
HAL Id: hal-01975593
https://hal.science/hal-01975593

Submitted on 9 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A characterization by optimization of the Monge point
of a tetrahedron

Nicolas Hadjisavvas, Jean-Baptiste Hiriart-Urruty, Pierre-Jean Laurent

To cite this version:
Nicolas Hadjisavvas, Jean-Baptiste Hiriart-Urruty, Pierre-Jean Laurent. A characterization by opti-
mization of the Monge point of a tetrahedron. Journal of Optimization Theory and Applications,
2016, �10.1007/s10957-014-0684-6�. �hal-01975593�

https://hal.science/hal-01975593
https://hal.archives-ouvertes.fr


A characterization by optimization of the Monge point of a tetrahedron

Nicolas Hadjisavvas, Jean-Baptiste Hiriart-Urruty & Pierre-Jean Laurent

Abstract. “... nihil omnino in mundo contingint, in quo non maximi minimive ratio
quapiam eluceat”, translated into “... nothing in all the world will occur in which no
maximum or minimum rule is somehow shining forth”, used to say L.Euler in 1744. This
is confirmed by numerous applications of mathematics in physics, mechanics, economy, etc.
In this note, we show that it is also the case for the classical “centers” of a tetrahedron,
more specifically for the so-called Monge point (the substitute of the notion of orthocenter
for a tetrahedron). To the best of our knowledge, the characterization of the Monge point
of a tetrahedron by optimization, that we are going to present, is new.

1. To begin with... What kind of tetrahedron?
Let T = ABCD be a tetrahedron in the three dimensional space R3(equipped with the

usual Euclidean and affine structures); the points A,B,C,D are supposed not to lie in a
plane, of course. We begin with two particular types of tetrahedra and, then, with increase
in generality, we can classify the tetrahedra into several classes. Here they are:

- The regular tetrahedron. This tetrahedron enjoys so many symmetries that it is not
very interesting from the optimization viewpoint: all the “centers” usually associated with
a tetrahedron (and that we are going to visit again in the next paragraph) coincide.

- The trirectangular tetrahedra. They are generalizations to the space of rectangular
triangles in the plane. A trirectangular tetrahedron OABC has (two by two) three per-
pendicular faces OBC,OAB,OAC and a “hypothenuse-face” ABC; such a tetrahedron
enjoys a remarkable relationship between areas of its faces (see [1]); its vertex O, opposite
the hypothenuse-face, is the orthocenter and Monge point, as we shall see below.

- The orthocentric tetrahedra. Curiously enough, the four altitudes of a tetrahedron
generally do not meet at a point; when this happens, the tetrahedron is called orthocen-
tric. A common characterization of orthocentric tetrahedra is as follows: a tetrahedron
is orthocentric if and only if the opposite edges (two by two) are orthogonal. This class
of tetrahedra is by far the most studied one in the literature. Regular and trirectangular
tetrahedra are indeed orthocentric.

- General tetrahedra. Like for triangles, three specific “centers” can be defined for any
tetrahedron: the centroid or isobarycenter, the incenter and the circumcenter. We shall
see their characterization by optimization, as for some other points, in the next section. As
said before, the altitudes do not necessarily meet at a point; moreover, the projection of
any vertex on the opposite face does not necessarily coincide with the orthocenter of this
face. The notion of orthocenter will be held by a new point: the so-called Monge point.
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2. Characterization by optimization of the centroid, incenter, circumcenter,
etc. of a tetrahedron

Let us revisit the usual centers of a tetrahedron T = ABCD and their characterizations
by optimization. They are similar to the ones developed for the centers of a triangle in [2].

- The centroid or isobarycenter (also called center of mass, center of gravity) G of T is
the best known of them: it can be defined as the barycenter of the four vertices A,B,C,D
with equal weights. In terms of optimization, it is the point which minimizes (on T or on
R3) the following objective function or criterion

P 7−→ f1(P ) = (PA)2 + (PB)2 + (PC)2 + (PD)2. (1)

Should f1 represent a temperature function, the point G would be the coolest point.
Indeed, f1 is a quadratic strictly convex function. According to the well-known necessary
and sufficient condition for optimality in unconstrained convex minimization, the G point

is characterized by the vectorial relation
−−→
∇f1(G) =

−→
0 , which can be written here as

−→
GA+

−−→
GB +

−→
GC +

−−→
GD =

−→
0 . (2)

- The incenter I of T is the center of the largest sphere included in T ; it is also the
point (in T ) equidistant from the four faces of T . In terms of optimization, it is the point
which minimizes (on T or on R3) the following function

P 7−→ f2(P ) = max(PA′, PB′, PC ′, PD′), (3)

where A′, B′, C ′, D′ denote the projections of P on the faces of T (A′ lies in the face opposite
the vertex A, and so on). This new temperature function f2 is again strictly convex, but
nondifferentiable.

- The circumcenter O is the center of the smallest sphere containing T ; it is also the
point equidistant from the four vertices of T . When it lies in the interior of T , this point
is the one which minimizes on T (as also on R3) the following function

P 7−→ f3(P ) = max(PA, PB, PC, PD). (4)

As for f2, this function f3 is strictly convex and nondifferentiable.
The above characterizations of the incenter and circumcenter in terms of optimization

do not seem to be well-known. The difficulty there is that they involve a nonsmooth
convex function (to be minimized), while the function to be minimized in (1) is convex and
smooth. However, people involved in approximation theory are familiar with such kinds of
minimization problems. We add three further interesting points to our list, even far less
known however.

- The first Lemoine point of T is the one which minimizes on T the function

P 7−→ f4(P ) = (PA′)2 + (PB′)2 + (PC ′)2 + (PD′)2, (5)

where A′, B′, C ′, D′ denote, as above, the projections of P on the faces of T . See [3, page
79] for another characterization of this point.
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- The second Lemoine point of T is, this time, the one which minimizes on T the
function

P 7−→ f5(P ) = (P PAB)2 +(P PAC)2 +(P PAD)2 +(P PBC)2 +(P PBD)2 +(P PCD)2, (6)

where PAB, PAC ,... denote the projections of P on the six edges of T .
In the case of a triangle, there is only one Lemoine point ([3, page 24]); for a tetrahe-

dron, there are two.
- The Fermat or Fermat & Torriccelli point of T is the one which minimizes the

function
P 7−→ f6(P ) = PA+ PB + PC + PD. (7)

It is usually located inside the tetrahedron, but it could also be one of the vertices.
Again, the functions appearing in (5), (6) and (7) are convex, but the one in (7) is not

differentiable at the points A,B,C or D. So, characterizing the Fermat point is different
if a vertex of the tetrahedron is a candidate for optimality or not; however, subdifferential
calculus and optimality conditions for convex functions, be they smooth or nonsmooth,
cover all the cases ([4, chapter D]).

3. Properties of the centroid: an example of reasoning with convexity
Here we illustrate how techniques from convex analysis allow us to derive easily some

properties of “centers” in a tetrahedron; for this, we choose the particular case of the
centroid. Let xA, ..., xD denote the vectors of cartesian coordinates of the points A, ..., D
and xG that of the barycenter G of (A,α), (B, β), (C, γ), (D, δ). Here, the weights α, ..., δ
are those of a convex combination (i.e., positive and summing up to 1); for the centroid,
these weights are exactly equal. We express xG as a convex combination of xA, ..., xD :

xG = αxA + βxB + γxC + δxD. (8)

We now proceed like in the proofs of results in convex analysis (page 28 in [4] for
example) and transform (8) into:

xG = (α + β)(
α

α + β
xA +

β

α + β
xB) + (γ + δ)(

γ

γ + δ
xC +

δ

γ + δ
xD); (9)

or

xG = (α + β + γ)(
α

α + β + γ
xA +

β

α + β + γ
xB +

γ

α + β + γ
xC) + δxD. (10)

In (9): α
α+β

xA + β
α+β

xB =: xAB lies on the line-segment AB (it is the midpoint of AB

in the case of centroid), γ
γ+δ

xC + δ
γ+δ

xD =: xCD lies on the line-segment CD; therefore,

the xG appears as a new convex combination of xAB and xCD (it is again the mid-point in
the case of centroid). In (10): α

α+β+γ
xA + β

α+β+γ
xB + γ

α+β+γ
xC =: xABC lies on the triangle

ABC (it is its centroid in the case where α = β = γ = δ = 1/4). In doing so, we have
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proved, without referring to any geometric argument (angles, distances, vector calculus)
that:

- the centroid xG lies exactly in the middle of the line-segments joining midpoints of
edges (there are three situations like this);

- the centroid xG is situated on the lines joining vertices to centroids of the opposite
triangles (there are four situations like this), the corresponding barycentric weights being
3/4 and 1/4.

See Figure 1 for a graphical illustration.

4. The Monge point
By an extraordinary geometrical intuition, G.Monge (1746-1818) proposed a substi-

tute for the notion of orthocenter of a tetrahedron. Here is its basic definition. Consider
the six planes perpendicular to the edges of a tetrahedron T and passing through the mid-
points of the respective opposite sides; then these six planes meet at just one point; the point
common to these planes is the so-called Monge point of the tetrahedron. Our question is:
can the Monge point be viewed as the minimizer on T of some appropriate criterion ?
In other words, what is the temperature function on T (a convex, possibly differentiable,
function) such that the coolest point is exactly the Monge point? Before answering this
question, we review the main properties of the Monge point; they can be found in some
classical books on solid geometry, or in the paper [5] that we recommend.

- If the tetrahedron is orthocentric, the orthocenter does exist as the intersection of the
four altitudes, and the Monge point coincides with it. So, the Monge point is the direct
generalization of the notion of orthocenter to arbitrary tetrahedra.

- If G denotes the centroid of the tetrahedron and O its circumcenter, the Monge point

M satisfies the following vectorial property:
−−→
OM = 2

−→
OG. In other words, the Monge point
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is the symmetric of the circumcenter with respect to the centroid.
- Another geometrical construction. A.Mannheim’s theorem (1895): the four planes

determined by the four altitudes of a tetrahedron and the orthocenters of the corresponding
faces pass through the Monge point. For example, in a trirectangular tetrahedron OABC
(see section 1), the Monge point is the vertex O.

- The Monge point, more precisely its projection on faces, holds a compromise be-
tween the projections of vertices on faces and orthocenters of faces: the Monge point is
equidistant from the orthocenter of a face and the projection on it of the opposite vertex
(that holds true for the four faces). Again, in the case of orthocentric tetrahedra, the
orthocenter of a face and the projection on it of the opposite vertex coincide; this common
point is the projection of the orthocenter-Monge point of the tetrahedron.

Now, we make the definition of Monge point “variational”, that is to say in terms of
optimization. Our procedure will illustrate the following well-known adage: “This problem,
when solved, will be simple”. So, for each edge σ, denote by −→vσ a unitary vector directing
σ (for example (xB − xA)/ ‖xB − xA‖ for the edge joining the vertices A and B) and xσ
the midpoint of the opposite edge ; then, since our aim is to look for a point x such that
〈x− xσ,−→vσ〉 = 0 for all σ, define the function

P (or vector x) 7−→ f7(P ) =
1

2

σ6∑
σ1

[〈x− xσ,−→vσ〉]
2
, (11)

Theorem. The f7 function is quadratic and stricly convex . It is uniquely minimized
at the Monge point.

Proof. As a sum of squares of affine forms, the f7 function is clearly quadratic. The
gradient vector ∇f7(x) and the hessian matrix ∇2f7(x) of f7 at x are as follows:

∇f7(x) =

σ6∑
σ1

〈x− xσ,−→vσ〉 −→vσ ; (12)

∇2f7(x) =

σ6∑
σ1

−→vσ .(−→vσ)T .

To show that ∇2f7(x) is positive definite, consider the quadratic form h ∈ R3 7−→

q(h) = 〈∇2f7(x)h, h〉 =

σ6∑
σ1

〈−→vσ , h〉2. Clearly, q(h) is nonnegative on R3 and q(h) = 0 if

and only if h = 0 (that is due to the fact that three among the six vectors −→vσ are linearly
independent). Hence the f7 function is strictly convex.

The Monge point is indeed the unique minimizer of the nonnegative function f7 since
it is the only point where f7 achieves the 0 value.

Remark 1. As the proof clearly shows, it suffices to consider in (11) a summation
over three linearly independent edges, for example the three edges arising from a vertex.

5



Remark 2. The f7 function contains distances (to points or lines) in a hidden form.
Indeed, consider the following construction: for each edge σ, let ∆σ be the line passing
through (the opposite midpoint) xσ and parallel to σ; we call it the mirror (edge or) line
to σ. Then, because the vectors −→vσ have been chosen unitary, the square of the distance
from x to the mirror line ∆σ is

d2(x,∆σ) = ‖x− xσ‖2 − [〈x− xσ,−→vσ〉]
2
. (13)

So, the f7 function is

P (or vector x) 7−→ f7(P ) =
1

2

σ6∑
σ1

[
‖x− xσ‖2 − d2(x,∆σ)

]
. (14)

Other substitutes for the criterion to be minimized could be the following functions:

P (or vector x) 7−→ f8(P ) =

σ6∑
σ1

[‖x− xσ‖ − d(x,∆σ)] ; (15)

P (or vector x) 7−→ f9(P ) = max
σ1,...,σ6

[‖x− xσ‖ − d(x,∆σ)] . (16)

Hence, minimizing the f8 function or the f9 function yields again the Monge point.
However, in comparison with the f7 function, we loose properties like convexity and differ-
entiability (on R3).

Remark 3. What about the numerical computation of the Monge point ? We may use
the (primary) definitions of this point as the intersection of appropriate planes. The results
dealing with optimization, presented above, are also easily amenable to computations:
either to solve the system ∇f7(x) = 0 or, better, to minimize f7 (summation over only
three independent edges). In that case, the stopping rule of any minimization algorithm
is: |f7(xk)| 6 ε. In all cases, simple computations with Matlab work well.

Remark 4. Back to the triangle ([6]). Analogous functions to those presented above
can be defined to find (by minimization) the orthocenter of an acute triangle ABC. If σ is
one side of the triangle, xσ the vertex opposite to it, −→vσ a unitary vector directing σ, and
∆σ the line passing through xσ and parallel to σ, then the line orthogonal to σ and passing
through xσ has for equation: 〈x − xσ,−→vσ〉 = 0, or ‖x− xσ‖ = d(x,∆σ). As a result, the
three functions f7, f8, f9 (where the summations or the max operation are taken over the
threes sides of the triangle) are minimized on R2 at a unique point: the orthocenter of the
triangle. Actually, the f8 function coincides on T with the one presented in [6], minus a
constant (which equals the sum of the three altitudes of the triangle). This means, at least
for an acute triangle: in order to find the orthocenter of a triangle, instead of minimizing
the sum of distances from a point P to the vertices, plus the sum of distances from P to
the sides, one could minimize the difference of two sums: the sum of the distances from P
to the vertices, and the sum of the distances from P to the mirror sides (i.e., parallels to
the sides, which are drawn through the vertices). That amounts to minimizing

P (or vector x) 7−→ f10(P ) = PA+ PB + PC − (d1 + d2 + d3)

= (PA+ PB + PC) + (PH1 + PH2 + PH3)− (e1 + e2 + e3),
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where the e1, e2, e3 stand for the distances between the three sides and their mirrors (or
the lengths of the three altitudes). See Figure 2.

5. Generalization to n dimensions
Consider n + 1 points in Rn that generate a convex polyhedron of full dimension n.

The

(
n+ 1
n

)
hyperplanes that pass through the barycenters of any n− 1 points and are

orthogonal to the edge passing through the remaining two, meet exactly at one point. This
point is called again the Monge point of the polyhedron; it has been studied recently in
[7, 8]. This point can also be found by minimizing a strictly convex function like in (11).

References
[1] J.-B.Hiriart-urruty, J.-P.Quadrat, J.B.Lasserre, Pythagoras’ theorem for

areas. American Math Monthly, Vol. 108, n◦6 (2001), 549− 551.
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