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Given a graph G = (V, E) and integer values fv, v ∈ V , a node subset D ⊂ V is a total f -dominating set if every node v ∈ V is adjacent to at least fv nodes of D. Given a weight system c(v), v ∈ V , the minimum weight total f -dominating set problem is to find a total f -dominating set of minimum total weight. In this article, we propose a polyhedral study of the associated polytope together with a complete and compact description of the polytope for totally unimodular graphs and cycles. We also propose a linear time dynamic programming algorithm for the case of trees.

Introduction

Let G = (V, E) denote a simple graph having node set V = 1, n and edge set E, where 1, n stands for the set of integers {1, 2, . . . , n}. For each v ∈ V , let dv denote its degree in G and let fv be a given nonnegative integer value. Let FG stand for the set of vectors {f ∈ Z n + : 0 ≤ fv ≤ dv, ∀v ∈ V }. A node subset D ⊆ V is called an f-dominating set (resp. a total f-dominating set) if each node v ∈ V \D (resp. v ∈ V ) has at least fv neighbor(s) in D. In the special case fv = 1, for all v ∈ V , node set D is called a dominating set (resp. a total dominating set), see [START_REF] Haynes | Domination in Graphs: Advanced topics[END_REF][START_REF] Haynes | Fundamentals of Domination in Graphs[END_REF] and [START_REF] Henning | Total Domination in Graphs[END_REF]. We consider then the minimum weight total f -dominating set problem, denoted by [M W T f ]: Given a simple graph G = (V, E) with node weights cv ∈ R, for all v ∈ V , and f ∈ FG, find a minimum weight total f -dominating set of G, i.e. find a node subset D ⊆ V such that D is a total f -dominating set and the weight of D: v∈D cv, is minimum. This problem may be formulated as the integer program

(IP )    min v∈V cvxv : u∈N (v) xu ≥ fv, ∀v ∈ V ; x ∈ {0, 1} n    ,
where N (v) = {u : [u, v] ∈ E} denotes the neighboring nodes of v. Its linear relaxation (obtained replacing the constraints x ∈ {0, 1} n by x ∈ [0, 1] n ) will be denoted by (P ). Given a node subset S ⊆ V , let χ S ∈ {0, 1} n denote its incidence vector: χ S v = 1 if v ∈ S, and χ S v = 0 otherwise. Let T f G denote the total f -dominating set polytope, i.e. the convex hull of all the incidence vectors of the total f -dominating sets in G. Then, problem [M W T f ] can be reformulated as the linear program: min{c t x : x ∈ T f G }. Optimization problems involving dominating sets and some of their many variants arise in several important applications, in particular for the strategic placement of resources in network infrastructures (see e.g. [START_REF] Haynes | Domination in Graphs: Advanced topics[END_REF][START_REF] Haynes | Fundamentals of Domination in Graphs[END_REF]). Consider a graph whose node set corresponds to locations where some resource (energy, data, . . . ) can be made available at some cost, and whose edges represent connections allowing the distribution of this resource between pairs of locations. Then, an optimal solution to [M W T f ] may be interpreted as a set of locations where the resource is made available so that each location v can get it from at least fv neighboring places and the total cost for locating the resource is minimized. For information on domination and many of its variants, the reader may consult both books by Haynes et al. [START_REF] Haynes | Domination in Graphs: Advanced topics[END_REF][START_REF] Haynes | Fundamentals of Domination in Graphs[END_REF], and for total domination we may refer to the survey by Henning [START_REF] Henning | A survey of selected recent results on total domination in graphs[END_REF] and to the book by Henning and Yeo [START_REF] Henning | Total Domination in Graphs[END_REF]. Many works on total domination focus on finding the minimum cardinality of a total dominating set in a given graph G = (V, E), i.e. the case fv = cv = 1, for all v ∈ V .

Let [DT] (resp. [DD]

) stand for the decision problem associated with the minimum cardinality total dominating set problem (resp. the minimum cardinality dominating set problem). [DD] was shown to be NP-complete [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF] for undirected path graphs in [START_REF] Booth | Dominating sets in chordal graphs[END_REF] using a reduction from the 3-dimensional matching problem. A variation of this reduction was used in [START_REF] Laskar | On the algorithmic complexity of total domination[END_REF] to prove the same result holds for [DT ]. Further graph classes for which [DT] is known to be NP-complete include, e.g., split (and thus also chordal) graphs [START_REF] Laskar | Domination and irredundance in split graphs[END_REF], line graphs of bipartite graphs [START_REF] Mcrae | Generalizing NP-Completeness Proofs for Bipartite and Chordal Graphs[END_REF] and circle graphs [START_REF] Keil | The complexity of domination problems in circle graphs[END_REF]. Connections between [DD] and [DT] are investigated in [START_REF] Kratsch | Total domination and transformation[END_REF] which presents a linear time many-one reduction from [DT] to [DD]. This transformation allows the derivation of complexity results for one of the two decision problems from complexity results on the other for some particular graph families (closed for the graph transformation that is introduced there), among which the fact that the minimum cardinality total dominating set problem can be solved in polynomial time in permutation graphs, dually chordal graphs and k-polygon graphs. Laskar et al. [START_REF] Laskar | On the algorithmic complexity of total domination[END_REF] gave the first linear time algorithm to find a minimum cardinality total dominating set in a tree. Their greedy algorithm uses a particular node labeling and iteratively processes a leave and removes it from the current tree, which is initialized with the input graph. In this paper, we extend their result by showing [M W T f ] can be solved in linear time for trees (see Proposition 11). Other graph classes for which the minimum cardinality total dominating set problem can be solved in polynomial time include strongly chordal graphs [START_REF] Chang | Labeling algorithms for domination problems in sun-free chordal graphs[END_REF] and cocomparability graphs [START_REF] Kratsch | Domination on cocomparability graphs[END_REF]. In [START_REF] Bertossi | Total domination and irredundance in weighted interval graphs[END_REF] a O(n log n) algorithm is presented for solving the minimum weight total dominating set problem in interval graphs. A notable graph family for which the complexity status of the problem [DD] differs from the one of [DT] is that of chordal bipartite graphs: when restricted to this graph family [DD] is NP-complete whereas [DT] can be solved in polynomial time [START_REF] Damaschke | Domination in convex and chordal bipartite graphs[END_REF].

Let γt(G) (resp. γ t,f (G)) denote the minimum cardinality of a total dominating set (resp. total fdominating set) in a graph G = (V, E). Given the complexity of the problem for computing γt(G), some works focused on getting bounds. Lower and upper bounds on γt(G) appear in [START_REF] Cockayne | Total domination in graphs[END_REF][START_REF] Henning | Total Domination in Graphs[END_REF]. To the best of the authors' knowledge, a lower bound on γ t,f (G) only appears in [START_REF] Zhou | Invariants concerning f -domination in graphs[END_REF], while the upper bound 6n 7 is reported in [START_REF] Henning | Strong transversals in hypergraphs and double total domination in graphs[END_REF] for the particular case fv = 2, for all v ∈ V .

The polyhedral structures of polytopes related to domination problems seem to have received little attention. With respect to the classical domination concept relevant works on such aspects are namely [START_REF] Bouchakour | One-node cutsets and the dominating set polytope[END_REF][START_REF] Farber | Domination, independent domination, and duality in strongly chordal graphs[END_REF]. Let DG denote the dominating set polytope, i.e. the convex hull of the incidence vectors of the dominating sets in G. Farber's work [START_REF] Farber | Domination, independent domination, and duality in strongly chordal graphs[END_REF] gives a complete description of DG for strongly chordal graphs, while Bouchakour and Mahjoub's paper [START_REF] Bouchakour | One-node cutsets and the dominating set polytope[END_REF] provides properties and characterizations of facet-defining inequalities, and also presents a peculiar decomposition result which may be formulated as follows. If G = (V, E) is the 1-sum of the graphs G1 = (V1, E1) and G2 = (V2, E2)

(i.e. V = V1 ∪ V2, E = E1 ∪ E2 and |V1 ∩ V2| = 1)
, then a complete formulation of DG can be deduced from the ones of DG 1 and DG 2 . We proceed to similar investigations w.r.t. T G f , which, to our knowledge, do not appear elsewhere in the literature.

The paper is organized as follows. In Section 2, we present basic polyhedral results on T f G . In Section 3, we prove that if the graph G has an articulation point u whose degree equals the number of connected components of the graph induced by V \ {u}, then an extended formulation of T f G can be obtained from complete formulations related to these components. In Section 4, complete formulations of T f G for some special graph families are given, namely: totally unimodular graphs and cycles. Then, in Section 5, a linear time dynamic programming algorithm to solve [M W T f ] for trees is presented, before we conclude in Section 6.

2 Basic polyhedral results on T f G Let G = (V, E) denote a simple undirected graph, and let f ∈ FG such that fv < dv, for all v ∈ V .

In this section we give basic polyhedral properties like dimension and facet-defining inequalities of

T f G .
Proposition 1. The following statements hold.

(i) The polytope T f G has dimension n, i.e. it is full dimensional. (ii) The trivial inequality xv ≥ 0 is facet-defining for T f G if and only if fw < dw -1, for all w ∈ N (v) such that dw ≥ 2.

(iii) The inequality xv ≤ 1 is facet-defining for T f G , for all v ∈ V .

Proof. Result (i) follows from the affine independence of the incidence vectors of the following total f -dominating sets: V and V \ {v}, for all v ∈ V . Statement (iii) can be deduced from the affine independence of the incidence vectors of the sets: V and V \ {w}, for all w ∈ V \ {v}. We now prove

(ii). Let F α u = T f G ∩ {x ∈ R n : xu = α} for u ∈ V , α ∈ {0, 1}. [⇒] In case fw = dw -1 for some w ∈ N (v) with dw ≥ 2, then necessarily F 0 v ⊂ ∩ u∈N (w)\{v} F 1 u , thus the inequality xv ≥ 0 cannot define a facet of T f G . [⇐]
The incidence vectors of the n total f -dominating sets: V \{v} and V \{v, w}, for all w ∈ V \{v} are affinely independent and they all belong to

F 0 v .
In what follows, given a node subset S ⊆ V , its open neighborhood is the set N (S) = {v ∈ V \S : ∃u ∈ S such that [u, v] ∈ E}, and its closed neighborhood is the set N [S] = N (S) ∪ S.

We now provide a simple sufficient condition for an inequality

z∈N (v) xz ≥ fv (1) 
of (P ) to be facet-defining (where v ∈ V ).

Proposition 2. Let u ∈ V such that fu ≥ 1, and assume that

|N (w)\N [u]| ≥ fw, for all w ∈ N (u),
and

|N (w) \ N [u]| > fw, for all w ∈ V \ N [u]. Then the inequality (1) (with u taking the role of v in this expression) is facet-defining for T f G .
Proof. Assume that all the mentioned conditions are satisfied. Let F denote the face of T f G induced by [START_REF] Akbari | On unimodular graphs[END_REF] and assume that F is contained in a facet F of T f G that is defined by the inequality a t x ≥ b, with (a, b) ∈ (R n \{0}×R). We prove that a t x ≥ b corresponds to inequality (1), up to multiplication by a positive scalar. Remark 1. The conditions of Proposition 2 are not necessary for (1) to be facet-defining, and it remains open whether one can formulate a simple characterization. Nontrivial relations may be induced by inequalities of the form (1) related to other nodes than u and whose neighborhood intersects N (u). A simple necessary condition (still assuming fu ≥ 1), but that is not sufficient, is given by: fw < fu

+ |N (w) \ N (u)| if N (w) = N (u)
, and fw ≤ fu otherwise, for all w ∈ V \ {u}.

Decomposition results

In this section we provide results that allow us, in some cases, to decompose the search for a formulation of T f G into several such searches but on graphs having smaller order. We start by introducing some simple auxiliary properties. Firstly, we show that when there exists a node for which the domination requirement equals its degree, in order to get a complete formulation of T f G , we can easily reduce the situation to the case when fv < dv, for all v ∈ V .

Proposition 3. Let f ∈ FG and assume there exists some node v ∈ V such that fv = dv. Define f ∈ FG as follows: f w = fw, for all w ∈ V \ {v} and f v = 0. Then, a complete formulation of T f G can be obtained by adding to a complete formulation of T f G the set of equations {xu = 1 : u ∈ N (v)}.

Proof. Let Q denote the polytope defined by a complete formulation of T f G with the set of equations

{xu = 1 : u ∈ N (v)} added. Note that Q is a face of T f G contained in T f G ,

and since any point of

T f G satisfies the system defining Q, we deduce Q = T f G .
The next auxiliary result shows that edges whose endpoints have zero domination requirements can be ignored when looking for a complete formulation of T f G .

Proposition 4. Let G = (V, E) denote an undirected graph, and let f ∈ FG be such that fu = fv = 0 for some edge

[u, v] ∈ E. Let G = (V, E \ [u, v]) denote the graph obtained from G by deleting edge [u, v]. Then T f G = T f G .
Trivially, if the graph G is not connected, then a complete formulation of T f G is obtained by aggregating the complete formulations corresponding to its connected components. So, in what follows, we can assume w.l.o.g. that G is connected. Given a graph G = (V, E) and a node subset S ⊆ V , let G[S] denote the subgraph of G that is induced by S, i.e. G[S] = (S, E ), where E stands for the subset of edges in E having both endpoints in S.

Proposition 5. Let G = (V, E) be an undirected graph, f ∈ FG, and assume that, for some node u ∈ V , the following holds: fu = du and fv

≤ |N (v) ∩ N (u)|, for all v ∈ N (u). Let G = ( V , E) = G[V \ N [u]] and let fv = fv, for all v ∈ V \ S and fv = fv -|N (v) ∩ N (u)|, for all v ∈ S with S = N (N [u]). Then, a complete description of T f
G is obtained by adding to a complete description of T f G the equations xv = 1, for all v ∈ N (u) and the trivial inequalities 0 ≤ xu ≤ 1.

Proof. Let Q ⊂ R V denote the polytope whose complete formulation is obtained from that of T f G , adding the equations xv = 1, for all v ∈ N (u) and the trivial inequalities 0 ≤ xu ≤ 1.

Note that the restriction to the nodes in V of any total f -dominating set in G is a total f -dominating set in G. Thus, all the incidence vectors of total f -dominating sets in G satisfy all the constraints defining Q and we have:

T f G ⊆ Q. We now show Q ⊆ T f G .
For, let y ∈ Q denote an extreme point of Q. Remark that since the variable xu occurs only in the trivial inequalities in the description of Q, necessarily: yu ∈ {0, 1}. Let y ∈ R V denote the restriction of y to its entries in V . Then, y ∈ T f G and it can be expressed as a convex combination of incidence vectors of total f -dominating sets in G: y = q j=1 λjz j , with q a positive integer, λj ≥ 0, for all j, j λj = 1, and where z j denotes an extreme point of T f G . Now, for each j ∈ 1, q , define z j ∈ R V as follows: ( z j )v = (z j )v, for all v ∈ V , ( z j )v = 1, for all v ∈ N (u) and ( z j )u = yu. Note that for each j ∈ 1, q , z j is the incidence vector of a total f -dominating set in G, and we have y = q j=1 λj z j . Thus y ∈ T f G .

The next result holds for the case when the node u used for decomposition is such that the number Proof. We do the proof for δ = 0 (the case δ = 1 can be treated similarly). Let F 0 denote the face of T f G that is defined by xu ≥ 0:

of connected components in G[V \ {u}] equals du. Proposition 6. Let G = (V, E) be an undirected graph, f ∈ FG, such that fv < dv, for all v ∈ V .
F 0 = T f G ∩ {x ∈ R n : xu = 0}
. Since all the incidence vectors of the total f -dominating sets in G not containing u satisfy the constraints defining Q 0 , we have

F 0 ⊆ Q 0 . We now show Q 0 ⊆ F 0 .
Given any extreme point y of Q 0 , for each i ∈ 1, p , let y i ∈ R V i denote the restriction of y to its components corresponding to Vi. From the definition of Q 0 we have

y i ∈ T f i C i
. This namely implies the existence of positive coefficients (λ i j ) r i j=1 , for some positive integer ri such that

r i j=1 λ i j = 1 and y i = r i j=1 λ i j z i,j
, where for each j ∈ 1, ri , z i,j denotes the incidence vector in R | V i | of a total f i -dominating set in Ci. We now prove that y can be expressed as a convex combination of incidence vectors of total f -dominating sets in G. Q 0 is a rational polyhedron, all the entries of y are rational and we can assume all the coefficients λ i j above are rational. For our purposes, we shall now express all the coefficients λ i j using a common denominator, i.e. under the form λ i j =

α i j D
, where α i j is a positive integer for all i, j and D is a positive integer. Consider a partition of the interval [0, 1] into subintervals of equal length 1 D :

I k = [ k-1 D , k D [ for k ∈ 1, D -1 and ID = [ D-1 D , 1]
. For each k ∈ 1, D and each i ∈ 1, p , our objective is now to determine a total f i -dominating set of Ci, denoted S i k , that we will associate with the interval I k and such that the following three properties, denoted by (P ROP ER1), hold.

1. The incidence vector of S i k corresponds to one of the vectors z i,j that is associated with a positive α i j in the expression of y i . Let  ∈ 1, ri denote this index value.

2. The total number of intervals among (Iq) D q=1 that are associated with S i k equals α i  .

For each

k ∈ 1, D , |(∪ p i=1 S i k ) ∩ N (u)| ≥ fu, i.e. ∪ p i=1 S i k is a total f -dominating set in G.
The sum divided by D of the incidence vectors of the sets (∪ 

i k : 1 ≤ i ≤ p and S i k ∩N (u) = ∅}. Let v k,l ∈ VH , l = 1, 2, .
. . , fu denote the corresponding nodes. We sequentially increase by one unit the flow on the paths (s, v k,l , l k , t), for l = 1, 2, . . . , fu.

[⇐] Given an integral feasible flow in H with value Dfu, we consider, for each k ∈ 1, D the set of the edges U k = {(v, l k ) ∈ EH : flow value on (v, l k ) is 1} which has cardinality fu (by the construction of H and since the flow has value Dfu). For each edge of the form (v i , l k ) ∈ U k , we associate a total f i -dominating set of Ci that corresponds to a vector of the form z i,j and containing a neighbor of u (that will be assigned to S i k ). This is done such that each such total f i -dominating set is associated with at most α i j arcs in ∪ D k=1 U k . For each k ∈ 1, D , there are exactly fu sets of the form (S i k ) 1≤i≤p that have been assigned and each one of them corresponds to some total f i -dominating set of Ci containing a neighbor of u ; so that the third condition in (P ROP ER1) is satisfied by this partial assignment. For each i ∈ 1, p we can then assign (order is arbitrary, we just have to take care of the number of times some set occurs) total f i -dominating set of Ci to unassigned sets of the form (S i k ) 1≤k≤D such that each total f i -dominating set of Ci that is associated with z i,j in the expression of y i is represented exactly α i j times among the sets (S i k ) 1≤k≤D . To conclude the proof of Proposition 6, we now prove that a flow as mentioned in the Claim above does exist, by showing the minimum cut value of H is Dfu. From the former, we deduce there exists a minimum capacity s-t cut δ(S) satisfying S ∩ LH ∈ {∅, LH }. Let S ⊆ {s} ∪ VH define a s-t cut. If S contains a node of the form v i , then removing this node from S we obtain a cut with capacity c(δ(S \ {v i })) = c(δ(S)) -D + Dy i w(i) ≤ c(δ(S)). It follows that the minimum s-t cut not containing LH is given by S = {s} and the corresponding capacity is

p i=1 Dy i w(i) = v∈N (u) Dyv ≥ Dfu.
For any s-t cut δ(S) with S containing LH we have c(δ(S)) ≥ Dfu, since the cut δ(S) contains all the arcs of the form (l k , t). This leads to the result that the minimum cut value in H is Dfu.

If the conditions for its application are satisfied, Proposition 6 together with Balas' result [START_REF] Balas | Disjunctive programming: properties of the convex hull of feasible points[END_REF] allows the derivation of an extended formulation of T f G from complete formulations related to the components ( Ci) p i=1 . Proposition 7. In the setting of Proposition 6, T f G is the projection onto the x-space of variables of the polytope defined by the following system.

                     A i y k,i ≥ λ k b i , ∀i ∈ 1, p , ∀k ∈ 1, 2 , v∈N (u) y k v ≥ λ k fu, ∀k ∈ 1, 2 , y 1 u = 0, y 2 u = λ2, λ1 + λ2 = 1, x = y 1 + y 2 , (x, y 1 , y 2 ) ∈ (R V ) 3 , λ ∈ R 2 + ,
where y k,i ∈ R V i denotes the restriction of y k to the entries indexed on Vi, and such that

T f i C i = {z ∈ R V i : A i z ≥ b i }, for all i ∈ 1, p .
In the more particular case when, in addition to the setting of Proposition 6, we also have fv = 0, for all v ∈ N (u), then a complete formulation of T f G in the original space of variables can be easily determined. The proof is similar to the one of Proposition 6, and thus omitted. Proposition 8. In the setting of Proposition 6, assume in addition that fv = 0, for all v ∈ N (u).

For each i ∈ 1, p , let f i stand for the restriction of f to its entries indexed by Vi. Then, a complete formulation of T f G is given by the aggregation of complete formulations of the polytopes T f i C i for i = 1, 2, . . . , p, together with the constraints v∈N (u) xv ≥ fu, 0 ≤ xu ≤ 1.

Complete formulations of T f G for some special graph families

In this section we characterize the graphs for which the trivial and neighborhood inequalities give a complete formulation of T f G for all f ∈ FG, and then we provide complete formulations for cycles. Given a graph G = (V, E), its adjacency matrix is the matrix A ∈ {0, 1} n×n satisfying Auv = 1 if and only if [u, v] ∈ E. A graph is said to be totally unimodular [START_REF] Akbari | On unimodular graphs[END_REF] if its adjacency matrix is totally unimodular. Given f ∈ FG, let P (f ) denote the polytope corresponding to the feasible region of (P ), i.e. P (f ) = {x ∈ R n : Ax ≥ f and x ∈ [0, 1] n }, where A ∈ {0, 1} n×n stands for the adjacency matrix of G. The next proposition characterizes the graphs for which P (f ) is integral for all f ∈ FG. Its proof is similar to the one given in [START_REF] Veinott | Integral extreme points[END_REF] on a characterization of totally unimodular 0, ±1 matrices, and thus omitted. Proposition 9. The polytope P (f ) is integral for all f ∈ FG if and only if G is totally unimodular.

We now provide a complete description of T f G , when G is a cycle, for any f ∈ {0, 1} V .

Proposition 10. Let G = (V, E) denote a cycle with node set V = 0, n -1 , edge set E = {[i, i + 1
mod n] : i ∈ V }, and let f ∈ {0, 1} V . Then, a complete description of T f G is given by the system (S odd ) (resp. (Seven)) if n is odd (resp. even) with:

(S odd )              v∈V xv ≥ n 2 minv∈V fv, u∈N (v) xu ≥ fv, ∀v ∈ V, x ∈ [0, 1] n , and (Seven) 
                   n 2 -1 k=0 x 2k ≥ n 4 min k∈ 0, n 2 -1 f 2k+1 , n 2 -1 k=0 x 2k+1 ≥ n 4 min k∈ 0, n 2 -1 f 2k , u∈N (v) xu ≥ fv, ∀v ∈ V, x ∈ [0, 1] n .
Proof. Note that by Proposition 1, the polytope T f G is full dimensional. Let Q denote the polytope defined by S odd if n is odd and Seven otherwise. Trivially, T f G ⊆ Q and any integer vector in Q is the incidence vector of a total f -dominating set. Consider firstly the case n is odd. We distinguish between two cases.

-Case 1: there exists u ∈ V such that fu = 0. W.l.o.g. assume that u = n -1. Let A ∈ {0, 1} (n-1)×n denote the restriction of the adjacency matrix to the rows indexed by

V = V \ {n -1}. Note that Q = {x ∈ [0, 1] n : Ax ≥ f }, where f denotes the restriction of f to its first n-1 components. We define a partition (B, V \B) of V with B = ∪ n-1 4 -1 i=0 ({4i}∪{4i+1}), if |V | mod 4 = 0 and B = ∪ n-1 4 i=0 {4i + 1}) ∪ (∪ n-1 4 
-1 i=0 {4i + 2}), otherwise. Each column with index in V \ {n -2, 0} has exactly two nonzero entries, one of which belongs to a row with index in B and the other to a row with index in V \ B. The column corresponding to node 0 (resp. n -2) has exactly one nonzero entry which belongs to a row with index in B (resp.

V \ B). This implies (see Corollary 2.8 in [START_REF] Nemhauser | Integer and combinatorial optimization[END_REF]) that the matrix A is totally unimodular, and thus that Q is integral.

-Case 2: fv = 1, for all v ∈ V . Let a t x ≥ b denote a facet-defining inequality for T f G that is not trivial (i.e., different from xv ≥ 0, xv ≤ 1, v ∈ V ) and different from an inequality [START_REF] Akbari | On unimodular graphs[END_REF].

Necessarily, (this can be easily shown for any such facet) (a, b) ∈ (R n + \ {0}) × (R+ \ {0}). Let v(1) ∈ V such that a v(1) = max(av : v ∈ V and v odd). Let {v(0), v(1), v(2), v(3)} denote a sequence of consecutive nodes on the cycle containing v(1) in second position. Let S ⊆ V denote a total 1-dominating set in G such that a t χ S = b and N (v(0)) ⊆ S, where 1 stands for the n-dimensional all-ones vector. (The existence of such a set follows from our assumptions on the constraint a t x ≥ b: if such a set S would not exist, then the face defined by the inequality a t x ≥ b would be contained in the one defined by v∈N (v(0)) xv ≥ 1). We may then consider two subcases. In both subcases, we can deduce a v(1) = a v(3) . Since n is odd, applying iteratively the former reasoning leads to av = α, for all v ∈ V for some scalar α > 0. And thus the constraint a t x ≥ b corresponds, up to multiplication by a positive scalar to the constraint v∈V xv ≥ n 2 . If n is even, let Q1 (resp. Q2) denote the projection of Q onto the space of the variables having an odd (resp. even) index. Note that Q corresponds to the Cartesian product of polytopes Q1 × Q2, up to permutation of the variable indices. Let A ∈ {0, 1} n 2 × n 2 be the matrix whose rows and columns are indexed by 0, n 2 -1 and such that A ij = 1 ⇐⇒ (2j + 1) ∈ N (2i). Observe that A is the incidence matrix of a cycle having n 2 nodes and

Q1 = z ∈ [0, 1] n 2 : n 2 -1 k=0 z k ≥ n 4 min k∈ 0, n 2 -1 f k and A z ≥ f , with f ∈ {0, 1} n 2 such that f k = f 2k , for all k ∈ 0, n 2 -1 (variable z k in Q1 corresponds to x 2k+1 in Q). If n
2 is even, the first inequality in the formulation of Q1 above is redundant, A is balanced and by Theorem 6.13 in [START_REF] Cornuéjols | Combinatorial Optimization: Packing and Covering[END_REF], Q1 is integral. If n 2 is odd and there exists some node u with an even index such that fu = 0, then the matrix obtained from A by removing the u 2 th row is balanced and it follows that Q1 is integral. For the remaining case when n 2 is odd and fv = 1, for all v ∈ V , the integrality of Q1 can be deduced from the fact that A is near-perfect (see [START_REF] Shepherd | Near-perfect matrices[END_REF]). The same approach can be used to prove the integrality of Q2, thus implying that Q is integral and T f G = Q.

5 The minimum weight total f -dominating set problem in trees

We now present a dynamic programming algorithm for the problem [M W T f ] for the particular case when G is a tree. Select an arbitrary node of the graph that will be considered as the root of the tree. The nodes are numbered in a breadth first search order with integer values in the set 1, n , the root node being numbered with value 1. Given some node v ∈ V , let Tv denote the subtree with root v. For each node v ∈ V \ {1} we define four values which give the contribution of Tv to the solution of [M W T f ] with additional restrictions, and will allow us to calculate the optimal solution.

For the case when the added restrictions imply that no solution exists, by convention, we consider its value to be +∞. The set of all the children of node v (i.e. neighbors of v associated with a larger integer value) is denoted by Fv. We now describe the four considered values.

• CID(v): the contribution of the nodes in Tv to the cost of an optimal solution of [M W T f ] with the following restriction: node v belongs to the total f -dominating set and it is dominated by (at least) fv of its children.

• CIU (v): the contribution of the nodes in Tv to the cost of an optimal solution of [M W T f ] with the following restriction: node v belongs to the total f -dominating set and it is dominated by (at least) fv -1 of its children. (Note that we always have CIU (v) ≤ CID(v) since the domination requirement on the node v for the subproblem corresponding to CID(v) is higher than that for the subproblem corresponding to CIU (v).)

• COD(v): the contribution of the nodes in Tv to the cost of an optimal solution of [M W T f ] with the following restriction: node v does not belong to the total f -dominating set and it is dominated by (at least) fv of its children.

• COU (v): the contribution of the nodes in Tv to the cost of an optimal solution of [M W T f ] with the following restriction: node v does not belong to the total f -dominating set and it is dominated by (at least) fv -1 of its children.

Formulas relating these values associated with some node v ∈ V \ {1} and the ones associated with its children are as follows. Claim. The set Q defines an optimal solution of P h .

CID(v) = cv + min

Proof of the claim. Firstly, note that if |{i : bi < ai}| ≤ h -k, then the result is trivial. So, assume that there are at least h -k + 1 items satisfying bi < ai. Then, in any optimal solution J * of Pn the following holds: bi < ai, for all i ∈ 1, h \ J * . Now, let AQ = i∈ 1,h \Q (ai -bi), AJ * = i∈ 1,h \J * (ai -bi). Then, h i=1 ai = ZJ * + AJ * = ZQ + AQ. And since by construction AQ ≥ AJ * , we deduce ZQ ≤ ZJ * and the statement of the claim follows.

Since determing the k smallest of h elements can be done in time O(h), problem P h can be solved in time O(h) (see, e.g., [START_REF] Blum | Time bounds for selection[END_REF]). Then, identifying h with |Hv| and k with fv (or fv -1 depending on the quantity to be computed), the result follows. 

Conclusion

In this paper, we presented compact and complete descriptions of the total f -dominating set polytope T f G for totally unimodular graphs and cycles. A linear-time dynamic programming algorithm solving the minimum weight total f -dominating set problem in trees was also described. Further research work may be directed towards the polyhedral structure of T f G for other graph families such as cacti and (strongly) chordal graphs.

  Let S ⊂ N (u) such that |S| = fu. Since the node subsets (V \ N [u]) ∪ S and (V \ N (u)) ∪ S are total f -dominating sets whose incidence vectors satisfy (1) with equality, we deduce au = 0. Let w ∈ V \ N [u] and let S ⊂ N (u) such that |S| = fu. Since the node sets (V \ N [u]) ∪ S and ((V \ N (u)) ∪ S) \ {w} are total f -dominating sets, both satisfying (1) with equality we deduce aw = 0. We now show av = az, for all (v, z) ∈ N (u) 2 . Let S ⊂ N (u) such that |S| = fu. Let (v, z) ∈ S × (N (u)\S). Then the incidence vectors of the node subsets (V \N [u])∪S and (V \N [u])∪(S∪{z})\{v} both satisfy (1) with equality. We deduce: av = az. It follows that the inequality a t x ≥ b must correspond, up to multiplication by a positive scalar, to inequality (1).

  Consider some node u ∈ V , let C1, C2, . . . , Cp denote all the different connected components ofG[V \ {u}] and assume that |Ci ∩ N (u)| = 1, for all i ∈ 1, p (i.e. all the neighbors of u belong to different connected components of G[V \ {u}]). For each i ∈ 1, p , let Ci = (Vi, Ei), define Ci = G[Vi ∪ {u}] = ( Vi, Ei) and f i ∈ F C i such that ( f i )w = fw, for all w ∈ Vi and ( f i )u = 0.Then, for any δ ∈ {0, 1}, the polytope Q δ defined by the aggregation of complete formulations of the polytopes T f i C i for i = 1, 2, . . . , p, together with the constraints v∈N (u) xv ≥ fu and xu = δ is integral.

--

  Given a node subset S ⊆ {s} ∪ VH ∪ LH , let c(δ(S)) denote the capacity of the s-t cut defined by S, i.e. the sum of the capacities of the arcs of the form (a, b) ∈ EH such that a ∈ S, b / ∈ S. Let r denote the number of nodes of VH which are contained in S. We may consider two cases: Case r ≥ fu: If some node of the form l k does not belong to S, then adding such a node to S we obtain a cut with capacity c(δ(S ∪ {l k })) = c(δ(S)) + fu -r ≤ c(δ(S)). Case r < fu: If some node of the form l k belongs to S, then removing such a node from S we obtain a cut with capacity c(δ(S \ {l k })) = c(δ(S)) + r -fu < c(δ(S)).

•

  Case 2.1: v(0) / ∈ S. Then, v(2) ∈ S. If v(3) ∈ S then, necessarily, a v(1) = 0 (because S \ {v(1)} is also a total 1-dominating set), thus implying av = 0 for all odd v ∈ V , from the definition of v(1). Now, for the case v(3) / ∈ S, since (S ∪ {v(3)}) \ {v(1)} is a total 1-dominating set in G, we deduce a v(3) ≥ a v(1) . • Case 2.2: v(0) ∈ S. If we had v(3) ∈ S, then S \ {v(1)} would be a total 1-dominating set, thus leading to av = 0 for all odd v ∈ V . For the case when v(3) / ∈ S and since (S ∪ {v(3)}) \ {v(1)} is a total 1-dominating set we deduce a v(3) ≥ a v(1) .

Lemma 1 .

 1 J⊆Fv : |J|=fv j∈J CIU (j) + j∈Fv \J min(CIU (j), COU (j)) CIU (v) = cv + min J⊆Fv : |J|=fv -1 j∈J CIU (j) + j∈Fv \J min(CIU (j), COU (j)) COD(v) = min J⊆Fv : |J|=fv j∈J CID(j) + j∈Fv \J min(CID(j), COD(j)) COU (v) = min J⊆Fv : |J|=fv -1 j∈J CID(j) + j∈Fv \J min(CID(j), COD(j)) For the root node (i.e. the node with number 1) we just consider the values CID(1) and COD(1), the minimum of which gives the optimal objective value of [M W T f ]. The values CID(v), CIU (v), COD(v) and COU (v) are determined using a "bottom-up" approach (i.e. for decreasing v from n to 2). Then, CID(1) and COD(1) are computed, leading to the optimal objective value of [M W T f ]. Finally, by tracking back the calculations already performed, an optimal solution to [M W T f ] is determined. The next lemma shows that, for each node v ∈ V , computing the four values CID(v), CIU (v), COD(v), COU (v), assuming those of all its children are available, can be done efficiently. This leads to the fact that solving [M W T f ] on trees can be done done in linear time, thus extending the results by Laskar et al. [22] who gave the first linear time (greedy) algorithm to solve the minimum cardinality total dominating set in trees. For each node v ∈ V , if the values CID(u), CIU (u), COD(u) and COU (u) are available for each children u of v, then any of the four values CID(v), CIU (v), COD(v) or COU (v) can be computed in time O(Hv), where Hv denotes the number of children of v.Proof. Consider the following problem denoted by P h , where h stands for a positive integer, and that gives a common framework for computing the quantities CID(v), CIU (v), COD(v) and COU (v).Assume that we are given h items, each of which is associated with two real numbers: item i is associated with the values ai and bi. Let k < h denote some given integer. The objective is then to determine a subset J ⊂ 1, h such that |J| = k and the following quantity is minimized (over all such sets):ZJ = i∈J ai + i∈ 1,h \J min(ai, bi).Let Q denote the subset of the k indices in 1, h corresponding to the k smallest quantities among {ai -bi : i ∈ 1, h }. Formally, Q = argmin J { j∈J (ai -bi) : J ⊆ 1, h and |J| = k}.

Proposition 11 .

 11 Problem [M W T f ] can be solved in time O(n) for trees.

  a set VH containing a node v i for each i ∈ 1, p , representing the total f i -dominating sets that contain a neighbor of u and that are associated with a positive coefficient in the expression ofy i above, a set LH containing a node l k for each interval I k , k ∈ 1, D .-(v i , l k ) with capacity 1, for all i ∈ 1, p , for all k ∈ 1, D , -(l k , t) with capacity fu, for all k ∈ 1, D .

	The set EH is composed of the arcs:	
	-(s, v i ) with capacity Dy i w(i) , for all i ∈ 1, p , where w(i) stands for the unique neighbor of u
	in Ci,	
	Claim. There exist sets (S i k ) 1≤i≤p	
		p i=1 S i k ) 1≤k≤D coincides with the point
	y ∈ Q 0 . It remains to show that such sets (S i k ) 1≤i≤p	do exist.
	1≤k≤D	

Consider the auxiliary directed and arc-capacitated graph H = ({s} ∪ VH ∪ LH ∪ {t}, EH ) which we define as follows. The node set is composed of s: a source node, t: a target (or destination) node, 1≤k≤D satisfying (P ROP ER1) if and only if there exists an integral feasible flow in H with value Dfu. Proof of the claim. [⇒] Let (S i k ) 1≤i≤p 1≤k≤D denote sets satisfying (P ROP ER1). Starting from a zero flow, we iteratively build a flow in H that will have value Dfu. For each k ∈ 1, D , we arbitrarily select exactly fu sets among {S
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