
HAL Id: hal-01975396
https://hal.science/hal-01975396

Submitted on 17 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QM4MAS: a quality model for multi-agent systems
Toufik Marir, Farid Mokhati, Hassina Bouchlaghem-Seridi, Youghourta Acid,

Maroua Bouzid

To cite this version:
Toufik Marir, Farid Mokhati, Hassina Bouchlaghem-Seridi, Youghourta Acid, Maroua Bouzid.
QM4MAS: a quality model for multi-agent systems. International Journal of Computer Applications
in Technology, 2016, 54. �hal-01975396�

https://hal.science/hal-01975396
https://hal.archives-ouvertes.fr

Int. J. Computer Applications in Technology, Vol. 54, No. 4, 2016 297

Copyright © 2016 Inderscience Enterprises Ltd.

QM4MAS: a quality model for multi-agent systems

Toufik Marir*
Department of Mathematics and Computer Science,
University of Oum El Bouaghi,
Research Laboratory on Computer Science’s
Complex Systems (RELA(CS)2) Laboratory,
B.P. 358 – 04000 Oum El Bouaghi, Algeria
and
Department of Computer Science,
University of Annaba,
BP 12 – 23000 – Annaba, Algeria
Email: marir.toufik@yahoo.fr
*Corresponding author

Farid Mokhati
Department of Mathematics and Computer Science,
University of Oum El Bouaghi,
Research Laboratory on Computer Science’s
Complex Systems (RELA(CS)2) Laboratory,
B.P. 358 – 04000 Oum El Bouaghi, Algeria
Email: mokhati@yahoo.fr

Hassina Bouchlaghem-Seridi
Department of Computer Science,
LABGED Laboratory,
University of Annaba,
BP 12 – 23000 – Annaba, Algeria
Email: seridi@labged.net

Youghourta Acid
Department of Mathematics and Computer Science,
University of Oum El Bouaghi,
B.P. 358-04000 Oum El Bouaghi, Algeria
Email: acid_youghourta@hotmail.com

Maroua Bouzid
University of Caen Basse-Normandie,
Campus Côte de Nacre, Boulevard du Maréchal Juin,
BP 5186 – 14032 Caen Cedex, France
Email: maroua.bouzid-mouaddib@unicaen.fr

Abstract: Multi-agent systems (MASs) are being increasingly used in complex and distributed
applications development. Such applications should satisfy the requirements of users in terms of
quality. Accordingly, it is important to assess the quality of such systems. In fact, several metrics
have been proposed to assess different aspects of multi-agent systems. However, the lack of
comprehensive quality model for multi-agent applications that combines the software’s
characteristics with the proposed metrics limits the usefulness of such metrics. In this paper, we
propose an overall quality model for multi-agent-based software, called QM4MAS. An overall
quality model gives a global view of the quality showing the relationships between its
characteristics. The use of QM4MAS has two main objectives: 1) It allows defining and
assessing the MAS quality; 2) it facilitates the maintenance of software product (high quality
software is easier to maintain). The proposed model has been applied to JADE applications
through a set of metrics. The assessment of JADE’s proposed metrics can be done automatically
using a tool we developed for this purpose.

298 T. Marir et al.

Keywords: quality assurance; quality model; multi-agent systems; MASs; ISO 9126; JADE
platform; dynamic metrics.

Reference to this paper should be made as follows: Marir, T., Mokhati, F.,
Bouchlaghem-Seridi, H., Acid, Y. and Bouzid, M. (2016) ‘QM4MAS: a quality model for
multi-agent systems’, Int. J. Computer Applications in Technology, Vol. 54, No. 4, pp.297–310.

Biographical notes: Toufik Marir is a Lecturer at the Department of Mathematics and Computer
Science of The University of Oum El Bouaghi in Algeria. He holds the Magister in Computer
Science (Artificial Intelligence) from the University of Khenchela (Algeria) in 2009 and the
Doctorate in Science in Computer Science from the University of Annaba (Algeria) in 2015.
Currently, he is a member of the team Distributed-Intelligent Systems Engineering (DISE) at the
ReLa(CS)2 Laboratory. His main areas of interest include agent-oriented software engineering,
software quality and formal methods.

Farid Mokhati is a Professor of Computer Science at the Department of Mathematics and
Computer Science of the University of Oum El-Bouaghi in Algeria. He holds a Habilitation à
Diriger des Recherches (HDR), in Computer Science (Distributed Artificial Intelligence) from
the University of Annaba in Algeria. Currently, he is the Head of the team Distributed-Intelligent
Systems Engineering (DISE) at the ReLa(CS)2 Laboratory. His main areas of interest include
object and agent-oriented software engineering and formal methods.

Hassina Bouchlaghem-Seridi is a Professor of Computer Science at the Department of Computer
Science of the University of Annaba in Algeria. She received her Master’s in Computer Science
and Engineering from Badji Mokhtar University in 1997 and PhD in Computer Science and
Engineering in 2006. Currently, she is the Head of the team ‘TEL, Data mining and Web
Technology’ at LabGED Laboratory. She has broad interests in information system on the web
and especially service web, context, semantic, knowledge management, e-learning application,
recommender systems and social web.

Youghourta Acid is a Software Development Engineer. She received her Master in Computer
Science (Distributed Systems) from the University of Oum El Bouaghi in Algeria. Her main
areas of interest include agent-oriented software engineering and quality models.

Maroua Bouzid received her diploma of ‘Ingénieur d’état’ in Computer Science from the
University of Constantine (Algeria) in 1990 and her MSc degree from the University on Nancy 1
(France) in 1991 as well as her PhD degree in 1995 in Temporal Reasoning. She obtained
her HDR (habilitation to supervise research) from the University of Caen (France) in 2006 in
Spatio-Temporal Reasoning. From 1996 to 2002, she was an Associate Professor at The
University of Artois in Lens (France), and from 2002 to 2009, she was an Associate Professor at
The University of Caen. Since 2009, she is a Professor at the University of Caen in the Computer
Science Department.

1 Introduction

The quality assurance of software products is one of the
ultimate goals of software engineering. However, the
software quality remains a complex concept. In order to
understand and study the complex concepts, we often use
models. In the literature, several quality models have been
proposed like McCall et al. (1977) model and ISO-9126
model (ISO, 2001). The ISO-9126 standard defined the
software quality model as “the set of characteristics and the
relationships between them which provide the basis for
specifying quality requirements and evaluating quality”
(ISO, 2001). Nevertheless, it is important to distinguish the
software quality models according to their purposes. So, a
software quality model can be used to define, assess and/or
predict quality (Deissenboeck et al., 2009). In fact, the
prediction is used also for other purposes. As example, the
prediction can address the cost (Kaushik et al., 2013), the
fault proneness (Singh et al., 2014) or the level of severity
faults (Singh et al., 2013).

Since the advent of the first models of software quality
before 30 years, software engineering has undergone several

evolutions. In fact, several software development paradigms
have been proposed. Furthermore, specificities of each
software development paradigm require the development of
its own quality model. Hence, we can find in the literature
several models for specific software paradigms, like
object-oriented software (Alonso et al., 1998; Bansiya and
Davis, 2002) or service-oriented software (Goeb and
Lochmann, 2011).

Undoubtedly, multi-agent paradigm is one of the best
and most applied software paradigms for complex and
distributed systems development. However, few works
have focused on the quality of agent-oriented software.
Moreover, the proposed approaches in the quality of
agent-oriented software target to develop measurements of
some characteristics of agent-oriented software (Dumke
et al., 2010). According to Alonso et al. (2009), up till
now there is not a comprehensive quality model for
agent-oriented software. In order to define and assess
multi-agent applications quality, we propose an overall
quality model called QM4MAS. The proposed quality
model gives a global view of the quality of multi-agent
systems (MASs) which allows the presentation of its

 QM4MAS: a quality model for multi-agent systems 299

multi-dimensional nature. Moreover, applying this model to
MAS applications can also facilitate their maintenance
process (high quality software is easier to maintain). To
validate our quality model, we developed a visual tool
allowing assessing JADE applications quality through a set
of proposed metrics.

The remainder of this paper is organised as follows:
some related works are presented in Section 2 followed
by the presentation of our proposed quality model
(in Section 3). Section 4 is devoted to present the
application of our quality model on JADE applications and
the presentation of our developed tool. Section 5 gives some
conclusions and future work directions.

2 Related work

Quality assurance is a hard task in all software projects
whatever the software development paradigm is. Indeed, the
quality models play a central role for understanding and
evaluating the software quality. Thus, the hierarchical
models, like factors-criteria-metrics (for FCM) model of
McCall et al. (1977), is a well accepted technique for
modelling the software quality (Lincke and Löwe, 2006).

In the multi-agent paradigm, very few works have
proposed specific metrics to assess agent-oriented software
quality. In fact, several approaches adapt procedural and
object-oriented measures for such a purpose (Alonso et al.,
2009). An overview of proposed multi-agent measurements
is presented in Dumke et al. (2010).

In order to develop a quality model for agent-oriented
software, Alonso et al. (2008, 2009, 2010) proposed a series
of works that address different aspects of MASs. First of all,
Alonso et al. (2008) identified six characteristics of MASs:
social ability, autonomy, pro-activity, reactivity, mobility,
intelligence, and adaptability. Then, they decomposed the
social ability into three attributes: communication,
cooperation and negotiation. For each attribute, the authors
proposed a set of metrics. For example, the average message
size (AMS) can be used to measure the communication
attribute. Indeed, the social ability of MASs, especially the
communication, has been targeted in other works like the
metrics proposed by Gutiérrez and García-Magariño (2009)
for detecting the undesirable communication patterns.

Considering the autonomy as one of the most important
features of agents, Alonso et al. (2009) proposed a set of
metrics to evaluate agent’s autonomy. The authors consider
autonomy as a characteristic composed of three attributes:
self-control, functional independence and evolution
capability. Each attribute is measured using a set of
proposed metrics.

García-Magariño et al. (2010) adapted some
object-oriented metrics to evaluate certain quality attributes
of MAS architectures. Taking inspiration from McCall’s
et al. (1977) approach, the authors proposed three attributes
for architectural design quality: extensibility, modularity
and complexity. Obviously, a set of metrics has been
proposed to evaluate each attribute. For example, the

extensibility attribute can be evaluated using the cohesion
and coupling metrics.

According to the above classification of quality models,
all the cited approaches have the same purpose: assess the
quality of based agent software. However, each approach
addressed only a few characteristics of multi-agent
paradigm. Despite the importance of using metrics to assess
some characteristics of MASs, like communication
(Gutiérrez and García-Magariño, 2009) and architectural
design (García-Magariño et al., 2010), the lack of an overall
quality model for such software limits the utility of the
proposed metrics owing to the multi-dimensional nature of
the quality concept.

The approaches proposed by Alonso et al. (2008, 2009,
2010) attempt to develop an overall quality model for MASs
by examining each characteristic alone then the aggregation
of all examined characteristics. However, this method
prevents the authors to link the agent paradigm
characteristics (like autonomy and social ability) with the
high-level software characteristics (such as reliability and
efficiency). According to Alonso et al. (1998), and Bansiya
and Davis (2002), high-level software characteristics
presented in well-known software quality models [like
McCall et al. (1977) model and ISO-9126 model] can be
reused whatever the software paradigm is. In order to bridge
this gap, we present in this paper an overall quality model
which links the high-level software characteristics of
ISO-9126 model with agent paradigm characteristics.

Because of the diversity of implementation paradigms
of MASs (such as object-oriented paradigm and
knowledge-based systems, etc.) on the one hand, and their
various programming languages on the other hand, we
believe that the proposition of a metric must be made by
specifying the paradigm or implementation language that
supports the proposed metric. In our works, the proposed
metrics are specified for the JADE platform.

Table 1 Summary of the main related works

Work Examined
characteristic Deficiencies

Alonso et al.
(2008)

The social
ability

• There is no global view
of the quality concept.

• The relationships
between high-level
quality characteristics
(like reliability) and the
agent characteristics
(like autonomy) are not
established.

• Some metrics are
closely depended to the
implementation
paradigm without
specify the specificities
of each one.

• The measure methods
are not specified.

Alonso et al.
(2009)

The
autonomy

Alonso et al.
(2010)

The
pro-activity

García-Magariño
et al. (2010)

The MAS
architecture

Several approaches propose different forms of complexity
(structural and behavioural complexity) as metrics of

300 T. Marir et al.

autonomy (Alonso et al., 2009). However, the relationship
between autonomy and complexity is not clear. A simple
agent can achieve its goal without the intervention of a third
party whereas a complex agent may request the assistance
of another agent to achieve its objective. Giving a global
view of quality, our proposed quality model made clear the
relationships between quality characteristics and the agent
paradigm characteristics.

Table 1 makes clear the differences between these
works and their deficiencies. These deficiencies are
common to all the presented works.

3 Quality model for MASs

Hierarchical quality models represent a well-accepted
means to understand, define and assess software quality.
More than a standard software quality model, ISO-9126
(ISO, 2001) has many advantages compared to other quality
models (Behkamal et al., 2009). In fact, several approaches
customise the ISO-9126 quality model to support specific
software paradigms (Bansiya and Davis, 2002; Lee and Lee,
2006; Behkamal et al., 2009). The proposed model, called
QM4MAS, is an extension of ISO-9126 quality model to
support MASs.

Figure 1 The meta-model of QM4MAS

As we mentioned above, a quality model is presented as a
set of characteristics and the relationships between them
(ISO, 2001). Before starting the development of a quality
model, it is required to specify its structure in a meta-model.
The quality meta-model defines precisely the model
elements and their relationships in order to prevent
ambiguous and simplify further refine (Deissenboeck et al.,
2009). Our quality model is based on the quality
meta-model presented in Figure 1. In fact, this quality
meta-model is inspired from the structure of ISO-9126
quality model. Hence, our quality model is composed of
several characteristics, and each characteristic is affected by
several sub-characteristics. In turn, each sub-characteristic
is assessed by several metrics. As it is defined by
ISO-9126 quality model (ISO, 2001), a metric refers also to
measurement method and measurement scale. By
contrast, we have not followed the ISO-9126 quality
model regarding the cardinality of the relationship

characteristics-sub-characteristics. In our quality model, a
sub-characteristic can affect several characteristics. Taking
as an example, the modularity as a sub-characteristic in our
quality model, it can affect the maintainability and
reusability characteristics.

Hierarchical quality models suffer from the ambiguity
due to the lack of precise criteria for the classification of
model elements in characteristics and sub-characteristics
(Deissenboeck et al., 2009). In order to prevent this
drawback in the proposed quality model, we followed
the IEEE Standard definition to software quality
metrics methodology (IEEE, 1998). Thus, a quality
characteristic [called in IEEE (1998) quality factor] is “a
management-oriented attribute of software that contributes
to its quality”. In contrast, a quality sub-characteristic
[called in (IEEE, 1998) a quality sub-factor] is the
decomposition of a quality factor to its technical
components. Each metric in the third level of our quality
model is “a function whose inputs are software data and
whose output is a single numerical value that can be
interested as the degree to which the software possesses a
given quality attribute” (IEEE, 1998).

3.1 The QM4MAS characteristics identification

ISO-9126 quality model is the result of standardisation of
software quality models started by the International
Organization for Standardization (ISO) in 1985. The model
specifies six characteristics (functionality, reliability,
usability, efficiency, maintainability and portability)
applicable to every kind of software, including computer
programs and data contained in firmware (ISO, 2001).
Independent to any kind of software, we think that the
existence of all cited characteristics in our model is very
important.

Quite a long time ago, Dromey (1995) remarked that the
reusability is omitted from the ISO-9126 quality
characteristics despite its importance. In fact, reusability is
“the degree to which a software module or other work
product can be used in more than one computer program or
software system” (IEEE, 1990). Consequently, the
reusability characteristic can be viewed as an important
quality characteristic for the development and maintenance
team.

One reason for increasing the use of intelligent agents to
develop complex software is their ability to produce flexible
behaviour (Wooldridge, 2009). By “flexibility, we mean,
the ability of the agent to change its behaviour according to
its actual situation to satisfy its objectives” (Kiren, 2006).
Despite that the IEEE Standard Glossary of Software
Engineering Terminology (IEEE, 1990) defined the
adaptability and the flexibility as synonyms; we choose to
consider the flexibility as a quality characteristic and
adaptability as a sub-characteristic. Our choice is justified
by the difference between characteristics and
sub-characteristics cited previously. Indeed, the flexibility,
as a change in behaviour, can be done using several
technical mechanisms, such as reactivity, pro-activity,
interaction, adaptation or learning.

 QM4MAS: a quality model for multi-agent systems 301

The first level of QM4MAS is composed of
eight characteristics: functionality, reliability, usability,
efficiency, maintainability and portability, reusability and
flexibility. In our opinion, these minor changes of the
ISO-9126 quality characteristics preserve the essence of the
ISO-9126 quality model because its authors (ISO, 2001)
cited that the characteristics must:

1 cover together all the software quality aspects

2 be only six to eight for reason of clarity and handling

3 describe the quality with the minimum of overlap.

Table 2 gives the definitions of our quality model
characteristics.

Table 2 The QM4MAS’s characteristics and their definitions

Characteristics Definitions

Functionality The capability of the software product to
provide functions which meet stated and
implied needs when the software is used
under specified conditions (ISO, 2001).

Reliability The capability of the software product to
maintain a specified level of performance
when used underspecified conditions (ISO,
2001).

Usability The capability of the software product to be
understood learned, used and attractive to the
user, when it is used under specified
conditions (ISO, 2001).

Efficiency The capability of the software product to
provide appropriate performance, relative to
the amount of resources used, under stated
conditions (ISO, 2001).

Maintainability The capability of the software product to be
modified. Modifications may include
corrections, improvements or adaptation of
the software to changes in environment, and
in requirements and functional specifications
(ISO, 2001).

Portability The capability of the software product to be
transferred from one environment to another
(ISO, 2001).

Reusability The capability of a software module or other
work product to be used in more than one
computer program or software system (IEEE,
1990).

Flexibility The capability of the software product to
change its behaviour according to its actual
situation to satisfy its objectives (Kiren,
2006).

3.2 The QM4MAS sub-characteristics identification

The ISO-9126 quality model decomposes the quality
characteristics into a set of sub-characteristics. However, the
list of sub-characteristics is not exhaustive. As is suggested
by several authors (Radulovic, 2011), ISO-9126
sub-characteristics can be customised in order to take into
account the particularities of some software products. In
fact, the customising of the defined sub-characteristics can

be done in several ways (Radulovic, 2011): adding
some sub-characteristics, redefining some existed
sub-characteristics or re-establishing the relationships
between characteristics and sub-characteristics. In
QM4MAS, we customised the defined ISO-9126
sub-characteristics by taking into account the agent-oriented
paradigm features.

Table 3 The sub-characteristics added to ISO-9126 to support
agent-oriented software

Sub-characteristic The definition

Autonomy The ability of the agent to operate without
the intervention of humans or other agents
(Dumke et al., 2010)

Reactivity The ability of the agent to perceive its
environment and generate instant
responses to possible occurred changes
(Dumke et al., 2010)

Pro-activity The ability of the agent to exhibit
goal-oriented behaviour (Dumke et al.,
2010)

Social ability
(Interaction)

The ability of the agent to affect other
agents to satisfy their designed objectives
(Dumke et al., 2010)

Adaptability The ability of the agent to change its
structure or their goals according to anew
situation (Rejeb, 2005)

Rationality The ability of the agent to control its
decision to generate optimal behaviour
(Carlin and Zilberstein, 2012)

Specialisation
(role)

The task assigned to a specific individual
within a set of responsibilities given to a
group of individuals (Campbell and Wu,
2011)

Granularity The degree of the agent complexity
(Dumke et al., 2010)

Organisation The collection of roles, that stand in
certain relationships to one another, and
that take part in systematic
institutionalised patterns of interactions
with other roles (Wooldridge, 2009)

Environment Is the space in which agents interact with
resources and other agents (Weyns et al.,
2005)

Modularity The degree to which a computer program
is composed of discrete components such
that a change to one component has
minimal impact on other components
(IEEE, 1990)

Although there is no consensus definition of the agent
concept, the revision of the specialised literature (Alonso
et al., 2008; Dumke et al., 2010; Wooldridge, 2009) allows
us to draw the basic features of agent and MASs, namely:
the autonomy, the reactivity, the pro-activity, the social
ability (interaction), the environment, the adaptability, the
rationality, the role (specialisation), the granularity and the
organisation. Hence, the cited properties of the
agent-oriented software can be added to the ISO-9126
quality model as sub-characteristics. Nevertheless, two

302 T. Marir et al.

changes should be done to ISO-9126 sub-characteristics to
avoid overlapping:

• The interoperability in the ISO-9126 quality model
should be replaced by the interaction in our quality
model because they have the same definition and the
interaction notion is more suitable for agent-oriented
software.

• The adaptability in the ISO-9126 quality model should
be redefined according to the adaptability in the agent
context. In addition, it seems important to distinguish
the flexibility from adaptability. In fact, the flexibility,
which is the ability of the agent to change its behaviour
to satisfy its objectives, can be done by several
mechanisms like the reactivity, the social ability
(Wooldridge, 2009) or the adaptability (Rejeb, 2005).
The learn-ability is a specific kind of the adaptability
(dynamic adaptation) (Rejeb, 2005).

Moreover, we think that the modularity as a
sub-characteristic is omitted in the ISO-9126 quality model.
In fact, the modularity is an important technical concept
which affects several software quality characteristics
like: reusability and maintainability. Hence, a modular
development of agents can significantly increase its quality.

Table 3 gives the added and adapted sub-characteristics
to ISO-9126 quality model to support the agent-oriented
software and their definitions. Indeed, other
sub-characteristics can be added to support more specific
kinds of agent (like mobility to support mobile agent).

3.3 The relationships between characteristics and
sub-characteristics

The third step to develop our quality model for
multi-agent systems (QM4MAS) consists in establishing the
relationships between characteristics and sub-characteristics.
As it is presented in the meta-model of our quality model,
characteristics and sub-characteristics are related by
affectation relation. So, a characteristic connected to a
sub-characteristic indicates that the first is affected by the
second. Naturally, the relationships proposed in ISO-9126
quality model should be preserved because the
agent-oriented software is, primarily, software. However,
these relationships should be extended to cover the added
sub-characteristics. According to Dromey (1995), it is
difficult to establish the relationships between
characteristics and sub-characteristics because each
characteristic is affected by almost all the
sub-characteristics. For example, all the technical aspects of
software can affect the maintainability characteristic.
Because of that, and in order to product an understandable
quality model, only the important relationships are taken
into consideration in QM4MAS quality model. The
following section explains how we connected each
characteristic to a set of sub-characteristics. Obviously, we
use the notions (the characteristics and the
sub-characteristics) as they are defined in the above
sections. Table 4 gives the overall of these relationships.

• Functionality

The functionality of software refers to the achievement
of their stated and implied needs. Agent-oriented
software operates in two different levels to satisfy these
needs: the agent level and the MAS level. In the first
level, the agent attempts to satisfy its goals in an
optimal way even in the lack of the intervention of
other agents. So, it seems clear that the autonomy
and the rationality of the agent are the key
sub-characteristics that affect the functionality in the
agent level. In addition, the interaction between agents
allows the satisfaction of the MAS needs. Indeed, the
social ability (like the coordination, cooperation and
negotiation) is the central sub-characteristic that affects
the functionality in the MAS level.

• Reliability

The reliable software can remain operational even with
the existence of errors. We think that the main principle
to develop reliable software is preventing the errors
propagation in order to limit their consequences. In
agent-oriented software several techniques can limit the
propagation of errors. First of all, if interaction is
restricted between agents, potential failed agents cannot
affect the functionality of other agents. Consequently,
the restricted interaction can increase the reliability of
the whole MAS. In addition, the autonomy allows the
agent to operate without the intervention of other
agents. Then, the autonomy allows the agent to be
insensible to the mistakes made by other agents.
Moreover, a well-developed agent can avoid potential
failures from one of its parts. It is well-known that the
modularity limits the propagation of errors. Hence, a
modular agent can remain operational if an error affects
a module without influence on other modules. In other
cases, an agent makes use of the adaptability to change
its behaviour, its structure or its goals if an error
prevents the execution of the initial behaviour or the
achievement of the initial goals.

• Efficiency

The efficiency means a minimum use of resources. We
can consider three kinds of resources that can be used
by MASs: the execution time, the memory space and
the communication bandwidth. In order to limit the
communication bandwidth use, the interaction within
the MAS should be at the least possible. In fact, the
organisation of a MAS plays a significant role to limit
the interaction between agents.

The granularity can be considered in terms of
complexity of behaviours which influences execution
time of such behaviours, as it can be seen in terms of
agent knowledge details which influence the occupied
memory space. Especially, the environment of software
agent is the memory space in which such agent is
situated.

 QM4MAS: a quality model for multi-agent systems 303

Regardless of the resource, the rationality increases its
effective use because it represents a trade-off between
the behaviour goal and the behaviour price.

• Usability

The agent paradigm can increase the usability of
software in several ways. First of all, the social ability
of the agents which can be based upon ontology and
known standards can increase the human-software
interaction. Furthermore, the agents can operate without
the intervention of others even human, thanks to
autonomy. Consequently, the effort of using such
software by human users can be reduced. Moreover,
the adaptability (the learn-ability included) allows
exploiting the users profile to create, automatically,
more personalised interface.

• Maintainability

The maintainability in agent-oriented software can be
done in two different levels: the maintainability of an
agent and the maintainability of the whole MAS.
Naturally, the maintainability of software is affected by
its complexity. Consequently, the maintainability of
agent-oriented software is affected by the complexity of
both agent and MAS. The complexity of an agent
means, generally, its granularity. Furthermore, the
modularity of an agent increases the understand-ability
of its structure which positively influence to the
maintainability.

The complexity of the MAS is increased according to
the number of the agents that compose the system and
the interaction between them. However, the complexity
of a MAS can be mastered thanks to the organisation.

• Portability

Agents are situated in an environment. Taking an agent
from its own environment for integrating it in other
environment depends on three factors: the environment,
the agent and the interaction agent-environment.
Obviously, if the initial environment of the agent is
designed to be changeable, agents can also live in a
new environment. Moreover, if a weak interaction
exists between agent and its environment, we can easily
dissociate it from initial environment for integrating it
in another environment. The nature of the agent has
also an important influence to the portability. In fact, an
agent can use its adaptability feature (changing its
structure or its behaviour) to interact with a new
environment.

• Reusability

In order to simplify software development and
increase the productivity in the development, software
engineering principles encourage the reusability of
existed software component. In agent-oriented
software, we can use the reusability principle for
two different perspectives: the reusability of some
components of an agent to develop other agents or the

reusability of an agent in other MASs. Naturally, agents
developed as monolithic components render the reuse
of their ability a hard task. In contrast, if agents are
developed as independent modules, it becomes simple
to reuse their modules to develop other agents.

In order to reuse an agent to develop other MASs,
interaction between this agent and other agents should
be as weak as possible. Moreover, specialisation of an
agent in a few roles allows the reuse of this agent in
other MASs in a simpler way. In software engineering,
the specific-purpose components have the most chance
of being reused compared with the multi-purpose
components. Consequently, the multi-purpose agents
have a little chance to be reused for developing other
MASs. Moreover, if we reuse a multi-purpose agent in
other MASs we must confront two situations: changing
the agent by eliminating undesirable roles according to
new system’s needs (waste of effort) or reusing the
agent with all its roles with the possibility of never
using some roles in the new system (waste of
resources).

• Flexibility

In order to change its behaviour according to its
situation, the agent should be able to perceive and react
to the environment changes (reactivity). Moreover, the
agent should interact with other agents to change its
behaviour according to the whole goal of the MAS.
However, the agent should not change its behaviour
according to the environment and other agents’
situations and omitting their own goals. Indeed, the
executed agent’s behaviours should take into account
the goals of the agent (the pro-activity). Beyond this,
the agent can change its structure and goals thanks to
the adaptability feature in order to treat some new
situations.

Table 4 The characteristics-sub-characteristics relationships

The characteristics Connected sub-characteristics

Functionality Autonomy, rationality and social ability
Reliability Autonomy, social ability, modularity

and adaptability
Efficiency Social ability, granularity, organisation,

environment, rationality
Usability Autonomy, adaptability and social

ability
Maintainability Modularity, granularity, organisation

and social ability
Portability Adaptability, environment and social

ability
Reusability Modularity, specialisation and social

ability
Flexibility Reactivity, pro-activity, adaptability and

social ability

304 T. Marir et al.

As indicated in Table 4, we remark that the social ability
sub-characteristic affects all characteristics. We think that
the quality in multi-agent software can be studied on two
levels: the individual level in which we study the quality of
each agent alone, and social level in which the quality of the
whole system is considered.

3.4 The QM4MAS metrics

Some authors consider the metrics level of ISO-9126
quality model as the vulnerable point (Radulovic, 2011). In
contrast to this view, we think that these authors have not
taken into account the purpose of ISO-9126 quality model.
According to Deissenboeck et al. (2009), the ISO-9126 is
mainly used to define quality and it is not classified
among metric-based quality models which are used to
assess the quality. Our proposed quality model shares the
same purpose with the ISO-9126 quality model.
Consequently, only some abstract guidelines are
proposed in the metrics level of our proposed quality model.
We think that metrics are closely depended on
implementation choice of multi-agent software like:
implementation paradigm for agent, agent model,
development language, …, etc. For example, despite that
cohesion and coupling are well-accepted metrics for the
modularity of software, assessing cohesion and coupling
metrics for knowledge-based systems is different from those
of object-oriented software. We applied these abstract
guidelines through JADE application using more concrete
metrics as it is presented in the following section.

Note that the proposition of an exhaustive list of metrics
for MAS is beyond the scope of this paper. Several metrics
are proposed to assess different aspects of multi-agent
software. Consequently, the users of our quality model can
reuse adequate metrics or inspire their appropriate metrics
from the specialised literature to assess the different
sub-characteristics of QM4MAS. The following list gives
for each proposed sub-characteristics one or more metrics.

• Autonomy
1 Ratio of the lack of requesting services (RLRSs):

this metric presents the RLRSs and the number of
executed behaviours.

2 Ratio of resources availability (RRA): this metric is
based on the availability of resources in the agent
to reach its goal.

• Reactivity
1 Ratio of states changes (RSC): this metric presents

the ratio of behaviours broken before reaching its
purpose and the number of executed behaviours.

2 Time to respond to changes (TRC): this metric
presents the average time to generate responds to
perceived events. A response time to an event is
the time from the event occurrence to the
generation of the response.

• Pro-activity
1 Ratio of achieved purpose (RAP): this metric

presents the ratio of behaviours that achieved their
goals and the number of executed behaviours.

2 Time to achieve purpose (TAP): this metric gives
the average of the execution time to achieve the
goals of the executed behaviours.

• Social ability
1 Ratio of interaction utility (RIU): the interaction

between agents is not a goal itself. In fact, agents
interact to achieve their goals by coordination,
cooperation or negotiation. In several situations,
agents perform interaction without achieving their
goals. Using this metric, we can assess the ratio of
the interaction situations in which the agents
achieve their goals and the whole interaction
situations.

2 Ratio of interaction intention (RII): when receiving
requirement of services agent can operate
differently from offering the required services to
the refusing of the cooperation. However, some
agents accept the interaction for providing the
required services but they cannot achieve this goal
(for example, when the time required to provide
the service is expired). Consequently, this metric is
provided to assess the ratio of interaction situations
in which an agent has the intention to cooperate
and the whole interaction situations.

3 Ratio of understand-ability (RU): MASs are
often used in open and complex environments.
Consequently, two agents can use two different
communication languages which negatively
influence on the interaction utility. This metric can
assess the interoperability between agents using the
ratio of understood messages and the communicate
messages.

• Rationality
1 Goal achievement acceleration (GAA): a rational

agent is the one that achieves its goals in an
optimal way. We can measure the optimisation
level of the agent behaviour in measuring its
progression to reach its goals according to the time.
Hence, a rational agent progresses rapidly toward
its goal as possible as it can.

2 Goal achievement by using resources (GAUR):
rational agent takes into account the amount of
resources used to achieve a goal. In fact, a rational
agent can abandon some goals if their prices are
considered expensive. Moreover, a rational agent
can be satisfied by a partial achievement of its goal
if the price of the result improvement is considered
as expensive. This metric is a general form of the
GAA metric (considering the execution time as a
resource).

 QM4MAS: a quality model for multi-agent systems 305

• Specialisation: we can assess this sub-characteristic by
calculating the average number of roles played by agent
(ARA).

• Granularity
1 Behaviour granularity (BG): this metric gives an

assessment of the behaviour complexity according
to the implementation paradigm of the agent.

2 Knowledge granularity (KG): the KG represents
the complexity of knowledge within agent. In an
object-oriented implementation of MASs, for
example, we can assess the complexity of the
agent’s knowledge using different variables
declared within the agent.

• Organisation: there is no a single type of organisation
(Horling and Lesser, 2005). Consequently, it is
impossible to define metrics to all organisations’ types.
However, we think that some metrics can be proposed
regardless the organisation style of the MAS:
1 The number of sub-organisations: Generally,

organisations are structured as the aggregation of
several sub-organisations (Ferber et al., 2004). A
sub-organisation can be a group, a community or a
level in hierarchical organisation. In fact, this
decomposition increases the understand-ability of
the MAS. Hence, we can use the number of
sub-organisation as a metric for assessing the
organisation sub-characteristic.

2 The average number of agents by organisation:
Each organisation or sub-organisation is composed
of a number of agents. Naturally, as the number of
agents increase as the understand-ability of the
MAS becomes difficult. Hence, the average
number of agents by organisation can be
considered as a metric to assess the
complexity of the organisation.

3 The relationships diversity: relationships between
agents in the organisation can be of several natures
like: knowledge link, communication link and
authority link. It seems evident that the diversity
of relationships existed in an organisation can
negatively influence to the understand-ability
and the maintainability of the MAS. Hence, the
relationships diversity metric assesses the number
of relationships’ kinds in the MAS.

• Environment: according to (Wooldridge, 2009), the
complexity of the environment depends on several
parameters: the accessibility, the determinateness, the
episodically, the dynamicity and the continuity. Hence,
we propose to assess the complexity of the environment
using the average of these parameters.

• Modularity: Generally, the coupling and the cohesion
are two well-accepted metrics to assess the modularity
of software. Indeed, the coupling and cohesion metrics
are closely dependent to the software paradigm. Hence,
we can adapt one of these metrics according to the

implementation paradigm of agent [knowledge-based
system (Kramer and Kaindl, 2004) or object-oriented
software (Husein, 2009)].

3.5 The rating in QM4MAS

The given metric can be used with a rating which reflects its
importance for assessing the sub-characteristic. Similarly,
the importance of sub-characteristics and characteristics can
be expressed by rating. In our quality model, we do not
specify the rating values because of the various models of
agents and the diversity applications of MASs. So, the users
of our quality model can specify the rating values according
to their application and their agent model. For example, an
application that is designed to operate in open system
requires more importance of RU metric, while another
application requires more importance of RIU metric.

As it is explained above, the metrics are closely
dependent on the implementation paradigm or the
implementation platform used to develop the MAS. We
propose in the following section the application of the
proposed quality model (QM4MAS) to JADE applications
through a set of metrics.

4 Applying QM4MAS on JADE applications

JADE is a major open source software project and the most
popular software agent technology platform (Bellifemine
et al., 2007). Hence, we opted for this platform in order to
apply and validate our quality model QM4MAS. The
application of QM4MAS passes through the proposition of
concrete metrics that reflect the particularities of JADE
platform as we suggested previously. As specified in the
meta-model of the proposed quality model, metrics require
the presentation of several aspects: name, definition, scale,
and measurement method. We start this section by
presenting the measurement method used to assess the
different aspect of JADE application.

4.1 Measurement method of JADE applications
metrics

The metrics of software are generally divided into two
kinds: static metrics and dynamic metrics. Static metrics are
metrics that do not require the execution of the software. In
contrast, the dynamic metrics require the execution of
software. Despite of the benefits of the dynamic metrics, the
static metrics are often more used because of the
technological difficulties to collect the dynamic metrics
(Tahir et al., 2010).

In order to assess some properties of JADE applications,
we use some dynamic metrics. The proposed dynamic
metrics are collected during the application execution using
aspect-oriented technology.

Aspect-oriented paradigm (AOP) is relatively a recent
programming paradigm introduced in 1997 for improving
the modularity of the software and making the programming
easier and faster (Kiczales et al., 1997). As it is presented in

306 T. Marir et al.

Figure 2, the AOP principle consists of developing
separately the cross-cutting concerns, called aspects, and
incorporating them automatically to the system in the
adequate points thanks to the waver.

Figure 2 The aspect-oriented programming principle (see online
version for colours)

Figure 3 Simple example of AspectJ code

(a)

(b)

JADE is a based Java platform allowing developing MASs.
Hence, we used AspectJ (Laddad, 2003), which is an
extension to the Java programming language to support
aspect-oriented programming, to develop the different
dynamic metrics used to assess some attributes of MAS. In
fact, the dynamic metrics are implemented as aspects which
allow reusing the same metrics (aspects) to assess JADE
applications quality. The aspect represents the central unit
of AspectJ (Laddad, 2003); it contains the code that
expresses the waving rules for crosscutting. In addition to
ordinary attributes of normal Java class (like data, methods
and classes), the aspect incorporates specific AspectJ
elements: pointcuts, advice, introductions, declarations and
compile-time declaration (Laddad, 2003). Figure 3 gives a
simple example of AspectJ programming code. In the part
(a) of Figure 3, we show the SimpleClass class with its

SimpleMethod method that displays a simple message (“I
am Simple Method”). The part (b) of Figure 3 presents an
aspect, called SimpleAspect, which specifies a pointcut
(point1) in calling SimpleMethod method and an advice
which should be executed before the point1 pointcut.
Executing this code using AspectJ, the advice starts its
execution displaying the message “I will be executed before
SimpleMethod Execution”, followed by the execution of
SimpleMethod method which displays the message “I am
Simple Method”.

4.2 The proposed metrics to JADE applications

In order to propose the different metrics we have analysed
the different JADE programming constructs. Indeed, each
subset of JADE programming primitives is used to assess an
attributes of MAS like autonomy, reactivity or pro-activity.
In fact, some attributes can be assessed without the
execution of the software; however, other attributes are
dependent to the software behaviour. The dynamic metrics
are developed as aspects which based on the execution of
some JADE primitives to collect the information about the
software behaviour. Obviously, each metric, represented as
aspect, incorporates the pointcuts (to specify the primitives
used to assess this metric) and advices (to implement the
collection and measurement of the metric). The following
list represents the different proposed metrics for JADE
application:

• Specialisation: as it is quoted above, the specialisation
can be assessed using the ARA metric. However,
JADE platform has not provided the role notion.
Consequently, we replaced the number of roles in the
metric by the number of behaviours of each agent.
Hence, the specialisation can be assessed using the
average number of behaviours implemented in agent
(ABA) metric.

1

,N

i

NABA
Bi

=

=
∑

 (4.1)

where N is the number of the agent and Bi is the number
of the behaviours implemented in agent i.

• Granularity: two kinds of behaviours can be found in
JADE platform: simple behaviours and composite
behaviours. In order to assess the BG, we propose to
assess the ratio of behaviours compositionality (RBC).
Hence, we use the code source of the software to
construct trees of behaviours of each agent.
Considering each node in the tree as behaviour, the
children of a node are the behaviours that compose
their parent behaviour. Naturally, the leaves are the
simple behaviours. Taking Hi as the height of the
behaviour i in the tree of behaviours and B the number
of behaviours of the agent, then

1

1 .B
ii

BRBC
H

=

= −
∑

 (4.2)

 QM4MAS: a quality model for multi-agent systems 307

• Autonomy: in order to assess the autonomy in JADE
application we used the RLRSs metric defined above.
So, the service requested in JADE application should
be done with sending a message. Obviously, the service
requesting messages are identified by their
performatives (CFP, REQUEST, QUERY, …, etc.). We
used the aspect-oriented programming to capture the
number of service request messages.

• Reactivity: JADE platform provides several constructs
used to change the actual state of the agent (block(),
restart(), changeStateTo(), doActivate(), doSuspend(),
doWait(), doWake(), restore(), …, etc.). Executing
those programming constructs, the agent changes its
state. Consequently, we used the aspect-oriented
programming to capture the number of changes within
the agent behaviours in order to calculate RSC metric.
Hence,

1 CBRSC
EB

= − (4.3)

where CB is the number of changes in behaviours and
EB is the number of executed behaviours. It is known
that some behaviour can execute these constructs
several times, so RSC metric can provide a negative
value. Consequently, if the agent executes several
instructions to change its state in the same behaviour
we should consider the executed behaviour as several
behaviours (as the number of these instructions). In this
way, the RSC metric values are normalised between 0
and 1.

• Pro-activity: the behaviour has achieved its goal or
still needs to be run. Thus, the number of the executed
methods done() which return true value reflects the
number of behaviours which achieve their goals.
Consequently, RAP metric can be calculated by the
formula

;DBRAP
EB

= (4.4)

where DB is the number of done behaviours
(behaviours which achieve their goals) and
EB is the number of executed behaviours.

• Social ability:
1 RII: an agent that receives service request message

(CFP, QUERY, REQUEST, …, etc.) can present its
intention to interact (cooperation or coordination)
by answering message (PROPOSE or AGREE). In
fact, these kinds of messages reflect only the
intention of the agent to cooperation or
coordination because the agent does not effectively
cooperate or coordinate. Several reasons can
prevent the transformation of this intention to an
effective fact, for example the proposition of the
participant agent can be refused by the initiator
agent or the participant agent can fail to achieve its
goal. So, RII = PIR/SR where PIR is the number of

messages that reflect positive intention respond
(PROPOSE or AGREE) and SR is the number of
service request messages.

2 RIU: an interaction situation is considered useful if
the agent that received the requested service
accomplishes its task and responds to the initiator
agent. In interaction protocols, the participant agent
responds to the initiator agent using INFORM
message. Thus,

IMRIU
SR

= (4.5)

where IM is the number of INFORM messages and
SR is the number of service request messages.

3 RU: in the case where an agent received
incomprehensible message, it can reply using
NOT_UNDERSTOOD message. Consequently,

NUMRU
M

= (4.6)

where NUM is the number of
NOT_UNDERSTOOD messages and
M is the number of all exchanged messages.
Finally, we note that all the proposed metrics are
normalised to be between 0 and 1; where 1 is the
best value of the metric and 0 is its worst one.

Figure 4 An example of implemented aspect to assess the
different metrics of JADE (see online version
for colours)

4.3 Developed tool and case study

In order to assess automatically the proposed metrics for
JADE applications, a tool has been developed. The tool
consists of a library of aspects that allowing the automatic
measurement and presentation of the above metrics. As an
example of the implemented metrics, we present in Figure 4
the essential parts of the MetricsAssessement aspect. This
aspect is used to assess the different metrics in JADE
software. In this aspect, we present the pointcut, called
ChangeBehaviourState, in which we define the JADE
constructs used to change the agent’s state. An advice

308 T. Marir et al.

should be executed before this pointcut to calculate the
number of changes in the state of the agent.

As previously mentioned, the benefit of using
aspect-oriented programming allows the application of our
tool to any JADE application because the developed aspects
are entirely independent to the multi-agent software to be
assessed. In order to validate our tool, we used the portal
agent application which is adapted from codes-sources
website (http://www.javafr.com//code.aspx?ID=49974).
This open source application written on JADE aims to
collect objects from agent. It is composed of three agents:
portal, seller and buyer. Figures 5 to 7 give a description of
each agent in state machine diagram.

As is presented in Figure 5, the portal agent starts its
behaviour by the creation of the graphical interface and
launches the buyer and seller agents. Then, it passes to
block state until the reception of a message. When the portal
agent receives the product list, it will display it and
terminates its behaviour.

Figure 5 Description of portal agent behaviour

Figure 6 describes the buyer agent behaviour. This agent
starts its behaviour by the request of product list from the
seller agent; then it passes to block state, waiting the
reception of a message. When it receives the product list, it
will relay the product list to portal agent and passes to its
end state.

The seller agent (Figure 7) waits until the reception of a
message. If the received message is a request of product list
then it will reply by sending the product list and passes to its
end state.

Figure 6 Description of buyer agent behaviour

Figure 7 Description of seller agent behaviour

In order to calculate the different metrics, we need only to
run the system to be evaluated using our tool. Hence, the
assessment process presents the calculated metrics
according to their sort: collective metrics or individual

metrics. The collective metrics are the metrics calculated
using all the agents composing the system. In contrast, the
individual metrics are calculated independently for each
agent. Moreover, the result of the measurement process can
be presented in several ways. First of all, our tool gives a
real-time presentation for each metric. For example,
Figure 8 shows the real-time presentation of the collective
metrics after a few time of execution. After the starting of
the software, the portal agent subscribes and introduces in
the MAS. Known that in this time, the MAS is composed of
only one agent (the portal agent) which has two behaviours,
then the value of the average of behaviours per agent
(ABA) presented in green colour metric becomes 0.5. The
other two metrics, the RII presented in red colour and the
RIU presented in blue colour, have the default value equal
to 1, because in this time any messages have been sent.

Figure 8 The real-time presentation of the collective metrics
(see online version for colours)

The developed tool provides also the evolution of assessed
metrics according to the time progression. We present in
Figure 9 the evolution of individual metrics of the Buyer
agent. This figure shows three diagrams: the RLRSs metric
in red colour, the RAPs metric in blue colour and the RSC
metric in yellow colour. The other metrics are omitted in the
diagram, for the readability reason, because they are not
changed during the execution of the application. As an
example, we explain here the RLRSs metric evolution. In
fact, the buyer agent has three main behaviours: one to
request the product list, one to receive the product list and
another one to send the product list to portal agent. During
the execution of the first behaviour, the buyer agent should
request a service (the product list). Hence, its RLRSs metric
becomes 0 (at time 43 seconds). At time 44 seconds, the
buyer agent started its second behaviour (to receive the
product list) and its RLRSs metric becomes 0.5 because it
executed two behaviours with only one request service.
However, the buyer agent passed to block state until the
reception of the product list. At time 66 seconds, the agent
buyer has been notified by the reception of a message.
Then, it will re-execute the precedent behaviour to receive
the product list (its RLRS metric becomes 0.66). Finally, the
buyer agent sends the product list to the portal agent at
92 seconds and its RLRS metric becomes 0.75.

 QM4MAS: a quality model for multi-agent systems 309

Figure 9 The individual metrics evolution of the buyer agent
(see online version for colours)

Thanks to the incorporated database in our tool, we can save
the assessed metrics for further use. Moreover, the
developed tool provides the possibility to generate a textual
report of the assessed software execution.

5 Conclusions and future directions

Software quality is one of the most important purposes of
software engineering. In order to understand, evaluate and
predict the software quality, several models are proposed. In
fact, each software paradigm has its particularities which
require a specific quality model. So, in software
engineering, we find quality models for object-oriented
software, component-based software and service-oriented
software. Despite that MAS is one of the well-known
software paradigms, there is a very few work that has been
developed to assess the quality of based agent software.
Moreover, no overall quality model has been proposed for
this paradigm. In this paper, we have customised the
ISO-9126 quality model to support agent-oriented software.
The proposed model is used mainly to define and assess the
quality of MASs. The metrics proposed in this quality
model are applied on based JADE applications in order to
assess their quality.

This work can be extended in several ways. First of all,
we should propose more metrics to assess other attributes
of multi-agent software. Obviously, the proposed
sub-characteristics do not have the same importance for
determining overall MAS quality. In fact, each
sub-characteristic has specific weight on the overall quality.
These weights can be customised by users of our quality
model. We propose to specify these weights according to
specific application domains of MASs.

References
Alonso, F., Fuertes, J.L., Martinez, L. and Soza, H. (2008)

‘Measuring the social ability of software agents’, in the
Proceedings of the 6th ACIS International Conference on
Software Engineering Research, Management and
Applications.

Alonso, F., Fuertes, J.L., Martinez, L. and Soza, H. (2009)
‘Towards a set of measures for evaluating software agent
autonomy’, in Proceedings of the Eighth Mexican
International Conference on Artificial Intelligence.

Alonso, F., Fuertes, J.L., Martinez, L. and Soza, H. (2010)
‘Measures for evaluating the software agent pro-activity’, in
the Proceedings of the 25th International Symposium on
Computer and Information Sciences.

Alonso, F., Fuertes, J.L., Montes, C. and Navajo, R.J.A. (1998)
‘Quality model: how to improve the object oriented software
process’, in IEEE International Conference on Systems, Man
and Cybernetics, Vol. 5, pp.4884–4889.

Bansiya, J. and Davis, C.G.A. (2002) ‘Hierarchical model for
object-oriented design quality assessment’, in IEEE
Transactions on Software Engineering, Vol. 28, No. 1.

Behkamal, B., Kahani, M. and Akbar, M.K. (2009) ‘Customizing
ISO 9126 quality model for evaluation of B2B applications’,
in Information and Software Technology, Elsevier.

Bellifemine, F., Caire, G. and Greenwood, D. (2007) Developing
Multi-agent Systems with JADE, Wiley Series in Agent
Technologies, England .

Campbell, A. and Wu, A.S. (2011) ‘Multi-agent role allocation:
issues, approaches, and multiple perspectives’, Autonomous
Agent and Multi-Agent Systems, Vol. 22, No. 2, pp.317–355.

Carlin, A. and Zilberstein, S. (2012) ‘Bounded rationality in multi
agent systems using decentralized meta-reasoning’,
in Guy, T., Karny, M. and Wolpert, D. (Eds.): Decision
Making with Imperfect Decision Makers, pp.1–28, Springer.

Deissenboeck, F., Juergens, E., Lochmannand, K. and Wagner, S.,
(2009) ‘Software quality models: purposes, usage scenarios
and requirements’, in WOSQ’09 Proceedings of the Seventh
ICSE Conference on Software Quality, IEEE Computer
Society.

Dromey, R.G. (1995) ‘A model for software product quality’,
in IEEE Transactions on Software Engineering (TSE),
Vol. 21, No. 2, pp.146–162.

Dumke, R., Mencke, S. and Wille, C. (2010) Quality Assurance of
Agent-Based and Self-Managed Systems, CRC Press, USA.

Ferber, J., Gutknecht, O. and Michel, F. (2004) ‘From agents to
organizations: an organizational view of multi-agent
systems’, in Giorgini, P., Müller, J. and Odell, J. (Eds.):
Agent-Oriented Software Engineering (AOSE) IV, LNCS,
Melbourne, July, Vol. 2935, pp.214–230.

García-Magariño, I., Cossentino, M. and Seidita, V. (2010)
‘A metrics suite for evaluating agent-oriented architectures’,
in the Proceedings of the ACM Symposium on Applied
Computing.

Goeb, A. and Lochmann, K.A. (2011) ‘Software quality model for
SOA’, in Proceedings of the 8th International Workshop on
Software Quality (WoSQ’11).

Gutiérrez, C. and García-Magariño, I. (2009) ‘A metrics suite for
the communication of multi-agent systems’, in the Journal of
Physical Agents, Vol. 3, No. 2, pp.7–14.

Horling, B. and Lesser, V. (2005) ‘A survey of multi-agent

organizational paradigms’, in The Knowledge Engineering
Review, Vol. 19, No. 4, pp.281–316.

Husein, S.A. (2009) ‘Coupling and cohesion metrics suite for
object-oriented software’, in International Conference on
Computer Technology and Development (ICCTD ‘09).

IEEE (1990) IEEE Standard Glossary of Software Engineering
Terminology, IEEE Std. 610.12-1990.

310 T. Marir et al.

IEEE (1998) IEEE Standard for a Software Quality Metrics
Methodology, IEEE Std. 1061-1998.

ISO (2001) ISO/IEC 9126-1:2001 Software Engineering – Product
Quality.

Kaushik, A., Soni, A.K. and Soni, R. (2013) ‘Radial basis function
network using intuitionistic fuzzy C means for software cost
estimation’, in Int. J. of Computer Applications in
Technology, Vol. 47, No. 1, pp.86–95.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V.,
Loingtier, J.M. and Irwin, J. (1997) ‘Aspect-oriented
programming’, in Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), LNCS,
Springer-Verlag, Finland, Vol. 1241.

Kiren, S. (2006) ‘Flexibility of multiagent systems’, in Kirn, S.,
Herzog, O., Lockemann, P. and Spaniol, O. (Eds.):
Multiagent Engineering – Theory and Applications in
Enterprises, Springer.

Kramer, S. and Kaindl, H. (2004) ‘Coupling and cohesion metrics
for knowledge-based systems using frames and rules’,
in ACM Transactions on Software Engineering and
Methodology (TOSEM), Vol. 13, No. 3, pp.332–358.

Laddad, R. (2003) AspectJ in Action, Manning Publications,
Greenwich, CT, USA.

Lee, K. and Lee, S.J. (2006) ‘A quantitative evaluation model
using the ISO/IEC 9126 quality model in the component
based development process’, in Gavrilova, M.L., Gervasi, O.,
Kumar, V., Kenneth Tan, C.J., Taniar, D., Lagana, A.,
Mun., Y. and Choo, H. (Eds.): Computational Science and its
Applications – ICCSA 2006, LNCS, Vol. 3983, pp.917–926.

Lincke, R. and Löwe, W. (2006) ‘Validation of a standard- and
metric-based software quality model’, in Proceedings of
the 10th Ecoop Workshop on Quantitative Approaches in
Object-Oriented Software Engineering (QAOOSE).

McCall, J.A., Richards, P.K. and Walters, G.F. (1977) Factors in
Software Quality, Vol. 1, ADA 049014, National Technical
Information Service, Springfield, VA.

Radulovic, F. (2011) A Software Quality Model for Evaluation of
Semantic Technologies, Master thesis in Artificial
Intelligence Research, Universidad Politécnica de Madrid,
Spain.

Rejeb, L. (2005) Simulation Multi-Agents de Modèles
Economiques – Vers des Systèmes Multi-Agents
Adaptatifs, Thèse de doctorat de l’université de Reims
Champagne-Ardennes, France.

Singh, S., Mittal, P. and Kahlon, K.S. (2013) ‘Empirical model for
predicting high, medium and low severity faults using object
oriented metrics in Mozilla Firefox’, in Int. J. of Computer
Applications in Technology, Vol. 47, Nos. 2/3, pp.110–124.

Singh, Y., Kaur, A. and Malhotra, R. (2014) ‘A comparative study
of models for predicting fault proneness in object-oriented
systems’, Int. J. of Computer Applications in Technology,
Vol. 49, No. 1, pp.22–41.

Tahir, A., Ahmad, R. and Kasirun, K.M. (2010) ‘Maintainability
dynamic metrics data collection based on aspect-oriented
technology’, Malaysian Journal of Computer Science,
Vol. 23, No. 3, pp.177–194.

Weyns, M., Schumacher, M., Ricci, A., Viroli, M. and
Holvoet, T. (2005) ‘Environments in multi agent systems’,
in The Knowledge Engineering Review, Vol. 20, No. 2,
pp.127–141.

Wooldridge, M. (2009) An Introduction to Multi-Agent Systems,
2nd ed., John Wiley & Sons, UK.

