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1 INTRODUCTION 

Let F be a mapping fron1 �R'' into itself and X be a nonempty closed
convex subset of R11• The variational inequality problem (VIP) is to find 
a vector x* EX such that 

(F(xx)S- x*) > 0, 'iy E X, ( 1) 
where ( · ,  ·) denotes the inner product in �11• rn this paper, we study the

case that X is a box defined by

X= { x E 1R" ili < x; < u;, i = 1, .... , n} 
where I; E 3t U { -x} and 11i E � U { +oo} with li< u1 representing the
lower and upper bounds on thevariables, respectively. It is not difficult
to see [3, Proposition 5. 7] that the box structure of the set X enables us 
to rewrite (1) as 

F,.(x*)(V;- x;) > 0, i = 1, ... , n, 'iy EX. (2) 

If the constraint set X is the nonnegative orthant ��' then the VIP 
reduces to the complemelitarity problem (CP). This class of special VIPs

has numerous itnportant applications in various fields such as mathe
matical programming, economics, and engineering; see [7,1 3] and 
references therein. 

A useful way to deal with VIP (1) is to reformulate it first as a system
of equations or an optitnization problen1 via a n1erit function, and
then solve the resulting systen1 of equations or optimization problem.
Recently.tnuch attention has been paid to the reforn1ulation ofVIPs and 
CPs and various merit functions have been proposed and studied [10].
Well known merit functions for VIPs include the gap.ftmction 

g(x) = sup(F(x), x- y) 
r�X 

first presented by A us! ender [2] and then studied by M arcotte and 
Dussault [18, 19], the regulari�ed gapjzmction 

(1"- ) 
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introduced by Fukushima [9] and Auclunuty [1 ], and the D-gap 
function 

(4) 

proposed by Peng [21] and Yamashita et al. [27], where a and (3 are

arbitrary positive parameters such that a < f-1. Since a box constrained

VIP is actually equivalent to a system of KKT rnixed con1plen1entarity

conditions, several merit functions based on the KKT systen1 of VIP

have also been proposed and explored extensively, see Qi [23] and 

references therein. 

In this paper, we focus our attention on the D-gap function for VIP. 

It is not difficult to see that gu,s{x) > 0 for all .rE R'\ and gn/�(x) = 0 if
and only ifx is a solution of the VIP (1 ) . Therefore the VIP can be cast as 
the following unconstrained optin1ization problem:

min go. a (x). xEiR" . (5) 

When the mapping F is differentiable, the D-gap function ga(l is also

differentiable [9,27]. However, it is not twice differentiable in general . 
Therefore it is not straightforward to apply conventional second-order

1nethods to problem (5). As a rernedy for this inconvenience, Sun et al. [25]
introduced the concept of a computable generalized Hessian of the D-gap

function g03 and presented a Newton-type method for solving problen1

(5). Restricting themselves to the box constrained VIP, Kanzow and

Fukushin1a [15] discussed a generalized Hessian of the D-gap function

and proposed a Gauss-Newton-type method to minimize it. Further 

properties of the D-gap function have been investigated in [11, 15,25].
This work is n1otivatcd by the recent paper [22] in which the D-gap

function is used to globalize the classical Josephy-Newton method [14] 
for general VIPs. The n1ain purpose of this work is to further study the 

algorithm proposed in [22] by restricting ourselves to box constrained

VIPs, and test the effectiveness of the algorithm. In [22] , the global and

local convergence of the algorithm were proven under the assumptions 

that Fis strongly n1onotone. By restricting to box constrained VIP, we will 

show in this paper that the algorithm is globally convergent and locally 

q uadratica lly convergent if the mapping Fis a unifonn P-function . Hence

the results here can also be viewed as a refinement of the results in [22]. 

The paper is organized as follows: In Section 2, we first introduce

some basic definitions that will be used in the paper. Son1e sensi tivity
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results for box constrained affine VIP are given under certain condi

tions. Then, by applying these sensitivity results, we study the properties 

of the subproblem in theJosephy-Newtonmethod [14].ln Section 3, we 
present a hybrid algorithrn which uses the D-gap function to globalize

Josephy-Newton method. Convergence properties of the algorithm are

also discussed. In Section 4 we report some numerical results. Finally we 
conclude the paper with some rernarks in Section 5. 

2 SOME RESULTS FOR BOX CONSTRAINED AFFINE VIP 

We first review some concepts related to the mapping F. 
The mapping F: �n---+ ?R'1 is said to be a P0-jimction if

m�x(xi - yt)(Fi(."\:) - Fi(V)) > 0 Vx, y E rrt11, x # y;151<11 
Xt::/Yr 

a P-function if 

and a uniform P-function (with modulus p, > 0) if 

An n x n matrix M is a P0-matrix if 

and a P-matrix if

It is easy to see thaL if M is a P-matrix, then there exists a constant 11 > 0
such that 

(6) 
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It is known [20, Theorem 5.8] that if F is a differentiable P0-function, 

then V' F(x)T is a P0-matrix for each x. Moreover, if Fis a differentiable

uniform P-function with modulus I'·> 0, then V' F(.x) T is a uniform 
P-n1atrix with modulus p. > 0 in the sense that

Since we are not aware of any explicit reference for the formula (7), we

include a short proof for it. 

LEMMA 2.1 Let F: ��____,. �n be a d?fferentiable un{form P-function

with modulus Jl. > 0. Then (7) holds.

Proof Let x E �� and z E �n be arbitrary but fixed. Let { tk} C R be

a sequence of positive numbers converging to 0. Since F is a uniform 
P-function and the index set { 1, . . .  , n} is finite, there exists an index 

i0 E { 1, . . . , n} (independent of k) and a subsequence { tk} K such that

zin i- 0 and 

Dividing this expression by t�, taking the limit k � oo (k E K) and

using the assumed differentiability ofF, we obtain 

This implies 

and completes the proof. 

In the classical Josephy-Newton method, we solve the fo11owing

linearized VIP subproblem at each iteration: Given a current iterate x\ 
find a vector x E X  such that

Here we study the properties of the affine subproblem (8). In [26], Taji 

et al. studied the subproblem (8) for a general closed convex constraint
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set X under the assumption that F is strongly monotone and con
tinuously differentiable. Restricting ourselves to the box constrained

VIP, we will investigate properties of the subproblem under weaker

conditions. 

To this end. we first consider a perturbation of affine VIP with box

constraints. Let X be a box, MaP-matrix, and b E  ?R". For any v E �11, 
let x(v) EX denote the unique solution of the following affine VIP: 

( h + v + Mx, y - x) > 0�

or equivalently

Vv EX, o/ ·, (9) 

(b; +vi+ [Mx]J(,r;- x1) > 0, i = 1, . . . , n, Vy EX. (10) 

PROPOSITION 2.2 Let x( v) be the unique solution q[ the ({fflne VIP (9), 
where X is a box and M a P-matrix. Let 11 > 0 be a constant satisfying 
( 6). Then we have 

llx(v)- x(v')ll < _!_llv- v'jj, '1/v, v' E R".
f1, 

Proof Let v, v' E 2R11 be arbitrary. Since x(v) EX, x(v') EX, and X is a
box. it follows from (1 0) that 

and 

(hi + Vi + [ Mx (V)] i) (Xi (V 1) - X; (V)) > 0, i = 1 , ... , 11, 

Adding the above two inequalities, we obtain 

( v1- v/)(x;(v')- x;(v)) > (x1(v)- x1(v'))(j\4(x(v) - x(v' ) )Jr � 

i= 1, ... ,11. '11) ( .. 
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Since M is a P-matrix, there exists a constant fL > 0 and some index i0

such that 

This inequality together with (1 1) implies that

Since 

(V io - V :0) (X iu (V 1) - X io (V) ) < 11 V - V 1 11 ' 11 X (V) - X (V 1) 11 ,

the inequality (12) yields 

1 
llx(v)- x(v1)11 < -[[v- v'll·' ' fl 

This c01npletes the proof of the proposition.

Next we give another result on the continuity of a solution of the box 

constrained affine VIP with a P-rnatrix. For any P-matrix M and vectors 

b,p E �'\ let x(M) EX denote the unique solution of the following affine

VIP: 

or equivalently 

(b + Mp + Mx, y - x) > 0, \fy E X, (13) 

(b; + [Mp]; + [MxL)(y;- Xi) > 0, i = 1, . . .  , n, \/y E X. (14) 

PROPOSITION 2.3 Suppose that M and N are ?-matrices and X is a

box. Let J1 > 0 be a constant satisfying (6). Then 1-ve have 

1 
llx(M)- x(N)II < - IIM- Nll·llx(N) + p[[. (15) 

fl 

Proof The proposition trivially holds if x(M) = x(N). Hence we

only need to consider the case where x(M) # x(N). Since X is a box, it
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follows from (14} and the definitions of x(M) and x(I\l) that 

and 

Adding the above two inequalities, we get 

([Mpl-- [iVjJ]; + [Mx(M)L � [Nx(N)];)(x;(N)- xi(AJ)) > 0,
i= l, . .. ,n, 

which implies that

[(ill/- tV)(x(N) + p)]i(x;(N)- xi(�/))
> [i\J(x(Af)- x(N))]i(x;(M)- xi(iV)), i = L ... , 11. (16)

Since M is a P-matrix, it follows fr01n. (6) and .x(M)- x(N) ::f. 0 that

there exists an index i0 such that

Then ( 16) and ( 1 7) imply

JL[[x(AJ)- x(N")[I2 < [(Af- N)(x(N) + p)L0(Xi0(N)- x,0(AJ))
< IIM- Nil ·[[x(N) + pJJ· [[x(lv')- x(Af)jJ. 

This c01npletes the proof. 
Remark In the literature on sensitivity analysis for VIP and CP, a lot 
of results have been obtained mainly based on the KKT system of the

problen1 and various regularity conditions (or local assumptions), see

[13, Section 5, 17]. Propositions 2.2 and 2.3 give global and sin1ple 
results based only on somewhat strong assun1ptions on the n1apping F. 

Now we return to the affine subproblem of Josephy -Newton method. 
Let x be a given point in �R'' and consider the 1inearized VIP of finding a 
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point z E X  such that

(F(x) + \7F(x)T(z- x),y- z) > 0, Vy EX, (18) 

or equivalently 

(Fi(x) + [V'F(x)T(z- x)]J(J';- zi) > 0, i = 1, . . .  ,n, Vy EX. (19)

If \7 F(x) is a P-tnatrix, then problem (18) has a unique solution, 
which we denote z(x). Our next result studies the properties of the solu
tion of problem (18). The proposition is a refinement of Proposition 2.2
in [26].

PROPOSITION 2.4 Suppose that F is a continuously d�fferentiable uni
form P-function and X is a box. Then the solution z (x) of the affine VIP
(18) is continuous as a function r�l x. Moreover, x is a solution of the
VIP (1) if and only ifx = z(x). 

Proof First we note that, since F is a uniform P-function, (7) is satis

fied with some constant 1-L > 0 independent of x. For two arbitrary
points x, x' E �n, let z(x) and z(x') be the unique solutions of the
linearized VIPs (18) at x and x', respectively. Also let z denote the

unique solution of the affine VIP 

(F(x) + \7F(x')T(z- x),y- z) > 0, Vy EX. 

It then follows from Proposition 2.2 with v := F(x)-\7 F(x ') T x, v':=
F(x')- \7 F(x')Tx', b := 0 and M:=\7 F(x')T that

1 
llz- z(x' ) 11 < - IIF(x) - F(x') + \7 F(x') T (x' - x) 11· 

IL 

On the other hand, by Proposition 2.3 with b := F(x), p := -x, 
N:=\7 F(x)T and M:=\7F(x')T, we have

llz- z(x) 11 < _!_ ll\7 F(x') T -\7 F(x) T 11 · llz(x) - xii
Jl, 
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It then follows that

11:-(x) - z(x')II 
< 11.:- .:(x') 11 + 11.:- :-(x) 11 

] . . . . . ·  . T < �- ( IIF(x) - F(x') + V'  F(x1) (x'- x) 11 
I" 
+ llvF(x')T- vF(x)T[I·i[:-(x)- xjl). 

Consequently, for any fixed x E ���.we obtain

lim ll.:(x) - .:(x') 11 = 0.x'-x 

This proves the first half of the proposition.

To prove the second half. suppose first that .:(x) = x. Then it follovv·s
itnrnediately from (18) that x solves (1). Conversely suppose that xis a 
solution of ( 1 ). Since X is a box and z(x) EX. (2) yields

F;(X) (zi(.Y) - x;) > 0, i = L ... , n. (20) 

Similarly, fron1 x EX and ( 19), we have

Fi(x)(x;- =t(x)) + [vF(x)T (.:(x)- x)]Jx;- .:i(x)) > 0. i- 1, ... , n. 

(21) 
The inequalities (20) and (21) give

(.:;(x)- x;)[vF(x)T(.:(x)- x)L < 0, i- I. ... . n. (22) 

Since \7 F(x)T is a P-matrix. it follows fron1 (7) that there exists an index i0. . 
such that

Combining (22) with (23). we get .:(x) = x. 

Regularity conditions have been widely used in the study of varia
tional inequal1ty problems. patticu1ar1y in the analysis of IocaJ con
vergence properties of iterative methods for VTPs. A solution x"' of the 
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VIP (l) is said to be regular in the sense of Robinson [24] (see also [13]) 
if there exist a neighborhood n of x* and a neighborhood V of 0 E 3(.11
such that, for every v E V, the perturbed VIP of finding a vector x E X
such that 

(F(x; v),y- x} > 0, Vy E X, (24) 

where F(x;v) := F(x*) + v + V F(-x:*)T (x- x*), has a unique solution

x(v) E n  that is Lipschitz continuous as a function of v, i.e.,

for some p > 0. 

llx(v)- x(v')ll < Pllv- v'll, Vv,v' E V

In [22], a strong but si1nple sufficient condition for a solution x* of

the VIP to be regular was given. Here we give a different condition 

pertaining to the box constrained VIP. The next proposition follows

directly fron1 Proposition 2.2. The proof is omitted.

PROPOSITION 2.5 Assume that x* is a solution of the VIP (1) lvith X 
being a box. !f the matrix \7 F(x*) is a P-matrix, then x* is a regular 
solution. 

Remark Proposition 2. 5 can also be derived from a characterization

of strong regularity given in [6, Theorem 3.4]. The approach in [6] is
based on the equivalent KKT system of box VIP and is different from

our approach here. 
The classical Josephy-Newton method generates a sequence {xk} by

the updating rule xk+l = z(xk). From Proposition 2.4, the method is well

defined if F is a uniform P-function. Moreover, if the initial point x0
is sufficiently close to the solution point x* and the matrix V F(x*) is a

P-matrix, then by Proposition 2.5, x* is a regular solution and hence it

follows fron1 the basic result of Josephy-Newton method [13,14] that 
the generated sequence {x"} converges locally quadratically to x*.

3 A HYBRID JOSEPHY-NEWTON METHOD 

In the previous section, we have discussed the affine VIP with box

constraints. In this section, we consider the method proposed in [22]
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for solving the VIP (I) with general convex constraints, which is Jose

phy-Newton method with D-gap function globalization. Our aim is to

refine the convergence results obtained in [22] by restricting ourselves to 
the special case where the VIP (1) is box constrained.

The algorithm is stated as follows:

ALGORITHM 
Step 0 Choose x0 E �nl wE (0,1 ) , ( E (0, 1), bE (0� 1 ), u E (0,1), and

sufficiently small E> 0. Let k: = 0.

Step 1 Find :lE .X such that

and let dk:= zk-.-·l. If

( .k dk) ( k) gct/3 X + · < (ga/3 X , (26) 
then let )..k := 1 and go to Step 3. If the linearized VIP (25) is not sol

vable or if dk does not satisfy the condition

k k) then set d := -\7 gn/lx .

Step 2 If IJdkll < E then stop. Otherwise find the sn1allest nonnegative

integer n1k satisfying 

(28) 

and let Ak := wmk. 

Step 3 Set)?' 1 :=xk+)..kcf and k:=k + I. Go to Step 1.

Using similar arguments to those in the proof of the global con
vergence theorem in [22], one can prove the following theoretn.

THEORE!\1 3. 1 Suppose that the mapping F is continuousl_v dffferenti
ahle. Let E = 0 and suppose that the algorithm generates an i11/lnite

sequence {xk}. Then any accumulation point x* o.f the sequence {xk} is a 
stationwy point of the D-gapfunction ger3· 
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If Fis a uniform ?-function, then by [1 5, Theorem 4.1], the level sets of
D-gap function gn./3 are bounded. Since {g(l',G(xk)} is nonincreasing, the
boundedness of level sets guarantees the boundedness of the generated 
sequence {xk} and hence the existence of at least one accumulation point
of{.:/}. On the other hand, by [15, Theorem 3.1], any stationary point .X:
of g03 such that \7 F(x) is a P-matrix is a solution of the VIP (1 ) . 
Therefore, if Fis a uniform ?-function, then it follows fro In Theorem 3.1
that any accumulation point of the generated sequence {xk} solves the
VIP (I). Because the box constrained VIP with a uniform P-function has
a unique solution, we obtain the next corollary to Theorem 3.1. 

COROLLARY 3.2 Suppose that F is a continuously differentiable uni
form ?-function and X is a box. Then for any starting point x0 E jt'', the
sequence {xk} generated by the algorithm converges to the unique solu
tion of the VIP (1).

To study the convergence rate of the algorithm, we need the following 
results concerning an error bound property of the D-gap function. We 
denote by Ya(x) the unique maximizer on the right-hand side in the
defining equation (3) of the regularized gap function j�. Note that
.Yu(x) = f1x(x- a-1 F(x)), where ITx denotes the projection operator
on X. We define Ra(x) := x- Ya(x). Moreover Y.B(x) and R1:J(x) are
defined similarly. Let B(�) denote the closed sphere centered at x* with
radius .6. > 0, i.e.,

B(.6.) := {x E � l l lx- x*ll  < .6.}. 
Following the proof of Lemma 5.1 in [15], we have the next lemma.

LEMMA 3.3  Let x* be a solution of the VIP (1) with X being a box.
Suppose that F is a uniform P-.function with modulus 1-l· Suppose also
that F is Lipschitz continuous lvith constant K, > 0 on B(.6.) for some
� > 0. Then there exists a constant rJ > 0 such that 

l lx- x*ll < TJ11R;3(x)il, Vx E B(�), 
li"here 7] = (K + !3)/ p,. 

(29) 

The next lemma shows that the D-gap function provides a local error 
bound for the VIP (1) under suitable assumptions. This result will
be useful in establishing the quadratic convergence of the proposed 
algorithm. 
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LEMMA 3.4 Let x* be a solution of the VIP ( 1) with X being a box.

Suppose that F is a un�lorm P-jimctlon with modulus J.l· Suppose also
that F is Lipschit:z continuous 1vith constant f£ > 0 on B(�) for some
� > 0. Then there exist constants c1, c2 > 0 such that 

Proof By [27, Proposition 3.1]� we have

It follows from Lemma 3.3 and the left part of the above inequality

that 

where 77 = (1'£ + /3)/p., which shows that the left inequality in (30) is true.

Next observe that 

ffRn(x)fl = llx- Yo.(x)-x* + Yn(x*)l l  

< llx-x*ll + IT).Jx-a-1F(x))- Ilx(x* -a-1F(x*)) 
< llx- x*ll + llx-o-1 F(x)- x'i' + 0'�1F(x*)IJ
< (2 +:)fix- x*ll

for all x E B(A), where the equality follows from the de!lnition of R(l and 
the fact that Ro:(x*) = 0. the first inequality follows from the triangle

inequality and the definition of Yt<• the second inequality follows from 
the nonexpansiveness of the projection operator ITx. and the last

·inequality follows from the Lipschitz continuity of F. The right

inequality in (30) then follows from the right inequality of (31 ). The

proof is con1plete.

'Ve arc ready to prove quadratic convergence of the proposed

algorithm. ""' 
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THEOREM 3.5 Suppose that F is continuousfv differentiable and X is a 
box. Let x* he an accumulation point of the sequence {xk} generated by 
the algorithm. If F is a uniform P-function and \7 F is locally Lipschit
zian, then x* is a solution of the VIP (1) and the sequence {xk} converges 
quadratically to x*. 

Proof By Theorem 3.1, x* is a stationary point of the D-gap func

tion gct.B· Since \7 F(x*) is a P-n1atrix by Len1n1a 2.1, it follows from

[15, Theorem 3.1] that x* is already a solution of the VIP (1). More
over Proposition 2.5 shows that x* is a regular solution. Since F is 
differentiable, it is locally Lipschitzian; hence there exists a �1 > 0
such that F is Lipschitz continuous on B(�t). Hence by Len1n1a 3 .4, 

we have 

for some ch c2 > 0. Moreover, by choosing a smaller �1 if necessary,
we may assume that \7 F is Lipschitz continuous on B(�1). Since x* is
a regular solution, by the basic result on Josephy-Newton's n1ethod
for the VIP [13,14], there exists a �2 > 0 such that for any initial point

chosen from B(�2), the Newton iteration is well-defined and

holds for some constant c3 > 0. Let �3 := min(�1, �2). Then it follows

frmn (32) and (33) that 

Let 

Then it follows fr01n (34) that for any x E B(�4) 
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where the first inequality follows from the choice of �4 and the second

inequality follows frmn the left inequality in (32). This implies that, 
when xk E B(.6.4), we have d" =z(x")- xk and the step size )..k =I is
accepted, i.e., .r/' + 1 = z(xk). Consequently it follows from (33) that the

sequence {xk} converges to x* quadratically.

Silnilarly we may prove superlinear convergence of the algorithm

under slightly weaker assmnptions. The proof is omitted. 
THEOREM 3.6 Suppose that F is continuously d({ferentiable and X is a 
box. Let x* he an accumulation point of the sequence {xk} generated by 
the algorithm. �!' F is a untforrn P-function� then x* is a solution qf the 
VIP (1) and the sequence {xk} converges superlinearly to x*. 

4 NUMERICAL RESULTS 

We implemented the hybrid Josephy� Newton method suggested in this

paperinMATLABandrun it on a SUNSPARC 10station. We first give

a brief description of the implementation: Let 

r(x) := x- Proj[/,u](x- F(x)) 
denote the natural residual of the box constrained variational inequality
problem. We terminate our method if

for sotne iterate xk, where

Et := 10-6 and c2 : ::::: 10 11.

In addition, the iteration was stopped if k > kmttx with kmax- 100.

For the D�gap function g0;:J, we used the panuneters

a = 0.9 and /1 = 1.1. 

ln the line search rule (28), we used 

w = 0.5 and b = 10-4. 

(35) 
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However, we replaced the standard (monotone) Armijo-rule }?y a 
nonmonotone variant, see Grippo et al. [12] for details.

As a solver for the linearized variational inequality problems, we used 
the semismooth Newton-type method from [6]. In contrast to what is
said in the description of our algorithm, however, we always accept the 
corresponding search direction dk whenever it satisfies the descent test 

note that this guarantees that the Arrnijo line search is well-defined. 
In particular, we accept this search direction dk even if we were not able
to solve the corresponding linearized variational inequality problem. 
In this way, we try to overcome the problem that we have to take too 
many gradient steps in a row which is obviously not very desirable. 

In order to improve the efficiency of our algorithm, however, we also 
used a preprocessor; more precisely, we first try to solve our test 
examples by using the recently proposed method from Kanzow and 
Fukushima [16]. This is a nonsmooth Newton-type method applied to 
the residual equation 

r(x) = 0 

and globalized by the D-gap function go!;�, see [16] for details. The
motivation for doing this is quite simple: The method from [16] works 
extremely well whenever it solves a problem successfully. Unfortunately, 
it does not seem to be very robust unless relatively strong assumptions 
are satisfied. 

So we first apply the nonsmooth Newton-type method fron1 [16] in 
order to solve a test example, but we stop this preprocessing iteration if 
either the termination criterion (35) is satisfied or if a certain test indi
cates that the preprocessor runs into difficulties. In the latter case, we 
switch to the hybrid Newton method introduced in this paper which is 
not as efficient as the method from [16], but which seems to be con
siderably more reliable. 

Basically, our criterion for switching from the preprocessor to the 
hybrid Newton method is as follows: If 

(36) 
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the11 terminate the preprocessing iteration and go to the hybrid Newton

1nethod using the previous iterate xk- l  as a starting point .  The actual

parameters used in ( 36) are

-4 fmin = 1 0  

If the preprocessor is successful and convetges to a solution of the box 
constrained variational i neq uality problem which satisfies the standard

regularity conditions used in [ 1 6] for the local convergence theory. then 
tk = l for all k sufficiently large and g(tixk) = O( I .IV'g63(.:l) l l 2) ,  so none

of the tests in  (36) will be satisfied.

We applied the method j ust described to al l test pro blems from the

MCPLIB and GAMSLIB libraries ,  see [4,8] ,  using all the different

starting points which are available within the MA TLAB environn1ent . 
We report the numerical results in Table I for the MCPLI B test

problems and in Table II for the GAMSLIB test problems. The columns

in these tables have the following meanings:

Problem : 

n :  
m :  
SP: 
P-steps: 
N-steps: 

G-steps: 

F-eval . :  

gn .lx'): 
l l r (xr) l l :

nan1e of the test problem in MCPLIB 
nmnber of variables 
nmnber of (finite) bounds on the variables x1 
starting point 

number of iterati ons used in the preprocessing phase

number of Newton steps used in the hybrid Newton phase

nurnber of gradient steps used in the hybrid Newton phase 
num ber of function eva l uations 
value of g03(x) at the final iterate x = .:/ 
value of l l r (x) l l  at the final iterate x = xr. 

Looking at Tables I and 11, we see that we have just a few failures on 
some difficult test pro blen1s, whereas the overall behavior of our n1ethod

is q uite good . Altho ugh many of the simple problems were solved by the

preprocessor (i .e . .  there are no N- and no G-steps), the hybrid Josephy

Newton tnethod introduced in this paper was necessary in order to solve

a number of other test examples.

In fact , we made the following observation during the testing phase

for our a lgorith m :  Both the preprocessor from [ 1 6] and the hybrid

Newton-type method discussed in  this paper try to .m inimize the D-gap 
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TABLE I N umerical results for MCPLI B test problems 
Problem n m SP P-steps N-steps G-steps F-evaf. . f) g",;i(x . l l r(:\ll l
bertsekas I 5  I 5 I 0 4 0 1 1 7 . 5e - 1 5 2 .7e - 7
bertsekas 1 5  I 5  2 I 4 0 1 2 7 . 5e - 1 5  2 .7c - 7
bertsekas 1 5  1 5  3 l 4 0 1 2  7.5c - 1 5  2 . 7e - 7
bert oc 5000 2000 1 4 0 0 6 3 . 8e - 28 6. 1 e - 1 4 
billups I 1 1 
bra tu 5625 1 1 250 1 1 3  0 0 29 1 .0e - 20 1 .9c - 1 0  
choi 1 3 26 1 4 0 0 5 4.4e - 1 5  2. I e  - 7  
colvdual 20 20 1 
colvdual 20 20 2 
colvnlp 1 5  1 5 () 3 0 1 0  2.0e - 1 3 J .4c - 6 
colvnlp 1 5 1 5  ") 1 3 0 20 3 .5e - 1 2 5.9c - 6..:.. 
cycle 1 1 1 3 0 0 5 2.3e - 2 1  1 . 5e - 1 0 
ehl k40 4 1 40 I I 2  8 0 1 1 5 9.6e - 23 3 . 1 e - 1 1
ehl_k60 6 1  60 1 22 8 () 22 1 1 . 7e - 1 7 1 . 3e - 8 
ehl_k80 8 1 80 1 24 8 0 233 3 . 1 e - 17 1 .  7e - 8 
ehl_kost 1 0 1  1 00 1 28 8 0 273 6.6e - 1 6  8 . 1 e  -.. 8 
ehl_kost 1 0 1  l OO ") 28 8 0 273 6.6e - 1 6  8. l e - 8 ... 
ehl_kost 1 0 1  1 00 3 28 8 0 273 6.6e - 1 6 8. 1 e -- 8
explcp 1 6 1 6 1 1 5  0 0 3 1 () 0 
freehcrt 1 5 1 0 1 0 3 0 1 0  2.4e - I 6  4.8e - 8 
freebert 1 5  1 0  2 I 3 0 I 6  6.6e - 2 3  2.6e - 1 1
freebert 1 5  1 0  3 0 3 0 1 0  2.4e - 1 6  4.8e - 8 
freebert 1 5 1 0  4 0 4 0 1 1 4.4e - 2 1  2 . 1 e - 1 0
freebert 1 5  10 5 1 3 0 9 3 . 2e - 1 9  1 .8e - 9
gafni 5 1 0  1 1 3  0 0 46 7.5c - 1 9 2.7e - 9 
gafni  5 1 0 2 1 2  0 0 44 7 .5c - 1 9 2.7e - 9
gafni 5 1 0 3 1 3 0 0 46 7.5e 1 9  2.7e - 9 
hanskoop 1 4  1 4  1 0 4 0 1 3  2.3e - 1 4  4.8c - 7
hanskoop 1 4 1 4  2 0 6 0 1 7  2. 1 e ·- 1 4  4.5e - 7
hanskoop 1 4 1 4  3 0 5 0 1 4 5.3c - 1 4  7 . 3e - 7
hanskoop 1 4  1 4  4 4 4 0 22 3 .2e - 14 5.7e - 7

hanskoop 14 1 4  5 0 7 0 24 6.0e - 1 5  2.4e - 7
hydroc06 29 1 1  I 5 0 0 7 1 . 1 e - 2 5 l . l e - 1 2
hydroc20 99 39 1 8 0 0 1 0 3 . 7e - 1 4 6.0e - 7 
jel 6 6 I 8 0 0 1 6  1 .4e - 1 5  1 .2e - 7 
joscphy 4 4 1 1 0  0 0 23 2.9c - 1 7 1 .7e - 8 
josephy 4 4 2 7 0 0 1 5  4.5e - 22 6 .7e - 1 1
josephy 4 4 3 1 1 0 0 24 2 .9e - 1 7  1 .  7e - 8 
josephy 4 4 4 4 0 0 5 4.2e - 1 5 2. l e  - 7
josephy 4 4 5 3 0 0 4 4.3e - 1 5  2 . 1 e - 7
josephy 4 4 6 6 0 0 1 2 2 . 2e - 1 5  1 .5e - 7 
kojshin 4 4 I 9 0 0 22 l . 2e - 20 3 . 5e - 1 0  
kojshin 4 4 2 7 0 0 1 4  1 . 3e - 2 3  1 .2e - 1 1  
kojshin 4 4 3 l O  0 () 23 1 .2e - 20 3 . 5e - l O
kojshin 4 4 4 1 0 0 ") 0 0 ... 
kojshin 4 4 5 3 0 0 4 4 . 3e - 1 5 2 . 1 e - 7
kojshin 4 4 6 5 0 0 7 6 . 3e - 1 6  7 . 59e - 8 
mathinum 3 3 1 '1' )  ,.._ 0 0 47 4 . l e - 1 4 6.4e - 7
mathinum 3 3 2 4 0 0 5 3 .4e - 1 6  5 . 8e - 8 
mathinum 3 3 3 32 0 0 76 4.3e - 1 4  6 . 5e - 7
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TABLE I (Continued) 
Problem n m SP P-steps N-steps G-steps F-eval. gl>/l(.i) J J r(x)rll 
mathinum 3 3 4 5 0 0 6 2 . 7e - 14 5. l e  - 7

mathisum 4 4 1 4 0 0 6 2.0e - 22 4.4e - 1 1
mathisum 4 4 2 5 0 0 6 5 .4e - 1 5 2 .3e - 7
mathisum 4 4 3 26 0 0 53 3 . 7e - 14 6. 1 e - 7
mathisum 4 4 4 5 0 0 6 8 .2e - 2 1  2.8e - 1 0
methan08 3 1 1 5 1 4 0 0 5 6.3e - 24 7 .9e -- 12 
nash 1 0  1 0  1 6 0 0 7 3 . 8e - 1 7 1 .9e - 8 
nash 1 0  1 0  ') 12 0 0 39 6 . l e - 1 5 2.5e - 7
obstacle 2 500 5000 I 1 0  0 0 1 1 3 . 3e - 3 1  2 . 3e - 1 5
opt_cont3 1 1 024 1 024 1 5 0 0 1 2  3.6e - 30 4.3e - 1 5  
opt_cont 1 27 4096 4096 1 8 0 0 32 1 .4e - 29 9.0e - 1 5
opt_cont255 8 192 8 1 92 1 t l 0 0 5 1  2.9e - 29 l .2e - 1 4
opt_cont 5 1 1 1 6384 1 6384 1 1 2  0 0 52 6.0e - 29 l .6e - 1 4
pgvon l 05 105 1 05 1 20 0 0 9 1  2 .7e - 1 2  5.2e - 6  
pgvon l06 1 06 1 06 I 
ptes 42 52  1 20 6 0 1 53 2. l e - 1 6 4.6e - 8 
powell 1 6  1 6  1 4 3 0 1 7 7 . 5e - 20 8.6e - 1 0 
powell 16 1 6 2 6 4 0 "" -..:. L 8e - 1 6 4.3e - 8 
powell 1 6  1 6  3 0 1 2  0 35  2.3e - 2 I  l . Se - 10 
powell 1 6  1 6  4 0 7 0 2 1  l.7e - 17 1 . 3e - 8
powell_mcp 8 0 1 6 0 0 7 4.2e - 24 6. 5e - 1 2
powell_mcp 8 0 2 7 0 0 8 4.7e - 25 2 .2e - 1 2
powell_mcp 8 0 3 8 0 0 9 2 .2e - 1 6  4.7e - 8 
powell .... mcp 8 0 4 7 0 0 8 l . ?e - 1 5 L 3e - 7
scarf anum 1 3  1 3  1 0 4 0 20 8.2e - 1 3 2 .9e - 6 
scarfanum 1 3  1 3 2 0 5 0 20 l . 3e - 1 6  3 .7e - 8
scarf anum I3 1 3  3 9 0 0 1 2 5 .2e - 20 7. 2e - l0 
scarfasum 1 4  1 4 1 4 0 0 6 3.2e - 1 8 5.6e - 9 
scarf as urn 1 4  14 2 0 3 0 16 8.8e - 1 3 3 .0e - 6  
scarfasmn 14 14 3 9 0 0 12 5.2e - 20 7.2e - 1 0
scarfbnum 39 39 
scarfbnum 39 39 2 
scarfbsum 40 40 1 3  0 0 62 5.3e - 1 4  7.3e - 7
scarfbsum 40 40 2 26 0 0 66 9 .6e - 1 4  9 . 8e - 7
sppe 27 27 I 23 3 0 60 1 .4e - 22 3.7e - 1 1
sppe 27 27 2 2 1 4 0 59 3 . 1 e - 2 1 1 .7e - 1 0  
to bin 42 42 1 1 5  0 0 46 9.6e - 23 3J e - 1 1
to bin 42 42 2 22 0 0 83  4.0e - 2 1  2.0e - 1 0

function g03. Now,  the D-gap function tnight have a local minimum

which does not correspond to a solution of the box constrained varia
tional ineq uality problem . In that case, we would expect both algorithms

to run into difficulties by converging to one of these local minima, in

particular, since the search directions computed by both methods are

based on some local information of the v�uiational inequal ity problem. 
In fact, this difficulty arises, e.g . ,  for the billups example. In general ,

ho\vever� our observation is that the tnethod from [1 6] tends to converge
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TABLE 11 Numerical results for GAMSLI B test problems

Problem n m SP P-steps N-steps G-steps F-eval. f g,3(X ) l f r(xf) f f 
cafemgc 1 0 1 1 0 1  1 1 0  0 0 29 . 3 . 3e - 1 6  5 .7e - 8 

cammcp 242 242 I 6 () 0 8 l . l e - 1 6  3 .3e - 8
cmmge 9 6 1 6 0 0 53 2 .0e - 32 4.4e - 1 6  

co2mge 20� 208 1 2 0 0 1 5 1 .6e - 1 5  1 . 3e - 7

dmcmge 1 70 1 70 I 1 47 33  8 1 658 1 . 5e - 1 4  3.9e - 7  
ers82mcp 232 () 1 5 0 0 6 1 .8e - 24 4.2e - 1 2  

etamge 1 1 4 1 1 4 I 1 5 0 0 42 1 .5e - ·  1 4  3 .8e - 7 
han smcp 43 43 I 33 l l 1 6  787 2.4e - I 3  1 . 6e - 6
hansmge 43 43 I 5 5 0 62 2 . 8e - 1 3 1 .7e - 6 

harkmcp 32 32 I 26 0 0 60 l .Oe - 1 4  3 . 2e - 7
harmge ! I 9 I I 6 0 1 8  1 .4e - 1 3 1 .2e - 6 
kehomge 9 9 I 1 2  0 0 1 8  4 . 3e - 23 2. 1 e - l l

kormcp 78 0 I 3 0 0 5 1 .8e - 25 1 . 3e - 1 2

m r5mcp 3 50 350 I I 9 0 5 1  7 .3e - 22 8 .5e - 1 1 
nsmge 2 1 2  2 1 2 1 5 14 0 59 2 .3e - l 7 1 . 5e - 8 

oligomcp 6 6 I 6 0 0 9 l .Oe - 20 3.2e - 1 0  

scarfmcp 1 8  1 8  I 0 4 0 1 4  5.4e - 1 2  7.3e - 6 

scarfmoe c 1 8 I R  1 0 6 0 1 8  1 .4e - 1 5 1 .2e - 7 
transmcp 1 1 1 1 1 0 1 0 3 2 . 0e - 1 7 1 .4e - 8 

nvo3 mcp 6 6 I 8 0 0 1 6 1 .4e - 1 5 1 .2e - 7
unstmge 5 5 l 8 0 0 I I 2 . 3e - 1 8 4.7e - 9 
vonthmcp 1 25 1 25 I 
vonthmge 80 80 I 200 8 1 1 263 1 .4e - 1 3  1 .2e - 6 
wallmcp 6 0 1 ., 0 0 3 3 . 5e - 2 1  l .9e - 1 0... 

to a local minimum of gcr,a much more often than the method discussed

here. This seems to indicate that, from a global point of view, the search 
direction con1puted by our hybrid Newton-type method is a much better 

search direction than the one computed by the nonsmooth N ewton

method in [ 1 6} .  

I t  i s  therefore our feeling that the robustness of many existing solvers 

can be improved by using the search direction from our hybrid Josephy

Newton 1nethod whenever the underlying solver does not seem to 

converge. 

Finally, let us shortly mention what happens if we do not use our 

preprocessor. Obviously, this changes the numerical results. In general ,  
however, the changes are not very dramatic, for example, the three 

gafni examples can be solved in just 3-4 1 osephy-Newton steps

(instead of 1 2- 1 3 linear system solves when using the preprocessor), the 

four powell_mcp problems can be solved in 5-8 Josephy-Newton

iterations (compared to 6-8 linear system solves), and the caf emge
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example is solved in 6 Josephy-N ewton iterations (compared to 10 
iterations in the preprocessor). The differences are mor.e dramatic for 

the j osephy and koj shin test problems, mainly due to the fact that

the linearized subproble1ns quite often do not have a solution for 
these examples. For instance, it takes 97 Josephy-Newton iterations (14
N-steps and 83 G-steps) in order to solve the j osephy problem when
using the fourth starting point. 

5 CONCLUDING REMARKS 

The variational inequality problem is reformulated as an unconstrained 

minimization problem by using the D-gap function gn/3· Some properties 

of the affine Vl subproblem ofthe classical Josephy-Newton method are 

studied . A hybrid Josephy-Newton method is then proposed to mini

mize the function gttd· Under mild conditions, the proposed n1ethod is 
shown to be globally convergent .  If some additional assumptions are 
satisfied, then the sequence converges quadratically or superlinearly to 

a solution of the original variational inequality problem. A sufficient

condition is given for a solution x* of the VIP to be regular. This condi

tion is only concerned with the mapping F,. unlike the conditions in
[6.1 7,24] . 
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