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1 INTRODUCTION

Let F be a mapping from R” into itself and X be a nonempty closed
convex subset of R”. The variational inequality problem (VIP) is to find
a vector x™ € X such that

(F(x"),y —x") >0, VveJx, (1)

where (-, - } denotes the inner product in £”. In this paper, we study the
case that X is a box defined by

X={xeR'|<x;<uw, i=1,....n}
where ;e RU{—nc} and ;€ RU {+oc} with /;<u; representing the
lower and upper bounds on the variables, respectively. It is not difficult
to see [3, Proposition 5.7} that the box structure of the set X enables us
to rewrite (1) as

Fi(x)(yi—x)>0, i=1,....n, V¥yeJX. (2)

If the constraint set X is the nonnegative orthant ", then the VIP
reduces to the complementarity problem (CP). This class of special VIPs
has numerous important applications in various fields such as mathe-
matical programming, economics, and engineering; see [7.13] and
references therein.

A uselul way to deal with VIP (1) is to reformulate it first as a system
of equations or an optimization problem via a merit function, and
then solve the resulting system of equations or optimization problem,
Recently, much attention has been paid to the reformulation of VIPs and
CPs and various merit functions have been proposed and studied [10].
Well known merit functions for VIPs include the gap function

g(x) = suI‘?(F(x), X—y)
X
first presented by Auslender [2] and then studied by Marcotte and
Dussault [18,19], the regularized gap function

falx) = r_}?g/\x{<F(-\')a X—¥) - % (I -\‘Hz} (3)



introduced by Fukushima [9] and Auchmuty [1], and the D-gap
function

gap(X) 1= fa(x) = f5(x), (4)

proposed by Peng [21] and Yamashita et al. [27], where a and 3 are
arbitrary positive parameters such that o < 3. Since a box constrained
VIP is actually equivalent to a system of KKT mixed complementarity
conditions, several merit functions based on the KKT system of VIP
have also been proposed and explored extensively, see Qi [23] and
references therein.

In this paper, we focus our attention on the D-gap function for VIP,
It is not difficult to see that g,5(x)> 0 for all xe®R”, and g,,5(x)=0 if
and onlyif xisasolution of the VIP (1). Therefore the VIP can be cast as
the following unconstrained optimization problem:

m1n gad(\’) (5)
xeR"

When the mapping Fis differentiable, the D-gap function g, is also
differentiable [9,27]. However, it is not twice differentiable in general.
Therefore it is not straightforward to apply conventional second-order
mcthodstoproblem (5). Asaremedy for thisinconvenience, Sun et al.[25]
introduced the concept of a computable generalized Hessian of the D-gap
function g, ; and presented a Newton-type method for solving problem
(5). Restricting themselves to the box constrained VIP, Kanzow and
Fukushima [15] discussed a gencralized Hessian of the D-gap function
and proposed a Gauss—Newton-type method to minimize it. Further
properties of the D-gap function have been investigated in [11,15,25].
This work is motivated by the recent paper [22] in which the D-gap
function is used to globalize the classical Josephy—Newton method [14]
for general VIPs. The main purpose of this work is to further study the
algorithm proposed in [22] by restricting ourselves to box constrained
VIPs, and test the effectiveness of the algorithm. In [22], the global and
local convergence of the algorithm were proven under the assumptions
that Fisstronglymonotone. By restricting to box constrained VIP, we will
show in this paper that the algorithm is globally convergent and locally
quadratically convergent if the mapping Fisa uniform P-function. Hence
the results here can also be viewed as a refinement of the results in [22].
The paper is organized as follows: In Section 2, we first introduce
some basic definitions that will be used in the paper. Some sensitivity



results for box constrained affine VIP are given under certain condi-
tions. Then, by applying these sensitivity results, we study the properties
of the subproblem in the Josephy—Newton method [14]. In Section 3, we
present a hybrid algorithm which uses the D-gap function to globalize
Josephy—Newton method. Convergence properties of the algorithm are
also discussed. In Section 4 we report some numerical results. Finally we
conclude the paper with some remarks in Section 5.

2 SOME RESULTS FOR BOX CONSTRAINED AFFINE VIP

We first review some concepts related to the mapping F.
The mapping F: R" — R" is said to be a Py-function if

B (xi —yi)(Fi(x) = Fi(¥)) >0 Vx,y e R, x#;
S
XiFE¥

a P-function if

max (x; — y;)(Fi(x) — Fi(y)) >0 Vx,y e R", x#y;

1<i<n

and a uniform P-function (with modulus p > 0) if

max (x; — v )(Fi(x) — Fi(¥)) > p , Vx,yeW®.

1<i<n

.r\‘__y

An n x n matrix M is a Py-matrix if

max zilMz); >0, Vze®R', z#0,
<i<n

zi70

and a P-matrix if

max z;(Mz), >0, Vze®', z#0.

1<i<n

It is casy to see that. if M is a P-matrix, then there exists a constant >0
such that

max = (Mz), > pllz||’, Vz e R (6)

1<i<n



It is known [20, Theorem 5.8] that if F is a differentiable Py-function,
then VF(x)" is a Po-matrix for each x. Moreover, if Fis a differentiable
uniform P-function with modulus x>0, then VF(x)" is a uniform
P-matrix with modulus p > 0 in the sense that

max z;[VF(x)'z], > pllzll’, VzeR", VxeR" (7)

1<i<n

Since we are not aware of any explicit reference for the formula (7), we
include a short proof for it.

LEMMA 2.1 Let F:R"—R" be a differentiable uniform P-function
with modulus 11> 0. Then (7) holds.

Proof Let xeR" and z € R" be arbitrary but fixed. Let {7} CR be
a sequence of positive numbers converging to 0. Since F is a uniform
P-function and the index set {l,...,n} is finite, there exists an index
ip€{1,...,n} (independent of k) and a subsequence {z;}x such that

z;, 7 0 and
teziy [Fiy (x + trz) — Fiy(x)] > pt?|z|* Vk € K.

Dividing this expression by #, taking the limit k—oco (k€ K) and
using the assumed differentiability of F, we obtain

T
zo[VE(x) 2,y > pllz]*.

This implies

max Z;[VF(X)TZ]; > p’“zllz

1<i<n
and completes the proof.

In the classical Josephy—Newton method, we solve the following
linearized VIP subproblem at each iteration: Given a current iterate x*,
find a vector x € X such that

(F(x*) + VY x—x*) -2 20, YpekX (8)

Here we study the properties of the affine subproblem (8). In [26], Taji
et al. studied the subproblem (8) for a general closed convex constraint



set X under the assumption that F is strongly monotone and con-
tinuously differentiable. Restricting ourselves to the box constrained
VIP, we will investigate properties of the subproblem under weaker
conditions.

To this end, we first consider a perturbation of affine VIP with box
constraints. Let X be a box, M a P-matrix, and b € ®”. For any v € R”,
let x(v) € X denote the unique solution of the following affine VIP:

b+v+Mx,y—x)>0, Vyex, (9)

or equivalently

(bi+vi+ Mx],)pi—x;) >0, i=1,....n, VyveXx. (10)

PROPOSITION 2.2 Let x(v) be the unique solution of the affine VIP (9),
where X is a box and M a P-matrix. Let n >0 be a constant satisfying
(6). Then we have

|
() = < Ll =l W € R

Proof Let v, v/ € R" be arbitrary. Since x(v) € X, x(v')e X, and X is a
box, it follows from (10) that

(bi + vi+ [Mx(W)])(x:(v') — xi(v)) >0, i=1,....n,
and
(bi + v; + [Mx(»")] )(xi(v) —x:(¥")) >0, i=1,...,n

Adding the above two inequalities, we obtain

i=1,...,n (11)



Since M is a P-matrix, there exists a constant x>0 and some index i,
such that

(%iy (v) = Xip (VDM (x(v) = x(v))];, 2 wallx(v) = (0]

This inequality together with (11) implies that

(Vo = vi) (e (v') = x4y (v)) 2 pallx(v) = (v (12)

Since

bl

(Viy = Vi (X3 (v') = x5, (v) < v = vl - llx(v) = x(v)
the inequality (12) yields

[2(v) = x(v")

|
| <—=llv—=v1|.
1

This completes the proof of the proposition.

Next we give another result on the continuity of a solution of the box
constrained affine VIP with a P-matrix. For any P-matrix M and vectors
b,p € R, let x(M) € X denote the unique solution of the following affine
VIP:

b+ Mp+ Mx,y—x)>0, VyelJ, (13)

or equivalently

(bi + [Mp]; + [Mx];)(yi —x;) >0, i=1,...,n, YyeX. (14)

PROPOSITION 2.3  Suppose that M and N are P-matrices and X is a
box. Let u >0 be a constant satisfying (6). Then we have

|x(M) = x(N)]] S%HM—NII [x(N) +pll. (15)

Proof The proposition trivially holds if x(M)=x(N). Hence we
only need to consider the case where x(M)# x(N). Since X is a box, it



follows from (14) and the definitions of x(M) and x(N ) that
(bi + [Mp], + [Mx(M)])(xi(N) — x;{(M)) >0, i=1,....n,
and
(bi + [Np); + INX(WM)])(xi(M) = xi(N)) 2 0. i=1,....m.
Adding the above two inequalities, we get

([Mp]; — [Np); + [Mx(M)]; — [Nx(N)])(x:(N) — x;(M)) = 0,

i=1,....n
which implies that

(M = NY((N) + p)L(xi(N) = xi(M))
> [M(x(M) — x(N)].(xs(M) = x;(N)), i=1.....n. (16)

Since M is a P-matrix, it follows from (6) and x(M) — x(N)#0 that
there exists an index iy such that

[‘M(Y(M) - ’C(N))] ("Yf'e(M) - xfu(N)) e fllh(/"{) - \(N)H

iy

(17)
Then (16) and (17) imply

)l x(M) = X(N) P < [(M = MY ON) 4 p)], (i (N) = x, (30)
< ||M = NIl [5(N) + pll - [x(N) — x(M))].

This completes the proof.

Remark In the literature on sensitivity analysis for VIP and CP, a lot
of results have been obtained mainly based on the KKT system of the
problem and various regularity conditions (or local assumptions), see
[13. Section 5, 17]. Propositions 2.2 and 2.3 give global and simple
results based only on somewhat strong assumptions on the mapping F.

Now we return to the affine subproblem of Josephy --Newton method.
Let x be a given point in ¥ and consider the linearized VIP of finding a



point z € X such that
(F(x) + VFx)T(z=x),y—2) >0, VyeX, (18)
or equivalently
(Fi(x) + [VF(x) (z = X)])vi—2) >0, i=1,...,n, VyeX. (19)

If VF(x) is a P-matrix, then problem (18) has a unique solution,
which we denote z(x). Our next result studies the properties of the solu-
tion of problem (18). The proposition is a refinement of Proposition 2.2
in [26].

PROPOSITION 2.4  Suppose that F is a continuously differentiable uni-
form P-function and X is a box. Then the solution z(x) of the affine VIP
(18) is continuous as a function of x. Moreover, x is a solution of the
VIP (1) if and only if x = z(x).

Proof First we note that, since Fis a uniform P-function, (7) is satis-
fied with some constant x>0 independent of x. For two arbitrary
points x, x’€R", let z(x) and z(x') be the unique solutions of the
linearized VIPs (18) at x and x’, respectively. Also let Z denote the
unique solution of the affine VIP

(F(x)+ VF(x)T(z—x),y—2) >0, VyeX.

It then follows from Proposition 2.2 with v:=F(x)—VF(x)T x, v/:=
F(x") = VEx")"x', b:=0and M:=VF(x")T that

12— 2" séuF(x) ~ F(x') + VR 0.

On the other hand, by Proposition 2.3 with b:=F(x), p:=—x,
N:=V F(x)T and M:=VF(x')T, we have

12—z < iﬂWF(x')T — VE®)T| - Jlzx) - x].



It then follows that

<z ==2(xD+ 12 = =(x)]
LI = B + VA" (x = x|
HIVAR)" = VF)| - =) = X[,

Consequently, for any fixed x € ", we obtain

HT\, |z(x) — z(x)|| = 0.

X!

This proves the first hall of the proposition.

To prove the second half. suppose first that z(x) = x. Then it follows
immediately from (18) that x solves (1). Conversely suppose that x is a
solution of (1). Since X 1s a box and z(x) € X, (2) yields

Fix)(zi(x)—x)) >0, i=1,..., n. (20)
Similarly, from x € X and (19), we have

Fi(x)(x; — z(x)) + [VF(x) T (=(x) - X)) (xi—z(x)) 20, i=1.....n

The inequalities (20) and (21) give
(zi(x) = x)[VF) T (z(x) = X)), <0, i=1..... n. (22)

Since VF(x)! isa P-matrix. it follows from (7) that there exists an index iy
such that

(2 (%) = X)) [VF() T2 (x) = )], > pell=(x) ~ x| (23)

Combining (22) with (23). we get z(x) = x.

Regularity conditions have been widely used in the study of varia-
tional inequality problems. particularly in the analysis of local con-
vergence properties of iterative methods for VIPs. A solution x* of the

10



VIP (1) is said to be regular in the sense of Robinson [24] (see also [13])
if there exist a neighborhood €2 of x* and a neighborhood V of 0 € R"
such that, for every ve V, the perturbed VIP of finding a vector x € X
such that

(Flx;v),y —x) 20, VWyeJX, (24)

where F(x;v) := F(x*) + v+ VF(x*)T(x — x*), has a unique solution
x(v) € Q2 that is Lipschitz continuous as a function of v, i.e.,

Jx() = x( < pllv—=v'll. W €V

for some p > 0.

In [22], a strong but simple sufficient condition for a solution x* of
the VIP to be regular was given. Here we give a different condition
pertaining to the box constrained VIP. The next proposition follows
directly from Proposition 2.2. The proof is omitted.

PROPOSITION 2.5 Assume that x* is a solution of the VIP (1) with X
being a box. If the matrix VF(x*) is a P-matrix, then x* is a regular
solution.

Remark Proposition 2.5 can also be derived from a characterization
of strong regularity given in [6, Theorem 3.4]. The approach in [6] is
based on the equivalent KKT system of box VIP and is different from
our approach here.

The classical Josephy—Newton method generates a sequence {x*} by
the updating rule x* "' = z(x*). From Proposition 2.4, the method is well
defined if F is a uniform P-function. Moreover, if the initial point X
is sufficiently close to the solution point x* and the matrix VF(x) is a
P-matrix, then by Proposition 2.5, x* is a regular solution and hence it
follows from the basic result of Josephy—Newton method [13,14] that
the generated sequence {x"} converges locally quadratically to x*.

3 A HYBRID JOSEPHY-NEWTON METHOD

In the previous section, we have discussed the affine VIP with box
constraints. In this section, we consider the method proposed in [22]

11



for solving the VIP (1) with general convex constraints, which is Jose-
phy—Newton method with D-gap function globalization. Our aim is to
refine the convergence results obtained in [22] by restricting ourselves to
the special case where the VIP (1) is box constrained.

The algorithm is stated as follows:

ALGORITHM
Step 0 Choose x’eR", we(0,1), (€(0,1), 6§€(0,1), o€(0,1), and
sufficiently small € > 0. Let k: =0.

Step 1 Find z* € X such that
(F(x*) + VF(x)T (X = xF),y =) >0, WyeXx, (25)
and let @ := X —xk If
gas(x* + d*) < Cgap(x*), (26)

then let A, :=1 and go to Step 3. If the linearized VIP (25) is not sol-
vable or if @* does not satisfy the condition

2
E)

d*|*}, (27)

(Vgaﬁ(xk)a dk) £ -0 max{”v&!ﬁ(xk)

then set d* := —ngg(xk).

Step 2 If ||d"|| < e then stop. Otherwise find the smallest nonnegative
integer my,. satisfying

Zos(x* + W d*) — gas(x*) < 8™ (Vgas(xh), d"), (28)

and let ), = ™.
Step3 Setx* ' l:=x"+ ). dandk:=k+1. Goto Step 1.

Using similar arguments to those in the proof of the global con-
vergence theorem in [22], one can prove the following theorem.

THEOREM 3.1  Suppose that the mapping F is continuously differenti-
able. Let €e=0 and suppose that the algorithm generates an infinite
sequence {x"}. Then any accumulation point x* of the sequence {x*} is a
stationary point of the D-gap function g, 3.

12



If Fis auniform P-function, then by [15, Theorem 4.1], the level sets of
D-gap function g, are bounded. Since {gaﬁ(xk)} 1s nonincreasing, the
boundedness of level sets guarantees the boundedness of the generated
sequence {x*} and hence the existence of at least one accumulation point
of {x*}. On the other hand, by [15, Theorem 3.1], any stationary point &
of g.s such that VF(x) is a P-matrix is a solution of the VIP (1).
Therefore, if Fis a uniform P-function, thenit follows from Theorem 3.1
that any accumulation point of the generated sequence {x*} solves the
VIP (1). Because the box constrained VIP with a uniform P-function has
a unique solution, we obtain the next corollary to Theorem 3.1.

COROLLARY 3.2  Suppose that F is a continuously differentiable uni-
form P-function and X is a box. Then for any starting point x° € R", the

sequence {x*} generated by the algorithm converges to the unique solu-
tion of the VIP (1).

To study the convergence rate of the algorithm, we need the following
results concerning an crror bound property of the D-gap function. We
denote by y.(x) the unique maximizer on the right-hand side in the
defining equation (3) of the regularized gap function f,. Note that
Volx) =]]x(x - o~ 'F(x)), where [[x denotes the projection operator
on X. We define R,(x):=x— y,(x). Moreover ys(x) and Ry(x) are
defined similarly. Let B(A) denote the closed sphere centered at x™ with
radius A >0, 1.e.,

B(A) :={x e ®'[|x—x*|| < A}.

Following the proof of Lemma 5.1 in [15], we have the next lemma.

LEMMA 3.3 Let x" be a solution of the VIP (1) with X being a box.
Suppose that F is a uniform P-function with modulus p. Suppose also
that F is Lipschitz continuous with constant k>0 on B(A) for some
A > 0. Then there exists a constant > 0 such that

lx = X*[| <7l Re(x)l,  Vx € B(A), (29)

where 1= (x + 8)/p.

The next lemma shows that the D-gap function provides a local error
bound for the VIP (1) under suitable assumptions. This result will
be useful in establishing the quadratic convergence of the proposed
algorithm.

13



LEMMA 34 Let x* be a solution of the VIP (1) with X being a box.
Suppose that F is a uniform P-function with modulus 1. Suppose also
that F is Lipschitz continuous with constant x>0 on B(A) for some
A > 0. Then there exist constants cq, ¢ > 0 such that

arllx — x°|° < gas(x) < calx = x°[%,  Vx € B(A). (30)

Proof By [27, Proposition 3.1), we have

38—«

5 IRs(x)|* < gas(x) <

88—«

£

IR.(X)|>, Yxe®R'.  (31)

It follows from Lemma 3.3 and the left part of the above inequality
that

3 — « 12
) 2 St s e,

where = (x + 3)/ut, which shows that the left inequality in (30) is true.

Next observe that
[Ra(0)l] = [l = po(x) = x* + ya (")l
HX(-X —a 'Flx)) - HX(x* —a TF(x"))

< lx = x|+ llx — o7 F(x) — x° 4+ o7 F(x7))
A

< (2+5) e =¥l
a3

< v ="+

forall x € B(A), where the equality follows from the definition of R, and
the fact that R (x")=0, the first inequality follows from the triangle
inequality and the definition of y,. the second inequality follows from
the nonexpansiveness of the projection operator [[x. and the last
“inequality follows from the Lipschitz continuity of F. The right
inequality in (30) then follows from the right inequality of (31). The
proofis complete.

We arc ready to prove quadratic convergence of the proposed
algorithm.

14



THEOREM 3.5 Suppose that F is continuously differentiable and X is a
box. Let x* be an accumulation point of the sequence {x*\ generated by
the algorithm. If F is a uniform P-function and VF is locally Lipschit-
zian, then x* is a solution of the VIP (1) and the sequence {x*} converges
quadratically to x*.

Proof By Theorem 3.1, x™ is a stationary point of the D-gap func-
tion g,s. Since VF(x") is a P-matrix by Lemma 2.1, it follows from
[15, Theorem 3.1] that x™ is already a solution of the VIP (1). More-
over Proposition 2.5 shows that x* is a regular solution. Since F is
differentiable, it is locally Lipschitzian; hence there exists a A; >0
such that Fis Lipschitz continuous on B(A;). Hence by Lemma 3.4,
we have

* 12 )
crllx = x*|° < gag(x) S e2flx — x*||°, VxeB(A))  (32)
for some ¢, c; > 0. Moreover, by choosing a smaller A, if necessary,
we may assume that VF is Lipschitz continuous on B(4;). Since x* is
a regular solution, by the basic result on Josephy—Newton’s method

for the VIP [13,14], there exists a A, > 0 such that for any initial point
chosen from B(A,), the Newton iteration is well-defined and

lz(x) = x°|| < esllx = x"[°,  Vx € B(Ay) (33)

holds for some constant ¢; > 0. Let Ay:=min(A, A,). Then it follows
from (32) and (33) that

2a3(2(x)) < caeslx — x*||*,  Vx € B(As). (34)

Ay i= min{Ag, , /ii‘}}.

Then it follows from (34) that for any x € B(Ay)

Let

gas(z(x)) < Cetllx — x> < Cganl).

15



where the first inequality follows from the choice of A4 and the second
inequality follows from the left inequality in (32). This implies that,
when x* € B(A,), we have d* =z(x*) — x* and the step size A\, =1 is
accepted, i.e., x* 7' = z(x*). Consequently it follows from (33) that the
sequence {¥*} converges to x* quadratically.

Similarly we may prove superlinear convergence of the algorithm
under slightly weaker assumptions. The proof is omitted.

THEOREM 3.6  Suppose that F is continuously differentiable and X is a
box. Let X* be an accumulation point of the sequence {xX*} generated by
the algorithm. If F is a uniform P-function, then x* is a solution of the
VIP (1) and the sequence {x*} converges superlinearly to x*.

4 NUMERICAL RESULTS

We implemented the hybrid Josephy—Newton method suggested in this
paperin MATLABandrunitona SUN SPARC 10station. We first give
a brief description of the implementation: Let

r(x) = x — Projy,(x — F(x))

denote the natural residual of the box constrained variational inequality
problem. We terminate our method if

[r(x*)] < €1 or  gas(x*) < e (35)
for some iterate x*, where
€ = 10_6 and € 1= 10 “.

In addition, the iteration was stopped if & > kpax With k. = 100.
For the D-gap function g3, we used the parameters

a=09 and SF=1.1

In the line search rule (28), we used

w=05 and é6=10"%

16



However, we replaced the standard (monotone) Armijo-rule by a
nonmonotone variant, see Grippo et al. [12] for details.

As a solver for the linearized variational inequality problems, we used
the semismooth Newton-type method from [6]. In contrast to what is
said in the description of our algorithm, however, we always accept the
corresponding search direction d¥ whenever it satisfies the descent test

Vgas(x*)"d¥ < 0;

note that this guarantees that the Armijo line search is well-defined.
In particular, we accept this search direction d* even if we were not able
to solve the corresponding linearized variational inequality problem.
In this way, we try to overcome the problem that we have to take too
many gradient steps in a row which is obviously not very desirable.

In order to improve the efficiency of our algorithm, however, we also
used a preprocessor; more precisely, we first try to solve our test
examples by using the recently proposed method from Kanzow and
Fukushima [16]. This is a nonsmooth Newton-type method applied to
the residual equation

r(x)=0

and globalized by the D-gap function g,s3, see [16] for details. The
motivation for doing this is quite simple: The method from [16] works
extremely well whenever it solves a problem successfully. Unfortunately,
it does not seem to be very robust unless relatively strong assumptions
are satisfied.

So we first apply the nonsmooth Newton-type method from [16] in
order to solve a test example, but we stop this preprocessing iteration if
either the termination criterion (395) is satisfied or if a certain test indi-
cates that the preprocessor runs into difficulties. In the latter case, we
switch to the hybrid Newton method introduced in this paper which is
not as efficient as the method from [16], but which seems to be con-
siderably more reliable.

Basically, our criterion for switching from the preprocessor to the
hybrid Newton method is as follows: If

Iy < Imin OF ”vgaﬁ(xk)” < Cg&ﬂ(xk)» (36)
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then terminate the preprocessing iteration and go to the hybrid Newton
method using the previous iterate x*~" as a starting point. The actual
parameters used in (36) are

toin = 107% and ¢= 107"

If the preprocessor is successful and converges to a solution of the box
constrained variational inequality problem which satisfies the standard
regularity conditions used in [16] for the local convergence theory, then
1. =1 for all k sufficiently large and g,.5(x") = O(|| Vg.+(x")||*), so none
of the tests in (36) will be satisfied.

We applied the method just described to all test problems from the
MCPLIB and GAMSLIB libraries, see [4.8], using all the different
starting points which are available within the MATLAB environment.

We report the numerical results in Table I for the MCPLIB test
problems and in Table II for the GAMSLIB test problems. The columns
in these tables have the following meanings:

Problem: name of the test problem in MCPLIB

n: number of variables

m: number of (finite) bounds on the variables x;

SP: starting point

P-steps: number of iterations used in the preprocessing phase

N-steps:  number of Newton steps used in the hybrid Newton phase
G-steps:  number of gradient steps used in the hybrid Newton phase

F-eval.: number of function evaluations
2.5\ value of g, ;(x) at the final iterate x = A"
[IRESIE value of ||#(x)|| at the final iterate x = x'.

Looking at Tables I and 11, we see that we have just a few failures on
some difficult test problems, whereas the overall behavior of our method
is quite good. Although many of the simple problems were solved by the
preprocessor (1.e., there are no N- and no G-steps), the hybrid Josephy—
Newtonmethod introduced in this paper was necessary in order to solve
a number of other test examples.

In fact, we made the following observation during the testing phase
for our algorithm: Both the preprocessor from [16] and the hybrid
Newton-type method discussed in this paper try to minimize the D-gap
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TABLE I Numerical results for MCPLIB test problems

Problem 7 m  SP P-steps N-steps G-steps F-eval. go(x" 7)1
bertsekas 15 15 | 0 4 0 11 7.5¢—15 2.7e—7
bertsekas 15 15 2 1 0 12 7.5¢e—-15 2.7c—7
bertsekas 15 15 3 ] 4 0 12 7.5c—-15 2.7e-7
bert_oc 5000 2000 1 4 0 0 6 3.8¢—28 6.le— 14
billups 1 1 1 — — — — -
bratu 5625 11250 1 13 0 0 29 1.0e —20 1.9¢—10
choi 13 26 l 4 0 0 5 44e—15 2le-7
colvdual 20 20 1 — — — - — —
colvdual 20 20 2 — - - — — =
colvnlp 15 15 ! 0 3 0 10 2.0e—13 14c—-6
colvnlp 15 15 2 1 3 0 20 35e—12 59c-6
cycle 1 1 1 3 0 0 5 23e-21 1.5¢e-10
ehl_k40 41 40 1 12 8 0 115  9.6e—23 3.le~11
chl_k60 61 60 1 22 8 0 221 1.7e—17 1.3e-38
ehl_k80 81 80 l 24 8 0 233 3le—-17 1.7¢-8
ehl_kost 101 100 1 28 8 0 273 6.6e—16 8.le-—8
ehl_kost 101 160 2 28 8 0 273 6.6e—16 8.le—8
ehl _kost 101 100 3 28 8 0 273 6.6e—16 B.le--8
explcp 16 16 1 15 0 0 31 0 0
freebert 15 10 | 0 3 0 10 24e—16 48e-—8
freebert 15 10 2 1 3 0 16  6.6e—23 2.6e— 11
freebert 15 10 3 0 3 0 10 24e—16 488
freebert 15 10 4 0 4 0 11 44e-21 21¢c—-10
freebert 15 10 5 i 3 0 9 32-19 1.8-9
gafni 5 10 1 13 0 0 46  7.5¢—19 2.7e-9
gafni 5 10 2 12 0 0 4 75-19 2.7¢-9
gafni 5 10 3 13 0 0 4 T75¢ 19 2.7e~9
hanskoop 14 14 1 0 4 0 13 23e—-14 48c—7
hanskoop 14 14 2 0 6 0 17 2.1le-14 45e—-7
hanskoop 14 14 3 0 5 0 14 S53c—14 73e-7
hanskoop 14 14 4 4 4 0 22 32e-14 57e-7
hanskoop 14 14 5 0 7 0 24 6.0e—15 24e-7
hydroc06 29 Il 1 5 0 0 7 l.le-25 l.le—12
hydroc20 99 39 1 8 0 0 10 37e—14 6.0e—7
jel 6 6 I 8 0 0 16 lde—15 12e-7
joscphy 4 4 1 10 0 0 23 29¢c—17 1.7e-8
josephy 4 4 2 7 0 0 1S  45e—-22 6.7e—-11
josephy 4 4 3 11 0 0 24 29-17 1.7e-8
Josephy 4 4 4 4 0 0 5 42e—15 2.1e—-7
josephy 4 4 5 3 0 0 4 43e—15 2.le—7
josephy 4 4 6 6 0 0 12 22e—15 1.5¢—7
kojshin 4 4 l 9 0 0 22 1.2e—20 3.5¢ - 10
kojshin 4 4 2 7 0 0 14 1.3e =23 1.2e—11
kojshin 4 4 3 10 0 0 23 1.2e—20 3.5¢-10
kojshin 4 4 4 1 0 0 2 0 0
kojshin 4 4 5 3 0 0 4 43¢—-15 2le—-7
kojshin 4 4 6 5 0 0 7 6.3e—16 7.59¢—8
mathinum 3 3 | 22 0 0 47 4.le—14 6.4e-7
mathinum 3 3 2 4 0 0 5 J4e—-16 58e—8
mathinum 3 3 3 32 0 0 76 43¢—-14 657
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TABLE I (Continued)

SP P-steps N-steps G-steps F-eval. g,x‘,‘;(xr)

7))

Problem n m

mathinum 3 3 4 5 0 0 6 2.7e—14 5.1le—7
mathisum 4 4 1 4 0 0 6 2.0e =22 4.4e—11
mathisum 4 4 2 5 0 0 6 S4e—15 23e-7
mathisum 4 4 3 26 0 0 S3 37e—14 6.ie—7
mathisum 4 4 4 5 0 0 6 8.2e—=21 2.8—10
methan08 31 15 1 4 0 0 5 6.3t —24 7.9¢-12
nash 10 10 1 6 0 0 7 38¢—17 19 -8
nash 10 10 2 12 0 0 39 6.1e—15 2.5-7
obstacle 2500 5000 1 10 0 0 11  33e—-31 23e¢-15
opt_cont3l 1024 1024 1 5 0 0 12 3.6e—-30 43e-15
opt contl27 4096 409 1 8 0 0 32 1.4e-29 9.0e—15
opt_cont255 8192 8192 | 11 0 0 51 29e-29 1.2e-14
opt_contS11 16384 16384 | 12 0 0 52 6.0e—29 l.6e—14
pgvonl05 105 105 | 20 0 0 91 2.7e—12 5.2e-6
pgvonl06 106 106 1 — — - — — -
pies 42 52 1 20 6 0 153 2.le—16 4.6e—8
powell 16 16 | 4 3 0 17  7.5¢-20 8.6e —10
powell 16 16 2 6 4 0 22 18 —-16 43e-8
powell 16 16 3 0 12 0 35 23e-21 1.5¢—10
powell 16 16 4 0 7 0 21 1.7e—17 13e-8
powell_mcp 8 0 1 6 0 0 7 42¢e-24 6.5¢—12
powell_mcp 8 0 2 7 0 0 8 47¢—-25 2.2e-12
powell_mcp 8 0 3 8 0 0 9 22e—16 4.7e-8
powell_mcp 8 0 4 7 0 0 8 1.7 - 15 13e-7
scarfanum 13 13 1 0 4 0 20 82-13 29e-6
scarfanum 13 13 2 0 5 0 20 1.3e—16 3.7¢—-8
scarfanum 13 13 3 9 0 0 12 52e-20 72¢—10
scarfasum 14 14 | 4 0 0 6 3.2e—18 5.6e—9
scarfasum 14 14 2 0 3 0 16 8.8e—13 3.0e—6
scarfasum 14 14 3 9 0 0 12 52e-20 7.2e-10
scarfbnum 39 39 ] — — - — - —
scarfbnum 39 39 2 - — — — — —
scarfbsum 40 40 1 13 0 0 62 53e—-14 73e-—-7
scarfbsum 40 40 2 26 0 0 66 96e—14 9.8e—-7
sppe 27 27 t 23 3 0 60 14e—22 37e—-11
sppe 27 27 2 21 4 0 59 3.1e-21 1.7e—10
tobin 42 42 1 15 0 0 46 9.6e—23 3le—-11
tobin 42 42 2 22 0 0 83 4.0e—21 2.0e—10

function g3 Now, the D-gap function might have a local minimum
which does not correspond to a solution of the box constrained varia-
tional inequality problem. In that case, we would expect both algorithms
to run into difficulties by converging to one of these local minima, in
particular, since the search directions computed by both methods are
based on some local information of the variational inequality problem.
In fact, this difficulty arises, e.g., for the billups example. In general,
however, our observation is that the method from [16] tends to converge
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TABLE Il Numerical results for GAMSLIB test problems

Problem n m SP P-steps N-steps G-steps F-eval.  g,s(x’) (el

calemge 101 101 1 10 0 0 29 33e~16 57e—-8
cammcp 242 242 | 6 0 0 8 l.le—16 33-8
cirimge 9 6 1 6 0 0 53 20e—32 44e-16
co2mge 208 208 1 2 0 0 15 l1.6e—15 13e-7
dmemge 170 170 1 147 33 8 1658 1.5¢e—14 39e-7
ers§2mcp 232 0 1 5 0 0 6 1.8e—24 42e-12
etamge 14 114 1 15 0 0 42 1.5¢e 14 38—-7
hansmep 43 43 | 33 11 16 787 24e—13 l.6e—-6
hansmge 43 43 | 5 5 0 62 28—13 17e-6
harkmep 32 32 1 26 0 0 60 1.0e—14 32e-7
harmge H 9 | ] 6 0 18 l4e—13 1.2e—6
kehomge 9 9 1 12 0 0 18 43e—-23 2le-11
kormep 78 0 1 3 0 0 5 1.8e—25 1.3e—12
mrSmep 350 350 1 l 9 0 51 73e—22 8.5e—-11
nsmge 212 212 1 5 14 0 59 23e—17 1.5¢-8
oligomep 6 6 | 6 0 0 9 1.0e—20 3.2e-10
scarfmep 18 18 1 [ 4 0 14 S4e—12 73e-6
scarfmge 18 I8 1 0 6 0 18 14e—-15 1.2e-7
transmcp 11 11 1 0 1 0 3 20e—17 14e-8
twolmcep 6 6 1 8 0 0 16 14e —15 12e-7
unstmge 5 5 | 8 0 0 11 23¢e—18 4.7¢-9
vonthmep 125 125 1 — - — — — —

vonthmge 80 80 1 200 8 1 1263 1.4e—13 12e-6
wallmep 6 0 1 2 0 0 3 3.5¢e-21 19%9-10

to a local minimum of g, 3 much more often than the method discussed
here. This seems to indicate that, from a global point of view, the search
direction computed by our hybrid Newton-type method is a much better
search direction than the one computed by the nonsmooth Newton
method in [16]. :

[tis therefore our feeling that the robustness of many existing solvers
can be improved by using the search direction from our hybrid Josephy—
Newton method whenever the underlying solver does not seem to
converge.

Finally, let us shortly mention what happens if we do not use our
preprocessor. Obviously, this changes the numerical results. In general,
however, the changes are not very dramatic, for example, the three
gafni examples can be solved in just 3-4 Josephy—Newton steps
(instead of 12—13 linear system solves when using the preprocessor), the
four powell mcp problems can be solved in 5-8 Josephy—Newton
iterations (compared to 6—8 linear system solves), and the cafemge
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example is solved in 6 Josephy—Newton iterations (compared to 10
iterations in the preprocessor). The differences are more dramatic for
the josephy and kojshin test problems, mainly due to the fact that
the linearized subproblems quite often do not have a solution for
these examples. For instance, it takes 97 Josephy—Newton iterations (14
N-steps and 83 G-steps) in order to solve the josephy problem when
using the fourth starting point.

S CONCLUDING REMARKS

The variational inequality problem is reformulated as an unconstrained
minimization problem by using the D-gap function g, 3. Some properties
of the affine VIsubproblem of the classical Josephy—Newtonmethod are
studied. A hybrid Josephy—Newton method is then proposed to mini-
mize the function g, ;. Under mild conditions, the proposed method is
shown to be globally convergent. If some additional assumptions are
satisfied, then the sequence converges quadratically or superlinearly to
a solution of the original variational inequality problem. A sufficient
condition is given for a solution x* of the VIP to be regular. This condi-
tion is only concerned with the mapping F, unlike the conditions in
[6,17,24].
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