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We derive the so-called viscosity subdifferential of the rank function via a limiting process applied to the Moreau envelopes of the rank function. Before that, we obtain the explicit expressions of all the generalized subdifferentials of the Moreau envelopes of the rank function.

Introduction

The rank of a matrix is a basic notion in matricial calculus. The so-called rank minimization problems (i.e., problems where the rank function appears as an objective function or as a constraint) are a hot subject in modern optimization. However, the rank function is a very "bumpy" one, it is just lower-semicontinuous (as a function of matrices). The questions are thus: What kind of generalized differentiability could we expect for it? What are its generalized subdifferentials? These questions were answered by H.Y.Le in [START_REF] Le | The generalized subdifferentials of the rank function[END_REF]. Here we propose another approach or strategy to calculate the generalized viscosity (or Fréchet) subdifferential of the rank function: first calculate the generalized viscosity subdifferential of the Moreau envelopes of the rank function, then use a limiting process and a theorem by Jourani ([6]). In doing so, we also calculate all the other generalized subdifferentials (proximal, viscosity, Fréchet, limiting, Clarke) of the Moreau envelopes of the rank function.

The plan of our paper is as follows: In Section 2, we give all the preliminaries: the singular value decomposition of a matrix, the Moreau envelopes of the rank function, the various definitions of the generalized subdifferentials of a discontinuous function. In Section 3, we determine all the generalized subdifferentials of the Moreau envelopes of the rank function. This is done in an indirect way: we first determine the corresponding generalized subdifferentials of the so-called counting function on R p , and then apply results by Lewis and Sendov ([8], [START_REF] Lewis | Nonsmooth analysis of singular values[END_REF]) about the nonsmooth analysis of functions of singular values. In Section 4, we finally derive the generalized viscosity subdifferential of the rank function.

For general results on the rank function from the variational viewpoint, we refer the reader to our survey paper [START_REF] Hiriart-Urruty | A variational approach of the rank function[END_REF].

Preliminaries

Moreau envelopes of the rank in terms of singular values

Let M m,n (R) denote the set of real matrices with m columns and n rows, let p = min(m, n). We consider the rank function

rank : M m,n (R) -→ {0, 1, . . . , p} A → rank A(= rank of the matrix A).
The rank function can also be defined as a function of singular values of a matrix. For that, we firstly recall here a technique of decomposition of matrices which is central in numerical matricial analysis and statistics: the singular value decomposition (SVD in short).

Theorem 1.

For A ∈ M m,n (R), there exist an (m, m) orthogonal matrix U , an (n, n) orthogonal matrix V and a (m, n) "pseudo-diagonal"3 matrix Σ with nonnegative real numbers on the diagonal, such that:

A = U ΣV T .
The nonnegative real numbers on the diagonal of the Σ matrix are the so-called singular values σ 1 (A), σ 2 (A), . . . , σ p (A) of A. They are the square roots of the eigenvalues of the symmetric matrix A T A (or AA T ). Without loss of generality, we can suppose that

σ 1 (A) ≥ σ 2 (A) ≥ • • • ≥ σ p (A).
If we denote by c(x) the number of non-zero components x i of a vector x = (x 1 , x 2 , . . . , x p ) in R p , then the rank of A is exactly given by

rank A = c(σ 1 (A), σ 2 (A), . . . , σ p (A)).
In some sense, the rank function in the "matricial cousin" of the c-function. They share many properties such as lower-semicontinuity, sub-additivity, etc. In some papers, the c-function is called the 0-norm (although it is not a norm) and denoted by . 0 . In our present note, we call c the counting function.

In order to solve the rank minimization problems, several underestimates of the rank function have been proposed in recent years ( [START_REF] Fazel | Matrix rank minimization with applications[END_REF], [START_REF] Hiriart-Urruty | A variational approach of the rank function[END_REF], [START_REF] Zhao | Approximation theory of matrix rank minimization and its application to quadratic equations[END_REF], etc.). In this note, we only consider one way of approximating the rank function, the "most variational one": using the approximation-regularization technique of Moreau. All the details of this way of doing and resulting expressions can be found in [START_REF] Hiriart-Urruty | From Eckart-Young approximation to Moreau envelopes and vice versa[END_REF]. For ε > 0, the Moreau envelope rank ε of the rank function is defined as

rank ε (A) = inf B∈Mm,n(R) rank B + 1 ε B -A 2 F , (1) 
where . F denotes the Frobenius matricial norm (actually,

A 2 F = tr(A T A) = p i=1 σ 2 i (A)). The result of the minimization problem (1) is rank ε (A) = 1 ε A 2 F - 1 ε p i=1 σ 2 i (A) -ε + , (2) 
where [a] + = max(a, 0). The Moreau envelopes of the counting function c are much easier to compute explicitly:

for x = (x 1 , x 2 , . . . , x p ) ∈ R p and ε > 0, c ε (x) = 1 ε x 2 - 1 ε p i=1 x 2 i -ε + . (3) 
From ( 2) and (3), it is clear that, denoting the vector (σ 1 (A), σ 2 (A), . . . , σ p (A)) as

σ(A), rank ε (A) = c ε (σ(A)). (4) 
This formula will be our key-ingredient for our Section 3.

The various generalized subdifferentials of a discontinuous function

We recall here various notions of generalized subdifferentials of a discontinuous (in fact lower-semicontinuous) function: the proximal subdifferential, the viscosity subdifferential, the Fréchet subdifferential, the limiting subdifferential, the Clarke subdifferential. The concepts appear under various names in the literature, witness the three most recent books defining and using them ( [START_REF] Clarke | Functional analysis, calculus of variations and optimal control[END_REF], [START_REF] Hiriart-Urruty | Bases, outils et principes pour l'analyse variationnelle[END_REF], [START_REF] Penot | Calculus without derivatives[END_REF]). Fortunately, in our context, all the different notions will boil down more or less to the same mathematical object.

Let f : R p -→ R ∪ {+∞} be a lower-semicontinuos (l.s.c) function, and let x ∈ R p be a point at which f is finite.

Definition 1. A vector x * ∈ R p is called a F-subgradient of f at x if lim inf d→0 f (x + d) -f (x) -x * , d d ≥ 0. ( 5 
)
The set of all F -subgradients of f at x is called the Fréchet subdifferential of f at x, and denoted as

∂ F f (x).
A more palpable notion is given in the next definition.

Definition 2. A vector x * ∈ R p is called a viscosity subgradient of f at x if there exists a C 1 -function g : R p → R such that ∇g(x) = x * and f ≥ g in a neighborhood of x. If, in particular, g(x) = x * , x -x -σ x -x 2 ,
with some positive constant σ, then x * is called a proximal subgradient of f at x. The set of all viscosity subgradients and proximal subgradients of f at x are called the viscosity subdifferential and the proximal subdifferential of f at x, and denoted as ∂ V f (x) and ∂ P f (x) respectively.

It turns out that in a finite dimensional context (which is the case in our paper), the Fréchet and the viscosity subdifferentials coincide; but both definitions (Definition 1 and Definition 2) are useful in calculations. This common subdifferential may bear other names in the literature, for example, it is called "regular subdifferential" in some works ( [START_REF] Lewis | Nonsmooth analysis of singular values. Part I: Theory[END_REF], [START_REF] Lewis | Nonsmooth analysis of singular values[END_REF], [START_REF] Rockafellar | Variational analysis[END_REF]).

A further notion, defined via the previous ones, is that of limiting subgradient. Definition 3. A vector x * ∈ R p is called a limiting subgradient of f at x if one can find a sequence of points (x ν ) converging to x with values f (x ν ) converging to f (x), and a sequence of (Fréchet subgradients)

x * ν ∈ ∂ F f (x ν ) converging to x * .
The collection of all such limiting subgradients is called the limiting subdifferential of f at x, and denoted as

∂ L f (x).
Finally, the most complicated one to define, but also one of the most useful ones in variational analysis and optimization, is Clarke's subdifferential.

Definition 4. A vector x * ∈ R p is called a Clarke subgradient of f at x if x * , d ≤ f o (x, d) for all d ∈ R p , where f o (x, d) = lim ε→0 lim sup x ↓ f x t → 0 inf d ∈d+εB f (x + td ) -f (x) t (6) 
(called Clarke's generalized directional derivative of f at x in the d direction), where B is the unit ball in R p and x ↓ f x means that x converges to x and f (x) converges to f (x).

The set of all Clarke subgradients of f at x is called the Clarke subdifferential of f at x, and denoted as

∂ C f (x).
In short, to compare all these generalized subdifferentials, we have the following string of inclusions:

∂ P f (x) ⊂ ∂ F f (x) = ∂ V f (x) ⊂ ∂ L f (x) ⊂ ∂ C f (x). ( 7 
)
Calculus rules on the various generalized subdifferentials presented above are well discussed in the literature, for example in the following books ( [START_REF] Schirotzek | Nonsmooth analysis[END_REF], [START_REF] Rockafellar | Variational analysis[END_REF]). We just recall here some of them, to be used in the next sections.

Theorem 2 (Adding a C 1 function). Suppose that f 1 is lower-semicontinuous and that f 2 is continuously differentiable in a neighborhood of x. Then

∂ F (f 1 + f 2 )(x) = ∂ F f 1 (x) + ∇f 2 (x), ∂ L (f 1 + f 2 )(x) = ∂ L f 1 (x) + ∇f 2 (x), ∂ C f 1 + f 2 )(x) = ∂ C f 1 (x) + ∇f 2 (x).
Theorem 3 (Subdifferentiation of a separable function). Let f be defined as

f (x) = f 1 (x 1 ) + • • • + f p (x p )
for some lower-semicontinuous functions f i : R -→ R ∪ {+∞}, where x = (x 1 , . . . , x p ) ∈ R p . Then, at x = (x 1 , . . . , xp ),

∂ F f (x) = ∂ F f 1 (x 1 ) × • • • × ∂ F f p (x p ), ∂ L f (x) = ∂ L f 1 (x 1 ) × • • • × ∂ L f p (x p ), ∂ C f (x) = ∂ C f 1 (x 1 ) × • • • × ∂ C f p (x p ).

The generalized subdifferentials of the Moreau envelopes of the rank function

In this section, we calculate explicitly (all) the generalized subdifferentials of the Moreau envelopes of the rank function. The process adopted for that purpose is the following: Firstly, compute the generalized subdifferentials of the Moreau envelopes c ε of the counting function c; then apply fine results by Lewis and Sendov ([8], [START_REF] Lewis | Nonsmooth analysis of singular values[END_REF]) on the nonsmooth analysis of functions of singular values. Theorem 4. Let x be a vector in R p for which

x 1 ≥ x 2 ≥ • • • ≥ x p ≥ 0.
The generalized subdifferentials of c ε at x are then expressed as follows:

• If x 1 < √ ε, then ∂ P c ε (x) = ∂ F c ε (x) = ∂ C c ε (x) = {∇c ε (x)} = 2x 1 ε , . . . , 2x p ε . • If x p > √ ε, then ∂ P c ε (x) = ∂ F c ε (x) = ∂ C c ε (x) = {∇c ε (x)} = {(0, . . . , 0)} . • If there exists k such that x k > √ ε > x k+1 , then ∂ P c ε (x) = ∂ F c ε (x) = ∂ C c ε (x) = {∇c ε (x)} = 0, . . . , 0, 2x k+1 ε , . . . , 2x p ε .
• If there exists k such that x k = √ ε, then

∂ P c ε (x) = ∂ F c ε (x) = ∅.

If we denote

k 0 = min{k| x k = √ ε}, k 1 = max{k| x k = √ ε}, then, ∂ L c ε (x) = {0} × . . . {0} × {0; 2x k 0 ε } × • • • × {0; 2x k 1 ε } × { 2x k 1 +1 ε } × . . . { 2x p ε }; ∂ C c ε (x) = {0} × . . . {0} × 0; 2x k 0 ε × • • • × 0; 2x k 1 ε × { 2x k 1 +1 ε } × . . . { 2x p ε }.
Since c ε has a "separable" structure,

c ε (x 1 , . . . , x p ) = 1 ε p i=1 x 2 i -(x 2 i -ε) +
, our first task is to calculate the generalized subdifferentials of functions like

x i ∈ R → (x 2 i -ε) + Lemma 1.
For ε > 0, we define h as follows

h : R → R x → -1 ε (x 2 -ε) + .
We then have:

• If x 2 < ε ∂ P h(x) = ∂ V h(x) = ∂ L h(x) = ∂ C h(x) = {∇h(x)} = {0}. • If x 2 > ε ∂ P h(x) = ∂ V h(x) = ∂ L h(x) = ∂ C h(x) = {∇h(x)} = {- 2x ε }. • If x 2 = ε ∂ P h(x) = ∂ V h(x) = ∅, ∂ L h(x) = 0; - 2x ε , ∂ C h(x) =        0; -2x ε if x = - √ ε, -2x ε ; 0 if x = √ ε.
Proof. By definition,

h(x) = 0 if x 2 < ε -1 ε (x 2 -ε) if x 2 ≥ ε . Thus, the function h is differentiable at any x ∈ {- √ ε; √ ε} with h (x) = 0 if x 2 < ε, h (x) = - 2x ε if x 2 > ε. For x = - √ ε, h(x) = 0. Then, x * ∈ ∂ F h(- √ ε) if and only if lim inf y→0 h(y - √ ε) -x * y |y| ≥ 0.
This is equivalent to

lim inf y→0 + h(y - √ ε) -x * y |y| ≥ 0, (8) 
and

lim inf y→0 - h(y - √ ε) -x * y |y| ≥ 0. (9) 
When y > 0 is close to 0, the value of h at y -√ ε is 0. Thus (8) becomes

x * ≤ 0.

When y < 0 is close to 0, the value of

h at y - √ ε is -1 ε (y 2 -2 √ εy). Thus (9) becomes x * ≥ 2 √ ε ε > 0.
This means that ∂ F h(-√ ε) has no element, that is to say

∂ F h(- √ ε) = ∅.
We also prove in the same way that

∂ F h( √ ε) = ∅.
From the fact that

∂ P h(x) is a subset of ∂ F h(x), we infer that, for x = ± √ ε, ∂ V h(x) = ∅.
Now, from the definition of the limiting subdifferential, we obtain

∂ L h(x) = 0; - 2x ε , for x = ± √ ε.
Because the Clarke subdifferential of h at any x ∈ R is the closed convex hull of the limiting subdifferential of h at x, we get

∂ C h(x) =        0; -2x ε if x = - √ ε, -2x ε ; 0 if x = √ ε.

Proof. (of Theorem 4 )

The Moreau envelope of the counting function is given by:

c ε (x) = 1 ε x 2 - 1 ε p i=1 (x 2 i -ε) + .
We can rewrite c ε as the sum of two functions c 1 and c 2 where

c 1 (x) = 1 ε x 2 and c 2 (x) -1 ε p i=1 (x 2 i -ε) + . It is clear that c 1 is a C 1 function and ∇c 1 (x) = 2x ε . Because c 2 (x) = -1 ε p i=1 (x 2 i - ε) + = p i=1 h(x i )
, the Fréchet subdifferential of c 2 at x can be expressed as the product of the ones of h at x i (cf. Theorem 3). By applying Theorem 2 for the two functions c 1 and c 2 , we obtain

∂ F c ε (x) = ∇c 1 (x) + ∂ F c 2 (x), ∂ L c ε (x) = ∇c 1 (x) + ∂ L c 2 (x), ∂ C c ϕ (x) = ∇c 1 (x) + ∂ C c 2 (x).
Thus,

∂ F c ε (x) = 2x ε + p i=1 ∂ F h(x i ), ∂ L c ε (x) = 2x ε + p i=1 ∂ L h(x i ), ∂ C c ε (x) = 2x ε + p i=1 ∂ C h(x i ).
For x = (x 1 , . . . , x p ) such that x 1 ≥ • • • ≥ x p ≥ 0 and ε > 0, it remains to consider four cases:

• If x 1 < √ ε, then ∂ P c ε (x) = ∂ F c ε (x) = ∂ C c ε (x) = {∇c ε (x)} = 2x 1 ε , . . . , 2x p ε . • If x p > √ ε then ∂ P c ε (x) = ∂ F c ε (x) = ∂ C c ε (x) = {∇c ε (x)} = {(0, . . . , 0)} . • If there exists k such that x k > √ ε > x k+1
, then c ε is differentiable at x and

∂ P c ε (x) = ∂ F c ε (x) = ∂ L c ε (x) = ∂ C c ε (x) = {∇c ε (x)} = {(0, . . . , 0, 2x k+1 ε , . . . , 2x p ε )}.
• If there exists k satisfying

x k = √ ε, by denoting k 0 = min{k| x k = √ ε}, k 1 = max{k| x k = √ ε},
we get

∂ L c ε (x) = {0} × . . . {0} × {0; 2x k 0 ε } × • • • × {0; 2x k 1 ε } × { 2x k 1 +1 ε } × . . . { 2x p ε }; ∂ C c ε (x) = {0} × . . . {0} × 0; 2x k 0 ε × • • • × 0; 2x k 1 ε × { 2x k 1 +1 ε } × . . . { 2x p ε }.
Before passing from the results on c ε to those concerning rank ε , we need to recall two results on the generalized subdifferentiation of nonsmooth functions of singular values of matrices.

Recall that f : R n -→ R is called absolutely symmetric when f (x 1 , . . . , x p ) = f (x 1 , . . . , xp ) for all x = (x 1 , . . . , x p ) ∈ R p , where x = (x 1 , . . . , xp ) is the vector, built up from x = (x 1 , . . . , x p ), whose components are the |x i |'s arranged in a decreasing order (|x

1 | ≥ |x 2 | ≥ • • • ≥ |x p |).
For a matrix A ∈ M m,n (R), we denoted by O(m, n) A the set of pair (U, V ) of orthogonal matrices which give a singular value decomposition of A, i.e. ([8]). If A ∈ M m,n (R) and if f is an absolutely symmetric function, lowersemicontinuous around σ(A), then the proximal subdifferential of any singular value function f • σ at A is given by the formula

A = U ΣV T . Theorem 5 ([9]). If A ∈ M m,n (R) and if f is an absolutely symmetric function, lower- semicontinuous around σ(A) = (σ 1 (A), . . . , σ p (A)), then f • σ is lower-semicontinuous around A and ∂ C (f • σ)(A) = O(m, n) A .diag m,n ∂ C (f (σ(A)) = {U.diag m,n (y).V T | y ∈ ∂ C (f (σ(A)), (U, V ) ∈ O(m, n) A } ∂ P (f • σ)(A) = O(m, n) A .diag m,n ∂ P (f (σ(A)) = {U.diag m,n (y).V T | y ∈ ∂ F (f (σ(A)), (U, V ) ∈ O(m, n) A } . Theorem 6
∂ F (f • σ)(A) = O(m, n) A .diag m,n ∂ F (f (σ(A)) = {U.diag m,n (y).V T | y ∈ ∂ P (f (σ(A)), (U, V ) ∈ O(m, n) A }.
Our function c ε is absolutely symmetric and continuous on R p . Then we apply the two theorems above in order to obtain the generalized subdifferentials of the Moreau envelopes rank ε of the rank function. This is the main result of this Section 3.

Theorem 7.

Let A be a matrix in M m,n (R) and let σ 1 (A) ≥ • • • ≥ σ p (A) be the singular values of A. Then the generalized subdifferentials of rank ε at A can be expressed as follows:

• If σ 1 (A) < √ ε, then ∂ P rank ε (A) = ∂ C rank ε (A) = U diag 2σ 1 (A) ε , . . . , 2σ p (A) ε V T . • If σ p (A) > √ ε, then ∂ P rank ε (A) = ∂ C rank ε (A) = {0} .
• If there exists k such that σ k (A) > √ ε > σ k+1 (A), then

∂ P rank ε (A) = ∂ C rank ε (A) = U diag 0, . . . , 0, 2σ k+1 (A) ε , . . . , 2σ p (A) ε V T .
• If there exists k such that σ k (A) = √ ε, then

∂ P rank ε (A) = ∂ F rank ε (A) = ∅.

If we denote

k 0 = min{k| σ k (A) = √ ε}, k 1 = max{k| σ k (A) = √ ε}, then, ∂ L rank ε (A) = U diag(y)V T | y ∈ ∂ L c ε (σ(A)); (U, V ) ∈ O(m, n) A ; ∂ C rank ε (A) = U diag(y)V T | y ∈ ∂ C c ε (σ(A)); (U, V ) ∈ O(m, n) A .

The viscosity subdifferential of the rank function

To get the viscosity subdifferential of the rank function from that of its Moreau envelopes, it remains a final step to carry out. This can be done with the help of a theorem by Jourani ([6]). Such a result exists for the viscosity (or Fréchet) subdifferential, we are not aware of any similar result for the other generalized subdifferentials. Recall that in our finite-dimensional context, ∂ V = ∂ F . Theorem 8 ([6]). Let X be a finite-dimensional space and let f : X -→ R ∪ {+∞} be a lower-semicontinuous function. We suppose that f is bounded from below by a nonnegative quadratic function, that is to say:

∃a > 0, ∃b > 0, ∃x ∈ X such that f (x) ≥ -a x -x 2 -b for all x ∈ X.
Then, at a point x 0 where f is finite,

∂ V f (x 0 ) = seq -lim sup ε → O + u → x 0 fε(u) → f (x 0 ) ∂ V f ε (u),
where f ε denotes the Moreau envelope of f (with coefficient ε > 0) and seqlim sup

ε → O + u → x 0 fε k (u) → f (x 0 ) ∂ V f ε (u) = x * | ∃u * k ∈ ∂ V f ε k (u k ) → x * , with ε k → 0 + , u k → x 0 and f ε k (u k ) → f (x 0 ) .
We now state the final result of our paper.

Theorem 9 (The viscosity subdifferential of the rank function). For A ∈ M m,n (R), ∂ V (rank)(A) is constructed as follows:

• Consider the pairs of matrices

(U, V ) ∈ O(m, n) A , i.e. U diag m,n (σ(A))V T = A.
• Consider the "pseudo-diagonal" matrices diag m,n (x * ), where x * ∈ R p is such that x * i = 0 for all i = 1, . . . , r (recall that r = rank A).

• Then, collect all the matrices of the form U diag m,n (x * )V T .

In a single formula,

∂ V (rank)(A) = {U diag m,n (x * )V | U ∈ O(m), V ∈ O(n) such that U diag m,n (σ(A))V T = A,
x * i = 0 for all i = 1, . . . , r}.

Proof. We begin by getting the viscosity subdifferential of the counting function c from that of its Moreau envelopes c ε . Let x = (x 1 , . . . , x p ) ∈ R p be satisfying

x 1 ≥ • • • ≥ x p ≥ 0.
Thanks to Theorem 8, we have

∂ V c(x) = seq -lim sup ε → 0 + u → x cε(u) → c(x) ∂ V c ε (u).
Let {ε k } k be a sequence converging to 0 and let {u k } k be a sequence converging to x. Let r = c(x). For > 0 small enough, there exist K 1 and K 2 such that ∀k ≥ K 1 ∀i = 1, . . . , r, u

k i ≥ x i -, ∀k ≥ K 2 , √ ε k < x r -.
Then, if K 0 = max(K 1 , K 2 ), we have

∀k ≥ K 0 ∀i = 1, . . . , r, u k i > √ ε k .
By Theorem 4, we have

∀k ≥ K 0 ∂ V c ε k (x k ) ⊂ {0} r × R × • • • × R. Hence, ∂ V c(x) ⊂ {0} r × R × • • • × R.
On the other hand, any vector in R p whose first r components are 0 belongs to ∂ V c(x). Indeed, for a = (0, . . . , 0, a r+1 , . . . , a p ) and ε k → 0 + , we take y k = (x 1 , . . . , x r , ε k a r+1 , . . . , ε k a p ) → x.

Because ε k → 0, there exists K 3 such that ∀k ≥ K 3 ∀i = r + 1, . . . , p, |ε k a i | < √ 2ε k .

Then, by using Theorem 4, for all k ≥ K 3

∂ V c ε k (y k ) = a.
Consequently,

∂ V c(x) = {0} r × R × • • • × R.
Now, thanks to Theorem 6, we get at the announced expression of the viscosity subdifferential of the rank function.

Final remark. It happens that all the generalized subdifferentials of the rank function do coincide; see [START_REF] Le | The generalized subdifferentials of the rank function[END_REF] for that. Our approach in the present paper allowed to retrieve the viscosity (or Fréchet) subdifferential of the rank function, not the other ones.
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