighted the need for developing systematic approaches
investigating the origins of inter- and intra-subject variability in drug re-
sponse at the single-cell, organ and patient level based on genomic, proteomic,
metabolomics and environmental investigations. It further recommended de-
veloping multi-scale PK-PD mathematical models incorporating pharmaco-
logical mechanisms at the cell to the whole organism level. Seven years after
the release of this white paper, significant research advancements in each sub-
topic have been made. Eight success stories are highlighted in the Avicenna
Roadmap [6] from innovative trial adaptative design [36] to PBPK modelling
enabling pharmacodynamic prediction [43]. In 2007, the Entelos biosimulation
company (http://www.entelos.com/) predicted from in silico studies that rit-
uximab would have greater efficacy than tumour necrosis factor (TNF) in-
hibitor in preventing bone erosion in patients with severe joint diseases. They
showed through computational simulations that rituximab would more effi-
ciently preserve joint structure and decrease the rate of cartilage degradation
compared to anti-TNF molecules. These model predictions predated a revision
to the UK National Institute for Health and Care Excellence (NICE) guide-
lines by several years. Indeed, in 2010, rituximab and other related compounds
were recommended by NICE for the treatment of rheumatoid arthritis in case
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of failure of prior anti-TNF drugs [55]. However, despite these very positive
successes, initiatives to implement all the above recommendations to tackle
the challenge of improving patient stratification and define better clinical trial
methodologies remain scarce and highly challenging, especially in Oncology.
Yet, systems medicine holds the promise to dramatically improve clinical trial
design and outcomes through the use of virtual patients and in silico models
(Figure 4).

DESIGN OF MECHANISTIC PATIENT IN SILICO PERSONALIZED DRUG CLASSICAL CLINICAL TRIAL: PATIENT
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Fig. 4 In silico clinical trial for anticancer drug combinations.

On medical doctor, biologist and mathematician formation

The new concept of wellness rather than disease, pre-emptive rather than reac-
tive intervention, individualized rather than aggregative approach, integrated
rather than ultra-focussed evaluation, requires a profound paradigm-shift in
the clinical management of a subject, as well as in the ideation of a research
study. In order to achieve such transition, the training of the new generation of
scientists and clinicians ought to incorporate the notions of systems approach,
of cross-disciplinary and of integrative assessments. In pursuance of this goal,
specific courses ought to be integrated within the learning curricula of all
disciplines involved, biology and life sciences, mathematics, statistics, bioengi-
neering, computational sciences, psychology and sociology, pharmacology and
medicine. Such permeation should include both a basic conceptual introduc-
tion within the compulsory basic teaching, in order to broadly disseminate
the systems framework, and more in-depth training courses, tailored to the
individual disciplines, yet integrating the multi-disciplinary characteristic of
the systems approach. Thus, a shared effort of the scientific community is to
develop, update and incorporate these novel training sessions across the aca-
demic spectrum of curricula and schools. International societies and initiatives
are indeed pursuing this ambitious goal.
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6 Conclusions

Back in 19th century, Claude Bernard had already realized the necessity and
the huge potentiality of the systems approach. Denis Noble - following Bernard’s
insightful recommendations [64] - was the first to apply and prove the useful-
ness and efficiency of the multi-level system approach for the understanding of
the heart [35,63,66]. This contributed to help in the identification of adapted
drug treatment for a number of its pathologies [65]. Many medical applica-
tions of systems approaches have since been developed with success and some
striking cases - such as AIDS modelling - can be found in the recent review of
Joly and Rondé (2017)[41].

Systems investigations have all in common that they consist of a sequence
of experimental and theoretical steps, in order to integrate the relevant com-
ponents of a complex system in its different time and spatial scales. Such
methodologies clearly enlarge the field of biological or medical questions that
can now be addressed. In particular, they theoretically allow for precision
and personalized medicine by the integration of multi-type datasets available
in individual patients from blood tests to imaging, to self-reported symptom
questionnaires.

However, despite very promising success stories, systems sciences have not
yet been fully implemented in drug development, clinical trial design or the
everyday clinical practice so far. This may be explained by the lack of proper
formation for all actors of the field from biologists to clinicians, nurses, math-
ematicians and computer scientists. Indeed, such pluri-disciplinary projects
require specific skills including the ability to work with professionals of vari-
ous background.

Our future challenge lays thus in the design of new academic degrees fully
integrating systems sciences at their core. The enrichment of existing profes-
sional careers with the ability to be part of pluri-disciplinary projects and the
emergence of new jobs enabling the implementation of systems approaches in
the clinics are key for the future development of the field.
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