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come   L'archive ouverte pluridisciplinaire

where T is a (possibly in…nite) index set, a : T ! R n and b : T ! R are given mappings, and a (t) > represents the transpose of a (t). The system in (1) is called …nite (respectively, semi-in…nite) whenever the index set T is …nite (in…nite). In the particular case of …nite linear systems, it is customary to write a t 2 R n (respectively, b t 2 R) instead of a (t) (b (t)) for all t 2 T:

We will use both notations at our convenience. The constraint systems of linear optimization problems (also called programs) with …nite dimensional decision space are expressed as [START_REF] Amaral | A reformulation-linearization-convexi…cation algorithm for optimal correction of an inconsistent system of linear constraints[END_REF]. These problems are called either …nite or semi-in…nite according to the nature of its constraint system. In many (possibly inconsistent) linear semi-in…nite programs arising in practice, T is either an interval of time, or a region in the plane (or in the space) on which the functions a and b are continuous (see, e.g., [START_REF] Goberna | Linear Semi-In…nite Optimization[END_REF] and [START_REF] Goberna | Recent contributions to linear semi-in…nite optimization. 4OR[END_REF]). In particular, the constraint systems of the linear semi-in…nite programs arising in the best uniform and L 1 approximation of real-valued functions by polynomials are always consistent [9, Chapter 1]) but, in general, the consistency or not of the system in (1) depends on the data, i.e, the mappings a and b: In the linear semi-in…nite programming (SIP in short) literature, the programs, as well as their corresponding constraint systems, are said to be discrete whenever T is a topological space without accumulation points (e.g., a …nite set equipped with the discrete topology) and continuous whenever T is a compact Hausdor¤ space and the functions a and b are continuous on T:

In this paper we evaluate the infeasibility of a given x 2 R n with respect to a given inconsistent system n a (t) > x b (t) ; t 2 T o by means of three norms de…ned on certain spaces of functions. Since two of these de…nitions involve integrals, on T; of functions depending on a and b, we must impose suitable conditions on a; b and T guaranteeing integrability. Moreover, in order to characterize the best approximation for one of these norms, we must apply the Leibnitz integral rule for derivation under the integral sign, which has been established for boxes, that is, cartesian products of (possibly improper) compact intervals in R. For this reason, we consider in this paper linear systems such that T is the union of two disjoint subspaces of some Euclidean space R m (at least one of them nonempty): a …nite set and a …nite union of pairwise disjoint compact Hausdor¤ sets on which the mappings a and b are continuous. More precisely, we assume that the index set in (1) can be expressed as

T = t 1 ; :::; t q [ 0 @ p [ j=1 T j 1 A R m ;
where T j is a box, a jTj 2 C (T j ; R) n ; b jTj 2 C (T j ; R) ; j = 1; :::; p; where C (T j ; R) denotes the space of real-valued continuous functions on T j ; and the sets t 1 ; :::; t q ; T 1 ; :::; T p are pairwise disjoint.

Obviously, a > t x b t ; t 2 T is called discrete when p [ j=1 T j = ; (i.e.,
p = 0 6 = q) and continuous when t 1 ; :::; t q = ; (i.e., q = 0 6 = p). We say that a > t x b t ; t 2 T is a mixed system otherwise (i.e., when p 6 = 0 6 = q).

Examples 1, 2, and 5 below deal with inconsistent discrete, continuous, and mixed systems, respectively. The residual of x 2 R n is the nonzero real-valued continuous function

T 3 t 7 ! a > t x b t + := max 0; a > t x b t ;
whose size can be measured in di¤erent ways, e.g., by the L 1 ; L 1 ; and L 2 norms in the space C (T; R) of real-valued continuous functions on T:

We consider the problem of computing the best approximate solution of a > t x b t ; t 2 T for these norms (i.e., …nding those x 2 R n minimizing the corresponding norm of the residual).

The best uniform solutions to a > t x b t ; t 2 T are the optimal solutions to the problem

P 0 : Min x2R n f 0 (x) = max t2T a > t x b t + = max t2T a > t x b t ;
the best L 1 solutions are the optimal solutions to the problem

P 1 : Min x2R n f 1 (x) = p X j=1 Z Tj a > t x b t + dt 1 :::dt m + q X k=1 a > t k x b t k + ;
and, …nally, the best least squares solutions are the optimal solutions to

P 2 : Min x2R n f 2 (x) = 1 2 p X j=1 Z Tj h a > t x b t + i 2 dt 1 :::dt m + 1 2 q X k=1 h a > t k x b t k + i 2 :
(We take the square of the Euclidean norm for the sake of smoothness of the objective function and divide by 2 to simplify the expressions of the gradient of f 2 :)

We illustrate these unconstrained convex optimization problems with a simple example.

Example 1 Consider the discrete system, with n = 2; p = 0 and q = 3,

fx 1 1; x 1 1; x 2 1g ;
whose inequalities are indexed with t = 1; 2; 3: It is easy to see that

f 0 (x) = max fjx 1 j + 1; x 2 1g ; f 1 (x) = 8 > > > > > > < > > > > > > : x 1 + x 2 ; x 2 [1; +1[ [1; +1[ ; x 2 + 1; x 2 [ 1; 1] [1; +1[ ; x 1 + x 2 ; x 2 ] 1; 1] [1; +1[ ; x 1 + 1; x 2 ] 1; 1] ] 1; 1] ; 2; x 2 [ 1; 1] ] 1; 1] ; x 1 + 1; x 2 [1; +1[ ] 1; 1] ; and f 2 (x) = 1 2 n (x 1 + 1) + 2 + ( x 1 + 1) + 2 + (x 2 1) + 2 o :
One immediately realizes that the set of minimizers of f 0 is f0g ] 1; 2] ; that the set of minimizers of f 1 is [ 1; 1] ] 1; 1]; after solving six very simple linear programs, and veri…es, with more e¤ort (see [5, Example 2.2.1]), that the set of minimizers of f 2 is f0g ] 1; 1] : Thus, the three problems, P 0 ; P 1 and P 2 have multiple optimal solutions and none of the objective functions, f 0 ; f 1 and f 2 , is coercive.

Obviously, the functions f 0 ; f 1 and f 2 are bounded from below, but their in…mum values can be unattainable; in other words, it may happen that the sets of best uniform, L 1 and least squares solutions be empty as the following example shows:

Example 2 Consider the system 1 = t 2 x 2t; t 2 [0; 1] (with n = m = p = 1 and q = 0). Since a t x b t = t (2 tx) ; we have a t x b t 0 ()

8 < : t 2 0; 2 x ; if x > 0; t 2 R + ; if x = 0; t 2 1; 2 x [ R + ; if x < 0: So, ft 2 R : a t x b t 0g = 8 < : 0; 2 x ; if x > 0; R + ; if x = 0; 1; 2 x [ R + ; if x < 0;
and ft 2 [0; 1] : a t x b t 0g = [0; 1] ; if x 2; 0; 2 x ; else. Consequently,

f 0 (x) = 2 x; if x 1; 1 x ; else, f 1 (x) = 1 x 3 ; if x 2;
4 3x 2 ; else, and

f 2 (x) = 2 3 x 2 + x 2 10 ; if x 2; 8 15x 3 ;
else, so that the three functions are decreasing and di¤erentiable, and their in…mum (zero) is not attained.

Observe that the existence of linear systems such that f 0 ; f 1 and f 2 are decreasing is independent of the dimension of the space of variables (consider, e.g., the system t 2 x n 2t; t 2 [0; 1] in R n ). Consequently, regarding the existence of approximate solutions for continuous and mixed systems, our main objective will be to give su¢ cient conditions as general as possible.

There exists a stream of works dealing with discrete inconsistent linear systems with di¤erent purposes:

1. Correcting the data, i.e., determining the smallest perturbation of the perturbable data of an inconsistent system Ax 5 b providing a consistent one (see, e.g., [START_REF] Amaral | A reformulation-linearization-convexi…cation algorithm for optimal correction of an inconsistent system of linear constraints[END_REF], [START_REF] Le | Correction of inconsistent systems of linear inequalities with matrices of block structure by the minimax criterion (Russian)[END_REF], and [START_REF] Cánovas | Distance to ill-posedness for linear inequality systems under block perturbations: convex and in…nitedimensional cases[END_REF], whose results also apply to continuous inconsistent systems). The analyzed perturbations a¤ect either the pair (A; b), or the matrix A; or the column vector b, and are measured with a variety of norms.

2. Calculating error bounds, i.e. positive scalars that multiplied by the norm of the residual of any x 2 R n provide bounds for the distance between x and the set of minimizers of that norm ( [START_REF] Mangasarian | Error bounds for inconsistent linear inequalities and programs[END_REF]).

3. Numerical methods to compute best least squares solutions (see, e.g., the recent paper [START_REF] Popa | Han-type algorithms for inconsistent systems of linear inequalities-a uni…ed approach[END_REF] on variants of Han's algorithm [START_REF] Han | Least-squares solution of linear inequalities[END_REF], whose fundamentals are the existence and characterization theorems for discrete inconsistent system proved in the latter paper; the recent work [START_REF] Contesse | Least squares solutions of linear inequality systems: a pedestrian approach[END_REF] provides two new proofs of Han's existence theorem; two additional works, [START_REF] Dax | A hybrid algorithm for solving linear inequalities in a least squares sense[END_REF] and [START_REF] Lei | The inexact …xed matrix iteration for solving large linear inequalities in a least squares sense[END_REF], on the so-called hybrid algorithm). To the best of our knowledge, no extension of these results and methods to continuous and mixed linear inconsistent systems is still available.

The paper is organized as follows: Section 2 provides necessary or su¢cient conditions for the existence of best uniform solutions, which are also characterized; Sections 3 and 4 are concerned with the characterization of best L 1 and L 2 solutions; Section 5 contains some comments on the possible use of the presented results in applications; …nally, Section 6 presents some conclusions.

Best uniform solutions

We now introduce the necessary notation. The zero vector in R n is denoted by 0 n : Given a set X R n ; we denote by conv X; cone X = R + conv X; int X; cl X; bd X; and rint X the convex hull of X; the convex conical hull of X; the interior of X; the closure of X; the boundary of X , and the relative interior of X; respectively. The indicator function of X is

I X : R n ! R[ f+1g, de…ned by I X (x) = 0; if x 2 X; and I X (x) = +1; otherwise. Given a function f : R n ! R = R[ f+1; 1g ; its domain is dom f = fx 2 R n : f (x) < +1g ; and its epigraph is epi f = (x; ) 2 R n+1 : f (x)
:

If dom f 6 = ; and 1 = 2 f (R n ) the function f is called proper, and if epi f is closed we say that f is a closed function.
The closure of a proper convex function f is the closed proper function cl f such that epi(cl f ) = cl(epi f ):

The Legendre-Fenchel conjugate of f is the function

f : R n ! R de…ned by f (u) = sup x2R n u > x f (x) :
Given a family of proper convex functions on R n , the convex hull of these functions is the convex function conv t2T f t de…ned by

(conv t2T f t )(x) = inf ( : (x; ) 2 conv [ t2T epi f t !)
:

It is well-known (e.g. [START_REF] Rockafellar | Convex Analysis[END_REF]Theorem 16.5]) that if ff t ; t 2 T g is a family of closed proper convex functions on R n ; then

sup t2T f t = cl (conv ff t ; t 2 T g) : (2) 
In this section the special structure of T is of no use, except the fact that it is a compact set. In other words, we are considering the system

:= fa > t x b t ; t 2 T g
with T compact and the functions t 7 ! a t and t 7 ! b t continuous. The inconsistency of entails

f 0 (x) = maxfa > t x b t ; t 2 T g > 0, for all x 2 R n :
Now we derive the conjugate of f 0 : If

f t (x) := a > t x b t ; t 2 T; since f t ( ) = I fatg ( ) + b t ; t 2 T;
(2) and the compactness of the set 

C := convf(a t ; b t ) : t 2 T g; yield epi f 0 = cl conv ( [ t2T f(a t ; b t ) + R + (0 n ; 1)g )! = C + R + (0 n ; 1); and f 0 (u) = min
According to Theorem 11.8(d) in [START_REF] Rockafellar | Variational Analysis[END_REF], the function f 0 never is 1-coercive since dom f 0 6 = R n . Corollary 3.1.1 in [START_REF] Goberna | Linear Semi-In…nite Optimization[END_REF] establishes that = a > t x b t ; t 2 T is inconsistent if and only if

0 n 1 2 cl cone a t b t : t 2 T : (4) 
From now on we only deal with an inconsistent system = a > t x b t ; t 2 T : The following proposition gives a necessary condition (N), which is independent of the right-hand side b; and a su¢ cient condition (S) for the existence of a best uniform solution for : Proposition 1 (Existence of best uniform solutions) Given an inconsistent system = a > t x b t ; t 2 T ; the following statements hold: (S) If is discrete or satis…es

0 n 2 rint conv fa t : t 2 T g ; (5) 
then there exists a best uniform solution. When the convex hull in ( 5) is full dimensional, then the set of best uniform solutions is bounded.

(N) If there exists a best uniform solution, then

0 n 1 2 cone a t b t : t 2 T : (6) 
Proof Proof: It is based on well-known results of convex analysis. (S) If is an inconsistent discrete system, f 0 is a polyhedral function which is bounded from below, so its minimum is attained.

Suppose now that

p [ j=1 T j 6 = ; and that is inconsistent. Then x will be a best uniform solution of if and only if 0 n 2 @f 0 (x); but this happens if and only if x 2 @f 0 (0 n ); i.e. @f 0 (0 n ) is the set of best uniform solutions of . Since dom f 0 = convfa t : t 2 T g; we have

0 n 2 rint convfa t : t 2 T g =) @f 0 (0 n ) 6 = ;; and 
0 n 2 int convfa t : t 2 T g =) @f 0 (0 n ) is non-empty and compact.
(N) If there exists a best uniform solution of ; x, we have x 2 @f 0 (0 n ); and

f 0 (x) + f 0 (0 n ) = 0 > n x = 0:
Since is inconsistent, f 0 (x) > 0; entailing f 0 (0 n ) < 0: Then, according to the expression of f 0 given in (3), there will exist scalars t 0; only …nitely many positive, and such that

X t2T t = 1; X t2T t a t = 0 n ; and f 0 (0 n ) = X t2T t b t : Therefore X t2T t jf 0 (0 n )j a t b t = 0 n 1 ;
and we get the aimed necessary condition [START_REF] Dax | A hybrid algorithm for solving linear inequalities in a least squares sense[END_REF].

Remark 1 It is also possible to prove Proposition 1 by using linear SIP theory as P 0 is equivalent to the linear SIP problem

P 0 0 : Min (x;xn+1)2R n+1 x n+1 subject to a > t x x n+1 b t ; t 2 T:
To prove (S), one can assume that 

0 n 1 2 rint cone a t 1 : t 2 T ;
which is equivalent to [START_REF] Contesse | Least squares solutions of linear inequality systems: a pedestrian approach[END_REF]. On the other hand, by [9, Theorem 8.1(vi)], the optimal set of P 0 0 is bounded if and only if

0 n 1 2 int cone a t 1 : t 2 T ;
which is equivalent to 0 n 2 int conv fa t : t 2 T g : Regarding (N), under the assumptions on the system in (1), the dual problem of P 0 0 in Haar's sense is also solvable with the same optimal value f 0 (x) > 0 (see, e.g., [START_REF] Goberna | Linear Semi-In…nite Optimization[END_REF]Theorem 8.1]). This means that there exist scalars t 0; only …nitely many positive such that

X t2T t a t 1 = 0 n 1 and X t2T t b t = f 0 (x):
The rest of the proof is as above.

Example 1 shows that condition (5) is not necessary for the existence of a best uniform solution, as

0 2 = 0 0 2 bd conv 1 0 ; 1 0 ; 0 1 : Moreover, argmax a > t 0
x 2 b t : t 2 T = f1; 2; 3g ; with 0 2 2 conv fa 1 ; a 2 ; a 3 g ; while, for any x 2 < 2;

argmax a > t 0 x 2 b t : t 2 T = f1; 2g ;
with 0 2 2 conv fa 1 ; a 2 g, con…rming that any element of f0g ] 1; 2] is a best uniform solution (observe that [START_REF] Goberna | Robust solutions to multi-objective linear programs with uncertain data[END_REF] given later fails at all these points).

The next example shows that, in a similar way, condition [START_REF] Dax | A hybrid algorithm for solving linear inequalities in a least squares sense[END_REF] meaning that contains a …nite inconsistent subsystem does not guarantee the existence of uniform solutions to :

Example 3 Replacing the right-hand side in the system 1 (see Example 2) 2t; by 2t 1; for the new system, say 2 ; f 0 (x) = 3 x; if x 1; 1 + 1 x ; else, so that its in…mum, now 1; is still unattainable. The di¤erence is that 2 satis…es the necessary condition for the existence of uniform solution as (a 0 ; b 0 ) = (0; 1) while 1 does not. Thus, the necessary condition given in Proposition 1 is not su¢ cient.

Proposition 2 (Characterization of best uniform solutions) A given x 2 R n is a best uniform solution if and only if

0 n 2 conv a t : t 2 argmaxfa > t x b t : t 2 T g: (7) 
In particular, if

0 n 2 int conv a t : t 2 argmaxfa > t x b t : t 2 T g; ( 8 
)
then x is the unique best uniform solution.

Proof The …rst statement comes from 0 n 2 @f 0 (x) and the Valadier formula (e.g. [ 

In this case, x n+1 = max t2T a > t x b t and so T (x; x n+1 ) = argmaxfa > t x b t : t 2 T g which replaced in ( 9) yields [START_REF] Folland | Real Analysis: Modern Techniques and Their Applications[END_REF]. On the other hand, if (10) holds, i.e.,

0 n 1 2 int cone a t 1 : t 2 argmaxfa > t x b t : t 2 T g ; (10) 
then, by [9, Theorem 10.6], x; max t2T a > t x b t is a strongly unique optimal solution of P 0 0 :

The next example illustrates the application of Proposition 2 to a continuous inconsistent system.

Example 4 Consider the deterministic counterpart of the uncertain system in R 2 f 2x 1 0; 2x 1 0g ; with uncertainty intervals of the form " for each coe¢ cient ; with " > 0; formulated as P R in [START_REF] Lei | The inexact …xed matrix iteration for solving large linear inequalities in a least squares sense[END_REF]. This counterpart is the inconsistent continuous system a > t x b t ; t 2 T ; where T = T 1 [ T 2 ; with T j = ( 1) j 2; 0; 0 + C; j = 1; 2; C = [ "; "] 3 ; a t = (t 1 ; t 2 ) > and b t = t 3 for all t = (t 1 ; t 2 ; t 3 ) 2 T: Let us analyze the particular case " = 1:

The problem to be solved is

P 0 0 : Min (x1;x2;x3)2R 3 x 3 subject to t 1 x 1 + t 2 x 2 x 3 t 3 ; t 2 T 1 [ T 2 ;
where all constraints of t 1 x 1 +t 2 x 2 x 3 t 3 ; t 2 T j ; are consequences of the inequalities corresponding to the extreme points of T j : Observe also that, for these points, …xed t 1 and t 2 ; t 3 takes values 1; with t 1 x 1 +t 2 x 2 x 3 1 being a consequence of t 1 x 1 + t 2 x 2 x 3 1: So, P 0 0 is equivalent to the problem P 00 0 obtained by replacing the constraints corresponding to indices t 2 T 1 [ T 2 with the subsystem formed by the following eight inequalities:

x 1 + x 2 x 3 1; (a) 3x 1 + x 2 x 3 1; (b) x 1 x 2 x 3 1; (c) 3x 1 x 2 x 3 1; (d) x 1 + x 2 x 3 1; (e) 3x 1 + x 2 x 3 1; (f) x 1 x 2 x 3 1; (g) 3x 1 x 2 x 3 1: (h)
If we sum term by term the inequalities (a), (c), (e) and (g), we conclude that x 3 1 is a consequence of the inequality system above and so, an optimal solution of P 0 0 is (0; 0; 1) ; which means that x = (0; 0) minimizes f 0 with f 0 (0; 0) = 1:

We now observe that a > t x b t = t 3 attains its maximum on T at the union of the lower facets of T 1 and T 2 ; i.e.,

argmax a > t x b t : t 2 T = ([ 3; 1] [ 1; 1] f 1g) [ ([1; 3] [ 1; 1] f 1g) :
Hence x satis…es ( 7) and ( 8), i.e., it is the unique best uniform solution.

3 Best L 1 solutions

In the discrete case P 1 consists in minimizing a nonnegative (convex) piecewise linear function. This allows us to assert the existence of solutions as in Proposition 1 (without any assumption on the data (a t k ; b t k ) ; k = 1; :::; q). Next we focus on the characterization of optimal solution in the mixed case (the corresponding to the discrete and the continuous cases can be seen as particular cases).

Proposition 3 (Characterization of L 1 -solutions) A given x 2 R n is a best L 1 -solution if and only if 0 n 2 p X j=1 Z Tj A j t dt + X 1 k q: a > t k x=b t k convfa t k ; 0 n g + X 1 k q: a > t k x>b t k a t k ; (11) 
where

A j t := 8 < : fa t g; if a > t x b t > 0; convfa t ; 0 n g; if a > t x b t = 0; f0 n g; if a > t x b t < 0; and Z Tj A j t dt = ( z = Z Tj u(t)dt : u(:) is a Lebesgue-integrable selection in A j (:) 
) :

Proof In this mixed setting, the L 1 solutions are those vectors x satisfying

0 n 2 @ 8 < : p X j=1 Z Tj a > t x b t + dt 1 :::dt m + q X k=1 a > t k x b t k + 9 = ; : (12) 
Taking into account that the function t 7 ! a > t x b t + is continuous on each T j , that x 7 ! a > t x b t + is convex and …nite-valued for each x 2 R n , and so it is a normal convex integrand (see, e.g. [24, Proposition 14.39]), we can write (applying e.g. [14, Theorem 4, §8.3] and observing that all the integrals are …nite-valued convex functions)

0 n 2 p X j=1 Z Tj @ a > t x b t + dt + q X k=1 @ a > t k x b t k + ; (13) 
where

Z Tj @ a > t x b t + dt = ( z = Z Tj u(t) dt u(:) is Lebesgue-integrable in T j and u(t) 2 @ a > t x b t + ; t 2 T j ) :
4 Best least squares solutions

Concerning the existence, Han's original proof in [START_REF] Han | Least-squares solution of linear inequalities[END_REF] as also the new proofs in [START_REF] Contesse | Least squares solutions of linear inequality systems: a pedestrian approach[END_REF] (all for the discrete case) are not easily adaptable to continuous systems. We therefore just propose a characterization of solutions.

Proposition 4 (Characterization of L 2 solutions) A given x 2 R n is a least squares solution if and only if

p X j=1 Z Tj a > t x b t + a t dt 1 :::dt m + q X k=1 a > t k x b t k + a t k = 0 n : (14) 
Proof We can assume without loss of generality that p 1 and q 1: Denoting by p + : R ! R the positive part function, i.e., p + (y) = max fy; 0g ; and by h t : R n ! R the a¢ ne function such that h t (x) = a > t x b t ; t 2 T; we can write

f 2 (x) = 1 2 p X j=1 Z Tj p 2 + h t (x) dt 1 :::dt m + 1 2 q X k=1 p 2 + h t k :
Obviously, p 2 + is convex and di¤erentiable, with

dp 2 + (y) dy 
= 2p + (y) for all y 2 R while rh t (x) = a t for all x 2 R n : Let t 2 T j ; with j 2 f1; :::; pg : Then x 7 ! Z Tj p 2 + h t (x) dt 1 :::dt m is convex and di¤erentiable, with gradient

r Z Tj p 2 + h t ! (x) = 2 Z Tj a > t x b t + a t dt 1 :::dt m ; (15) 
provided by the Leibnitz integral rule for derivation under the integral sign, taking into account that the partial derivatives or gradients are continuous and bounded by integrable functions (see, e.g., [START_REF] Mawhin | Analyse: Fondements, Techniques, Évolution[END_REF]Section 14.2]). Analogously,

r p 2 + h t k (x) = 2 a > t k x b t k + a t k ; k = 1; :::; q: (16) 
The conclusion follows from ( 15), ( 16), and the well-known coincidence of global minima and critical points for convex di¤erentiable functions.

Applications

Linear SIP problems frequently arise in applications, in many cases with constraint systems which can be consistent or not depending on the data (see, e.g., [START_REF] Goberna | Recent contributions to linear semi-in…nite optimization. 4OR[END_REF] and references therein). One of the …elds where inconsistent linear systems arise more frequently in practice is robust linear optimization, which provides a deterministic framework for uncertain problems, as large uncertainty sets may provide inconsistent robust counterparts. The next examples illustrates this situation in robust production planning.

Example 5

The basic production planning model consists of maximizing the cash- ‡ow c (x 1 ; :::; x n ) of the total production, with x i denoting the production level of the i-th commodity, and the decision vector x = (x 1 ; :::; x n ) must satisfy p linear constraints a > j x b j ; where the components of a j are the technological coe¢ cients while b j represents the available amount of the j-th resource. In practical situations the coe¢ cients of the constraints (except the positivity constraints x i 0) are uncertain while the objective function c is deterministic. The robust optimization approach provides a deterministic framework for uncertain problems (see, e.g., [START_REF] Ben-Tal | Robust Optimization[END_REF], [START_REF] Bertsimas | Theory and applications of robust optimization[END_REF] and references therein). Following this conservative approach, the input data, (a j ; b j ), j 2 J, are uncertain vectors and (a j ; b j ) 2 T j R n+1 , where the sets T j are speci…ed uncertainty sets. For the sake of simplicity, assume that all the uncertainty sets are boxes, i.e., that each coe¢ cient of a > j x b j takes values in a given interval in R. By enforcing the constraints for all possible uncertainties within T j , j 2 J, the uncertain production planning problem is captured by the so-called robust counterpart 

P R : Max x2R n c (x)
:; t n \ 0 @ p [ j=1 T j 1 A = ; (18) 
(otherwise, replace T j with T j fjg ; j = 1; :::; p; and t k with t k ; p + k ; k = 1; :::; n). When the the union of t 1 ; :::; t n with the boxes T j ; j = 1; :::; p; is too large, we may have

0 n 1 2 cone 0 @ t 1 ; :::; t n [ p [ j=1 T j 1 A ;
so that, by (4), P R is inconsistent, and the decision maker has two options: either reducing the length of the uncertainty intervals (bounds for these lengths can be found in [START_REF] Goberna | Robust solutions to multi-objective linear programs with uncertain data[END_REF] and references therein) or, assuming a minimum risk, select a best approximate solution for the constraint system of P R :

The practical application of the previous results depends on the tractability of the problems P 0 ; P 1 ; and P 2 :

When the given inconsistent system is discrete, P 0 can be reformulated as a linear program P 0 0 that can e¢ ciently be solved by any of the wellknown simplex-like or interior-point methods; when the system is continuous, the linear semi-in…nite program P 0 0 can be solved by simplex-like, cutting-plane, and grid discretization methods; …nally, when the system is mixed, only grid discretization methods are viable, taking into account that t 1 ; :::; t q should be part of any grid (a brief survey of these methods can be found in [10, Chapter 1]). In many economic problems (production planning, allocation of resources, portfolio, etc.) with interval uncertain constraints a > j x b j , all the sets f(a t ; b t ) ; t 2 T j g ; j = 1; :::; p; are boxes, in which case P 0 0 can be reformulated as an ordinary linear program following the same strategy as in Example 4 (by eliminating redundant constraints).

The main di¢ culty with solving P 1 and P 2 analytically, in the continuous and mixed cases, is that one can hardly get explicit formulas for the integrals of a > t x b t + and its square in terms of the variables x 1 ; :::; x n ; although they can be easily evaluated for particular values of x = (x 1 ; :::; x n ) by getting a convenient representation of the polytope t 2 T j : a > t x b t 0 once checked that a > t x b t 0 for some extreme point of The advantage of P 2 over P 1 consists of the di¤erentiability of the objective function f 2 and the fact that its gradient (the function in the left-hand side of ( 14) is Lipschitz continuous, property guaranteeing the convergence of the steepest descent method, the quadratic convergence of Newton's method, etc.

Conclusions

We have analyzed in this paper di¤erent aspects of the best approximation problem for inconsistent continuous and mixed linear systems when the infeasibility is measured with either the uniform norm, or the Euclidean norm, or the L 1 norm, which are now compared with di¤erent criteria:

-Robustness (in the sense of sensitivity with respect to error data): Due to the presence of square terms in f 2 , least squares solutions are more sensible to error data (the coe¢ cients of the systems) than best uniform and L 1 solutions. This is the same situation as in regression analysis and other branches of statistics. -Tractability: Thanks to the di¤erentiability of f 2 ; least squares solutions are more easily computable by the numerical methods for unconstrained programs than best uniform and L 1 solutions. However, best uniform solutions can be approximated by using e¢ cient linear SIP numerical methods when m is su¢ ciently small. -Characterization of solutions: We have provided characterizations of the best approximate solutions for the three norms in terms of the data, but the simplest one corresponds to best uniform solutions. So, best approximate solutions are preferable from the stopping rule perspective. -Existence of solutions: We have characterized the existence of best uniform solutions; providing existence theorems for least squares solutions and best L 1 solutions remains an open problem. -Generality: The results on best uniform solutions are valid for systems with an arbitrary index set T (not necessarily the union of a …nite set with a family of boxes).

T j 6 =

 6 ;: By [9, Theorem 8.1(v)], P 0 0 is solvable if and only if

  subject to t 1 x 1 + ::: + t n x n t n+1 ; t 2

	p [	T j ;	(17)
	j=1		
	x k 0; k = 1; :::; n;		
	which is a linear SIP problem whose mixed constraint system can be written as n a (t) > x b (t) ; t 2 T o in (1), with T = p [ j=1 T j [ t 1 ; :::; t n R n+1 ;
	t		

k := ( e k ; 0) ; where e k denotes the k th element of the canonical basis of R n ; k = 1; :::; n; a (t) = (t 1 ; :::; t n ) > ; and b (t) = t n+1 for all t = (t 1 ; :::; t n+1 ) 2 T: We may assume that the boxes T 1 ; :::; T p are pairwise disjoint and t 1 ; ::

  + dt 1 dt 2 dt 3 =

		Tj	h	a > t x b t +	i 2	dt 1 :::dt m = 0:
	For instance, in Example 4, for x = (0; 2) ; a > t x b t = 2t 2 t 3	0 for
	(1; 1; 1) 2 T 1 ;				
	t 2 T 1 : a > t x b t 0 = [ 3; 1]			(t 2 ; t 3 ) 2 [ 1; 1] 2 : t 2	t 3 2	;
	and					
	Z T1	a > t x b t Z 1 3 = Z 1 3	dt 1 dt 1	Z 1 1 Z 1 1	Z 1 t 3 2 t 2 dt 3 3 4	(2t 2 t 3 ) dt 2 t 3 + 1 dt 3 = 13 3 :

T j ; otherwise Z Tj a > t x b t + dt 1 :::dt m = Z
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