
HAL Id: hal-01975724
https://hal.science/hal-01975724v1

Submitted on 21 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fog architectures and sensor location certification in
distributed event-based systems

Fátima Castro-Jul, Rebeca P. Díaz-Redondo, Ana Fernández Vilas, Sophie
Chabridon, Denis Conan

To cite this version:
Fátima Castro-Jul, Rebeca P. Díaz-Redondo, Ana Fernández Vilas, Sophie Chabridon, Denis Conan.
Fog architectures and sensor location certification in distributed event-based systems. Sensors, 2018,
19 (1), pp.104. �10.3390/s19010104�. �hal-01975724�

https://hal.science/hal-01975724v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


sensors

Article

Fog Architectures and Sensor Location Certification in
Distributed Event-Based Systems †

Fátima Castro-Jul 1,* , Rebeca P. Díaz-Redondo 1 , Ana Fernández-Vilas 1 ,
Sophie Chabridon 2 and Denis Conan 2

1 Information & Computing Lab, AtlantTIC Research Center, Universidade de Vigo, 36310 Vigo, Spain;
rebeca@det.uvigo.es (R.P.D.-R.); avilas@det.uvigo.es (A.F.-V.)

2 SAMOVAR (Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux),
Télécom SudParis, CNRS, Université Paris-Saclay, 91000 Évry, France;
Sophie.Chabridon@telecom-sudparis.eu (S.C.); Denis.Conan@telecom-sudparis.eu (D.C.)

* Correspondence: fatima@det.uvigo.es; Tel.: +34-986818704
† This Paper is an Extended Version of Our Paper Published in “Castro-Jul, F.; Conan, D.; Chabridon, S.;

Díaz-Redondo, R.P.; Fernández-Vilas, A.; Taconet, C. Combining Fog Architectures and Distributed
Event-Based Systems for Mobile Sensor Location Certification. In Proceedings of the International
Conference on Ubiquitous Computing and Ambient Intelligence, Philadelphia, PA, USA,
7–10 November 2017; Springer: Berlin, Germany, 2017, pp. 27–33.”.

Received: 15 November 2018; Accepted: 20 December 2018; Published: 29 December 2018
����������
�������

Abstract: Since smart cities aim at becoming self-monitoring and self-response systems,
their deployment relies on close resource monitoring through large-scale urban sensing.
The subsequent gathering of massive amounts of data makes essential the development of
event-filtering mechanisms that enable the selection of what is relevant and trustworthy. Due to the
rise of mobile event producers, location information has become a valuable filtering criterion, as it
not only offers extra information on the described event, but also enhances trust in the producer.
Implementing mechanisms that validate the quality of location information becomes then imperative.
The lack of such strategies in cloud architectures compels the adoption of new communication
schemes for Internet of Things (IoT)-based urban services. To serve the demand for location
verification in urban event-based systems (DEBS), we have designed three different fog architectures
that combine proximity and cloud communication. We have used network simulations with realistic
urban traces to prove that the three of them can correctly identify between 73% and 100% of false
location claims.

Keywords: participatory sensing; smart cities; Internet of Things; distributed event-based systems

1. Introduction

Smart cities are intelligent and interconnected environments where resources are constantly
monitored in order to, among other objectives, assess their performance and ensure an appropriate
reaction in case of an incident. From transportation to safety or energy management, the list of
services that can benefit from obtaining real-time information to enhance citizens’ experience is almost
endless [1]. Monitoring a whole city implies the extensive sensing and gathering of large amounts of
data. The emergence of the Internet of Things (IoT) eases this task by enabling the interconnection of
sensors embedded in any device, vehicle, or object.

Since they provide time and space decoupling, distributed event-based systems (DEBS) [2] enable
flexible communication in dynamic and heterogeneous urban scenarios. As a result, they have become
a useful interaction mechanism for IoT-based smart-city services [3]. Moreover, they support event

Sensors 2019, 19, 104; doi:10.3390/s19010104 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3063-486X
https://orcid.org/0000-0002-2367-2219
https://orcid.org/0000-0003-1047-2143
http://www.mdpi.com/1424-8220/19/1/104?type=check_update&version=1
http://dx.doi.org/10.3390/s19010104
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 104 2 of 26

filtering, data aggregation, and scalability, which are essential in the development of large-scale
IoT-based services [4]. Event filtering is of paramount importance in large-scale urban sensing,
where an enormous quantity of data are generated. By choosing their event subscriptions, consumers
can select the most relevant and trustworthy data available to improve their environment awareness
in a reliable way. Therefore, event filtering is not limited to the event notification content, but also
extends to its quality, evaluated using additional knowledge provided by event producers and event
processing agents [5].

When considering filtering criteria, location is one of the first that come to mind. The inclusion of
geographical information on event notifications allows subscriptions based on areas of interest. Thus,
it helps consumers to select notifications that are relevant to them. Additionally, it reinforces trust in
producers. Even though location information may not be significant in every notification, the fact that
producers provide extra information about their whereabouts increases their reliability. As a result,
implementing location evaluation mechanisms improves trust both on the event notification source
and on the notification itself.

Location assessment mechanisms differ according to the producers’ mobility and the DEBS
architecture. Static event producers are known to be in a certain location and, therefore, it is easy to
detect fake location claims coming from them. However, when it comes to mobile producers, location
assessment becomes more difficult. The importance of mobile producers has considerably grown
over the last ten years due to the emergence of participatory sensing [6] and mobile crowd-sensing
paradigms [7]. Producers that move through the city and gather information about different areas
are a promising alternative to building a costly fixed sensing and communication infrastructure to
cover a whole city. As a result, mobile clients and subsequent location issues need to be considered
when designing urban DEBS. In classical cloud architectures, an overlay of brokers in the Cloud
lets producers and consumers communicate, placing blind confidence in the locations they claim.
A possible solution is to switch from this architecture to a proximity-based totally ad hoc network
that ensures producers’ direct communication with consumers in their very area [8]. This is a good
solution for small and densely populated urban areas, but it becomes expensive when producers and
their subscribed consumers are far away from each other. Another alternative is to migrate part of
the data processing from the Cloud to the edges of the network. Thus, location is verified on the
edges, in the devices’ proximity, while a cloud architecture for widespread area communication is
maintained. Extending cloud architectures closer to the users is not a novel idea, it is the basis of the
Fog Computing paradigm [9,10].

The capabilities of fog architectures for sensor location certification in urban DEBS remain
largely unexplored. In order to evaluate their potential, we have designed and assessed through
simulation three different architectures based on fog computing that combine cloud and proximity
communication. The architectures are aimed at improving the quality of urban notifications and
enable wide-area communication while benefiting from proximity-based location verification on
network edges. To do so, we enrich traditional cloud architectures with short-range communication
schemes that enable peer-based location verification. This proposal evolves from our works on quality
of context information in DEBS [11] and on distributed proximity-based collaboration with peer
devices [8]. The architectures, albeit briefly presented in our previous work [12], are extensively
studied in this paper. Moreover, their performance is assessed using network simulations with realistic
urban traces.

This paper is organized as follows. First, Section 2 presents an overview of how location
verification is dealt with in urban-sensing architectures. Then, Section 3 analyzes the scenario at
which our approach is targeted, and Section 4 outlines the basics of our DEBS system. Our proposed
architectures are described in Section 5, while their simulation and evaluation are discussed in
Sections 6 and 7. Finally, a conclusion and some guidelines for future work can be found in Section 9.



Sensors 2019, 19, 104 3 of 26

2. Background

The high potential of mobile sensor-enabled devices as a powerful tool to monitor their
surroundings has led to the emergence of participatory [6] and crowdsensing systems [7,13],
which leverage user-generated information to form collaborative knowledge about urban areas.
These systems enhance the quality and credibility of urban sensing and, therefore, have become
a major player in IoT-distributed event-based platforms [14]. However, the prevalence of mobile event
producers poses new challenges in urban-sensing schemes.

On the one hand, the possibility of exploiting an ever-growing number of mobile devices results
in a massive increase in the quantity of collected data. As a result, developing filtering mechanisms
becomes imperative. The focus of those may be reducing the transmission of unnecessary information
on the publishing side [3,8,14] or supporting selective subscriptions on the consuming side, based on
criteria such as trust on the producer and information quality [11].

On the other hand, sensing platforms need to handle inherent device mobility. This includes
dealing with unequal area coverage due to human mobility patterns [3], translating information on
producers in different locations [15], and analyzing location claims that are continuously changing.
Since sensed information is often geotagged for contextualization, verifying location claims is of
paramount importance to ensure adequate subscription management and to reinforce trust in the
sensing system. Thus, the location verification problem relates to both of the mentioned challenges in
participatory sensing: it arises from the high mobility of producers and, considering that location is
a major filtering criterion, it significantly affects effective data dissemination. The task of designing
participatory DEBS with location verification support varies depending on the different system
architectures, whose main characteristics are described next.

DEBS are typically based on three components [2]: producers (P), consumers (C), and brokers (B).
Producers advertise their contribution to the system and then publish events that match their
advertisement. Consumers subscribe to events of their interest and receive them. Brokers handle
consumer subscriptions in order to route event notifications appropriately. Every client (consumer or
producer) is connected, at most, to one broker at the same time. We distinguish between three different
system architectures: cloud (Section 2.1), cloudless (Section 2.2), and fog (Section 2.3).

2.1. Cloud Architectures

Traditional cloud architectures [3,14] consist of an overlay of brokers in the Cloud that
communicates producers and consumers located anywhere. Figure 1a depicts a cloud-based
participatory sensing with producers (Pi) and consumers (Cj) in different city sections. There is
also an overlay of interconnected brokers (Bk) that allows communication over the whole area and
whose internal organization is transparent to the clients. The clients (producers and consumers) first
connect to a central server, which assigns them to an access broker. The access broker can be anywhere,
and may serve other clients from different locations. It does not know the clients’ position and has no
means to verify whether they are claiming false locations. As a result, the access broker places blind
trust in the locations submitted by producers.

2.2. Cloudless Architectures

Moving the whole sensing system to the clients’ proximity ensures producers communicate
only with those in their actual whereabouts. By dispensing with the Cloud and relying solely on
short-range communication technologies, false location claims become easily detectable. Cloudless
architectures may consist of a broker infrastructure placed all over the urban area that needs to be
covered (Figure 1b). Access brokers (Bk) are always near their clients and, therefore, can verify whether
their location claims are accurate. Brokerless or ad hoc architectures are another alternative (Figure 1c).
Clients (Pi and Cj) communicate directly with each other and form opportunistic networks to deliver
event notifications to those interested [8]. In this scenario, every client takes part in the verification of



Sensors 2019, 19, 104 4 of 26

notifications created in their proximity. Both the architectures work well in small and, in the ad hoc
case, densely populated zones. However, they are costly to deploy in wide areas and do not enable
communication with clients outside of it.

(a) Cloud architecture

(b) Cloudless infrastructure architecture

(c) Ad hoc architecture

Figure 1. Participatory sensing architectures.

2.3. Fog Architectures

The Fog Computing paradigm advocates the establishment of an intermediate layer between
end devices and traditional cloud servers that provides computation, storage, and networking
services [9,10]. It has emerged as a useful tool for IoT architectures since it provides mobility and
heterogeneity support [16], low latency, and scalability [17]. Moving part of the data processing
closer to the ground increases the system awareness about clients’ locations. Moreover, since part of
the architecture is still in the Cloud, widespread area coverage is guaranteed. There exist different
alternatives in the design of fog-computing architectures, where the intermediate layer can be placed
either remotely or physically. The recent emergence of fog architectures requires the development of
specific trust and security strategies targeted at their distributed structure [18].

2.4. Our Contribution

To the best of our knowledge, there exist no distributed solutions for location verification support
in event-based sensing systems. The lack of such mechanisms prevents the implementation of reliable
location-based subscriptions and reduces the confidence that consumers place in event producers and,
thus, in the system itself. As a consequence, the development of urban services based on information



Sensors 2019, 19, 104 5 of 26

gathering through participatory event-based schemes is compromised. Hence, it is imperative to
analyze the potential of fog architectures for location verification in DEBS.

Our contribution focuses on employing proximity-based communication to verify producers’
location. Proximity-based communication connects devices that are placed in the same area, at a
distance from each other that allows them to be reached using wireless short-range communication
technology, such as Bluetooth or ad hoc WiFi. This kind of connection diminishes the possibility
of producers to fake their location beyond just a few meters. If a producer that claims to be in
a particular area cannot be reached by other devices known to be there, we can conclude that
it is not providing its actual location. Following this principle, we have designed three different
DEBS architectures that support location verification: fixed-brokers architecture, assigned-brokers
architecture, and collaborative architecture. Before detailing our location verification proposal
and introducing the architectures, in the next section we present the scenario we used for
illustrative purposes.

3. Scenario

We have targeted our scenario at a participatory sensing DEBS with high producer mobility and
periodic sensing-data publications. We chose an environmental variable that can be detected by merely
using a smartphone, and presents multiple applications: noise monitoring. Direct measurements
are employed for noise-pollution assessment, which is a topic of concern due to its consequences on
citizens’ health and wellbeing. Moreover, noise measurements can lead to the inference of different
events, such as traffic jams, roadworks, or crowds. A pub/sub system where users can receive
geolocated noise data helps them to avoid highly polluted or congested areas of the city by choosing
alternative routes. This kind of system also serves as a detection mechanism for events such as concerts
or demonstrations. In order to provide consumers with precise event positioning, it is essential to
provide reliable location data.

To avoid the high cost of citywide infrastructure deployment, noise measurements can be
performed using mobile sensors carried by vehicles or users. The latter is especially interesting
since smartphones’ microphones have been proven to successfully act as noise sensors [19]. Therefore,
no dedicated infrastructure is necessary. Having mobile devices engaged in dynamic and interactive
networks to share local information makes this a participatory sensing scenario [6].

Noise measurements are automatically issued every few minutes. Thus, possible events can be
quickly detected, and subscribers frequently receive fresh data. Using a fog architecture allows users
to receive noise-measurement event notifications anywhere. Therefore, they can, for instance, be aware
of incidents in their place of residence even when they are away, or discover if an area in a different
city they want to move or travel to is noisy.

The same system can be adapted to other urban variables, such as air pollution. Furthermore,
it can be targeted at systems where producers are not mere information receivers but working sensors
that can prioritize their activity [20] or change their configuration parameters [21] when required by
the circumstances.

4. DEBS with Location Verification Support

Our goal is to improve event notification quality by increasing trust in the event’s source location.
In order to focus our attention on producers’ mobility, we assume the broker and consumer structure
to be fixed. Producers advertize locally and consumers subscribe globally. Thus, the broker network
is always aware of subscription needs and puts consumers in communication with the appropriate
producers. Simple routing is employed: each subscription leads to the installation of a direct spanning
tree that routes notifications toward the consumer.

Location information is inserted as an attribute in every event notification. If it can be verified,
notifications also include location certification. The location attribute can be verified either on the
producer or on the broker, but it is always the broker, assumed to be trustworthy, which decides



Sensors 2019, 19, 104 6 of 26

whether to provide the certification. Consumers may choose to subscribe only to events with a
certified location. The verification process consists in assessing the location attribute using either extra
information provided by the producer to support the location claim or the collaboration of other peers
in the area. The certification process consists of adding a location certificate in the event notification to
state the veracity of the location claim. An event notification is certified if the location claim has been
verified. The verification and certification processes ensure that at least one agent has reviewed the
location attribute provided by the producer and assessed it. As a result, trust in the notification source
is increased.

However, we are only interested in producer trust in order to extend it to the notification content.
Unlike other trust-based systems [22], ours is not based on reputation, as we neither implement a
rating mechanism nor maintain a history of contributions. The trust our system provides is actually
related to the notion of provision trust [22] and refers to the system’s capability to differentiate reliable
information to serve consumers’ subscriptions.

In this section, we describe the distinct characteristics of a DEBS with location verification support:
the role of producers and brokers in the verification, the definition of the location attribute, and the
management of mobility. Moreover, we indicate how some of the features differ according to the three
architectures we propose in this paper, which are described in detail in Section 5: the fixed-brokers
architecture, the assigned-brokers architecture, and the collaborative architecture.

4.1. Producers’ Role

For the sake of simplicity and without impairing generality, notifications contain attributes as sets
of triples: (n1,i, n2,i, vi), where n1,i and n2,i are strings that uniquely identify the attribute, and vi is the
value of the attribute. Since an attribute can be associated not only with its value but also with metadata,
it may be described by multiple triples, e.g., (location, value,X), (location, certified,Y). For instance,
the location attribute is inserted in the notification as the triple (location, value,X), where X is a variable
that represents the value of the location. Producers include this latter triple in every notification.
Moreover, the publishing process may also involve the verification of the location attribute and the
incorporation of extra information to assist the broker in the verification process. In Algorithm 1,
function PrepareExtraLocationInformation deals with the tasks of verifying location and arranging
extra location data in case they are considered. It returns the arranged information, which function
PrepareNotification inserts in the notification together with the location triple. Both of these functions
vary their operation according to the architectures. Their different definitions are presented in Section 5.

Since a producer can disconnect and reconnect, its architecture is supplemented with a queue
of notifications where they are stored when no access broker is reachable. Queued notifications are
transmitted to the access broker that the client connects next.

Algorithm 1 : at producer P, publish

1: procedure PUBLISH(Notification n)
2: lc← PrepareExtraLocationInformation()
3: n← PrepareNotification(n,lc) . Adds location value and extra information, if any
4: if connected to an access broker then
5: send n to the access broker
6: else
7: store n in the local queue
8: end if
9: end procedure

4.2. Location Attribute

The location attribute may consist of an explicit representation using coordinates or an identifier of
a specific area, neighborhood, or city. The former supports more precise location data but implies more
expensive event processing. Considering that the areas are delimited by short-range communication
technology, we considered that area identifiers were precise enough in this work. We assumed the



Sensors 2019, 19, 104 7 of 26

existence of a location ontology that is known by all the agents in the system. Moreover, producers
incorporate a geolocation mechanism that allows them to identify their own position and describe it
with a valid location value.

The location ontology can include a hierarchical structure that allows the definition of different
levels of location granularity and notification visibility.

4.3. Brokers’ Role

Brokers act not only as notification routers but also involve event processing agents. A common
one for the three proposed architectures is a translate event processing agent [23], in charge of
enriching the verified notifications with a location certificate in the form of the attribute triple:
(location, certified,Y), where the first two elements describe the attribute and Y can take two possible
values: {true, f alse}. To establish the veracity of the location claim, the broker may rely on the extra
information provided by the producer in the notification. The nature and the treatment of this
information vary in the different architectures. In the first two architectures (fixed-brokers architecture,
assigned-brokers architecture), there exists a filtering agent that identifies the notifications whose
location is the same as the broker’s. Additionally, brokers in the assigned-brokers architecture and
the collaborative architecture integrate an agent whose role is to check the information provided by
the producers to support their location claim and to remove it from the notification. The function
VerifyLocation is in charge of processing the extra information, removing it from the notification,
and returning a value that indicates whether the location claim has been verified or not. The definition
of the function differs according to the different architectures, as detailed in Section 5.

Algorithm 2 depicts the notification handling process.

Algorithm 2 : at broker B, handle local notifications

1: procedure HANDLELOCALNOTIFICATION(Producer P, Notification n)
2: if B is the access broker of P then
3: locOk← VerifyLocation(n)
4: if locOk then
5: insert triple (location, certified, true)
6: else
7: insert triple (location, certified, f alse)
8: end if
9: end if

10: Forward n to interested neighbor brokers and local consumers
11: end procedure

4.4. Mobility

When brokers are assigned to geographical areas, a change in physical location also implies a
change in broker connection. Regardless of their location, producers publish periodic notifications that
are processed by the access broker to which they are connected at that time. Thus, mobility handling is
transparent for the producers. This concept of mobility corresponds to the physical mobility defined by
Fiege et al. [24]. In the first two proposed architectures, mobility is handled by the local broker, installed
on every client. It is in charge of establishing connections with border brokers and delivering them the
notifications. It becomes aware of a location change when a broker connection is no longer available.

In the fixed-brokers architecture, this happens when the producer moves out of reach of the broker
communication sphere. Then, the producer listens for beacons from another border broker to which
to connect. In the assigned-brokers architecture, the connection is canceled when the producer is no
longer able to send valid periodic notifications. At that point, the producer becomes aware of the
location change and sends a new connection request with the producer’s location coordinates.

Event notifications published by disconnected producers are queued locally. When a new
connection is established, they are issued to the new border broker. If the location attribute of



Sensors 2019, 19, 104 8 of 26

the queued notifications is different from the new broker’s location, the notifications are distributed
but are not certified because a broker cannot certify a different location from its own.

The situation is different in the collaborative architecture. There, changes in broker connection do
not imply location changes and vice versa. Since brokers are not assigned to a certain area, there are
no limitations on the notifications they can consider for certification. As long as the location meets
the criteria to be considered collaboratively decided (defined in Section 5.3), it can always be certified
regardless of changes in the broker connection or the producer location.

4.5. Threat Model

We consider the case where a deceitful producer decides to include a false location claim in a
publication. This attack has been referred to as location spoofing [25]. We assumed that there may be
more than one misbehaving producers but that they act independently and never collude or conspire.

We also assumed that all brokers are trustworthy and that they accurately certificate the
publications. Moreover, we did not consider the involvement of third parties and we did not deal with
any other type of attack.

5. Architectures

In this section, we present three different fog architectures for a DEBS system with location
verification support and we outline their main features.

5.1. Fixed-Brokers Architecture

The first architecture is shown in Figure 2. There exist two levels of brokers: border brokers (B1, B5)
and inner brokers (B2, B3, B4). While inner brokers are in the Cloud, border brokers are placed around the
city covering different areas. They are fixed and, therefore, they are assigned a fixed location value. Access
brokers are connected to inner brokers to enable event distribution. Clients cannot directly interact with
inner brokers, whose overlay structure is transparent to them. Clients in the same area are connected to the
same access broker using a short-range transmission technology that ensures the veracity of the clients’
location. Thereby, in this architecture location verification is straightforward. There is no verification on
the producer (Algorithm 3), and the access broker certifies the location of every event notification whose
location attribute coincides with its own location (Algorithm 4).

Algorithm 3 : at producer P, prepare extra location information (Fixed-brokers architecture)

1: function PREPAREEXTRALOCATIONINFORMATION
2: return ∅
3: end function

In this architecture, connections are simple. Brokers advertize themselves through beaconing
using short-range communication technology. When a producer that is not connected to any broker is
reached by a beacon, it establishes a connection with the sending broker. The producer and the broker
exchange periodic messages to maintain the connection. When they stop receiving these messages,
they consider the connection as broken. The broker deletes the producer’s advertisements and the
producer starts paying attention to beacons to establish a connection with another broker.

Algorithm 4 : at broker B, verify location (Fixed-brokers architecture)

1: function VERIFYLOCATION(Notification n)
2: location← {Y|{location, value, Y} ∈ n}
3: if location == B′s location then
4: return true
5: else
6: return false
7: end if
8: end function



Sensors 2019, 19, 104 9 of 26

Figure 2. Fixed-brokers architecture.

5.2. Assigned-Brokers Architecture

Having a hybrid architecture that combines fixed and mobile agents diminishes the infrastructure
requirements of deploying a purely fixed sensor architecture. However, the cost of setting up fixed
brokers may still be high. As a result, we have designed a second architecture that also exploits
location verification through proximity-based communication, but gives up the requirements for fixed
infrastructure. Figure 3 displays the same DEBS network shown in Figure 2 but with all the brokers
in the Cloud. By considering location-based network partitions, we can organize client connections
to brokers to maximize the probability of having all the clients in an area connected to the same
broker. Then, brokers can still be in charge of producers’ location verification even though they cannot
communicate with them using short-range transmission technology. Each broker is assigned an area
and maintains a list of registered producers, updated with every publication received. Producers obtain
the IP address of their access brokers by providing their location to a discovery service. To maintain
the connection, producers are required to periodically send valid notifications to the broker.

Figure 3. Assigned-brokers architecture.

When a producer sends a notification, it includes the list of other producers in the area with
whom it has established a short-range communication link and who are connected to the same broker
(Algorithm 5). Producers claiming a false location are not able to provide a valid neighbor list. Then,
the broker compares the neighbor list provided in the received notification with the list of devices in
the area it maintains. The publication is certified if it satisfies the requirements detailed below. If the
publication is certified, the sender is included in the list of registered producers in that area.



Sensors 2019, 19, 104 10 of 26

Algorithm 5 : at producer P, prepare extra location information (Assigned-brokers architecture)

1: function PREPAREEXTRALOCATIONINFORMATION
2: return neighborList
3: end function

Relying solely on mobile producers involves extra challenges. Producers on area edges are likely
to be reached by beacons from producers in a different area. Therefore, information on neighbors
from nearby regions need to be considered when assessing the location of every publication. As a
result, every broker should exchange its list of registered producers with the brokers assigned to
contiguous areas.

Verification Strategies

Two different verification strategies are proposed: the complete-list strategy (CLS) and the
nonempty list strategy (NLS). In the first one, the neighbor list provided by the producer needs to
satisfy two requirements. First, it has to include every producer registered with the broker assigned to
that area. This condition requires areas small enough for producers to find every one of their peers
registered to the same broker with high probability.

Second, the list cannot include extra neighbors that are neither registered with the broker nor
with the brokers assigned to adjacent areas. Otherwise, producers may include a neighbor list with as
many producer identifiers as possible in the hope that some of them are actually registered with the
broker. These requirements can be written as:

1. ∀b ∈ PB, b ∈ NP
2. ∀b ∈NP, b ∈ PB ∪ PNB

where NP is the list of neighbors provided by the producer, PB is the list of producers registered with
the broker assigned to that area, and PNB is the list of producers registered with brokers assigned to
contiguous areas.

CLS is not effective in situations where the producer has not found any neighbors and there are
no producers registered with the broker either, i.e., both NP and PB are empty. In this case, the broker
certifies the notification regardless of the veracity of the location claim.

To resolve this issue, we propose a second verification strategy (NLS), where the producer
is required to provide a neighbor that is registered with the broker, i.e., b ∈ NP ∪ PB. However,
this strategy is not optimal either. It could lead to the certification of notifications with false location
claims that include a long list of producers, whereof one happens to be registered with the broker.
This is problematic in scenarios where a producer can maintain a list of every producer it has ever
known and use it as its current neighbor list.

As a result, CLS is better suited to scenarios with high device density where there are producers
in every area and, therefore, assigned to every broker. NLS is targeted at scenarios where the density
of devices is low and where no producer is assumed to have global knowledge about peers in the
whole system. We include both the strategies in our simulation analysis.

Algorithms 6 and 7 describe the location verification procedure in the broker for CLS and
NLS, respectively.



Sensors 2019, 19, 104 11 of 26

Algorithm 6 : at broker B, verify location (Assigned-brokers architecture, CLS)

1: function VERIFYLOCATION(Notification n)
2: NP← neighborList ∈ n
3: remove neighborList from n
4: location← {Y|{location, value, Y} ∈ n}
5: if location ==B’s location ∧(∀b ∈ PB, b ∈ NP) ∧ (∀b ∈ NP, b ∈ PB ∪ PNB) then
6: return true
7: else
8: return false
9: end if

10: end function

Algorithm 7 : at broker B, verify location (Assigned-brokers architecture, NLS)

1: function VERIFYLOCATION(Notification n)
2: NP← neighborList ∈ n
3: remove neighborList from n
4: location← {Y|{location, value, Y} ∈ n}
5: if location ==B’s location ∧(∃b ∈ NP, b ∈ PB) then
6: return true
7: else
8: return false
9: end if

10: end function

5.3. Collaborative Architecture

To reduce the burden of having brokers responsible for managing producers’ location, we have
designed a third architecture that minimizes the broker role by placing location verification on the
producer side. This architecture relies on traditional cloud architecture. Producers can be connected
to any border broker, which may be different from the one their close neighbors are connected
to. As depicted in Figure 4, this architecture incorporates short-range connections between nearby
producers so they can communicate with each other and collaboratively decide the location they
tag their notifications with. Every producer is equipped with a local broker that is in charge of
handling the notification and the location provided by the producer. Then, it communicates with local
brokers of nearby producers. Finally, it sends the notification to a border broker in the cloud with
the collaboratively decided location. In our previous work [12], we proposed the use of a consensus
strategy as the mechanism for collaborative location decision. However, due to the high mobility of
the producers, which arrive at or leave an area at any time, the possibility of forming a stable group of
nodes that satisfies the requirements to take part in a consensus agreement is low. As a result, we have
decided to employ an alternative collaborative strategy: neighbor polling.

Figure 4. Collaborative architecture.



Sensors 2019, 19, 104 12 of 26

Every time a publication is created, the local broker polls nearby producers by sending a
short-range broadcast message. Thus, collaboration is restricted to nodes in the same physical area.
The local broker waits for a certain time, computes the location values received and includes in
the publication the decided value. The location value proposed locally is also included in the poll.
The decided location is the most repeated location in the poll, as long as at least one neighbor answer
was received and there is no tie between the most voted locations. This requirement can be written as:

1. RL > 1
2. ∃!b ∈ R, b = max(R)

where RL is the list of received locations plus the one provided by the local broker, which consists of
entries formed by two triples: e = {(location, value, X), (numberOfReplies, value, Z)}.

R is the list that includes the number of poll replies for every location. That is:
R← {Y|{(location, value, X), (numberOfReplies, ∗, Y)} ∈ RL}.

Publications issued to the broker include an indication of whether the location has been
collaboratively decided, in the form of the triple: (location, collaborativelyDecided,X), where X is a
boolean variable whose value is true if the collaboration has been successful. In case no poll replies are
received, or there is a tie between the most voted locations in the poll, the result is undecided. Then,
the location proposed locally is included in the notification together with an indication of unverified
location, i.e., a triple where X takes the value f alse. Algorithm 8 describes the location verification
procedure for this strategy.

Algorithm 8 : at producer P, prepare extra location information (Collaborative architecture)

1: function PREPAREEXTRALOCATIONINFORMATION
2: RL, R← ComputePollReplies()
3: if sum(R) > 1∧ (∃!b ∈ R, b = max(R)) then
4: collaborativeLocation← X|{(location, value, X), (numberOfReplies, value, max(R))} ∈ RL
5: lc← {(location, value, collaborativeLocation), (location, collaborativelyDecided, true)}
6: else
7: lc← {(location, value, locallyProposedLocation), (location, collaborativelyDecided, f alse)}
8: end if
9: return lc

10: end function

Notifications with a location not collaboratively verified are not certified by the broker. In this
architecture, the role of the broker is reduced to checking the collaborative verification indication
and certifying the notifications accordingly (Algorithm 9). It is responsible for providing location
certifications but does not decide when to provide them.

The local broker is assumed to truthfully send the location agreed in the poll. However,
when polled by a neighbor, it answers with the locally proposed location value, which may not
be true.

Algorithm 9 : at broker B, verify location (Collaborative architecture)

1: function VERIFYLOCATION(Notification n)
2: locCertified← {Y|(location, collaborativelyDecided, Y) ∈ n}
3: remove triple (location, collaborativelyDecided, ∗) from n
4: return locCertified
5: end function

6. Simulation

To evaluate our architectures, we relied on network simulation. We simulated the
noise-measurement scenario described in Section 3. To do so, we employed realistic pedestrian
traces based on a real urban map. We chose the city center of Vigo (Spain), an area of 1.46 km2, where
most of the streets are either pedestrian-only or include wide sidewalks, which makes it appropriate



Sensors 2019, 19, 104 13 of 26

for pedestrian simulation. Figure 5 depicts the selected area. As an example, the proximity area around
a producer is represented by a green circle.

Figure 5. Urban area used in simulation. An example of the proximity area around a producer is
represented with a green circle.

We generated pedestrian traces for 100 pedestrians using the Bonnmotion [26] mobility scenario
generation tool and a map of the selected area exported from OpenStreetMap [27]. The traces
were generated according to MSLAW [28], a map-based statistical mobility model that extends the
Self-similar Least-Action Walk (SLAW) model by including geographic restrictions. As a result,
it targets realistic mobility, considering different mobility metrics ,such as pauses and intercontact
time. We generated five different mobility traces. Then, we fed those traces to the ns-3 network
simulator [29], where we implemented our proposed architectures. We chose ad hoc WiFi as the
transmission technology for short-range communication since its transmission range (≈100 m) makes
it suitable for urban scenarios. Moreover, we modeled cloud communication through LTE connections.

To implement our verification strategies, our area was divided into smaller cells. Each of them
was assigned a cell identifier, which is the location value producers use as location attribute in their
publications. We assumed producers are always aware of what their position and the identifier of the
cell they are in.

Our proposed architectures aim at correctly identifying the veracity of the location claims included
in publications at minimum cost. This cost is considered in terms of required infrastructure and
consequences in publication delivery. Thus, assessment focused on appropriate location certifications
and at the ability of the system to handle producers’ mobility. In that respect, we carried out simulations
where producers choose to provide a fake location according to a certain probability (Pf ), which follows
a uniform distribution.



Sensors 2019, 19, 104 14 of 26

For the sake of simplicity and without impairing correctness, we did not include consumers in
our simulation scenarios. Since we aimed to assess publication creation in producers and publication
certification in brokers, broker-consumer communication is out of the scope of this work.

The publication interval was set to 1 min, which led to frequent sampling times without excessively
draining mobile devices’ battery.

Table 1 recaps the main parameters of the simulation that are common to the three architectures.
This section continues with the description of the implementation details specific to each architecture.

Table 1. Shared simulation parameters.

Short-range communication WiFi ad hoc mode
Connection type: Direct
Connection pattern: Random

Cloud communication LTE

Scenario Number of producers: 100
Simulation duration: 1 h
Simulation area: 1.46 km2

Mobility Model: MSLAW
Speed: 0.9–1.5 m/s
Pause time: 10–50 s

Parameters Notification interval: 1 min

6.1. Fixed-Brokers Architecture

This simulation scenario included mobile producers and fixed brokers, all of them equipped with
ad hoc WiFi. The area was divided in a grid of square of cells of ≈200 × 200 m. There is a fixed broker
in the middle of every cell. A number identifier is assigned both the broker and the cell. When they
issue a publication, producers include as a location tag the cell identifier that corresponds to their
location coordinates. Brokers provide a location certification to every publication they receive whose
cell identifier corresponds to their own.

Producers establish a connection with a broker from whom they have received a broker beacon
when they are not previously connected to any other. When connected, they send their periodical
publications to their broker. If not connected, notifications are queued in the producer.

Our work focused on designing a communication strategy that could allow mobile producers
to stay connected most of the time to their nearest broker despite their continuous movement. Thus,
the number of publications lost and not transmitted are minimized while the number of publications
whose location claim is correctly assessed is maximized. With this goal in mind, extensive simulations
are performed testing different time values for broker beacon interval and maximum connection time.
The latter is the time after which producers consider themselves disconnected from a certain broker if
they have ceased to receive beacons. It was found that the publication delivery rate improves when
the maximum connection time matches the broker beacon interval. Moreover, for pedestrian mobility,
this time is best set to 2 s.

6.2. Assigned-Brokers Architecture

This simulation scenario included mobile producers that communicate with brokers in the cloud
using LTE technology. Producers act as LTE user equipment (UE) and connect to a base station (eNB)
that covers the whole simulation area. Producers are also equipped with ad hoc WiFi, which allows
them to interact with other nearby producers.

There is a broker assigned to every one of the cells in the area, which is in charge of managing the
publications issued by producers there. Producers are aware of the cell they are in and include the cell
identifier in the publications they issue. Moreover, they also include a list of their neighbor producers,



Sensors 2019, 19, 104 15 of 26

which they have detected in their surroundings by using periodic ad hoc WiFi beaconing. Producers
are assumed to always provide their true neighbor list, even when they lie about their location.

The size of the cells has been decided as a function of ad hoc WiFi transmission range (≈100 m).
The size in the first architecture (≈200 × 200 m) allows fixed brokers to cover the whole area from
their position in the middle. However, in this scenario, areas need to be smaller (≈100 × 100 m) so
that producers are able to communicate with most of their peers in the area. As a result, producers are
also more likely to receive beacons from their neighbor areas.

If periodic beaconing between producers is more frequent than publications, producers can
detect changes in their surroundings faster than the broker. This may result in incorrect publication
certification. As a result, we set the publication interval much lower than in the previous simulation,
as low as the beaconing interval. To have a fair comparison with the first architecture, notifications
shown in the results section were sampled every minute.

The simulation includes a warm-up period where notifications are not accounted for and
producers provide only true locations. Thus, false location claims are always dealt with in a steady
state. This period was set to 30 s. Since the beaconing and notification intervals were each set to 2 s,
this was enough for sufficient notifications to be processed.

6.3. Collaborative Architecture

The simulation setup is similar to the one in the assigned-brokers architecture: producers act as
LTE UE connected to an eNB that covers the simulation area. However, the grid distribution adopted
is the same as in the fixed brokers architecture, where the area is divided in a grid of 200 × 200 m cells.
This cell size offers an appropriate balance between location precision and the reduced likelihood of
receiving too many poll replies from neighbor areas. Producers can be connected to any access broker
regardless of their position.

Moreover, producers communicate with their neighbors using ad hoc WiFI when polling or
answering a poll. There is no beaconing in this architecture.

In collaborative location assessment, producers are in charge of verifying location claims without
brokers being involved. Given that local producers independently decide to provide a false location
claim, this strategy makes it unlikely that a notification with a false claim is certified. For this to happen,
at least two neighbor producers have to provide the same fake claim. Moreover, the rest of the poll
participants (if any) have to provide location claims that either do not coincide with each other or do
not add up to more than the fake location claims. Waiting time for poll answers was set to 2 s, enough
time for producers to receive their peers’ answers without too much delay in the publication process.

7. Evaluation

To assess our architectures, we examined the number of publications, how they are transmitted,
and how they are evaluated for certification. Thus, we evaluated the number of publications that
are certified and the cost of such certification in every one of the architectures in terms of lost and
incorrectly certified and uncertified publications.

For every architecture, we ran simulations where producers never provided fake location claims
(Pf = 0), and simulations where they could provide a fake claim (Pf = 0.3). The simulation results in
Tables 2 and 3 show the average results obtained after simulating every architecture with five different
trace files. The tables include a row for every verification strategy proposed in Section 5: one for the
fixed-brokers architecture, two for the assigned-brokers architecture, and one for the collaborative
architecture. The tables are divided into three parts. Subtable (a) is the flow of notifications in the
producer and through the network, while Subtables (b) and (c) depict the notifications that are delivered
to an access broker and how they are processed, respectively. These subtables display the treatment of
the notifications with true and false location claims, respectively. For consistency, the tables include
the same columns for the different verification strategies and probabilities of fake location claims



Sensors 2019, 19, 104 16 of 26

(Pf ). However, it should be noted that some of the columns are only relevant to a certain strategy
or probability.

Table 2. Simulation statistics Pf = 0. (a) Producer and network flow. (b) Delivered notifications with a
true location claim. (c) Delivered notifications with a false location claim.

(a)

Published Sent Queued Lost Delivered

Total True Loc False Loc True Loc False Loc

Fixed 5900 5900 0 5900 0 0.2 62.6 5837.2
Assigned-CLS 5900 5900 0 5900 0 0 0 5900
Assigned-NLS 5900 5900 0 5900 0 0 0 5900
Collaborative 5900 5900 0 5573.4 326.6 0 0 5900

(b)

Delivered

True Location

Total Cert % Uncert %

Fixed 5837.2 5275.8 90.38 561.4 9.62
Assigned-CLS 5900 4005.4 67.89 1894.6 32.11
Assigned-NLS 5900 631.8 10.71 5268.2 89.29
Collaborative 5573.4 4073 73.08 1500.4 26.92

(c)

Delivered

False Location

Total Cert % Uncert %

Fixed 0 0 0 0 0
Assigned-CLS 0 0 0 0 0
Assigned-NLS 0 0 0 0 0
Collaborative 326.6 326.6 100 0 0

Subtable (a) starts with the number of notifications created by the producers (i.e., Published)
and describes the distribution of true and false location claims between those. In the collaborative
architecture, the notifications are processed by the local broker before being sent into the network.
As a result of the collaborative verification process, their location claims may change and therefore,
the distribution of true and false locations claims can be different. This distribution is reflected in
the Sent column. Sent notifications may not be delivered to the access broker, they may remain in
the producers’ queue at the end of the simulation (Queued) or they may simply not reach the broker
due to network issues (Lost). Subtable (b) displays the number of notifications delivered to an access
broker that include a true location claim and how many of them are certified and uncertified by the
broker. The rates of certified and uncertified delivered notifications with a true location claim are also
expressed as a percentage. Subtable (c) is identical to the second, but considers delivered notifications
with a false location claim instead.



Sensors 2019, 19, 104 17 of 26

Table 3. Simulation statistics Pf = 0.3. (a) Producer and network flow. (b) Delivered notifications with
a true location claim. (c) Delivered notifications with a false location claim.

(a)

Published Sent Queued Lost Delivered

Total True Loc False Loc True Loc False Loc

Fixed 5900 4106.8 1793.2 4106.8 1793.2 0.2 62.6 5837.2
Assigned-CLS 5900 4088.2 1811.8 4088.2 1811.8 0 0 5900
Assigned-NLS 5900 4088.2 1811.8 4088.2 1811.8 0 0 5900
Collaborative 5900 4137 1763 4534 1366 0 0 5900

(b)

Delivered

True Location

Total Cert % Uncert %

Fixed 4062.2 3670 90.35 392.2 9.65
Assigned-CLS 4088.2 2542.6 62.19 1545.6 37.81
Assigned-NLS 4088.2 520 12.72 3568.2 87.28
Collaborative 4534 3220 71.02 1314 28.98

(c)

Delivered

False Location

Total Cert % Uncert %

Fixed 1775 0 0 1775 100
Assigned-CLS 1811.8 238.4 13.16 1573.4 86.84
Assigned-NLS 1811.8 2.2 0.12 1809.65 99.88
Collaborative 1366 366 26.79 1000 73.21

The number of published notifications is the same for all the architectures while, due to their
random generation, the number of publications with a false location claim slightly differs. The number
of sent publications only differs with the number of published ones in the collaborative architecture,
where the location is the result of the neighbor poll and not directly the value decided by the producer
itself. Publications are only queued or lost in the fixed-brokers architecture, as explained in Section 7.1.1.
In the other two architectures, producers communicate with their brokers using LTE technology and,
since LTE coverage of the area is total, producers are always able to send their publications. Therefore,
there are neither queued nor lost notifications.

All the architectures presented solid results in detecting false location claims. However,
their simulation outcomes differed. In this section, we examine the statistics of each architecture
simulation in detail.

7.1. Fixed-Brokers Architecture

In this architecture, the average rate of lost messages was slightly over 1% (Tables 2a and 3a,
62.6/5900 = 1.061%) while there were practically no queued messages. Thus, in the worst case, at least
98% of all the publications were received at an access broker and transmitted. Results were also good
for the correct certification rate. Every message with a false location was correctly identified and
therefore none of them was certified (Tables 2c and 3c) . In other words, 100% of messages with a false
location were successfully assessed. The rate of messages incorrectly uncertified did not reach 10%
(Tables 2b and 3b). As a consequence, more than 90% of messages with true location were correctly



Sensors 2019, 19, 104 18 of 26

identified. In general terms, we can conclude that the system reasonably meets its target of delivering
publications to the broker and correctly providing location certifications.

7.1.1. Publication and Certification Issues

Due to producer mobility, it is difficult to completely solve publication loss and certification issues.
There exist queued publications that never leave their source producer during simulation time and are,
therefore, not delivered to any broker. These publications may have been transmitted if the simulations
were longer. Lost publications are those that have been sent by a producer but they have not reached
an access broker. In this architecture, the certification issue affects mostly publications with a true
location claim that are not certified due to their mobility.

Figure 6 illustrates situations where publications are lost or incorrectly uncertified. It represents
a grid divided into four different areas, with a broker placed at the center of each one. The areas
were designed to maximize area coverage with the minimum number of brokers while avoiding
overlapping areas. The circles around the brokers represent the area covered by their signal. Each of
the subfigures represents a different temporal instant. Thus, all of Figure 6 depicts a temporal sequence
where producers are moving through the area. We assumed that brokers send beacons at t and t + 2,
and that producers issue a periodic publication at t + 1.

At t, Producers 1 and 2, being in the same area as Broker 1, receive a beacon from this broker and
establish a connection with it. Producer 4 connects, in turn, to Broker 4. Producer 3, however, is in an
area without coverage so it does not receive any beacon and considers itself as disconnected.

At t + 1, all the producers have moved. However, they have not received any new broker beacon,
and neither have they missed it since the maximum connection time (2 s) has not expired yet. As a
result, they will consider their previous situation when delivering a publication. Although Producer 1
considers that it is still connected to Broker 1, it is in an area without coverage and, as a consequence,
its publication is lost. The same happens to the event notification delivered by Producer 4 since it is
issued to Broker 4, which is not anymore in the transmission range. Producer 2 has also changed area
but, since it is on an overlapping edge of the new area, it is still able to communicate with Broker 1.
However, its publication includes a location claim of area 2 and, therefore, it cannot be certified.
Since the notification includes the actual area where the producer is at the publication time but it is
processed by a broker in charge of a different area, Producer 2’s publication becomes an uncertified
publication with true location. Producer 3 has entered Broker 4’s area but, since it has not established
any connection, it saves the publication in its internal queue.

At t + 2, most of the producers have moved again except for Producer 1. In doing so, Producer 1
has not received any beacon and has realized that its connection with Broker 1 is broken. Producers
2, 3, and 4 have received beacons from their nearest brokers (Brokers 2, 4, and 3, respectively) and
established a connection with them.

The above examples describe what may happen when nodes are on an area edge. If they leave
the area, it takes some time for them to realize that they cannot reach the broker to which they were
connected anymore. Consequently, they may send a publication that never reaches the broker and is
then lost (e.g., Producer 1 at t + 1). Publications may also become lost due to collisions on the WiFi
channel. It is also possible that nodes move to an overlapping area that corresponds to a new broker.
In this case, they send publications to their old broker that include their new location (e.g., Producer 2
at t + 1). This is one of the situations where publications with true location are not certified. The other
possible scenario takes place when nodes that have lost their connection for some time find another
broker. Then, they issue their queued publications to the new broker.



Sensors 2019, 19, 104 19 of 26

B1 B2

B3 B4

P1

P2

P3

P4

(a) Producers at time t

B1 B2

B3 B4

P1

P2

P3

P4

(b) Producers at time t + 1s

B1 B2

B3 B4

P1

P2

P3

P4

(c) Producers at time t + 2s

Figure 6. Example of area grid and producers’ movement.

7.2. Assigned-Brokers Architecture

Since the verification strategy relies only on mobile producers, simulation results cannot meet the
ones obtained in the fixed-brokers architecture. Neighbor changes are quick, even more with smaller
areas, and, therefore, it is difficult for producers to always be aware of who is nearby. The percentage
of notifications with a false location claim that are certified is low for both of the verification strategies
(Tables 2c and 3c) but is zero in NLS because false location notifications do not include any neighbor
that is registered in the broker. Publications that are incorrectly certified in CLS satisfy the conditions
required as they did not include any neighbor unknown to the broker nor fail to include a neighbor
known to the broker. They are publications that include an empty neighbor list sent to a broker that do
not have any producer registered in the area, that is to say, they are labeled with a location claim that
belongs to an empty area.

Even though the system correctly identifies most of the notifications with a false location claim,
it does not work that well at recognizing true claims (Tables 2b and 3b). Performance is especially
poor in NLS. Node density and the number of cells in the grid play a role in this situation. Due to cell
distribution, there are many more areas than producers. As a result, it is not unlikely that a producer is
alone in this cell. Although there is a risk in certifying lonely producers as explained in the previous
paragraph, it pays off in terms of general results in a low-density scenario like this.

Nodes providing false claims also interfere in the verification of the publications issued by their
neighbors. A publication including a neighbor that has not been registered in the broker results
in uncertification in CLS. This may happen when a producer includes an actual neighbor whose
publication provides a false claim. When a publication is wrongly certified, the producer is also
included in the list of producers registered with the broker assigned to that area. For a certain time,
this prevents true notifications from being certified since the broker does not certify publications that
do not include this producer, which is not known by any of the actual producers in the area.

Verification strategies have different strengths and, therefore, can be applied to different scenarios.
CLS is better suited for scenarios where the overall performance of the system is considered.
In situations where it is of paramount importance to avoid false location claims, NLS should be
employed. It is successful as long as the assumption of producers sending their true neighbor list
is maintained.

7.3. Collaborative Architecture

Since location values in publications may change after collaborative assessment, the analysis of this
architecture is more complex. Tables 2 and 3 first show a distribution of true and false location claims
before (Published) and after (Sent) collaborative verification. Then, they present the same distribution
once publications are delivered to the broker (Delivered). In the first two architectures, location values
in notifications do not change during the verification process. Therefore, this classification is sufficient



Sensors 2019, 19, 104 20 of 26

to understand the operation of the verification strategies. However, in the collaborative case, it is
necessary to study how location claims are modified to assess the outcome of the verification strategy.

With that aim, Tables 4 and 5 provide a more detailed study of the results in Tables 2 and 3. First,
Table 4 presents the number of delivered notifications and the rates of certification. Then, Table 5 takes
a closer look at the veracity of the location claims of certified and uncertified notifications and classifies
them according to whether they have been modified in the verification process.

Table 4. Certification statistics for delivered notifications in the simulation of the collaborative architecture.

Delivered

Total Certified Uncertified

Pf Total % Total %

0 5900 4399.6 74.57 1500.4 25.43
0.3 5900 3586 60.78 2314 39.22

Location claims in certified notifications have always been collaboratively decided. As a result,
the original claim inserted by the producer may have been replaced with a different value that may
have altered the veracity of the claim. Consequently, a true location claim can either maintain its value
(Remain true) or have had it changed for a false one (True to false). Likewise, a false location claim
may still be false (Remain false) or may have been corrected to a valid value (False to true). Remain
false includes both unchanged claims and claims that have been substituted by a different value,
also incorrect. On the other hand, uncertified notifications contain always the original location claims
proposed by the producers, i.e., they maintain their initial veracity.

The results show how most of the notifications published are certified (Table 4), which means the
location they include has been collaboratively assessed. Out of these, most of the notifications included
originally a true location that was maintained after the collaborative evaluation or initially presented a
false claim that was corrected (Table 5a). As a matter of fact, a third of the total publications with false
claims were corrected to their true location (598 corrected, 1165 remained false (165 + 1000)) while only
about 5% of the true location claims were modified (201 vs. 3936 unchanged (2622 + 1314)).

Table 5. Detailed statistics for delivered notifications in the simulation of the collaborative architecture.
(a) Certified notifications. (b) Uncertified notifications.

(a)

Certified

Pf Total Remain True False to True Remain False True to False

Total % Total % Total % Total %

0 4399.6 4073 92.58 0 0 0 0 326.6 7.42
0.3 3586 2622 73.12 598 16.68 165 4.6 201 5.61

(b)

Uncertified

Pf Total Remain True Remain False

Total % Total %

0 1500.4 1500.4 100 0 0
0.3 2314 1314 56.78 1000 43.22



Sensors 2019, 19, 104 21 of 26

Every modified claim is certified since all of them are decided through collaborative assessment.
Even though there are notifications that remain or become false after the assessment (Table 5a), it should
be noted that their locations always correspond to neighbor areas. This way, originally false location
claims, which are certified and not corrected to their true location, are at least changed to an adjacent
location claim. This also happens with originally true location claims that are modified to a false value
when their producers are on an area limit and, therefore, receive multiple poll replies from a neighbor
area. As a result, every false certified notification comes from a producer standing on the edge of
an area and consequently close to the neighbor location included in their notification. Consequently,
their claims are not useless but give a valid clue about the actual producer location.

Uncertified notifications are those whose collaborative assessment is declared undecided and
then include the original location proposed by the producer (Table 5b). Two factors contribute to the
number of uncertified notifications. The first one is the number of tied polls. When producers receive
poll replies from different areas and there is a draw between the results, the notification is uncertified.
The percentage of true uncertified notifications increases in the simulation with false notification
claims since lying producers may create draws in polls where all the producers are in the same area.
Polls with only two participants (i.e., have received only one reply) are especially sensitive to this.
In this case, if the two location claims proposed coincide, the poll result is certified, whereas a poll
with two different location claims results in uncertification. There is a significant number of minimal
polls in the simulation. This is caused by the second factor involved in uncertification: low density
of devices. Although 100 nodes is realistic density for a quiet urban area, it may be slightly low for a
collaborative scheme like this. In conclusion, notifications from producers that do not receive replies
are always uncertified, and notifications from producers that receive only one reply are sensitive to be
also uncertified.

7.4. Discussion

Although the three architectures can be successfully employed for location verification in DEBS,
each of them is more suitable for a different scenario. In order to paint a clear picture of the simulation
setup and enable a fair result comparison, the main differences between the architectures are outlined
in Table 6. The table starts by presenting the different cell sizes employed in the architectures. Then,
it indicates which of them require dedicated infrastructure and periodic beacons. Moreover, the table
details the different levels of broker involvement and neighbor dependency the architectures entail.

The fixed-brokers architecture is always the most reliable option and provides the best results
despite losses. As a result, it is advisable in scenarios where dependability is crucial and a high
investment in infrastructure is possible. Moreover, this architecture does not rely on the existence of
neighbor producers and works well with low producer density.

At the opposite end of the spectrum, the collaborative architecture fits best in flexible scenarios
where no resources are required to be allocated for broker assignment. Although polling is costly, it is
not as much as periodic beacons in the other architectures. However, this architecture certifies the
most publications with false location claims (Tables 2c and 3c). It should be noted that the location
of this publications has indeed been corrected but to an area adjacent to the correct one. As a result,
information is more useful than the original false location claim. Nevertheless, this architecture is less
appropriate in scenarios where precision is essential.



Sensors 2019, 19, 104 22 of 26

Table 6. Differences between architectures.

Fixed Brokers Assigned Brokers Collaborative

CLS NLS

Cell size 200 × 200 m 100 × 100 m 200 × 200 m
Dedicated infrastructure Yes No No
Intermittent broker connection Yes No No
Periodic beaconing Yes Yes No
Broker role Principal Intermediate Minimal
Sensibility to producers’ density None High High
Infrastructure Physical Cloud None
Reliability High High Intermediate Intermediate

The first verification strategy of the assigned-brokers architecture (CLS) achieves moderately better
results by introducing the burden of broker allocation. NLS is the best alternative when infrastructure
deployment is not possible and the system is less tolerant to incorrectly certified claims. If the system
has a tolerance, CLS and the collaborative architecture present a better percentage of correctly certified
notifications since they work better with true location claims.

Due to the different infrastructure requirements of the architectures, it is not possible to run
different use cases in parallel. The possibility of changing between the architectures is not supported
either. The only flexible solution for scenarios with changing circumstances is the implementation of
the assigned brokers architectures, which allows switching between the two verification strategies.
In any case, the deployment of the system should be preceded by a careful study to determine the
requirements of the scenario in order to select the most suitable architecture.

The architectures were evaluated according to the threat model in Section 4.5, in which there exist
location-spoofing attacks where producers act independently. None of the architectures can resist a
more complex attack scenario where the brokers are also compromised. However, their behavior in case
of colluding producers varies. The assigned-brokers architecture and the collaborative architecture
have high neighbor dependency and are especially sensitive to this kind of attack. In contrast,
the fixed-brokers architecture would not be affected at all.

8. Related Work

Due to the rise of participatory sensing schemes, it has become necessary to develop solutions to
verify the quality and correctness of the contributed data. Data-verification strategies can be general to
cover any kind of information, or more specific, targeted at a certain type, such as location.

An example of general data verification is SHIELD [30], a centralized system based on evidence
handling and data mining to identify and filter out erroneous user contributions. However,
the requirement for a bootstrapping phase makes data mining unsuitable for a dynamic distributed
scenario like ours.

Moving away from classification and training, Luo and Zeynalvand [31] propose a cross-validation
framework that recruits crowdworkers to act as data verifiers. Their role is not to duplicate a sensing
task, but to assess the credibility of the gathered data. This approach is also centralized and, unlike ours,
relies on verifiers with no direct knowledge about the information.

The reason why location verification has attracted significant research attention is twofold. On the
one hand, location information plays an important role in contextualizing contributed information.
On the other hand, location-based services require users to provide a valid location value in order to
gain access. The proposals reviewed next are targeted at these aims.

Lederer et al. [32] introduce a certification approach at network level where intermediate nodes
tag data through the network with belief ratings based on observed past traffic patterns and source
location claims. Relying on previous knowledge information about routing paths is a valid strategy for
distributed systems where nodes do not move often and, therefore, paths are not likely to change. As a
result, this strategy is not appropriate for a highly dynamic scenario like the one we have considered.



Sensors 2019, 19, 104 23 of 26

Most location verification mechanisms rely on the collaboration of neighbor devices. Although
not specifically labeled as fog architectures, these strategies consist of cloud systems that leverage
neighbor information. Saracino et al. [25] propose a reputation-based system where some of the
devices in each area act as hotspots to communicate with their peers in WiFi range. A centralized
platform is in charge of receiving the lists of devices that can be reached and update reputation
calculations accordingly. ILR [33] aims at detecting false location claims in a centralized crowd-sensing
system where data providers are assigned sensing tasks. When submitting the required data, they also
include a Bluetooth scan of their surroundings. False location claims are identified once the tasks are
received, by comparing Bluetooth scans and also through image processing when the task includes
picture taking.

Unlike ILR, other mechanisms are not postprocessing but designed to be used at runtime.
LINK [34] is targeted at location verification for third-party location-based services. It relies on
a Location Certification Authority (LCA) that receives information on location claimers and their
Bluetooth neighbors. Then, it issues a claim decision to the service for which a claimer wants
to authenticate.

APPLAUS [35], STAMP [36], PROPS [37], and SPARSE [38] share LINK’s aim but include extra
features to deal with privacy and colluding neighbors. Instead of exchanging real identifiers, devices
in APPLAUS [35] use pseudonyms and change them periodically. PROPS [37] uses encryption to
preserve the identity of the claimer and its neighbors. Regarding collusion prevention, STAMP [36]
pays attention to transaction history between two users to detect if they appear to have always the
same neighbors. In SPARSE [38], the central entity of the system decides which of the neighbors should
act as location witnesses, avoiding that location claimers can select them themselves.

All these location verification schemes that involve neighbor collaboration are centralized and
aimed at sporadic location verification. Therefore, they have not been designed to handle continuous
sensing in a very distributed setting.

9. Conclusions and Future Work

In this paper, we demonstrated the potential of fog-based architectures in the implementation of
participatory urban DEBS with location verification support. We proposed three different architectures:
the fixed-brokers architecture, the assigned-brokers architecture, and the collaborative architecture.
We have proven them to successfully deal with location verification in realistic urban scenarios, and we
have discussed which situations would best benefit from each one of them.

Our simulation results show that our architectures succeed at identifying many of the false
location claims (from 73% to 100%) and that, therefore, they support location-spoofing attacks in which
producers act independently. Nonetheless, there is room for improvement. It is necessary to refine the
behavior of the system on area edges and to improve the mobility between areas in the fixed-brokers
architecture in order to reduce publication and certification issues. Additionally, it would be valuable
to enhance the assigned-brokers and the collaborative architecture to strengthen their performance in
low-density scenarios.

Due to the increasing adoption of mobile sensor-enabled devices, the number of services oriented
at them or exploiting their possibilities will continue to grow over the next few years. As a result,
the demand for location verification mechanisms targeted at them will also escalate. Our work is aimed
at verifying producer location, but it can easily be adapted for consumers. Thus, event subscriptions
could be restricted to consumers in a particular area. This first perspective of our work is related to
our previous work in multiscale DEBS [39].

For simplicity, we worked on the assumption that using short-range communication technology is
enough to ensure proximity. However, this may not be true. In order to enhance our system and prevent
relay attacks, our architectures could be reinforced with the implementation of a distance bounding
protocol [40]. By computing the delay on the exchange of several messages, these cryptographic
protocols establish an upper bound distance for a certain producer. If this distance is larger than a



Sensors 2019, 19, 104 24 of 26

certain limit, peer producers and fixed brokers do not consider this producer as a neighbor. Due to
the message exchange and subsequent processing, which includes the application of cryptographic
functions, this security improvement comes at a significant computational cost.

Proximity-based collaboration between peers can be extended to verify additional context-related
information. A direct extension of our solution lies in the adaptation of the collaborative architecture.
Nodes can share their sensor readings and collaboratively decide a value to be provided to the system.
In the other architectures, the extension requires brokers to implement specific mechanisms to process
the publications and decide on their veracity. Thus, the complexity of event processing in the broker is
increased. Moreover, other context-related information different from temporal and spatial details are
mostly application-dependent. Therefore, these collaborative solutions, albeit useful, would be less
general and restricted to specific scenarios. As a second perspective, in order to extend the functionality
of the system, this work could benefit from analyzing group mobility [41].

Author Contributions: Conceptualization, F.C.-J., D.C., and S.C.; methodology, F.C.-J., D.C., R.P.D.-R., and A.F.-V.;
software and validation, F.C.-J.; formal analysis, F.C.-J., A.F.-V., and R.P.D.-R.; writing—original draft preparation,
F.C.-J., R.P.D.-R., and A.F.-V.; writing—review and editing, F.C.-J., R.P.D.-R., A.F.-V., S.C., and D.C.; funding
acquisition, R.P.D.-R. and A.F.-V. All of the authors approved the final version of the manuscript.

Funding: This work is funded by the European Regional Development Fund (ERDF) and the Galician Regional
Government under agreement for funding the Atlantic Research Center for Information and Communication
Technologies (AtlantTIC), the Spanish Ministry of Economy and Competitiveness under the National Science
Program (TEC2014-54335-C4-3-R and TEC2017-84197-C4-2-R) and a predoctoral grant financed by the Galician
Regional Government (Consellería de Cultura, Educación e Ordenación Universitaria), and the European
Social Fund.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mone, G. The new smart cities. Commun. ACM 2015, 58, 20–21. [CrossRef]
2. Eugster, P.; Felber, P.; Guerraoui, R.; Kermarrec, A.M. The Many Faces of Publish/Subscribe. ACM Comput. Surv.

2003, 35, 114–131. [CrossRef]
3. Antonic, A.; Roankovic, K.; Marjanovic, M.; Pripuic, K.; Podnar arko, I. A mobile crowdsensing ecosystem

enabled by a cloud-based publish/subscribe middleware. In Proceedings of the 2014 International
Conference on Future Internet of Things and Cloud, Barcelona, Spain, 27–29 August 2014; IEEE: Piscataway,
NJ, USA, 2014; pp. 107–114.

4. Cugola, G.; Margara, A. Processing flows of information: From data stream to complex event processing.
ACM Comput. Surv. (CSUR) 2012, 44, 15. [CrossRef]

5. Bellavista, P.; Corradi, A.; Fanelli, M.; Foschini, L. A survey of context data distribution for mobile ubiquitous
systems. ACM Comput. Surv. (CSUR) 2012, 44, 24. [CrossRef]

6. Burke, J.; Estrin, D.; Hansen, M.; Parker, A.; Ramanathan, N.; Reddy, S.; Srivastava, M. Participatory Sensing;
Center for Embedded Network Sensing: Los Angeles, CA, USA, 2006.

7. Guo, B.; Yu, Z.; Zhou, X.; Zhang, D. From participatory sensing to mobile crowd sensing. In Proceedings of
the 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM
WORKSHOPS), Budapest, Hungary, 24–28 March 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 593–598.

8. Castro-Jul, F.; Díaz-Redondo, R.P.; Fernández-Vilas, A. Collaboratively assessing urban alerts in ad hoc
participatory sensing. Comput. Netw. 2018, 131, 129–143. [CrossRef]

9. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things.
In Proceedings of the First Edition of the MCC Workshop on Mobile cloud Computing, Helsinki, Finland,
17 August 2012; ACM: New York, NY, USA, 2012; pp. 13–16. [CrossRef]

10. Perera, C.; Qin, Y.; Estrella, J.C.; Reiff-Marganiec, S.; Vasilakos, A.V. Fog computing for sustainable smart
cities: A survey. ACM Comput. Surv. (CSUR) 2017, 50, 32. [CrossRef]

11. Lim, L.; Marie, P.; Conan, D.; Chabridon, S.; Desprats, T.; Manzoor, A. Enhancing Context Data Distribution
for the Internet of Things using QoC-awareness and Attribute-based Access Control. Ann. Telecommun.
2016, 71, 121–132. [CrossRef]

http://dx.doi.org/10.1145/2771297
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/2187671.2187677
http://dx.doi.org/10.1145/2333112.2333119
http://dx.doi.org/10.1016/j.comnet.2017.12.008
http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1145/3057266
http://dx.doi.org/10.1007/s12243-015-0480-9


Sensors 2019, 19, 104 25 of 26

12. Castro-Jul, F.; Conan, D.; Chabridon, S.; Díaz-Redondo, R.P.; Fernández-Vilas, A.; Taconet, C. Combining Fog
Architectures and Distributed Event-Based Systems for Mobile Sensor Location Certification. In Proceedings
of the International Conference on Ubiquitous Computing and Ambient Intelligence, Philadelphia, PA, USA,
7–10 November 2017; Springer: Berlin, Germany, 2017; pp. 27–33.

13. Ganti, R.K.; Ye, F.; Lei, H. Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag.
2011, 49, 32–39. [CrossRef]

14. Antonić, A.; Marjanović, M.; Pripužić, K.; Žarko, I.P. A mobile crowd sensing ecosystem enabled by CUPUS:
Cloud-based publish/subscribe middleware for the Internet of Things. Future Gener. Comput. Syst. 2016,
56, 607–622. [CrossRef]

15. Dang, T.D.; Hoang, D. A data protection model for fog computing. In Proceedings of the Second International
Conference on Fog and Mobile Edge Computing (FMEC), Valencia, Spain, 8–11 May 2017; IEEE: Piscataway,
NJ, USA, 2017; pp. 32–38.

16. Yannuzzi, M.; Milito, R.; Serral-Gracià, R.; Montero, D.; Nemirovsky, M. Key ingredients in an IoT recipe:
Fog Computing, Cloud computing, and more Fog Computing. In Proceedings of the 2014 IEEE 19th
International Workshop on Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD), Athens, Greece, 1–3 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 325–329.

17. Hong, K.; Lillethun, D.; Ramachandran, U.; Ottenwälder, B.; Koldehofe, B. Mobile Fog: A Programming
Model for Large-scale Applications on the Internet of Things. In Proceedings of the Second ACM SIGCOMM
Workshop on Mobile Cloud Computing, Hong Kong, China, 16 August 2013; pp. 15–20. [CrossRef]

18. Zhang, P.; Zhou, M.; Fortino, G. Security and trust issues in Fog computing: A survey. Future Gener.
Comput. Syst. 2018, 88, 16–27. [CrossRef]

19. D’Hondt, E.; Stevens, M.; Jacobs, A. Participatory noise mapping works! An evaluation of participatory
sensing as an alternative to standard techniques for environmental monitoring. Pervasive Mobile Comput.
2013, 9, 681–694. [CrossRef]

20. Costa, D.G.; Duran-Faundez, C.; Andrade, D.C.; Rocha-Junior, J.B.; Just Peixoto, J.P. TwitterSensing:
An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart
City Applications. Sensors 2018, 18, 1080. [CrossRef] [PubMed]

21. Costa, D.G.; Collotta, M.; Pau, G.; Duran-Faundez, C. A fuzzy-based approach for sensing, coding and
transmission configuration of visual sensors in smart city applications. Sensors 2017, 17, 93. [CrossRef]
[PubMed]

22. Jøsang, A.; Ismail, R.; Boyd, C. A survey of trust and reputation systems for online service provision.
Decis. Support Syst. 2007, 43, 618–644. [CrossRef]

23. Etzion, O.; Niblett, P.; Luckham, D.C. Event Processing in Action; Manning Greenwich: Shelter Island, NY,
USA, 2011.

24. Fiege, L.; Gartner, F.C.; Kasten, O.; Zeidler, A. Supporting mobility in content-based publish/subscribe
middleware. In Proceedings of the ACM/IFIP/USENIX International Conference on Distributed Systems
Platforms and Open Distributed Processing, Rio de Janeiro, Brazil, 16–20 June 2003; Springer: Berlin,
Germany, 2003; pp. 103–122.

25. Saracino, A.; Restuccia, F.; Martinelli, F. Practical Location Validation in Participatory Sensing Through
Mobile WiFi Hotspots. In Proceedings of the 17th International Conference On Trust, Security and Privacy
in Computing And Communications/12th International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018; pp. 596–607.

26. Aschenbruck, N.; Ernst, R.; Gerhards-Padilla, E.; Schwamborn, M. BonnMotion: A mobility scenario
generation and analysis tool. In Proceedings of the 3rd International ICST Conference on Simulation Tools
and Techniques, Malaga, Spain, 16–18 March 2010; p. 51.

27. OpenStreetMap. Available online: http://wiki.openstreetmap.org/ (accessed on 28 December 2018).
28. Schwamborn, M.; Aschenbruck, N. Introducing geographic restrictions to the slaw human mobility model.

In Proceedings of the 21st International Symposium on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), San Francisco, CA, USA, 14–16 August 2013; IEEE: Piscataway,
NJ, USA, 2013; pp. 264–272.

29. NS-3 Network Simulator. Available online: https://www.nsnam.org/ (accessed on 28 December 2018).

http://dx.doi.org/10.1109/MCOM.2011.6069707
http://dx.doi.org/10.1016/j.future.2015.08.005
http://dx.doi.org/10.1145/2491266.2491270
http://dx.doi.org/10.1016/j.future.2018.05.008
http://dx.doi.org/10.1016/j.pmcj.2012.09.002
http://dx.doi.org/10.3390/s18041080
http://www.ncbi.nlm.nih.gov/pubmed/29614060
http://dx.doi.org/10.3390/s17010093
http://www.ncbi.nlm.nih.gov/pubmed/28067777
http://dx.doi.org/10.1016/j.dss.2005.05.019
http://wiki.openstreetmap.org/
https://www.nsnam.org/


Sensors 2019, 19, 104 26 of 26

30. Gisdakis, S.; Giannetsos, T.; Papadimitratos, P. SHIELD: A data verification framework for participatory
sensing systems. In Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile
Networks, New York, NY, USA, 22–26 June 2015; ACM: New York, NY, USA, 2015; p. 16.

31. Luo, T.; Zeynalvand, L. Reshaping Mobile Crowd Sensing using Cross Validation to Improve Data Credibility.
In Proceedings of the Global Communications Conference (GLOBECOM), Singapore, 4–8 December 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 1–7.

32. Lederer, S.; Gao, J.; Sion, R. Collaborative Location Certification for Ad-Hoc Sensor Networks. In Proceedings
of the IEEE Sarnoff Symposium, Princeton, NJ, USA, 28–30 April 2008; pp. 1–6.

33. Talasila, M.; Curtmola, R.; Borcea, C. Improving location reliability in crowd sensed data with minimal
efforts. In Proceedings of the 6th Joint IFIP Wireless and Mobile Networking Conference (WMNC), Dubai,
UAE, 23–25 April 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–8.

34. Talasila, M.; Curtmola, R.; Borcea, C. Link: Location verification through immediate neighbors knowledge.
In Proceedings of the International Conference on Mobile and Ubiquitous Systems: Computing, Networking,
and Services, Sydney, NSW, Australia, 6–9 December 2010; Springer: Berlin, Germany, 2010; pp. 210–223.

35. Zhu, Z.; Cao, G. Toward privacy preserving and collusion resistance in a location proof updating system.
IEEE Trans. Mob. Comput. 2013, 12, 51–64. [CrossRef]

36. Wang, X.; Pande, A.; Zhu, J.; Mohapatra, P. STAMP: Enabling privacy-preserving location proofs for mobile
users. IEEE/ACM Trans. Netw. 2016, 24, 3276–3289. [CrossRef]

37. Gambs, S.; Killijian, M.O.; Roy, M.; Traoré, M. PROPS: A privacy-preserving location proof system.
In Proceedings of the 33rd International Symposium on Reliable Distributed Systems (SRDS), Nara, Japan,
6–9 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–10.

38. Nosouhi, M.R.; Yu, S.; Grobler, M.; Xiang, Y.; Zhu, Z. SPARSE: Privacy–Aware and Collusion Resistant
Location Proof Generation and Verification. In Proceedings of the IEEE Global Communications Conference,
Abu Dhabi, UAE, 9–13 December 2018.

39. Conan, D.; Lim, L.; Taconet, C.; Chabridon, S.; Lecocq, C. A Multiscale Approach for a Distributed
Event-Based Internet of Things. In Proceedings of the Dependable, Autonomic and Secure
Computing, 15th International Conference on Pervasive Intelligence & Computing, Orlando, FL, USA,
6–10 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 844–852.

40. Brands, S.; Chaum, D. Distance-bounding protocols. In Proceedings of the Workshop on the Theory and
Application of Cryptographic Techniques, Lofthus, Norway, 23–27 May 1993; Springer: Berlin, Germany,
1993; pp. 344–359.

41. Sudhakar, T.; Inbarani, H.H. Spatial group mobility model scenarios formation in mobile ad hoc networks.
In Proceedings of the International Conference on Computer Communication and Informatics (ICCCI),
Coimbatore, India, 5–7 January 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TMC.2011.237
http://dx.doi.org/10.1109/TNET.2016.2515119
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Cloud Architectures
	Cloudless Architectures
	Fog Architectures
	Our Contribution

	Scenario
	DEBS with Location Verification Support
	Producers' Role
	Location Attribute
	Brokers' Role
	Mobility
	Threat Model

	Architectures
	Fixed-Brokers Architecture
	Assigned-Brokers Architecture
	Collaborative Architecture

	Simulation
	Fixed-Brokers Architecture
	Assigned-Brokers Architecture
	Collaborative Architecture

	Evaluation
	Fixed-Brokers Architecture
	Publication and Certification Issues

	Assigned-Brokers Architecture
	Collaborative Architecture
	Discussion

	Related Work
	Conclusions and Future Work
	References

