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Concentration inequalities for Stochastic Differential Equations

with additive fractional noise

Maylis Varvenne∗

November 5, 2019

Abstract

In this paper, we establish concentration inequalities both for functionals of the whole solution on
an interval [0, T ] of an additive SDE driven by a fractional Brownian motion with Hurst parameter
H ∈ (0, 1) and for functionals of discrete-time observations of this process. Then, we apply this
general result to specific functionals related to discrete and continuous-time occupation measures of
the process.

Keywords: Concentration inequalities; Fractional Brownian Motion; Occupation measures; Stochastic
Differential Equations.

1 Introduction

In this article, we consider the solution (Yt)t≥0 of the following R
d-valued Stochastic Differential Equation

(SDE) with additive noise:

Yt = x+

∫ t

0

b(Ys)ds+ σBt. (1.1)

with B a d-dimensional fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1). We are
interested in questions of long-time concentration phenomenon of the law of the solution Y . A well
known way to overcome this type of problem is to prove L1-transportation inequalities. Let us precise
what it means. Let (E, d) be a metric space equipped with a σ-field B such that the distance d is B ⊗ B-
measurable. Given p > 1 and two probability measures µ and ν on E, the Wasserstein distance is defined
by

Wp(µ, ν) = inf

(∫ ∫

d(x, y)pdπ(x, y)

)

,

where the infimum runs over all the probability measures π on E × E with marginals µ and ν. The
entropy of ν with respect to µ is defined by

H(ν|µ) =

{

∫

log
(

dν
dµ

)

dν, if ν ≪ µ,

+∞ otherwise.

Then, we say that µ satisfies an Lp-transportation inequality with constant C > 0 (noted µ ∈ Tp(C)) if
for any probability measure ν,

Wp(µ, ν) 6
√

2CH(ν|µ). (1.2)

The concentration of measure is intrinsically linked to the above inequality when p = 1. This fact was
first emphasized by K.Marton [11, 10], M.Talagrand [15], Bobkov and Götze [1] and amply investigated
by M.Ledoux [9, 8]. Indeed, it can be shown (see [9] for a detailed proof) that (1.2) for p = 1 is actually
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equivalent to the following: for any µ-integrable α-Lipschitz function F (real valued) we have for all
λ ∈ R,

E (exp (λ (F (X) − E[F (X)]))) 6 exp

(

Cα2 λ
2

2

)

(1.3)

with L(X) = µ. This upper bound naturally leads to concentration inequalities through the classical
Markov inequality. For several years, L1 (and L2 since T2(C) implies T1(C)) transportation inequalities
have then been widely studied and in particular for diffusion processes (see for instance [4, 16, 6]).
For SDE’s driven by more general Gaussian processes, S.Riedel established transportation cost inequalities
in [12] using Rough Path theory. However, his results do not give long-time concentration, which is our
focus here.
In the setting of fractional noise, T.Guendouzi [7] and B.Saussereau [14] have studied transportation
inequalities with different metrics in the case where H ∈ (1/2, 1). In particular, B.Saussereau gave an
important contribution: he proved T1(C) and T2(C) for the law of (Yt)t∈[0,T ] in various settings and he
got a result of large-time asymptotics in the case of a contractive drift. Our first motivation to this work
was to get equivalent results in a discrete-time context, i.e. for L((Yk∆)16k6n) for a given step ∆ > 0
and then long-time concentration inequalities for the occupation measure, i.e. for 1

n

∑n
k=1 f(Yk∆) (where

f is a general Lipschitz function real valued). Indeed, in a statistical framework we only have access to
discrete-time observations of the process Y and such a result could be meaningful in such context. To
the best of our knowledge, this type of result is unknown in the fractional setting.
We first tried to adapt the methods used in [14] in several ways as for example: find a distance such that
(yt)t∈[0,T ] 7→ (yk∆)16k6n is Lipschitz and prove T1(C) with this metric. But the constants obtained in the
L1-transportation inequalities were not sharp enough, so that we couldn’t deduce large-time asymptotic
as B.Saussereau.
In [4], H.Djellout, A.Guillin and L.Wu explored transportation inequalities in the diffusive case and
both in a continuous and discrete-time setting. In particular, for the discrete-time case, they used a
kind of tensorization of the L1 transportation inequality but the Markovian nature of the process was
essential. However, they prove T1(C) through its equivalent formulation (1.3) and to this end, they apply
a decomposition of the functional in (1.3) into a sum of martingale increments, namely:

F (X) − E[F (X)] =
n
∑

k=1

E[F (X)|Fk] − E[F (X)|Fk−1]

with X = (Yk∆)16k6n and Y is the solution of (1.1) when B is the classical Brownian motion.
This decomposition has inspired the approach described in this paper: instead of proving an L1 trans-
portation inequality (1.2), we prove its equivalent formulation (1.3) by using a similar decomposition and
the series expansion of the exponential function. Through this strategy, we prove several results under an
assumption of contractivity on the drift term b in (1.1). First, in a discrete-time setting, we work in the
space (Rd)n endowed with the L1 metric and we show that for any α-Lipschitz functional F : (Rd)n → R

and for any λ > 0,
E (exp (λ (F (X) − E[F (X)]))) 6 exp

(

Cα2λ2n2H∨1
)

with X = (Yk∆)16k6n. In a similar way, we consider the space of continuous functions C([0, T ],Rd)
endowed with the L1 metric and we prove that for any α-Lipschitz functional F̃ : C([0, T ],Rd) → R and
for any λ > 0,

E
(

exp
(

λ
(

F̃ (X) − E[F̃ (X)]
)))

6 exp
(

Cα2λ2T 2H∨1
)

with X = (Yt)t∈[0,T ]. From these inequalities, we deduce some general concentration inequalities and
large-time asymptotics for occupation measures. Let us note that we have no restriction on the Hurst
parameter H and we retrieve the results given by B.Saussereau for H ∈ (1/2, 1) in a continuous setting
and also the result given in [4] for H = 1/2, namely for diffusion.

The paper is organised as follows. In the next section, we describe the assumptions on the drift term
and we state the general theorem about concentration, namely Theorem 2.2. Then, in Subsection 2.3, we
apply this result to specific functionals related to the occupation measures (both in a discrete-time and
in a continuous-time framework). Section 3 outlines our strategy of proof which is fulfilled in Sections 4
and 5.
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2 Setting and main results

2.1 Notations

The usual scalar product on R
d is denoted by 〈 , 〉 and | . | stands either for the Euclidean norm on R

d

or the absolute value on R. We denote by Md(R) the space of real matrices of size d × d. For a given
n ∈ N

∗ and (x, y) ∈
(

R
d
)n ×

(

R
d
)n

, we denote by dn the following L1-distance:

dn(x, y) :=
n
∑

k=1

|xi − yi|. (2.1)

Analogeously, for a given T > 0 and (x, y) ∈ C
(

[0, T ],Rd
)

× C
(

[0, T ],Rd
)

, we denote by dT the classical
L1-distance:

dT (x, y) :=

∫ T

0

|xt − yt|dt. (2.2)

Let F : (E, dE) → (E′, dE′) be a Lipschiz function between two metric spaces, we denote by

‖F‖Lip := sup
x 6=y

dE′(F (x), F (y))

dE(x, y)

its Lipschitz norm.
Let w, w̃ ∈ C(R+,R

d), let a, b, c ∈ R+ such that a < b < c. Then, we define

w[a,b] ⊔ w̃[b,c](t) :=

{

w(t) if a 6 t 6 b
w̃(t) if b < t 6 c.

(2.3)

2.2 Assumptions and general result

Let B be a d-dimensional fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1) defined on
(Ω,F ,P) and transferred from a d-dimensional Brownian motion W through the Volterra representation
(see e.g. [3, 2])

∀t ∈ R+, Bt =

∫ t

0

KH(t, s)dWs, (2.4)

with

KH(t, s) := cH

[

tH− 1
2

sH− 1
2

(t− s)H− 1
2 −

(

H − 1

2

)∫ t

s

uH− 3
2

sH− 1
2

(u− s)H− 1
2 du

]

. (2.5)

In the sequel, the distribution of W will be denoted by PW .

We consider the following R
d-valued stochastic differential equation driven by B:

Yt = x+

∫ t

0

b(Ys)ds+ σBt, t > 0. (2.6)

Here x ∈ R
d is a given initial condition, B is the aformentioned fractional Brownian motion and

σ ∈ Md(R).

We are working under the following assumption :

Hypothesis 2.1. We have b ∈ C(Rd;Rd) and there exist constants α,L > 0 such that:
(i) For every x, y ∈ R

d,
〈b(x) − b(y), x− y〉 ≤ −α|x− y|2.

(ii) For every x, y ∈ R
d,

|b(x) − b(y)| ≤ L|x− y|.
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Remark 2.1. ⊲ Since b is Lipschitz and σ is constant, Y in (2.6) denotes the unique strong solution.
⊲ This contractivity assumption on the drift term is quite usual to get long-time concentration results
(see [4, 14] for instance). At this stage, a more general framework seems elusive.

Let T > 0 and n ∈ N
∗. Let F :

(

(Rd)n, dn

)

→ (R, | · |) and F̃ :
(

C
(

[0, T ],Rd
)

, dT

)

→ (R, | · |) be two
Lipschitz functions and set

FY := F (Yt1
, . . . , Ytn

) and F̃Y = F̃ ((Yt)t∈[0,T ]) (2.7)

with 0 < ∆ = t1 < · · · < tn and tk+1 − tk = ∆ for a given ∆ > 0.

We are now in position to state our results for general functionals F and F̃ . First, we prove a result
on the exponential moments of FY and F̃Y which is crucial to get Theorem 2.2.

Proposition 2.1. Let H ∈ (0, 1) and ∆ > 0. Let n ∈ N
∗, T > 1 and dn, dT be the metrics defined

respectively by (2.1) and (2.2). Then,

(i) there exist CH,∆,σ > 0 such that for all Lipschitz functions F :
(

(Rd)n, dn

)

→ (R, | · |) and for all
λ > 0,

E [exp (λ(FY − E[FY ]))] 6 exp
(

CH,∆,σ‖F‖2
Lipλ

2n2H∨1
)

. (2.8)

(ii) there exist C̃H,σ > 0 such that for all Lipschitz functions F̃ :
(

C
(

[0, T ],Rd
)

, dT

)

→ (R, | · |) and for
all λ > 0,

E
[

exp
(

λ(F̃Y − E[F̃Y ])
)]

6 exp
(

C̃H,σ‖F̃‖2
Lipλ

2T 2H∨1
)

. (2.9)

Remark 2.2. Let us note that this proposition is actually equivalent to L1-transportation inequalities as
mentionned in the introduction. More precisely, item (i) is equivalent to L((Ytk

)1≤k≤n) ∈ T1(2CH,∆,σn
2H∨1)

for the metric dn and item (ii) is equivalent to L((Yt)t∈[0,T ]) ∈ T1(2C̃H,σT
2H∨1) for the metric dT .

From Proposition 2.1, we deduce the following concentration inequalities:

Theorem 2.2. Let H ∈ (0, 1) and ∆ > 0. Let n ∈ N
∗, T > 1 and dn, dT be the metrics defined

respectively by (2.1) and (2.2). Then,

(i) there exist CH,∆,σ > 0 such that for all Lipschitz functions F :
(

(Rd)n, dn

)

→ (R, | · |) and for all
r > 0,

P (FY − E[FY ] > r) 6 exp

(

− r2

4CH,∆,σ‖F‖2
Lipn

2H∨1

)

. (2.10)

(ii) there exist C̃H,σ > 0 such that for all Lipschitz functions F̃ :
(

C
(

[0, T ],Rd
)

, dT

)

→ (R, | · |) and for
all r > 0,

P
(

F̃Y − E[F̃Y ]) > r
)

6 exp

(

− r2

4C̃H,σ‖F̃‖2
LipT

2H∨1

)

. (2.11)

Proof. We use Markov inequality and Proposition 2.1. Then, we optimize in λ to get the result.

Remark 2.3. ⊲ The dependency on the Lipschitz constant of F and F̃ is essential since they may depend
on n and T . Hence, if they decrease fast than n−2H∨1 and T−2H∨1, we get large time concentration
inequalities.
⊲ Let us note that this result remains true if the noise process in (2.6) is replaced by the Liouville

fractional Brownian B̃ motion which has the following simpler representation: B̃t =
∫ t

0
(t− s)H−1/2dWs.

The proof follows exactly the same lines.

In the following subsection, we outline our main application of Theorem 2.2 for which long time
concentration holds.
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2.3 Long time concentration inequalities for occupation measures

We now apply our general result to specific functionals to get the following theorem.

Theorem 2.3. Let H ∈ (0, 1) and ∆ > 0. Let n ∈ N
∗ and T > 1. Then,

(i) there exist CH,∆,σ > 0 such that for all Lipschitz functions f :
(

R
d, | · |

)

→ (R, | · |) and for all
r > 0,

P

(

1

n

n
∑

k=1

f(Ytk
) − E[f(Ytk

)] > r

)

6 exp

(

− r2n2−(2H∨1)

4CH,∆,σ‖f‖2
Lip

)

. (2.12)

(ii) there exist C̃H,σ > 0 such that for all Lipschitz functions f :
(

R
d, | · |

)

→ (R, | · |) and for all r > 0,

P

(

1

T

∫ T

0

(f(Yt) − E[f(Yt)])dt > r

)

6 exp

(

− r2T 2−(2H∨1)

4C̃H,σ‖f‖2
Lip

)

. (2.13)

Proof. We apply Theorem 2.2 with the following functions F and F̃ :

∀x ∈
(

R
d
)n
, F (x) =

1

n

n
∑

k=1

f(xi)

and

∀x ∈ C
(

[0, T ],Rd
)

, F (x) =
1

T

∫ T

0

f(xt)dt

which are respectively ‖f‖Lip

n -Lipschitz with respect to dn (defined by (2.1)) and ‖f‖Lip

T -Lipschitz with
respect to dT (defined by (2.2)).

3 Sketch of proof

Recall that FY and F̃Y are defined by (2.7). The key element to get the bound (2.8) and (2.9) is to
decompose FY and F̃Y into a sum of martingale increments as follows. Let (Ft)t>0 be the natural
filtration associated to the standard Brownian motion W from which the fBm is derived through (2.4).
For all k ∈ N, set

Mk := E[FY | Ftk
] and M̃k := E[F̃Y | Fk]. (3.1)

With these definitions, we have:

FY − E[FY ] = Mn =
n
∑

k=1

Mk −Mk−1 and F̃Y − E[F̃Y ] = M̃⌈T ⌉ =
⌈T ⌉
∑

k=1

M̃k − M̃k−1 (3.2)

where ⌈T ⌉ denotes the least integer greater than or equal to T .

With this decomposition in hand, we first estimate the conditional exponential moments of the mar-
tingale increments Mk −Mk−1 and M̃k −M̃k−1 to get Proposition 2.1. This is the purpose of Proposition
5.2 for which the proof is based on the following lemma:

Lemma 3.1. Let X be a centered real valued random variable such that for all p ≥ 2, there exist C, ζ > 0
such that

E[|X |p] ≤ Cζp/2pΓ
(p

2

)

.

Then for all λ > 0,

E[eλX ] ≤ e2C′ζλ2

with C′ = 1 ∨ C.
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Proof. Since X is centered, by using the series expansion of the exponential function, we have:

E [exp (λX)] 6 1 + C
+∞
∑

p=2

λpζ
p

2 pΓ
(

p
2

)

p!
6 1 +

+∞
∑

p=2

λp(C′ζ)
p

2 pΓ
(

p
2

)

p!
(3.3)

with C′ = 1 ∨ C. We set t2 = λ2C′ζ, then

1 +
+∞
∑

p=2

(t2)
p

2 pΓ
(

p
2

)

p!
= 1 +

+∞
∑

p=1

(t2)p2pΓ (p)

(2p)!
+

+∞
∑

p=1

(t2)p+ 1
2 (2p+ 1)Γ

(

p+ 1
2

)

(2p+ 1)!

= 1 + 2
+∞
∑

p=1

(t2)pΓ (p+ 1)

(2p)!
+ |t|

+∞
∑

p=1

(t2)pΓ
(

p+ 1
2

)

(2p)!

6 1 + (2 + |t|)
+∞
∑

p=1

(t2)pp!

(2p)!

6 1 +

(

1 +
|t|
2

)

(et2 − 1) since 2(p!)2
6 (2p)! .

Since for all t ∈ R, |t|
2 6 et2

, we get |t|
2 (et2 − 1) 6 et2

(et2 − 1) which is equivalent to

1 +

(

1 +
|t|
2

)

(et2 − 1) 6 e2t2

,

so that:

1 +
+∞
∑

p=2

(t2)
p

2 pΓ
(

p
2

)

p!
6 e2t2

.

Hence, we have in (3.3):
E [exp (λX)] 6 exp

(

2λ2ζC′
)

which concludes the proof.

Remark 3.1. The previous proof follows the proof of Lemma 1.5 in Chapter 1 of [13]. We chose to give
the details here since this step is crucial to get our main results.

Finally, the end of the proof of Proposition 2.1 (i) is based on the following implication: if there exists
a deterministic sequence (uk) such that

E

[

eλ(Mk−Mk−1)
∣

∣

∣Fk−1

]

≤ eλ2uk ,

then
E
[

eλMn
]

= E

[

eλMn−1E

[

eλ(Mn−Mn−1)
∣

∣

∣Fn−1

]]

≤ exp
(

λ2un

)

E
[

eλMn−1
]

so that

E
[

eλMn
]

≤ exp

(

λ2
n
∑

k=1

uk

)

.

The same arguments are used for item (ii) of Proposition 2.1.

Sections 4 and 5 are devoted to the proof of Proposition 2.1. The first step, detailed in Section 4,
consists in giving a new expression to the martingale increments and to control them. The second step,
which is outlined in Section 5.1, focuses on managing the conditional moments of these increments to get
Proposition 5.2. The proof of Proposition 2.1 is finally achieved in Section 5.2.

Throughout the paper, constants may change from line to line and may depend on σ without being
specified.
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4 Control of the martingale increments

For the sake of clarity, we set ∆ = 1 in the sequel, so that by (2.7) we have tk = k. When ∆ > 0 is
arbitrary, the arguments are the same, it sufficies to apply a rescaling.

Through equation (2.6) and the fact that b is Lipschitz continuous, for all t > 0, Yt can be seen as a
measurable functional of the time t, the initial condition x and the Brownian motion (Ws)s∈[0,t]. Denote
by Φ : R+ × R

d × C(R+,R
d) → R

d this functional, we then have

∀t > 0, Yt := Φt(x, (Ws)s∈[0,t]). (4.1)

Now, let k > 1, we have

|Mk −Mk−1|
= |E[FY |Fk] − E[FY |Fk−1]|

6

∫

Ω

∣

∣F
(

Φ1

(

x,W[0,1]

)

, . . . ,Φk

(

x,W[0,k]

)

,Φk+1

(

x,W[0,k] ⊔ w̃[k,k+1]

)

, . . . ,Φn

(

x,W[0,k] ⊔ w̃[k,n]

))

−F
(

Φ1

(

x,W[0,1]

)

, . . . ,Φk−1

(

x,W[0,k−1]

)

,Φk

(

x,W[0,k−1] ⊔ w̃[k−1,k]

)

, . . . ,Φn

(

x,W[0,k−1] ⊔ w̃[k−1,n]

))∣

∣PW (dw̃)

6 ‖F‖Lip

∫

Ω

n
∑

t=k

∣

∣Φt

(

x,W[0,k] ⊔ w̃[k,t]

)

− Φt

(

x,W[0,k−1] ⊔ w̃[k−1,t]

)∣

∣PW (dw̃). (4.2)

With exactly the same procedure, we get

|M̃k − M̃k−1| 6 ‖F̃‖Lip

∫

Ω

∫ T

k−1

∣

∣Φt

(

x,W[0,k] ⊔ w̃[k,t]

)

− Φt

(

x,W[0,k−1] ⊔ w̃[k−1,t]

)∣

∣ dt PW (dw̃). (4.3)

Let us introduce now some notations. First, for all t > 0 set u := t − k + 1, then for all u > 0, we
define

Xu :=

{

Φu+k−1

(

x, (Ws)s∈[0,k] ⊔ (w̃s)s∈[k,u+k−1]

)

if u > 1
Φu+k−1

(

x, (Ws)s∈[0,u+k−1]

)

otherwise,

and
X̃u := Φu+k−1

(

x, (Ws)s∈[0,k−1] ⊔ (w̃s)s∈[k−1,u+k−1]

)

.

We then have

Xu =X0 +

∫ u

0

b(Xs)ds+ σ

∫ k−1

0

(KH(u+ k − 1, s) −KH(k − 1, s))dWs

+ σ

∫ k∧(u+k−1)

k−1

KH(u+ k − 1, s)dWs + σ

∫ k∨(u+k−1)

k

KH(u+ k − 1, s)dw̃s (4.4)

and

X̃u =X̃0 +

∫ u

0

b(X̃s)ds+ σ

∫ k−1

0

(KH(u+ k − 1, s) −KH(k − 1, s))dWs + σ

∫ u+k−1

k−1

KH(u+ k − 1, s)dw̃s.

(4.5)

Remark 4.1. Let us note that the integrals involving w̃ in (4.4) and (4.5) and in the sequel have to be
seen as Wiener integrals, so that they are defined PW (dw̃) almost surely.

Since X0 = X̃0 = Φk−1

(

x, (Ws)s∈[0,k−1]

)

, we deduce from (4.4) and (4.5) that for all u > 0

Xu − X̃u =

∫ u

0

b(Xs) − b(X̃s)ds+ σ

∫ k∧(u+k−1)

k−1

KH(u+ k − 1, s)d(W − w̃)s

=

∫ u

0

b(Xs) − b(X̃s)ds+ σ

∫ 1∧u

0

KH(u + k − 1, s+ k − 1)d(W (k) − w̃(k))s (4.6)

7



where we have set (W (k)
s )s>0 := (Ws+k−1 − Wk−1)s>0 which is a Brownian motion independent from

Fk−1 and (w̃(k)
s )s>0 := (w̃s+k−1 − w̃k−1)s>0.

In the remainder of the section, we proceed to a control of the quantity |Xu − X̃u|. We have the
following upper bound on |Xu − X̃u|:

Proposition 4.1. There exists CH > 0 such that for all u > 0 and k ∈ N
∗,

|Xu − X̃u|

6 CH

√

ΨH(u ∨ 1, k)

(

sup
v∈[0,1]

|W (k)
v − w̃(k)

v | + sup
v∈[0,1/2]

∣

∣

∣

∣

∫ 1

0

s
1
2

−H (1 − vs)H− 3
2 d(W (k) − w̃(k))s

∣

∣

∣

∣

+ sup
v∈[0,2]

|G(k)
v |
)

(4.7)

where Xu − X̃u is defined in (4.6), ΨH is defined by

ΨH(u, k) := C′
H

{

u2H−3 if H ∈ (0, 1/2)
k1−2Hu4H−4 + u2H−3 if H ∈ (1/2, 1)

with C′
H > 0 and G(k) is given by

G(k)
v =

∫ 1∧v

0

KH(v + k − 1, s+ k − 1)d(W (k) − w̃(k))s.

In Subsections 4.1 and 4.2, we prove Proposition 4.1.

4.1 First case : u > 2

4.1.1 When k 6= 1

Lemma 4.1. Let k 6= 1. Then, for all u > 2,

|Xu − X̃u|2 6 e−α(u−2)|X2 − X̃2|2 + ΨH(u, k) sup
s∈[0,1]

|W (k)
s − w̃(k)

s |2

where ΨH is defined in Proposition 4.1.

Proof. Let u > 2. In the following inequalities, we make use of Hypothesis 2.1 on the function b and of
the elementary Young inequality 〈a, b〉 6 1

2

(

ε|a|2 + 1
ε |b|2

)

with ε = 2α. By (4.6),

d

du
|Xu − X̃u|2 = 2〈Xu − X̃u, b(Xu) − b(X̃u)〉 + 〈Xu − X̃u, σ

∫ 1

0

∂

∂u
KH(u + k − 1, s+ k − 1)d(W (k) − w̃(k))s〉

6 −2α|Xu − X̃u|2 + α|Xu − X̃u|2 +
|σ|2
2α

∣

∣

∣

∣

∫ 1

0

∂

∂u
KH(u + k − 1, s+ k − 1)d(W (k) − w̃(k))s

∣

∣

∣

∣

2

6 −α|Xu − X̃u|2 +
|σ|2
2α

∣

∣

∣

∣

∫ 1

0

∂

∂u
KH(u+ k − 1, s+ k − 1)d(W (k) − w̃(k))s

∣

∣

∣

∣

2

.

We then apply Gronwall’s lemma to obtain

|Xu−X̃u|2 6 e−α(u−2)|X2−X̃2|2+
|σ|2
2α

∫ u

2

e−α(u−v)

∣

∣

∣

∣

∫ 1

0

∂

∂v
KH(v + k − 1, s+ k − 1)d(W (k) − w̃(k))s

∣

∣

∣

∣

2

dv.

(4.8)
Now, we set for all v > 2,

ϕk(v) :=

∫ 1

0

∂

∂v
KH(v+k−1, s+k−1)d(W (k)−w̃(k))s = cH

∫ 1

0

(

v + k − 1

s+ k − 1

)H− 1
2

(v−s)H− 3
2 d(W (k)−w̃(k))s.

(4.9)

8



We apply an integration by parts to ϕk taking into account that W (k)
0 = w̃

(k)
0 = 0:

ϕk(v) = cH

(

v + k − 1

k

)H− 1
2

(v − 1)H− 3
2 (W (k)

1 − w̃
(k)
1 )

− cH(1/2 −H)

∫ 1

0

(v + k − 1)H− 1
2 (s+ k − 1)−H− 1

2 (v − s)H− 3
2 (W (k)

s − w̃(k)
s )ds

− cH(3/2 −H)

∫ 1

0

(

v + k − 1

s+ k − 1

)H− 1
2

(v − s)H− 5
2 (W (k)

s − w̃(k)
s )ds

=: cH(I1(v) + I2(v) + I3(v)). (4.10)

Recall that by (4.8), our goal here is to manage
∫ u

2

e−α(u−v)|ϕk(v)|2dv

6 3c2
H

(∫ u

2

e−α(u−v)|I1(v)|2dv +

∫ u

2

e−α(u−v)|I2(v)|2dv +

∫ u

2

e−α(u−v)|I3(v)|2dv

)

(4.11)

To control each term involving I1, I2 and I3 in (4.11), we will need the following inequality:

∫ u

2

e−α(u−v)k1−2H(v − 1 + k)2H−1(v − 1)2H−3dv

6 CH

{

k1−2H(u − 1)4H−4 + (u− 1)2H−3 for H > 1/2
(u − 1)2H−3 for H < 1/2

. (4.12)

Inequality (4.12) is obtained through Lemma 4.2 and the elementary inequalities (v − 1 + k)2H−1 6

(v − 1)2H−1 + k2H−1 if H > 1/2 and (v − 1 + k)2H−1 6 k2H−1 if H < 1/2.

Lemma 4.2. Let α, β > 0. Then, for all u > 2,

∫ u

2

e−α(u−v)(v − 1)−βdv 6 Cα,β(u − 1)−β.

Proof. It is enough to apply an integration by parts and then use that

sup
v∈[2,u]

e−α(u−v)(v − 1)−β−1 = max
(

e−α(u−2), (u− 1)−β−1
)

to conclude the proof.

It remains to show how the terms involving I1, I2 and I3 in (4.11) can be reduced to the term (4.12).
Let us begin with I1 which is straightforward:
∫ u

2

e−α(u−v)|I1(v)|2dv 6 |W (k)
1 − w

(k)
1 |2

∫ u

2

e−α(u−v)k1−2H(v − 1 + k)2H−1(v − 1)2H−3dv

6 sup
s∈[0,1]

|W (k)
s − w(k)

s |2
∫ u

2

e−α(u−v)k1−2H(v − 1 + k)2H−1(v − 1)2H−3dv. (4.13)

Then, using the definition of I2,
∫ u

2

e−α(u−v)|I2(v)|2dv

6 (1/2 −H)2

∫ u

2

e−α(u−v)(v − 1 + k)2H−1(v − 1)2H−3(k − 1)−2H−1

(∫ 1

0

|W (k)
s − w(k)

s |ds
)2

dv

6 CH sup
s∈[0,1]

|W (k)
s − w(k)

s |2
∫ u

2

e−α(u−v)k1−2H(v − 1 + k)2H−1(v − 1)2H−3dv. (4.14)
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Finally,
∫ u

2

e−α(u−v)|I3(v)|2dv

6 (3/2 −H)2

∫ u

2

e−α(u−v)(v − 1 + k)2H−1(v − 1)2H−5

(∫ 1

0

(s+ k − 1)
1
2

−H |W (k)
s − w(k)

s |ds
)2

dv

6 CH sup
s∈[0,1]

|W (k)
s − w(k)

s |2
∫ u

2

e−α(u−v)(v − 1 + k)2H−1(v − 1)2H−3

(∫ 1

0

(s+ k − 1)
1
2

−Hds

)2

dv

6 C′
H sup

s∈[0,1]

|W (k)
s − w(k)

s |2
∫ u

2

e−α(u−v)k1−2H(v − 1 + k)2H−1(v − 1)2H−3dv (4.15)

where the last inequality is given by the following fact: there exists CH > 0 such that for all k 6= 1,
sup

s∈[0,1]

(s+ k − 1)
1
2

−H 6 CHk
1
2

−H .

It remains to combine the three above inequalities (4.13), (4.14) and (4.15) with (4.12) to get the following
in (4.11):
∫ u

2

e−α(u−v)|ϕk(v)|2dv 6 CH sup
s∈[0,1]

|W (k)
s −w(k)

s |2
{

k1−2H(u− 1)4H−4 + (u− 1)2H−3 for H > 1/2
(u− 1)2H−3 for H < 1/2

.

Putting this inequality into (4.8) gives the result (we can replace u− 1 by u, the inequality remains true
when u > 2 up to a constant).

4.1.2 When k = 1

Lemma 4.3. Let k = 1. Then, for all u > 2,

|Xu − X̃u|2 6 e−α(u−2)|X2 − X̃2|2 + ΨH(u, 1) sup
v∈[0,1/2]

∣

∣

∣

∣

∫ 1

0

s
1
2

−H(1 − vs)H− 3
2 d
(

W (1) − w̃(1)
)

s

∣

∣

∣

∣

2

where ΨH is defined in Proposition 4.1.

Proof. The proof begins as in the proof of Lemma 4.1. We have through inequality (4.8):

|Xu − X̃u|2 6 e−α(u−2)|X2 − X̃2|2 +
|σ|2
2α

∫ u

2

e−α(u−v) |ϕ1(v)|2 dv (4.16)

with

ϕ1(v) = cHv
H− 1

2

∫ 1

0

s
1
2

−H(v − s)H− 3
2 d(W (1) − w̃(1))s

= cHv
H− 1

2 vH− 3
2

∫ 1

0

s
1
2

−H
(

1 − s

v

)H− 3
2

d(W (1) − w̃(1))s. (4.17)

Since for v > 2, vH− 1
2 is bounded when H < 1/2, we have

∫ u

2

e−α(u−v) |ϕ1(v)|2 dv 6 cH

∫ u

2

e−α(u−v)v(4H−4)∨(2H−3)

∣

∣

∣

∣

∫ 1

0

s
1
2

−H
(

1 − s

v

)H− 3
2

d(W (1) − w̃(1))s

∣

∣

∣

∣

2

dv

6 CH sup
v′∈[0,1/2]

∣

∣

∣

∣

∫ 1

0

s
1
2

−H (1 − v′s)
H− 3

2 d(W (1) − w̃(1))s

∣

∣

∣

∣

2 ∫ u

2

e−α(u−v)v(4H−4)∨(2H−3)dv.

Then, we use Lemma 4.2 in the previous inequality, which gives:

∫ u

2

e−α(u−v) |ϕ1(v)|2 dv 6 CH sup
v′∈[0,1/2]

∣

∣

∣

∣

∫ 1

0

s
1
2

−H (1 − v′s)
H− 3

2 d(W (1) − w̃(1))s

∣

∣

∣

∣

2

(u− 1)(4H−4)∨(2H−3).

This inequality combined with (4.16) concludes the proof (we can replace u − 1 by u, the inequality
remains true when u > 2 up to a constant).
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4.2 Second case : u ∈ [0, 2]

The idea here is to use Gronwall lemma in its integral form. By Hypothesis 2.1, b is L-Lipschitz so that:

|Xu − X̃u| 6 L

∫ u

0

|Xs − X̃s|ds+

∣

∣

∣

∣

∫ 1∧u

0

KH(u+ k − 1, s+ k − 1)d(W (k) − w̃(k))s

∣

∣

∣

∣

.

Then, for u ∈ [0, 2],

|Xu − X̃u| 6
∣

∣

∣

∣

∫ 1∧u

0

KH(u+ k − 1, s+ k − 1)d(W (k) − w̃(k))s

∣

∣

∣

∣

+

∫ u

0

∣

∣

∣

∣

∫ 1∧v

0

KH(v + k − 1, s+ k − 1)d(W (k) − w̃(k))s

∣

∣

∣

∣

eL(u−v)dv

6 e2L sup
v∈[0,2]

∣

∣

∣

∣

∫ 1∧v

0

KH(v + k − 1, s+ k − 1)d(W (k) − w̃(k))s

∣

∣

∣

∣

(4.18)

For all k > 1 and for all v ∈ [0, 2], we set

G(k)
v (W − w̃) =

∫ 1∧v

0

KH(v + k − 1, s+ k − 1)d(W (k) − w̃(k))s. (4.19)

The inequality (4.18) combined with Lemma 4.1 and Lemma 4.3 finally prove Proposition 4.1.

5 Conditional exponential moments of the martingale incre-

ments

5.1 Conditional moments of the martingale increments

Proposition 5.1. (i) There exists C, ζ > 0 such that for all k ∈ N
∗ and for all p > 2,

E[|Mk −Mk−1|p|Fk−1]1/p
6 C‖F‖Lipψn,k

(

ζp/2pΓ
(p

2

))1/p

a.s. (5.1)

(ii) There exists C, ζ > 0 such that for all k ∈ N
∗ and for all p > 2,

E[|M̃k − M̃k−1|p|Fk−1]1/p
6 C‖F̃‖Lipψ

′
T,k

(

ζp/2pΓ
(p

2

))1/p

a.s. (5.2)

where ψn,k :=
∑n−k+1

u=1

√

ΨH(u, k), ψ′
T,k :=

∫ T −k+1

0

√

ΨH(u ∨ 1, k)du and ΨH is defined in Propo-
sition 4.1.

To prove this result, we first need the following intermediate outcome.

Lemma 5.1. For all k ∈ N
∗, let G(k) be defined by (4.19). Then, for all p > 2, there exists C > 0 such

that

E[|Mk −Mk−1|p|Fk−1]1/p

6 3C‖F‖Lipψn,k



E

[

sup
v∈[0,1]

|W (1)
v − W̃ (1)

v |p
]1/p

+ E

[

sup
v∈[0,1/2]

∣

∣

∣

∣

∫ 1

0

s
1
2

−H (1 − vs)H− 3
2 d(W (1) − W̃ (1))s

∣

∣

∣

∣

p
]1/p

+E

[

sup
v∈[0,2]

|G(k)
v (W − W̃ )|p

]1/p


 a.s.
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Or equivalently, since W (k) and W̃ (k) are iid we can replace W (k) − W̃ (k) by
√

2W (k):

E[|Mk −Mk−1|p|Fk−1]1/p

6 3C
√

2‖F‖Lipψn,k



E

[

sup
v∈[0,1]

|W (1)
v |p

]1/p

+ E

[

sup
v∈[0,1/2]

∣

∣

∣

∣

∫ 1

0

s
1
2

−H (1 − vs)H− 3
2 dW (1)

s

∣

∣

∣

∣

p
]1/p

+E

[

sup
v∈[0,2]

|G(k)
v (W )|p

]1/p


 a.s.

where ψn,k =
∑n−k+1

u=1

√

ΨH(u, k) and ΨH is defined in Proposition 4.1.

The same occurs for M̃ instead of M by replacing F by F̃ and ψn,k by ψ′
T,k =

∫ T −k+1

0

√

ΨH(u ∨ 1, k)du.

Proof. For the sake of simplicity, assume that ‖F‖Lip = 1. By inequality (4.2), we have for all p > 2,

|Mk −Mk−1|p 6

(

∫

Ω

n−k+1
∑

u=1

|Xu − X̃u| PW (dw̃)

)p

.

Now, we use Proposition 4.1 and for the sake of clarity we set ‖W (k) − w̃(k)‖∞,[0,1] := sup
v∈[0,1]

|W (k)
v − w̃

(k)
v |,

A(W (k) − w̃(k)) := sup
v∈[0,1/2]

∣

∣

∣

∫ 1

0 s
1
2

−H (1 − vs)H− 3
2 d(W (k) − w̃(k))s

∣

∣

∣ and

Ck(W (k) − w̃(k)) := sup
v∈[0,2]

|G(k)
v (W − w̃)|. Then, by Jensen inequality,

|Mk −Mk−1|p

6 Cpψp
n,k

(∫

Ω

‖W (k) − w̃(k)‖∞,[0,1] +A(W (k) − w̃(k)) + Ck(W (k) − w̃(k)) PW (dw̃)

)p

6 3p−1Cpψp
n,k

[∫

Ω

‖W (k) − w̃(k)‖p
∞,[0,1] PW (dw̃) +

∫

Ω

(

A(W (k) − w̃(k))
)p

PW (dw̃)

+

∫

Ω

(

Ck(W (k) − w̃(k))
)p

PW (dw̃)

]

Recall that W (k) = (Ws+k−1 −Wk−1)s≥0 and thus W (k) is independent of Fk−1. Then,

E[|Mk −Mk−1|p|Fk−1]

≤ 3p−1Cpψp
n,kE

[∫

Ω

‖W (k) − w̃(k)‖p
∞,[0,1] PW (dw̃) +

∫

Ω

(

A(W (k) − w̃(k))
)p

PW (dw̃)

+

∫

Ω

(

Ck(W (k) − w̃(k))
)p

PW (dw̃)

∣

∣

∣

∣

Fk−1

]

≤ 3p−1Cpψp
n,kE

[∫

Ω

‖W (k) − w̃(k)‖p
∞,[0,1] PW (dw̃) +

∫

Ω

(

A(W (k) − w̃(k))
)p

PW (dw̃)

+

∫

Ω

(

Ck(W (k) − w̃(k))
)p

PW (dw̃)

]

We denote by F (k) the filtration associated to W (k), we rewrite

E [|Mk −Mk−1|p|Fk−1]

6 3p−1Cpψp
n,k

(

E

[

E

[

‖W (k) − W̃ (k)‖p
∞,[0,1]

∣

∣

∣F (k)
1

]]

+ E

[

E

[(

A(W (k) − W̃ (k))
)p∣
∣

∣F (k)
1

]]

+E

[

E

[(

Ck(W (k) − W̃ (k))
)p∣
∣

∣F (k)
1

]])

= 3p−1Cpψp
n,k

(

E

[

‖W (k) − W̃ (k)‖p
∞,[0,1]

]

+ E

[(

A(W (k) − W̃ (k))
)p]

+ E

[(

Ck(W (k) − W̃ (k))
)p])
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Using the elementary inequality (a+ b)1/p 6 a1/p + b1/p, we finally get :

E [|Mk −Mk−1|p|Fk−1]1/p

6 3Cψn,k

(

E

[

‖W (k) − W̃ (k)‖p
∞,[0,1]

]1/p

+ E

[(

A(W (1) − W̃ (1))
)p]1/p

+ E

[(

Ck(W (k) − W̃ (k))
)p]1/p

)

and the proof is over since W (k) and W̃ (k) have respectively the same distribution as W (1) and W̃ (1).
In the same way, we prove the result for M̃ by using (4.3) which gives

|M̃k − M̃k−1|p 6

(

∫

Ω

∫ T −k+1

0

|Xu − X̃u| PW (dw̃)

)p

and Proposition 4.1.

Proof of Proposition 5.1. With Lemma 5.1 in hand, we just need to prove that there exist ζ > 0 such
that for all k ∈ N

∗ and for all p > 2

E

[

sup
v∈[0,1]

|W (1)
v |p

]1/p

6

(

ζp/2pΓ
(p

2

))1/p

, (5.3)

E

[

sup
v∈[0,1/2]

∣

∣

∣

∣

∫ 1

0

s
1
2

−H (1 − vs)H− 3
2 dW (1)

s

∣

∣

∣

∣

p
]1/p

6

(

ζp/2pΓ
(p

2

))1/p

(5.4)

and E

[

sup
v∈[0,2]

|G(k)
v (W )|p

]1/p

6

(

ζp/2pΓ
(p

2

))1/p

. (5.5)

Condition (5.3) is given in Appendix A and condition (5.5) follows from Proposition B.2 since

E

[

sup
v∈[0,2]

|G(k)
v (W )|p

]1/p

6 2α′

HE

[

‖G(k)‖p
α′

H
,[0,2]

]1/p

where α′
H ∈ (0, 1) is defined in Proposition B.2. Hence, it remains to get (5.4). To this end, we set for

all v ∈ [0, 1/2],

G̃v :=

∫ 1

0

s
1
2

−H(1 − vs)H− 3
2 dW (1)

s .

Let 0 6 v′ < v 6 1/2, we have

E[|G̃v − G̃v′ |2] =

∫ 1

0

s1−2H [(1 − vs)H− 3
2 − (1 − v′s)H− 3

2 ]2ds

=
1

(3/2 −H)2

∫ 1

0

s1−2H

(∫ v

v′

(1 − us)H− 5
2 du

)2

ds.

Since for all u ∈ [0, 1/2] and for all s ∈ [0, 1] we have 1
2 6 1 − us 6 1, we deduce that

E[|G̃v − G̃v′ |2] 6 CH(v − v′)2

∫ 1

0

s1−2Hds =
CH

2 − 2H
(v − v′)2.

Hence, for all α ∈ (0, 1),

sup
06v′<v6 1

2

E[|G̃v − G̃v′ |2]1/2

|v − v′|α < +∞ (5.6)

Now, following carefully the proof of Proposition B.2 in Appendix B, one can show that (5.6) and the
fact that G̃ is a Gaussian process implies (5.4) since for all α ∈ (0, 1)

E

[

sup
v∈[0,1/2]

|G̃v|p
]1/p

6 2−α
E

[

‖G̃‖p
α,[0,1/2]

]1/p

+ E[|G̃0|p]1/p.

13



5.2 Proof of Proposition 2.1

We have the following result:

Proposition 5.2. (i) There exists C′, ζ > 0 such that for all k ∈ N
∗ and for all λ > 0,

E[exp(λ(Mk −Mk−1))|Fk−1] 6 exp
(

2λ2‖F‖2
Lipψ

2
n,kC

′ζ
)

a.s. (5.7)

(ii) There exists C′, ζ > 0 such that for all k ∈ N
∗ and for all λ > 0,

E[exp(λ(M̃k − M̃k−1))|Fk−1] 6 exp
(

2λ2‖F̃‖2
Lipψ

′2
T,kC

′ζ
)

a.s. (5.8)

where ψn,k :=
∑n−k+1

u=1

√

ΨH(u, k), ψ′
T,k :=

∫ T −k+1

0

√

ΨH(u ∨ 1, k)du and ΨH is defined in Propo-
sition 4.1.

Proof. Let us prove (i). From E[Mk − Mk−1|Fk−1] = 0 and Proposition 5.1, we immediately get the
result by using Lemma 3.1.

Let us now conclude the proof of Proposition 2.1 (i). By the decomposition (3.2) and Proposition 5.2
(i), we have the following recursive inequality :

E
[

eλMn
]

= E

[

eλMn−1E

[

eλ(Mn−Mn−1)
∣

∣

∣Fn−1

]]

≤ exp
(

2λ2‖F‖2
Lipψ

2
n,nC

′ζ
)

E
[

eλMn−1
]

which gives

E
[

eλMn
]

≤ exp

(

2λ2‖F‖2
LipC

′ζ

n
∑

k=1

ψ2
n,k

)

. (5.9)

Equation (5.9) combined with Lemma 5.2 (see below) finally proves Proposition 2.1 (i). The proof of
item (ii) is exactly the same.

Lemma 5.2. (i) Let n ∈ N
∗ and (ψn,k) be defined as in Proposition 5.1. There exists CH > 0 such

that

n
∑

k=1

ψ2
n,k 6 CH n2(H∨ 1

2 ).

(ii) Let T > 1 and (ψ′
T,k) be defined as in Proposition 5.1. There exists CH > 0 such that

⌈T ⌉
∑

k=1

ψ′2
T,k 6 CH T 2(H∨ 1

2 ).

Proof. (i) Recall that ψn,k =
∑n−k+1

u=1

√

ΨH(u, k) with

ΨH(u, k) := CH

{

u2H−3 if H ∈ (0, 1/2)
k1−2Hu4H−4 + u2H−3 if H ∈ (1/2, 1)

and CH > 0.
⊲ First case: H ∈ (0, 1/2). We have

n−k+1
∑

u=1

uH− 3
2 6

+∞
∑

u=1

uH− 3
2 < +∞.

Then,
n
∑

k=1

ψ2
n,k 6 CH n

14



which concludes the proof for H ∈ (0, 1/2).

⊲ Second case: H ∈ (1/2, 1). We have

n−k+1
∑

u=1

uH− 3
2 6

∫ n−k+1

0

tH− 3
2 dt =

1

H − 1/2
(n− k + 1)H− 1

2

and
n−k+1
∑

u=1

u2H−2
6

∫ n−k+1

0

t2H−2dt =
1

2H − 1
(n− k + 1)2H−1.

Then,
n
∑

k=1

ψ2
n,k 6 C1,H

n
∑

k=1

(n− k + 1)2H−1 + C2,H

n
∑

k=1

k1−2H(n− k + 1)4H−2

6 C1,H n2H + C2,H(n+ 1)2H 1

n+ 1

n+1
∑

k=1

(

k

n+ 1

)1−2H (

1 − k

n+ 1

)4H−2

.

Since
1

n+ 1

n+1
∑

k=1

(

k

n+ 1

)1−2H (

1 − k

n+ 1

)4H−2

−→
n→+∞

∫ 1

0

x1−2H(1 − x)4H−2dx < +∞

we finally get the result when H ∈ (1/2, 1).

(ii) Recall that ψ′
T,k =

∫ T −k+1

0

√

ΨH(u ∨ 1, k)du.
⊲ First case: H ∈ (0, 1/2). We have

∫ T −k+1

0

(u ∨ 1)H− 3
2 du 6 1 +

∫ +∞

1

uH− 3
2 du < +∞.

Then,
⌈T ⌉
∑

k=1

ψ′2
T,k 6 CH ⌈T ⌉ 6 C̃H T

which concludes the proof for H ∈ (0, 1/2).

⊲ Second case: H ∈ (1/2, 1). We have
∫ T −k+1

0

(u ∨ 1)H− 3
2 du = 1 +

1

H − 1/2
[(T − k + 1)H−1/2 − 1] 6

1

H − 1/2
(T − k + 1)H− 1

2

and
∫ T −k+1

0

(u ∨ 1)2H−2du = 1 +
1

2H − 1
[(T − k + 1)2H−1 − 1] 6

1

2H − 1
(T − k + 1)2H−1.

Then,

⌈T ⌉
∑

k=1

ψ′2
T,k 6 C1,H

⌈T ⌉
∑

k=1

(T − k + 1)2H−1 + C2,H

⌈T ⌉
∑

k=1

k1−2H(T − k + 1)4H−2

6 C1,H ⌈T ⌉T 2H−1 + C2,H(⌈T ⌉ + 1)2H 1

⌈T ⌉ + 1

⌈T ⌉+1
∑

k=1

(

k

⌈T ⌉ + 1

)1−2H (

1 − k

⌈T ⌉ + 1

)4H−2

.

Since

1

⌈T ⌉ + 1

⌈T ⌉+1
∑

k=1

(

k

⌈T ⌉ + 1

)1−2H (

1 − k

⌈T ⌉ + 1

)4H−2

−→
T →+∞

∫ 1

0

x1−2H(1 − x)4H−2dx < +∞

we finally get the result when H ∈ (1/2, 1).
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A Sub-Gaussianity of the supremum of the Brownian motion

Proposition A.1. Let (Wt)t>0 be a d-dimensional standard Brownian motion. There exist η, η′ > 0
such that

∀x > 0, P

(

sup
t∈[0,1]

|Wt| > x

)

6 η′e−ηx2

(A.1)

Consequently, for all p > 2,

E

[

sup
t∈[0,1]

|Wt|p
]

6
η′

2

(

1

η

)p/2

pΓ
(p

2

)

(A.2)

where Γ(x) :=
∫ +∞

0 e−uux−1du.

Proof.

sup
t∈[0,1]

|Wt| = sup
t∈[0,1]

(

d
∑

i=1

|W i
t |2
)1/2

=

(

sup
t∈[0,1]

d
∑

i=1

|W i
t |2
)1/2

6

(

d
∑

i=1

sup
t∈[0,1]

|W i
t |2
)1/2

6

d
∑

i=1

sup
t∈[0,1]

|W i
t |.

Therefore for all x > 0, we have

P

(

sup
t∈[0,1]

|Wt| > x

)

6 P

(

d
∑

i=1

sup
t∈[0,1]

|W i
t | > x

)

6

d
∑

i=1

P

(

sup
t∈[0,1]

|W i
t | > x

)

= d× P

(

sup
t∈[0,1]

|W 1
t | > x

)

.

Since sup
t∈[0,1]

|W 1
t | = max

(

sup
t∈[0,1]

(−W 1
t ), sup

t∈[0,1]

W 1
t

)

and (W 1
t )t>0

L
= (−W 1

t )t>0, we have

P

(

sup
t∈[0,1]

|Wt| > x

)

6 d

(

P

(

sup
t∈[0,1]

(−W 1
t ) > x

)

+ P

(

sup
t∈[0,1]

W 1
t > x

))

= 2d× P

(

sup
t∈[0,1]

W 1
t > x

)

.

By the reflection principle, we know that P

(

sup
t∈[0,1]

W 1
t > x

)

= 2P(W 1
1 > x) which induces finally that

P

(

sup
t∈[0,1]

|Wt| > x

)

6 4d P(W 1
1 > x) =

4d√
2π

∫ +∞

x

e− 1
2

s2

ds 6 Cde
− 1

4
x2

. (A.3)

Then, (A.2) follows from (A.1) by using the formula E[X ] =
∫ +∞

0 P(X > x)dx for non-negative random
variables and a simple change of variable.

B Uniform sub-Gaussianity of ‖G(k)‖α,[0,2]

In this section, we consider the following Gaussian processes: for all k ∈ N
∗,

∀v ∈ [0, 2], G(k)
v :=

∫ 1∧v

0

KH(v + k − 1, s+ k − 1)dWs (B.1)

where (Wt)t∈[0,T ] is a d-dimensional Brownian motion and KH is defined by (2.5).

Remark B.1. Since we are interested in the law of G(k), we have replaced W (k) by W in the expression
of G(k) given by (4.19).

First, we have the following control on the second moment of G(k)-increments.
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Proposition B.1. There exists CH > 0 such that for all k ∈ N
∗ and for all 0 6 v′ < v 6 2,

E

[

∣

∣

∣G(k)
v −G

(k)
v′

∣

∣

∣

2
]

6 CH |v − v′|2αH (B.2)

with αH :=

{

H if H < 1/2
H
2 if H > 1/2

.

Proof. Let 0 6 v′ < v 6 2. Then,

G(k)
v −G

(k)
v′

=

∫ 1∧v′

0

KH(v + k − 1, s+ k − 1) −KH(v′ + k − 1, s+ k − 1)dWs +

∫ 1∧v

1∧v′

KH(v + k − 1, s+ k − 1)dWs

=

∫ 1∧v′

0

(∫ v

v′

∂

∂u
KH(u+ k − 1, s+ k − 1)du

)

dWs +

∫ 1∧v

1∧v′

KH(v + k − 1, s+ k − 1)dWs (B.3)

with
∂

∂u
KH(u + k − 1, s+ k − 1) = cH

(

u+ k − 1

s+ k − 1

)H− 1
2

(u− s)H− 3
2 . (B.4)

Then, we deduce the following expression for the moment of order 2:

E

[

|G(k)
v −G

(k)
v′ |2

]

=

∫ 1∧v′

0

(∫ v

v′

∂

∂u
KH(u+ k − 1, s+ k − 1)du

)2

ds+

∫ 1∧v

1∧v′

KH(v + k − 1, s+ k − 1)2ds

=: I1(v, v′) + I2(v, v′). (B.5)

Now, let us distinguish the two cases: k > 1 and k = 1:

⊲ First case: k > 1

We begin with the first integral in (B.5), namely I1(v, v′): let us note that in the expression (B.4)

sup
k>1

sup
u,s∈[0,2]

(

u+ k − 1

s+ k − 1

)H− 1
2

< +∞.

Hence,

I1(v, v′) 6 CH

∫ 1∧v′

0

(∫ v

v′

(u− s)H− 3
2 du

)2

ds

=
CH

(H − 1/2)2

∫ 1∧v′

0

[

(v − s)H− 1
2 − (v′ − s)H− 1

2

]2

ds

6
CH

(H − 1/2)2

∫ v′

0

[

(v − s)H− 1
2 − (v′ − s)H− 1

2

]2

ds

6 C′
H

{

(v − v′)2H if H < 1/2
(v − v′)H if H > 1/2

. (B.6)

and the last inequality is given by the following estimate:

Lemma B.1. There exists C̃H > 0 such that for all 0 6 v′ < v 6 2,

∫ v′

0

[

(v − s)H− 1
2 − (v′ − s)H− 1

2

]2

ds 6 C̃H

{

(v − v′)2H if H < 1/2
(v − v′)H if H > 1/2

.
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Proof. First, we easily have

∫ v′

0

[

(v − s)H− 1
2 − (v′ − s)H− 1

2

]2

ds =
1

2H

[

v2H + v′ 2H − (v − v′)2H
]

− 2

∫ v′

0

[(v − s)(v′ − s)]H− 1
2 ds.

Now, since

[(v − s)(v′ − s)]H− 1
2 >

{

(v − s)2H−1 if H < 1/2
(v′ − s)2H−1 if H > 1/2

we get after some computations

∫ v′

0

[

(v − s)H− 1
2 − (v′ − s)H− 1

2

]2

ds 6
1

2H

{

v′ 2H − v2H + (v − v′)2H if H < 1/2
v2H − v′ 2H − (v − v′)2H if H > 1/2

.

Moreover, when H > 1/2, for all 0 6 v′ < v 6 2,

v′ 2H − v2H + (v − v′)2H = (vH − v′ H)(vH + v′ H) − (v − v′)2H

= (v − v′)H
(

vH + v′ H − (v − v′)H
)

6 CH(v − v′)H

and when H < 1/2, v′ 2H − v2H < 0. So finally, we have the desired result.

We can now move on the second term in (B.5), namely I2(v, v′). By Theorem 3.2 in [3], we have the
following upper bound

I2(v, v′) 6 c2
H

∫ 1∧v

1∧v′

(s+ k − 1)−2|H− 1
2 |(v − s)

−2( 1
2

−H)
+ds

where x+ = max(x, 0). Then, since sup
k>1

sup
s∈[0,2]

(s+ k − 1)−2|H− 1
2 | < +∞, we have

I2(v, v′) 6 CH

∫ 1∧v

1∧v′

(v − s)
−2( 1

2
−H)

+ds

= CH(1 ∧ v − 1 ∧ v′)2(H∧ 1
2 )

6 CH(v − v′)2(H∧ 1
2 )

6 C̃H

{

(v − v′)2H if H < 1/2
(v − v′)H if H > 1/2

. (B.7)

By using (B.6) and (B.7) in (B.5), we end the proof of Proposition B.1 for k > 1.

⊲ Second case: k = 1

Let us divide this part of the proof into three new cases:
First, consider 0 6 v′ < v 6 1, then G(1) coincides in law with the fractional Brownian motion:

E

[

|G(1)
v −G

(1)
v′ |2

]

= (v − v′)2H .

Secondly, for 1 6 v′ < v 6 2, by (B.5):

E

[

|G(1)
v −G

(1)
v′ |2

]

=

∫ 1

0

(∫ v

v′

∂

∂u
KH(u+ k − 1, s+ k − 1)du

)2

ds

6

∫ v′

0

(∫ v

v′

∂

∂u
KH(u+ k − 1, s+ k − 1)du

)2

ds+

∫ v

v′

KH(v + k − 1, s+ k − 1)2ds

= (v − v′)2H .
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Finally, if 0 6 v′ < 1 6 v 6 2, we get the following by using the two previous cases:

E

[

|G(1)
v −G

(1)
v′ |2

]

6 2E
[

|G(1)
v −G

(1)
1 |2

]

+ 2E
[

|G(1)
1 −G

(1)
v′ |2

]

6 2
(

(v − 1)2H + (1 − v)2H
)

6 4(v − v′)2H .

This inequality concludes the proof of Proposition B.1 for k = 1.

We can now state the result of uniform Sub-Gaussianity:

Proposition B.2. There exist η, η′ > 0 such that for all k ∈ N
∗,

∀x > 0, P

(

‖G(k)‖α′

H
,[0,2] > x

)

6 η′e−ηx2

(B.8)

with 0 < α′
H < αH and αH is defined in Proposition B.1.

Consequently, for all k ∈ N
∗ and for all p > 2,

E

[

‖G(k)‖p
α′

H
,[0,2]

]

6
η′

2

(

1

η

)p/2

pΓ
(p

2

)

(B.9)

where Γ(x) :=
∫ +∞

0
e−uux−1du.

Proof. Let us first note that since G(k) is a centered Gaussian process (for all k ∈ N
∗), there exists C > 0

such that for all p > 1 and for all 0 6 v′ < v 6 2:

E

[∣

∣

∣G(k)
v −G

(k)
v′

∣

∣

∣

p]1/p

6 C
√
p E

[

∣

∣

∣G(k)
v −G

(k)
v′

∣

∣

∣

2
]1/2

.

Then, we obtain through Proposition B.1,

∀p > 1, sup
06v′<v62

E

[∣

∣

∣G
(k)
v −G

(k)
v′

∣

∣

∣

p]1/p

|v − v′|αH
6 C̃H

√
p. (B.10)

Now by Theorem A.19 in [5], (B.10) implies that for all 0 < α′
H < αH , there exists η1 > 0 such that

E

[

exp
(

η1‖G(k)‖2
α′

H
,[0,2]

)]

< +∞

and by Lemma A.17 in [5] (characterization of Gaussian integrability), this condition is equivalent to the
existence of η, η′ > 0 (depending only on η1) such that (B.8) is true.
Then, (B.9) follows from (B.8) by using the formula E[X ] =

∫ +∞

0
P(X > x)dx for non-negative random

variables and a simple change of variable.
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