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Abstract 

 

The use of monoclonal antibodies (mAbs) constitutes one of the most important strategies to 

treat patients suffering from cancers such as hematological malignancies and solid tumors. 

                                                 
1 Equally contributed to this article 
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These antibodies are prescribed by the physician and prepared by hospital pharmacists. An 

analytical control enables the quality of the preparations to be ensured. The aim of this study 

was to explore the development of a rapid analytical method for quality control. The method 

used four mAbs (Infliximab, Bevacizumab, Rituximab and Ramucirumab) at various 

concentrations and was based on recording Raman data and coupling them to a traditional 

chemometric and machine learning approach for data analysis. Compared to conventional 

linear approach, prediction errors are reduced with a data-driven approach using statistical 

machine learning methods. In the latter, preprocessing and predictive models are jointly 

optimized. An additional original aspect of the work involved on submitting the problem to a 

collaborative data challenge platform called Rapid Analytics and Model Prototyping (RAMP). 

This allowed using solutions from about 300 data scientists in collaborative work. Using 

machine learning, the prediction of the four mAbs samples was considerably improved. The 

best predictive model showed a combined error of 2.4% versus 14.6% using linear approach. 

The concentration and classification errors were 5.8% and 0.7%, only three spectra were 

misclassified over the 429 spectra of the test set. This large improvement obtained with 

machine learning techniques was uniform for all molecules but maximal for Bevacizumab 

with an 88.3% reduction on combined errors (2.1% versus 17.9%). 

Graphical abstract 
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1. Introduction 

Cancer can be treated using numerous strategies, such as surgery, radiation therapy, 

immunotherapy, hormone therapy, stem cell transplant, chemotherapy and more recently 

targeted therapy. Targeted therapy may use monoclonal antibodies (mAbs) and is the 

foundation of precision medicine. At the present time, it constitutes one of the most important 

strategies to treat patients suffering from cancers such as hematological malignancies and 

solid tumors. Monoclonal antibodies are proteins which bind to specific substances on cancer 

cells and act by immune-mediated cell-killing mechanisms. They may therefore help the 

immune system to destroy cancer cells, stop cancer cells from growing, stop angiogenesis 

signals, deliver cell-killing substances to cancer cells, and cause cancer cell death. As classic 

chemotherapy drugs, mAbs are commonly used alone or with other cytotoxic drugs or 

radioactive substances to kill cancer cells. Drugs designed for parenteral administration are 

aseptically prepared by pharmacists. Drugs are prepared just before use; they are reconstituted 

and/or diluted with 5% glucose or 0.9% sodium chloride to obtain a sterile final preparation at 

the dose prescribed by the physician. Even if pharmaceutical regulations do not require the 

final characterization of each compounding drug, many pharmacists have nevertheless 

implemented analytical control before release. These controls must be discriminant in order to 

ensure the nature of the drug in spite of similar physicochemical and spectral properties, 

sensitive enough to guarantee the dose even for low concentrations and also rapid to endure 

the medication process without delayed drug delivery. As a result, different analytical 

strategies using direct flow injection analysis, high performance liquid chromatography with 

UV detection [1], or vibrational molecular spectroscopies such as Raman and infrared [2,3] 

have been investigated to control cytotoxic compounding drugs. Despite their importance in 

cancer therapy, only some studies have dealt with analytical methods to control mAbs 

preparations [4–8]. All of these techniques were invasive and required sampling the 

preparation for analysis. Because of the inherent toxicity of cytotoxic drugs resulting from 

their oncogenic, mutagenic and teratogenic properties, these drugs present a risk of 

occupational exposure for healthcare workers. This explains why we decided to explore the 

feasibility of a noninvasive, nondestructive, and rapid analytical method, i.e. Raman 

spectroscopy, to ensure the quality of the mAbs preparations produced in hospitals. Raman 

spectroscopy is a molecular vibrational spectroscopy based on the inelastic scattering of 

monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet 
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range, and in the past, Raman spectroscopy has been successfully investigated for 

chemotherapy drug control [2,3,9,10]. 

Due to the complexity of Raman spectral data, multivariate analysis must be used to extract 

pertinent information. In this article, we report results using two different approaches of data 

analyses. Due to unsatisfactory results at the levels of both classification of the molecule and 

concentration regression using linear chemometrics techniques traditionally used in 

pharmaceutical field, we submitted the data to a collaborative data challenge platform called 

Rapid Analytics and Model Prototyping (RAMP), developed by the Paris-Saclay Center of 

Data Science to explore a different approach.  

 

2. Material and methods 

2.1. Preparation of mAbs samples  

We evaluated four mAbs: Bevacizumab (Avastin® 25 mg/mL, Roche), Infliximab 

(Remicade® 100 mg, Schering-Plough), Ramucirumab (Cyramza® 10 mg/mL, Lilly) and 

Rituximab (Mabthera® 10 mg/mL, Roche). All drugs were prepared separately in aseptic 

conditions and analyzed them after dilution in 0.9% sodium chloride at various concentrations 

that cover the therapeutic range currently prepared to treat patients (10 concentrations for each 

drug: Bevacizumab from 0.5 to 25 mg/mL, Infliximab from 0.3 to 10 mg/mL, Ramucirumab 

from 1 to 10 mg/mL and Rituximab from 0.4 to 10 mg/mL). Twelve independent series were 

prepared (one batch of 0.9% chloride sodium per serie) for each drug. All compounded 

solutions were packaged in three glass vials (Interchim®, Montluçon, France), stored at +4 °C, 

and analyzed in accordance with laboratory requirements. The following abbreviations are 

used in this article: A = Infliximab, B = Bevacizumab; Q = Ramucirumab, R = Rituximab. 

 

2.2. Spectral collection 

Raman spectra were acquired with a Labram HR Evolution microspectrometer (Horiba 

Scientific, Lille, France). The excitation source was a 633 nm single-mode diode laser 

(Toptica Photonics, Germany) generating 35mW on the sample. The microspectrometer was 

equipped with an Olympus microscope and measurements were recorded using 10 X MPlan 

objective (Olympus, Japan). Light scattered by the sample was collected through the same 



5 

 

objective. Rayleigh elastic scattering was intercepted by an edge filter. A Peltier cooled (-

70°C) multichannel CCD detector (charge-coupled device; 1024 x 256 pixels) detected the 

Raman Stokes signal dispersed with a 100 µm slit width and a 600 grooves/mm holographic 

grating. The spectral resolution from the full width at half maximum of the silica wafer band 

at 521 cm-1 was 2 cm-1 and the spectral region examined was 400-4000 cm-1. The acquisition 

time of each spectrum was 2 x 15 s per collected spectrum to obtain better sensitivity. Spectral 

acquisition and data preprocessing were conducted with Labspec6 software (Horiba 

Scientific, Lille, France). The microspectrometer sample compartment was not suited for vials 

and so a vial adaptor was constructed to center the vial and to secure sample position on the 

base plate.  

 

2.3. Preprocessing 

The quality of predictive analysis increases with the number of input data, and so a large 

number of acquisitions were performed. Different sources of variabilities observed in real life 

(batch of the drug substance, batch of the diluent, container) were included to the dataset. A 

total of 360 spectra for each of the four mAbs were collected, except for Ramucirumab (348 

spectra). All Raman spectra were pre-processed using LabSpec6 by normalization based on 

total area in order to correct spectral variation due to focusing variations. The result of this 

collection step was a spectrum containing 1866 values. During the preprocessing phase, a 

principal component analysis was performed for the spectra of each drug using Matlab® 

R2011a software (Mathworks, Natick, United States), to identify spectral errors and discard 

erroneous spectra. Among all acquisitions, no spectrum was eliminated from a total of 1428 

spectra analyzed.  

 

2.4. Flowchart of the spectral analysis 

The methodology of spectral analysis is given in Fig.1. Data were split to develop a predictive 

model and evaluate its performance on a held-out set of data. The 1428 measurements were 

randomly divided into two datasets. A total of 999 spectra (calibration set) were used to 

developed predictive models whereas 429 other spectra constituting the test set were used to 

evaluate the predictive performances of the classification and the regression models 
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developed. All results reported here were from this test set, but they were unknown to the 

analysts throughout development.  

 

In order to predict the drug and its concentration, two different methods were explored, a 

linear approach using chemometrics and a machine learning approach. For both approaches, 

the remaining 999 spectra were further split into random cross-validation folds. 

Chemometrics analyses were performed using 10-fold cross-validation whereas machine 

learning was based on cross-validation bootstrap aggregation (CV bagging). Using CV 

bagging, eight random cross-validation folds were considered. Each training and validation 

set contained 799 and 200 spectra, respectively. Each technique was trained eight times on the 

training sets. The eight trained models were then evaluated on each validation and test point. 

The final prediction is the average of these eight predictions on each validation and test point. 

These techniques take advantage of the variance reduction property of averaging and allowed 

to develop robust predictors despite the small data size. To further improve the machine 

learning results, the best models were blended using the technique of Caruana et al.[11]. 

Briefly, the pointwise mean prediction of the best models selected in a greedy loop was used 

until the validation result stops improving.  

As shown in Fig.1, the workflow was slept into four modules. The first feature extractor      

converts the raw spectra s into a fixed-size feature vector               . This is then 

followed by a classifier     that outputs a vector                             , indexed 

by the four drug types, representing the estimated probability that the spectrum belongs to 

each of the four types. The predicted class is then:  ̂           , avec j ϵ {A,B,Q,R}. 

The second feature extractor     also receives the raw spectra s but also the probability 

vector                and converts them into a fixed-size feature vector                . 

The rationale is to allow the regression algorithm to know the (estimated) identity of the 

molecule whose concentration it has to predict. The final module is a regression model      

that uses this second feature vector      and estimates the drug concentration:  ̂               
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Given a validation or test set                    containing triplets of spectra, molecule 

types, and concentrations, the performance of the model                         was 

evaluated as follows. We first computed the classification error (    ):               ∑    {       ̂  }     , 

where the indicator function    {X} is 1 if its argument X is true, and 0 if not. To assess the 

concentration predictor, the mean absolute relative error (    ) was used:                ∑ |    ̂ |       . 

In order to compare predictive models, combined errors (       ) were calculated: 

                                        

The coefficients reflect the more stringent requirements posed on the classification task. The 

best model was considered for the lowest      . 

 

2.5. Conventional linear approach 

Analyses were performed using Matlab® software R2011a. The first approach was based on 

linear discrimination and regression methods, common in traditional chemometry. Both 

preprocessing     ,      and the predictor functions     ,       were linear. Classification 

was performed using partial least squares discriminant analysis (PLS-DA) and principal 

component analysis discriminant analysis (PCA-DA). PLS regression for was used to estimate 

concentrations. Various spectral processing techniques were tested for both classification and 

regression in order to limit the non-informative spectral background: baseline correction with 

a nth degree polynomial curve, first and second Savitsky-Golay derivatives, standard normal 

variate (SNV), and combined preprocessing. For each model, the optimal number of latent 

variables was determined by 10-fold cross-validation for the lowest error of prediction. The 

predictive capacity of the calibration model was assessed by the root mean square error of 

cross-validation (RMSECV) and the root mean square error of prediction (RMSEP). The 

optimal predictive model was selected for the lowest RMSECV and RMSEP with the highest 

coefficient of determination (R2). 

 



8 

 

2.6. Crowdsourced machine learning approach 

In order to improve classification and regression prediction, a second approach based on 

machine learning was explored. Machine learning analyses were performed with the 

participation of the Paris-Saclay Center for Data Science (CDS) using the scikit-learn library 

[12], which most of our analysts used.  

Over the past several years, the CDS has developed a unique collaborative studio which 

allows a large number of data scientists to work together on various scientific and industrial 

data analytics workflows. Participants have access to a brief description, the public training 

dataset, and a first (non-optimized) solution in a starting kit. They study the problem, develop 

and refine solutions, and submit them through a web interface. The models are then trained 

and evaluated, and the validation performance score is fed back to the participants through a 

public leaderboard. The test score obtained on the held-out test set, reported in this paper, 

remains hidden from the participants. Unlike most of the data challenge sites that expect 

solutions to analytics problems, the CDS asks the data scientists to submit code. This provides 

more flexibility to the evaluation, generates a working prototype, and most importantly, 

enables participants to collaborate by examining each other’s code and combining the 

different ideas. The code is publicly available on the website (after free signup), making the 

results fully reproducible by anyone. Moreover, any new method can be easily tested by 

submitting it to the site and so our results are fully transparent.  

The classification and regression challenge proposed in this study was submitted to more than 

300 students and data scientists in three different RAMP classrooms at Paris-Saclay 

University, Polytechnique School, and Mines ParisTech. Each RAMP involved about five 

days of work. In each class, the challenge started with a closed period when students did not 

see each other’s code, only their scores. This allowed us to grade the students individually but 

also to make them explore the space of solutions independently. This was followed by an 

open collaborative period. A given class, however, could not see the solutions developed by 

the other classes. Interestingly, this led to different collective strategies to solve the problem. 

Models were blended in each RAMP separately which made it possible to compare the 

collaborative score of each group. During RAMPs, the analysts were instructed to minimize a 

combined error         All models and codes are available freely on the RAMP site 

(http://ramp.studio). 
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3. Results and discussion 

 

Mean raw spectra for the four mAbs analyzed are shown in Fig.2. Raman spectra of mAbs, 

similarly to those of other proteins, are very difficult to interpret. Inter- and intramolecular 

effects including peptide bond angles and hydrogen-bonding patterns may influence Raman 

band positions. Structural information can nevertheless be deduced from Raman vibrational 

bands as amide I and amide III bands at 1650 and 1300 cm-1. 

The results of classification and regression obtained using both the linear approach and 

machine learning are listed in Table 1. The overall winner of the contest was the Mines 

RAMP with a combined error       of 2.4%, a classification error      of 0.7% and a 

concentration error      of 5.8%. As shown in Table 1, the large improvement obtained with 

machine learning techniques is uniform for all molecules. The best improvement was obtained 

for Bevacizumab with an 88.3% reduction on combined errors (        of 2.1% versus 

17.9%). 

A total of 96 models of classification were developed with the linear approach using PCA-DA 

and PLS-DA. For PLS-DA, the assignation criterion based on the Bayes theorem was applied 

in order to minimize the number of false positives and false negatives explaining that some 

samples were not assigned. Despite optimization, a maximum of 367 samples among the 429 

samples of the test sets were correctly classified. The best prediction obtained by mean 

centering PLS-DA on first derivate spectra with five latent variables was characterized by a 

classification error of 14.5%. Using this model, 9.6% samples of the test set (n = 41) were not 

assigned and 4.9% were misclassified (n = 21). Using machine learning, all samples were 

assigned and only three spectra were misclassified, all from samples with low concentrations 

(y ≤ 0.6mg/mL).  

Concerning the regression challenge aiming to predict the concentration of the mAbs in 

solution, the results showed a better prediction for machine learning than with the linear 

approach, 14.7% versus 5.8% of concentration error. Details of the PLS regression models for 

the four mAbs are in Appendix 1. Using the linear approach, 63% of samples at a low 

concentration (y ≤ 1 mg/mL) had a relative error more than 15% whereas an error of only 

5.6% was reported in the case of machine learning. As shown in Fig.3, relative errors over all 

are higher with the linear approach, but as in the case of machine learning analysis, they 

depend on concentration. In addition, bias with the machine learning model is negligible at 
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concentrations higher than 0.1 mg/mL and relative errors decrease sharply with the 

concentration from 15% (below y < 1 mg/mL) to 5% (above y > 3 mg/mL). 

Throughout RAMP sessions, the predictive performances of models progressed considerably. 

During the first RAMP performed at Paris-Saclay University, numerous preprocessing 

operations were evaluated. This session reached a classification error of 1.6% and a 

concentration error of 4.9% (Rcomb of 2.7%). Spectra were smoothed with linear filters, such 

as the Savitzky–Golay filter [13], that preserves peak amplitudes of the signal. Other models 

use simpler strategies based on convolution with Hanning windows. Following the smoothing 

step, baseline correction was conducted by subtracting a polynomial least-square fit of the 

data or simply by removing a constant. The polynomial order was 0 (constant) or 1 (linear). 

Order 0 corresponds to the subtraction of the mean of the spectra. Some of the solutions 

propose subtracting the median of the spectra. As the machine learning models employed in 

the second step are sensitive to the scale of the data, the spectra for some models were 

normalized by smoothing and baseline correction. The majority of winning predictions 

solutions used nonlinear kernel-based techniques: kernel PCA for non-linear dimensionality 

reduction [14] and support vector machines (SVM) for prediction [15]. The best approaches 

proposed used Gaussian kernels and polynomial kernels of order up to 4. The low 

concentration error was achieved by exploiting the fact that concentrations were discretized.  

During the second RAMP performed at Polytechnique, the group explored only forest-based 

regression models (extra trees [16], random forests [17], gradient boosting [18]). This session 

reached a classification error of 2.1% and a concentration error of 12.2%. These otherwise 

popular and usually well-performing nonparametric classifiers seemed to be a suboptimal 

choice for the functional data of this problem. 

As mentioned above, the Mines RAMP (the last one) was the dominant solution with a 

classification error of 0.7% and a concentration error of 5.8% corresponding to the lowest 

Rcomb (2.4%). The optimal model that the group converged on included a log transformation 

of the spectra (but no other smoothing or preprocessing), followed by either factor analysis or 

principal component analysis to extract 10 features, followed by a small neural network. 

Interestingly, the same pipeline was successful for both classification and regression, but of 

course with different parameter settings of the neural net. In the regression step, all the best 

models used the same strategy: to learn a different regression model (although parameters set 
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the same way) for each molecule. According to this model, only three low-concentration test 

samples were missed.  

 

The interest of statistical machine learning for biological applications has grown considerably 

even if this approach is not now applicable in routine in hospital pharmacies. As part of both 

computer science and statistics, machine learning as a scientific discipline aims to develop 

algorithms that can make sense of data. A typical outcome of machine learning is a model that 

can make predictions from new data after having learned from many training examples. Based 

on the hypothesis that spectra are influenced by the nature and concentration of mAbs in 

solution, we decided to explore how machine learning can help resolve the pharmaceutical 

challenge of classification and concentration estimation for pharmaceutical drugs particularly 

difficult to discriminate by classical linear methods. We found that combining Raman 

spectroscopy with machine learning methods presents an interesting potential to augment 

safety of the drug preparation process by the identification and quantification of 

chemotherapy preparations. 

As opposed to traditional analysis using HPLC/UV or LC/MS/MS, Raman spectroscopy and 

near infrared spectroscopy enable direct measurement through glass and plastic packaging 

[19,20]. As a result of the rapidity of analysis and non-destructive and non-invasive 

measurements, these spectroscopies are widely used for Process Analytical Technology [21] 

with at-line and on-line measurements to control primary and secondary manufacturing 

processes in the pharmaceutical industry. 

Despite promising results for ensuring the nature and dose of a drug in solution by 

classification and regression analysis, respectively, machine learning has some particular 

limitations and pitfalls that should be avoided. Machine learning algorithms usually require 

more input data to train than linear models. In addition, care must be taken to collect data with 

the same distribution as when the predictors are used in practice. First, if the training 

concentrations are over- or under-sampled in certain regions, the nonparametric concentration 

estimate may be biased towards the oversampled values. This is due to the fact that machine 

learning models attempt to minimize the average errors. Secondly, if only certain 

concentration levels are used for some molecules, the classifier can learn these values and use 

the concentration information for classification. Thirdly, if the concentration levels are 

discretized, the regression model can learn these discretization levels and quantify the 
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continuous estimate, creating a bias if the true concentrations fall between those levels. In 

fact, one of the student groups boosted prediction accuracy by forcing the model to predict 

only concentrations present in the training set. More concretely, they used regression model to 

round the predicted concentration to the closest discrete concentration. In our study, the 

predictors were so precise that these effects were negligible, but in more complicated 

measurements with larger uncertainties they must be taken into consideration. One practical 

way to consider this in future data collection protocols in order to prevent performance gains 

by rounding, is to randomize concentration values using a sampling distribution that matches 

realistic scenarios. 

Extracting useful information from complex data is crucial for developing the best predictive 

models for both classification and regression. With the development of data science, the 

choice of feature extractors and filters has considerably increased. Selecting and tuning the 

best predictor, however, requires experience and many experiments, but scientists generally 

apply only several panels of algorithms to analyze their data. Despite promising results for 

classification and quantification of other antineoplastic drugs, the conventional approach 

using linear chemometrics methods was not sufficient in the case of mAbs. RAMP sessions 

organized by the CDS was the opportunity to explore a new approach to analyze our data. 

Throughout RAMPs, many scientists from different fields such as chemistry, mathematics, 

informatics, astronomy, computer games and the financial sphere participated. They tested 

new approaches, codes or combinations of known algorithms that we never thought to explore 

and contributed to considerably optimizing predictions and met the challenge.  

 

4. Conclusions 

 

As a result of similar structures and low concentration values, discrimination and 

quantification of mAbs preparations pose difficult challenges. Despite these models are not 

directly applicable in routine, this study highlighted the power of collaborative approach to 

solve a problem and in our case, the interest of statistical machine learning to interpret 

spectral Raman data to ensure the chemical quality of medications produced in hospitals 

before administration to patients. 
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Fig.1. The data acquisition and data analytics pipeline. 

 

 

 

Fig.2. Mean raw Raman spectra for Infliximab, Bevacizumab, Ramucirumab and Rituximab 

from 400 to 4000 cm-1 
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Fig.3. Relative error of the predicted concentrations for the four monoclonal antibodies 

obtained using the linear and machine learning approaches 

 

Table 1 Misclassification errors (    ), mean absolute relative errors of concentration (    ) 

and combined errors (        obtained for the prediction of the test set samples using the best 
predictive models developed by machine learning and chemometrics linear approaches. 
(Errors in percent of all predicted samples, %) 

 Linear  Machine learning  

Molecule                                     
Infliximab 13.7 12.3 13.2 0.9 8.4 3.4 

Bevacizumab 19.8 14.0 17.9 1.0 4.3 2.1 

Ramucirumab 9.0 7.3 8.4 0.0 3.5 1.2 

Rituximab 16.0 26.7 19.6 1.0 6.9 3.0 

Overall 14.5 14.7 14.6 0.7 5.8 2.4 
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 A innovative and rapid analytical method is pertinent to discriminate and quantify 
monoclonal antibody drugs 

  

 Interest of machine learning for classification and regression of anticancer drugs 

 Interest of collaborative data analysis to optimize prediction 

 


