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A box constrained variational inequality problem can be reformulated as an unconstrained minimization problem through the D-gap function. Some basic properties of the affine variational inequality subproblems in the classical Josephy-Newton method are studied. A hybrid Josephy-Newton method is then proposed for minimizing the D-gap function. Under suitable conditions, the algorithm is shown to be globally convergent and locally quadratically convergent. Some numerical results are also presented.

INTRODUCTION

Let F be a mapping fron1 �R'' into itself and X be a nonempty closed convex subset of R11• The variational inequality problem (VIP) is to fjnd a vector x* EX such that (F(xx)Sx*) > 0, 'iy E X,

( 1)

where ( •, •) denotes the inner product in �11• rn this paper, we study the case that X is a box defined by X= { x E 1R" ili < x; < u;, i = 1, .... , n}

where I; E 3t U { -x} and 11i E � U { +oo} with li < u1 representing the lower and upper bounds on thevariables, respectively. It is not difficult to see [START_REF] Bertsekas | Parallel and Distributed Computation Numerical lvfetlrod[END_REF]Proposition 5. 7] that the box structure of the set X enables us to rewrite (1) as F,.(x*)(V;-x;) > 0, i = 1, ... , n, 'iy EX.

( 2 )

If the constraint set X is the nonnegative orthant ��' then the VIP reduces to the complemelitarity problem (CP). This class of special VIPs has numerous itnportant applications in various fields such as mathe matical programming, economics, and engineering; see [7,1 3] and references therein.

A useful way to deal with VIP (1) is to reformulate it first as a system of equations or an optitnization problen1 via a n1erit function, and then solve the resulting systen1 of equations or optimization problem. Recently.tnuch attention has been paid to the reforn1ulation ofVIPs and CPs and vari ous merit functions have been proposed and studied [START_REF] Fuk Ushima | Merit fu nctions fo r variational inequality and complementarity problems[END_REF].

Well known merit functions for VIPs include the gap.ftmction g(x) = sup (F(x), x-y) r�X first presented by A us! ender [START_REF] Auslcnder | Optimisation: Mi!Jwdes Numhiques[END_REF] and then studied by M arcotte and Dussault [START_REF] Marcotte | A new algorithm f or solving variational inequalities with application to the t raffic assignment problem[END_REF][START_REF] Marcotte | A note on a globally convergent Newton method fo r solvin g monotone variational inequalities[END_REF], the regulari�ed gapjzmction

( 1 " -)

introduced by Fukushima [START_REF] Fuk Ushima | Equivalent differentiable optimization problems and descen t methods fo r asymmetric variational inequality problems[END_REF] and Auclunuty [1 ], and the D-gap function (4)

proposed by Peng [START_REF] Peng | Equivalence of variational inequality problems to unconstrained mini mization[END_REF] and Yamashita et al. [27], where a and (3 are arbitrary positive parameters such that a < f-1. Since a box constrained VIP is actually equivalent to a system of KKT rnixed con1plen1entarity conditions, several merit functions based on the KKT systen1 of VIP have also been proposed and explored extensively, see Qi [START_REF] Qi | Regular pseudo-smooth NCP and BVIP functions and globally and quad ratically convergent generalized Newton me thods for complcmentarity and vari ati o nal inequali t y problems[END_REF] and references therein.

In this paper, we focus our attention on the D-gap function for VIP.

It is not difficult to see that gu,s{x) > 0 for all .rE R'\ and gn / �(x) = 0 if and only ifx is a solution of the VIP (1 ) . Therefore the VIP can be cast as the following unconstrained optin1ization problem: min go. a (x).

xEiR" .

(

) 5 
When the mapping F is differentiable, the D-gap function ga(l is also differentiable [START_REF] Fuk Ushima | Equivalent differentiable optimization problems and descen t methods fo r asymmetric variational inequality problems[END_REF]27]. However, it is not twice differentiable in general . Therefore it is not straightforward to apply conventional second-order 1nethods toproblem [START_REF] Facchinei | Regularity properties of a scmismoot.h reformulation of v�triational inequalities[END_REF]. Asarernedy for this inconvenience, Sun et al. [2 5 ] introduced the concept of a computable generalized Hessian of the D-gap function g03 and presented a Newton-type method for solving problen1 [START_REF] Facchinei | Regularity properties of a scmismoot.h reformulation of v�triational inequalities[END_REF]. Restricting themselves to the box constrained VIP, Kanzow and Fukushin1a [START_REF] Ka | Theoretical and numerical investigation of the D gap function fo r box constrained variational ineq ua lities[END_REF] discussed a generalized Hessian of the D-gap function and proposed a Gauss-Newton-type method to minimize it. Further properties of the D-gap function have been investigated in [START_REF] Fukushima | Minimizing and sta tionary sequences of merit func tions fo r complementarity problems and vari a tional inequalities[END_REF][START_REF] Ka | Theoretical and numerical investigation of the D gap function fo r box constrained variational ineq ua lities[END_REF][START_REF] Sun | A computable generalized Hessian of the D gap function and Newton-type methods fo r variational inequality problems[END_REF].

This work is n1otivatcd by the recent paper [START_REF] Peng | A hybrid Newton mdhod fo r solving the variational i nequality problem via the D-gap function[END_REF] in which the D-gap function is used to globalize the classical Josephy-Newton method [START_REF] Josephy | Newto n' s method for generalized equations[END_REF] for general VIPs. The n1ain purpose of this work is to further study the algorithm proposed in [START_REF] Peng | A hybrid Newton mdhod fo r solving the variational i nequality problem via the D-gap function[END_REF] by restricting ourselves to box constrained VIPs, and test the effectiveness of the algorithm. In [START_REF] Peng | A hybrid Newton mdhod fo r solving the variational i nequality problem via the D-gap function[END_REF] , the global and local convergence of the algorithm were proven under the assumptions that Fis strongly n1onotone. By restricting to box constrained VIP, we will show in this paper that the algorithm is globall y convergent and locally q uadratica lly convergent if the mapping Fis a unifonn P-function. Hence the results here can also be viewed as a refinement of the results in [START_REF] Peng | A hybrid Newton mdhod fo r solving the variational i nequality problem via the D-gap function[END_REF].

The paper is organized as follows: In Section 2, we first introduce some basic definitions that will be used in the paper. Son1e sensi tivity results fo r box constrained affine VIP are given under certain condi tions. Then, by applying these sensitivity results, we study the properties of the subproblem in theJosephy-Newtonmethod [START_REF] Josephy | Newto n' s method for generalized equations[END_REF].ln Section 3, we present a hybrid algorithrn which uses the D-gap function to globalize Josephy-Newton method. Convergence properties of the algorithm are also discussed. In Section 4 we report some numerical results. Finally we conclude the paper with some rernarks in Section 5.

SOME RESULTS FOR BOX CONSTRAINED AFFINE VIP

We first review some concepts related to the mapping F. The mapping F: �n---+ ?R'1 is said to be a P0-jimction if 

m�x(xi -yt)(Fi(."\:) -F i(V)) > 0 Vx, y E rrt11,
It is known [START_REF] More | On P-and S-functions and related classes of n-dimensional nonlinear mappings[END_REF]Theorem 5.8] that if F is a differentiable P0-function, then V' F(x) T is a P0-matrix for each x. Moreover, if Fis a differentiable uniform P-function with modulus I'•> 0, th e n V' F(.x) T is a uniform P-n1atrix with modulus p. > 0 in the sense that Since we are not aware of any explicit reference for the formula (7), we include a short proof for it.

LEMMA 2.1 Let F: ��____,. �n be a d?fferentiable un{form P-function with modulus Jl. > 0. Then (7) holds.

Proof Let x E �� and z E �n be arbitrary but fixed. Let { tk} C R be a sequence of positive numbers converging to 0. Since F is a uniform P-function and the index set { 1, . .. , n} is finite, there exists an index i0 E { 1, ... , n} (independent of k) and a subsequence { tk} K such that zin i-0 and Dividing this expression by t�, taking the limit k � oo (k E K) and using the assumed differentiability ofF, we obtain This implies and completes the proof.

In the classical Josephy-Newton method, we solv e the fo11owing linearized VIP subproblem at each iteration: Given a current iterate x\ find a vector x EX such that

Here we study the properties of the affine subproblem [START_REF] Ferris | Accessing realistic mixed complementarity pro blems within MATLAB[END_REF]. In [START_REF] Taji | A glo bally convergent ;\.lcwton method for solving strongly monotone variational inequalities[END_REF], Taji et al. studied the subproblem (8) for a general closed convex constraint set X under the assumption that F is strongly monotone and con tinuously differentiable. Restricting ourselves to the box constrained VIP, we will investigate properties of the subproblem under weaker conditions.

To this end. we first consider a perturbation of affine VIP with box constraints. Let X be a box, MaP-matrix, and bE ?R". For any v E �11, let x(v) EX denote the unique solution of the following affine VIP:

( h + v + Mx, y -x) > 0� or equivalently Vv EX, o/ •, (9) 
(b; +vi+ [Mx]J(,r;-x1) > 0, i = 1, . . . , n, Vy EX. ( 10 
)
PROPOSITION 2.2 Let x( v) be the unique solution q[ the ({fflne VIP [START_REF] Fuk Ushima | Equivalent differentiable optimization problems and descen t methods fo r asymmetric variational inequality problems[END_REF],

where X fč a box and M a P-matrix. Let 11 > 0 be a constant satisfmfČg [START_REF] Facchinei | A semismooth Newton method fo r var iational inequalities: The case of box constraints[END_REF]. Then we have llx(v)-x(v')ll < _!_llv-v'jj, '1/v, v' E R". 

(hi + Vi + [ Mx (V)] i) (Xi (V 1) -X; (V)) > 0, i = 1 , ... , 11,
Adding the above two inequalities, we obtain

(v1-v/)(x;(v')-x;(v)) > (x1(v)-x1(v'))(j\4(x(v) -x (v'))Jr� i= 1, ... ,11. '11) ( . .
Since M is a P-matrix, there exists a constant fL > 0 and some index i0 such that

This inequality together with (1 1) implies that 

Since (V io -V :0) (X iu (V 1) -X io (V) ) < 11 V -V 1 11 ' 11 X (V) -X (V 1)
1 l l x (v) -x (v1 ) 1 1 < -[[v -v ' l l • ' ' fl
This c01npletes the proof of the proposition.

Next we give another result on the continuity of a solution of the box constrained affine VIP with a P-rnatrix. For any P-matrix M and vectors b,p E �'\ let x (M) EX denote the unique solution of the following affine

VIP:

or equivalently

(b + Mp + Mx, y -x) > 0, \fy E X, (13) 
( b ; + [M p ]; + [MxL)(y;-Xi) > 0, i = 1, ... , n, VEy E X.
( 1 4)

PROPOSITION 2.
3 Suppose that M and N are ?-matrices and X is a box. Let J1 > 0 be a constant satisfying (6). Then 1-ve have

1 l l x(M)-x(N)II < -IIM-Nl l •llx(N) + p[[. ( 15 
)
fl Proof The proposition trivially holds if x(M) = x(N). Hence we only need to consider the case where x( M ) # x(N). Since X is a box, it follows from (14} and the definitions of x(M) and x(I\l) that and

Adding the above two inequalities, we get

([Mpl--[iVjJ]; + [Mx(M)L � [Nx(N)];)(x;(N)-xi(AJ)) > 0, i= l, . .. ,n,
which implies that

[(ill/-tV)(x(N) + p)]i(x;(N)-xi(�/)) > [i\J(x(Af)-x(N))]i(x;(M)-xi(iV)), i = L ... , 11. ( 16 
)
Since M is a P-matrix, it follows fr01n. (6) and .x(M)-x(N) ::f. 0 that there exists an index i0 such that

Then ( 16) and ( 1 7) imply JL[[x(AJ)-x(N")[I 2 < [(Af-N)(x(N) + p)L0(Xi0(N)-x,0(AJ)) < IIM-Nil •[[x(N) + p J J• [[x(lv')-x(Af)jJ.
This c01npletes the proof. results based only on somewhat strong assun1ptions on the n1apping F. Now we return to the affine subproblem of Josephy -Newton method. Let x be a given point in �R'' and consider the 1inearized VIP of finding a point z EX such that (F(x) + \7F(x) T (z-x),y -z) > 0, Vy EX, [START_REF] Marcotte | A new algorithm f or solving variational inequalities with application to the t raffic assignment problem[END_REF] or equivalently

(Fi( x ) + [V'F( x )T(z-x)]J(J' ;-zi ) > 0 , i = 1, ... ,n, Vy EX. ( 19 
)
If \7 F(x) is a P-tnatrix, then problem (18) has a unique solution, which we denote z(x). Our next result studies the properties of the solu tion of problem [START_REF] Marcotte | A new algorithm f or solving variational inequalities with application to the t raffic assignment problem[END_REF]. The proposition is a refinement of Proposition 2.2

in [START_REF] Taji | A glo bally convergent ;\.lcwton method for solving strongly monotone variational inequalities[END_REF].

PROPOSITION 2.4 Suppose that F is a continuously d�fferentiable uni form P-function and X is a box. Then the solution z (x) of the affine VIP [START_REF] Marcotte | A new algorithm f or solving variational inequalities with application to the t raffic assignment problem[END_REF] is continuous as a function r�l x. Moreover, x is a solution of the VIP (1) if and only ifx = z(x).

Proof First we note that, since F is a uniform P-function, ( 7) is satis fied with some constant 1-L > 0 independent of x. For two arbitrary points x, x' E �n, let z( x) and z(x') be the unique solutions of the linearized VIPs (18) at x and x', respectively. Also let z denote the unique solution of the affine VIP

(F(x) + \7F(x' ) T(z-x ) ,y-z) > 0, Vy EX. It then follows from Proposition 2.2 with v := F(x)-VH F(x ' ) T x, v':= F(x')-\7 F(x')Tx', b := 0 and M:=\7 F (x')T that 1 ll z -z(x') 11 < -II F (x) -F( x ' ) + \7 F( x') T (x' -x) 11•

IL

On the other hand, by Proposition 2.3 with b := F( x ), p := -x, N :=\7 F (x)T and M:=\7F( x')T, we have Consequently, for any fixed x E ���.we obtain lim ll.:(x) -.:(x') 11 = 0.

l l z-z(x) 11 < _!_ ll \7 F( x ') T -\7 F(x) T 11 • ll z(x) -x ii
x

'-x

This proves the first half of the proposition.

To prove the second half. suppose first that .:(x) = x. Then it follovv•s itnrnediately from (18) that x solves (1). Conversely suppose that xis a solution of ( 1 ). Since X is a box and z(x) EX. (

) 21 
The inequalities ( 20) and (21) give (

) 22 
Since VG F(x)T is a P-matrix. it fo llows fron1 (7) that there exists an index i0 . .

such that
Combining [START_REF] Peng | A hybrid Newton mdhod fo r solving the variational i nequality problem via the D-gap function[END_REF] with [START_REF] Qi | Regular pseudo-smooth NCP and BVIP functions and globally and quad ratically convergent generalized Newton me thods for complcmentarity and vari ati o nal inequali t y problems[END_REF]. we get .:(x) = x.

Regularity conditions have been widely used in the study of varia tional inequal1ty problems. patticu1ar1y in the analysis of IocaJ con vergence properties of iterative methods for VTPs. A solution x"' of the VIP (l) is said to be regular in the sense of Robinson [24] (see also [START_REF] Harker | Finite d imensional variational ineq uality and nonlinear complementarity problems: A survey of theory, algorithms and applications[END_REF])

if there exist a neighborhood n of x * and a neighborhood V of 0 E 3(.11 such that, for every v E V, the perturbed VIP of finding a vector x EX such that

(F(x; v),y-x} > 0, Vy EX, (24) 
where F(x;v) := F(x*) + v + V F(-x:*)T (x-x*), has a unique solution

x (v) that is Lipschitz continuous as a function of v, i.e.,

for some p > 0.

ll x (v )-x (v')ll < Pllv-v'll , Vv , v' E V
In [START_REF] Peng | A hybrid Newton mdhod fo r solving the variational i nequality problem via the D-gap function[END_REF], a strong but si1nple sufficient condition for a solution x* of the VIP to be regular was given. Here we give a different condition pertaining to the box constrained VIP. The next proposition follows directly fron1 Proposition 2.2. The proof is omitted. PROPOSITION 2.5 Assume that x* is a solution of the VIP (1) lvith X being a box. !f the matrix \7 F(x*) is a P-matrix, then x* is a regular solution.

Remark P roposition 2. 5 can also be derived from a characterization of strong regularity given in [6, Theorem 3.4]. The approach in [START_REF] Facchinei | A semismooth Newton method fo r var iational inequalities: The case of box constraints[END_REF] is based on the equivalent KKT system of box VIP and is different from our approach here.

The classical Josephy-Newton method generates a sequence {xk} by the updating rule xk+l = z(xk). From Proposition 2.4, the method is well defined if F is a uniform P-function. Moreover, if the initial point x0 is sufficiently close to the solution point x * and the matrix V F(x*) is a P-matrix, then by Proposition 2.5, x* is a regular solution and hence it follows fron1 the basic result of Josephy-Newton method [START_REF] Harker | Finite d imensional variational ineq uality and nonlinear complementarity problems: A survey of theory, algorithms and applications[END_REF][START_REF] Josephy | Newto n' s method for generalized equations[END_REF] that the generated sequence {x"} converges locally quadratically to x*.

A HYBRID JOSEPHY-NEWTON METHOD

In the previous section, we have discussed the affine VIP with box constraints. In this section, we consider the method proposed in [START_REF] Peng | A hybrid Newton mdhod fo r solving the variational i nequality problem via the D-gap function[END_REF] for solving the VIP (I) with general convex constraints, which is Jose phy-Newton method with D-gap function globalization. Our aim is to refine the convergence results obtained in [START_REF] Peng | A hybrid Newton mdhod fo r solving the variational i nequality problem via the D-gap function[END_REF] by restricting ourselves to the special case where the VIP (1) is box constrained.

The algorithm is stated as follows:

ALGORITHM

Step 0 Choose x0 E �nl wE (0,1 ) , ( E (0, 1), bE (0� 1 ), u E (0,1), and sufficiently small E> 0. Let k: = 0.

Step 1 Step 2 If I J dkll < E then stop. Otherwise find the sn1allest nonnegative integer n1k satisfying (28) and let Ak := wmk.

Find :lE . X such that and let dk:= z k -.-•l. If ( .k dk) ( k) g ct/3 X + • < ( g a/3 X , ( 2 6 
Step 3 Set)?' 1 :=xk+).. kcf and k:=k + I. Go to Step 1.

Using similar arguments to those in the proof of the global con vergence theorem in [START_REF] Peng | A hybrid Newton mdhod fo r solving the variational i nequality problem via the D-gap function[END_REF], one can prove the following theoretn. To study the convergence rate of the algorithm, we need the following results concerning an error bound property of the D-gap function. We denote by Ya(x) the unique maximizer on the right-hand side in the defining equation [START_REF] Bertsekas | Parallel and Distributed Computation Numerical lvfetlrod[END_REF] of the regularized gap function j�. Note that .Yu(x) = f1x( x-a-1 F(x)), where ITx denotes the projection operator on X. We define Ra(x) := x-Ya(x). Moreover Y.B(x) and R1:J(x) are defined similarly. Let B(�) denote the closed sphere centered at x* with radius .6. > 0, i.e., B ( .6.) := { x E � lll x -x *ll < .6.}.

Following the proof of Lemma 5.1 in [START_REF] Ka | Theoretical and numerical investigation of the D gap function fo r box constrained variational ineq ua lities[END_REF], we have the next lemma. LEMMA 3.3 Let x* be a solution of the VIP (1) with X being a box. Suppose that F is a uni f orm P-. function with modulus 1-l• Suppose also that F is Lipschitz continuous lvith constant K, > 0 on B(.6.) for some � > 0. Then there exists a constant rJ > 0 such that

llx-x*ll < TJ11R; 3( x )il, Vx E B(�), li"here 7] = (K + !3)/ p,. ( 29 ) 
The next lemma shows that the D-gap function provides a local error bound for the VIP (1) under suitable assumptions. This result will be useful in establishing the quadratic convergence of the proposed algorithm. Supp ose that F is a un�lorm P-jimctlon with modulus J.l• Suppose also that F is Lipschit:z continuous 1vith constant f£ > 0 on B(�) for some � > 0. Then there exist constants c1, c2 > 0 such that Proof By [27, Proposition 3.1]� we have It follows from Lemma 3.3 and the left part of the above inequality that where 77 = (1'£ + /3)/p. , which shows that the left inequality in (30) is true.

Next observe that ffRn(x)f l = l lx-Yo.(x)-x* + Yn(x*)ll < llx-x*ll + IT).Jx-a-1F(x))-Ilx(x* -a-1F(x*))

< llxx*ll + llx-o-1 F(x)x'i' + 0'�1F(x*)IJ < (2 +:)fi xx* ll for all x E B(A), where the equality fofšows from the de!lnition of R(l and the fact that Ro:(x*) = 0. the first inequality follows from the triangle inequality and the definition of Yt<• the second inequality follows from the nonexpansiveness of the projection operator IT x. and the last •inequality follows from the Lipschitz continuity of F. The right inequality in (30) then follows flom the right inequality of (31 ). The proof is con1plete.

'Ve arc ready to prove quadratic convergence of the proposed algorithm. ""' THEOREM 3.5 Suppose that F is continuousfv differentiable and X is a box. Let x* he an accumulation point of the sequence {xk} generated by the algorithm. If F is a uniform P-function and \7 F is locally Lipschit zian, then x* is a solution of the VIP (1) and the sequence {xk} converges quadratically to x*.

Proof By Theorem 3.1, x* is a stationary point of the D-gap func tion gct.B• Since \7 F(x*) is a P-n1atrix by Len1n1a 2.1, it follows from [15, Theorem 3.1] that x* is already a solution of the VIP (1). More over Proposition 2.5 shows that x* is a reg ular solution. Since F is differentiable, it is locally Lipschitzian; hence there exists a � 1 > 0 such that F is Lipschitz continuous on B(�t). Hence by Len1n1a 3 . 4, we have for some ch c2 > 0. Moreover, by choosing a smaller �1 if necessary, we may assume that \7 F is Lipschitz continuous on B(�1). Since x* is a regular solution, by the basic result on Josephy-Newton's n1ethod for the VIP [START_REF] Harker | Finite d imensional variational ineq uality and nonlinear complementarity problems: A survey of theory, algorithms and applications[END_REF][START_REF] Josephy | Newto n' s method for generalized equations[END_REF], there exists a �2 > 0 such that for any initial point chosen from B(�2), the Newton iteration is well-defined and holds for some constant c3 > 0. Let �3 := min(�1, �2). Then it follows frmn (32) and (33) that Let Then it follows fr01n (34) that for any x E B(�4)

where the first inequality follows from the choice of �4 and the second inequality follows frmn the left inequality in (32). This implies that, when xk E B(.6.4), we have d" =z(x")-xk and the step size ).. k =I is accepted, i.e., .r/' + 1 = z(xk). Consequently it follows from (33) that the sequence {xk} converges to x* quadratically.

Silnilarly we may prove superlinear conve rgence of the algorithm under slightly weaker assmnptions. The proof is omitted. THEOREM 3.6 Supp ose that F is continuousfţ d({ferentiable and X is a box. Let x* he an accumulation point of the sequence {xk} generated by the afşorithm. �!' F is a untforrn P-function� then x* is a solution qf the VIP (1) and the sequence {xk} converges superfŠearfŢ to x*.

NUMERICAL RESULTS

We implemented the hybrid Josephy� Newton method suggested in this paperinMATLABandrun it on a SUNSPARC 10station. We first give a brief description of the implementation: Let In addition, the iteration was stopped if k > kmttx with kmax-100.

For the D�gap function g0;:J, we used the panuneters a = 0.9 and /1 = 1.1. However, we replaced the standard (monotone) Armijo-rule }?y a nonmonotone variant, see Grippo et al. [START_REF] Grippo | A nonmonotone linesearch technique fo r Newton's method[END_REF] for details.

As a solver for the linearized variational inequality problems, we used the semismooth Newton-type method from [START_REF] Facchinei | A semismooth Newton method fo r var iational inequalities: The case of box constraints[END_REF]. In contrast to what is said in the description of our algorithm, however, we always accept the corresponding search direction dk whenever it satisfies the descent test note that this guarantees that the Arrnijo line search is well-defi ned.

In particular, we accept this search direction dk even if we were not able to solve the corresponding linearized variational inequality problem.

In this way, we try to overcome the problem that we have to take too many gradient steps in a row which is obviously not very desirable.

In order to improve the efficiency of our algorithm, however, we also used a preprocessor; more precisely, we first try to solve our test examples by using the recently proposed method from Kanzow and Fukushima [16]. This is a nonsmooth Newton-type method applied to the residual equation r (x) = 0 and globalized by the D-gap function go!;�, see [START_REF] Kanzow | Solving box constrained variational inequal ity problems by using the natural residual with D-gap function globalization[END_REF] for details. The motivation for doing this is quite simple: The method from [16] works extremely well whenever it solves a problem successfully. Unfortunately, it does not seem to be very robust unless relatively strong assumptions are satisfied.

So we first apply the nonsmooth Newton-type method fron1 [16] in order to solve a test example, but we stop this preprocessing iteration if either the termination criterion ( 35) is satisfied or if a certain test indi cates that the preprocessor runs into difficulties. In the latter case, we switch to the hybrid Newton method introduced in this paper which is not as efficient as the method from [16], but which seems to be con siderably more reliable.

Basically, our criterion for switching from the preprocessor to the hybrid Newton method is as follows: If If the preprocessor is successful and convetges to a soluti on of the box co nstrained variational inequality problem which satisfie s the standard regularity conditions used in [16] fo r the local convergence theory. then tk = l fo r all k sufficiently large and g(tixk) = O(I. IV'g63(.: l) l l2), so none of the tests in (36) will be satisfied.

We applied the method just described to al l test problem s fr om the MCPLIB and GAMSLIB libraries, see [4,[START_REF] Ferris | Accessing realistic mixed complementarity pro blems within MATLAB[END_REF], using all the diffe rent starting points which are available within the MA TLAB environn1ent.

We report the numerical results in Table I Looking at Tables I and11, we see that we have just a fe w fa ilures on some difficult test pro blen1s, whereas the overall behavior of our n1 ethod is q ui te good. Although many of the simple problems were solved by the preprocessor (i .e .. t here are no N-and no G-steps), the hybrid Josephy Newton tnethod introduced in this paper was neces sary in order to solve a number of other test examples.

In fa ct, we made the fo llowing observation during the testing phase for our algorithm: Both the preprocessor fr om [16] and the hybri d Newton-type method discussed in this paper try to . m inimize the D-gap In fa ct, this difficulty arises, e.g., fo r the billups example. In general , ho\v ever� our observation is that the tn ethod fr om [1 6] tends to converge It is therefore our feeling that the robustness of many existing solvers can be improved by using the search direction fr om our hybrid Josephy Newton 1nethod whenever the underlying solver does not seem to converge.

Finally, let us shortly mention what happens if we do not use our preprocessor. Obviously, this changes the numerical res ults. In general, however, the changes are not very dramatic, for example , the three gafni examples can be solved in just 3-4 1 osephy-Newton steps (instead of 12-13 linear system solves when using the preprocessor), the fo ur powell_mcp problems can be solved in 5-8 Josephy-Newton iterations (compared to 6-8 linear system solves), and the cVemge example is solved in 6 Josephy-Newton iterations (compared to 1 0 iterations in the preprocessor). The diffe rences are mor.e dramatic fo r the j osephy and koj shin test problems, mainly due to the fa ct that the linearized subproble1n s quite often do not have a solution fo r these examples. For instance, it takes 97 Josephy-Newton iterations (14 N-steps and 83 G-steps) in order to solve th e josephy problem when using the fourth starting point.

CONCLUDING REMARKS

The variational inequality problem is reformulated as an unconstrained minimization problem by using the D-gap function gn/3• Some properties of the affine Vl subproblem ofthe classical Josephy-Newton method are studied. A hybrid Josephy-Newton method is then proposed to mini mize the fu nction gtt d• Under mild conditions, the proposed n1ethod is shown to be globally convergent. If some additional assumptions are satisfied, then the sequence converges quadratically or superlinearly to a solution of the original variational inequality problem . A sufficient condition is given fo r a solution x* of the VIP to be regular. This condi tion is only concerned with the mapping F,. unlike the conditions in 

  (x)z(x')II < 11.:-.:(x') 11 + 11.:-:-(x) 11 ] IIF(x) -F(x') +V' F(x1) (x'-x) 11 I" + llvF(x')T-vF(x)T[I•i[:-(x)-xjl).

  (2) yields F;(X) (zi(.Y) -x;) > 0, i = L ... , n.

( 20 )

 20 Similarly, fron1 x EX and ( 19), we have Fi(x)(x;-=t(x)) + [vF(x)T (.:(x)-x)]Jx;-.:i(x)) > 0. i-1, ... , n.

  (.:;(x)-x;)[vF(x)T(.:(x)-x)L < 0, i-I. ....n.

  ) then let ).. k := 1 and go to Step 3. If the linearized VIP (25) is not sol vable or if dk does not satisfy the condition k k ) then set d := -\7 g n/lx .

  THEORE!\1 3. 1 Su ppose that the mapp ing F is continuousfŞ dfff erenti ahle. Let E = 0 and supp ose that the algorithm generates an i11/lnite sequence {xk}. Then any accumulation point x* o . f the sequence {xk} is a stationwy point of the D-gapfunction ger3• If Fis a uniform ?-function, then by [1 5, Theorem 4.1], the level sets of D-gap function gn./3 are bounded. Since {g(l',G(xk)} is nonincreasing, the boundedness of level sets guarantees the boundedness of the generated sequence {xk} and hence the existence of at least one accumulation point of{.: /}. On the other hand, by [15, Theorem 3.1], any stationary point .V; of g03 such that VF F(x) is a P-matrix is a solution of the VIP (1 ).Therefore, if Fis a uniform ?-function, then it follows fro In Theorem 3.1 that any accumulation point of the generated sequence {xk} solves the VIP (I). Because the box constrained VIP with a uniform P-function has a unique solution, we obtain the next corollary to Theorem 3.1. COROLLARY 3.2 Suppose that F is a continuously differentiable uni form ?-function and X is a box. Then for any starting point x0 E fĕ'', the sequence {xk} generated by the algorithm converges to the unique solu tion of the VIP (1).

LEMMA 3 . 4

 34 Let x* be a solution of the VIP (1) with X being a box.

  r(x) := x-Proj[/,u](x-F(x)) denote the natural residual of the box constrained variational inequality problem. We terminate our method if for sotne iterate xk, where Et : = 10-6 and c2 : ::::: 10 11.

  ln the line search rule (28), we used w = 0.5 and b = 10-4.

(3 6 )

 6 the11 termi nate the preprocessing iteration and go to the hybrid Newton 1n ethod using the previous iterate xk -l as a starting point. The actual parameters used in ( 36) are -4 fm in = 10

  test problem in MCPLIB nmnber of variables nmnber of (finite) bounds on the va ria bles x1 starting point number of iterati ons used in the preprocessing phase number of Newton steps used in the hybrid Newton phase nurn ber of gradient steps used in the hybrid Newton phase number of fu nction evaluations value of g03(x) at the final iterate x = .:/ val ue of llr(x) ll at the final iterate x = xr.

  function g03. Now, the D-gap function tn ight have a local minimum which does not correspond to a solution of the box constrained varia tional inequality problem. In that case, we wo uld expect both algorithms to run into difficulties by converging to one of these local minima, in particular, since the search directions computed by both methods are based on some local information of the v�uiational inequality problem.

  minimum of gcr,a much more often than the method discussed here. This seems to indicate that, fr om a global point of view, the search direction con1puted by our hybrid Newton-type method is a much better search direction than the one computed by the nonsmooth Newton method in [16}.

[ 6 .

 6 1 7,24] .

  11 , 

	the inequality (12) yields

TABLE I

 I Numerical results for MCPLI B test problems

	Problem bertsekas bertsekas bertsekas bert oc	n I5 15 15 5000	m I 5 I5 15 2000	I 2 3 1	0 I l 4	4 4 4 0	0 0 0 0	11 1 2 12 6	. f) g",;i(x . 7.5e-1 5 7.5e -15 7.5c -15 2.7e -7 llr(: \lll 2.7e -7 2.7c -7 3.8e -28 6. 1e -1 4
	billups	I	1	1						
	bra tu	5625 11250	1	13	0	0	29	1.0e -20 1.9c-10
	choi	13	26	1	4	0	0	5	4.4e -15	2. Ie -7
	colvdual	20	20	1						
	colvdual colvnlp colvnlp cycle	20 15 1 5 1	20 15 15 1	2 ") ..:.. 1	() 1 3	3 3 0	0 0 0	10 20 5	2.0e -13 3 . 5e -1 2 2.3e -21 1.5e -1 0 J.4c -6 5.9c -6
	ehl k40 ehl_k60 ehl_k80 ehl_kost ehl_kost ehl_kost explcp freehcrt freebert freebert freebert fr eebert gafni gafni gafni hanskoop hanskoop	4 1 61 8 1 101 101 101 16 1 5 15 15 15 15 5 5 5 14 1 4	40 60 80 100 lOO 100 16 1 0 10 10 10 10 10 10 10 14 14	I 1 1 1 ") ... 3 1 1 2 3 4 5 1 2 3 1 2	I2 22 24 28 28 28 15 0 I 0 0 1 13 12 1 3 0 0	8 8 8 8 8 8 0 3 3 3 4 3 0 0 0 4 6	0 () 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	115 22 1 233 273 273 273 31 10 I6 10 11 9 46 44 46 13 17	9.6e -23 3. 1 e-11 1.7e-1 7 1.3e-8 3.1e -17 1. 7e -8 6.6e -16 8. 1e -.. 8 6.6e -16 8. le-8 6.6e -1 6 8. 1 e --8 0 () 2.4e -I6 4.8e -8 6.6e -23 2.6e -11 2.4e -16 4.8e -8 4.4e -21 2.1e -10 3.2e -19 1.8e -9 7.5c-1 9 2.7e -9 2.7e -9 7 . 5c-1 9 7.5e 19 2.7e -9 2.3e -14 4.8c -7 2. 1e •-14 4.5e -7
	hanskoop	1 4	14	3	0	5	0	1 4	5.3c -14	7.3e -7
	hanskoop	14	14	4	4	4	0	22	3.2e -14 5.7e -7
	hanskoop hydroc06 hydroc20 jel joscphy josephy josephy josephy josephy	14 29 99 6 4 4 4 4 4	14 11 39 6 4 4 4 4 4	5 I 1 I 1 2 3 4 5	0 5 8 8 10 7 11 4 3	7 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	24 7 1 0 16 23 15 24 5 4	6.0e -15 1.1e-25 l . l e -12 2.4e -7 3.7e-1 4 6.0e-7 1.4e -15 1.2e -7 2.9c-1 7 1.7e -8 4.5e -22 6 . 7e-11 2.9e -17 1. 7e -8 2. le -7 4.2e -15 4.3e -15 2. 1e -7
	josephy kojshin kojshin kojshin kojshin kojshin	4 4 4 4 4 4	4 4 4 4 4 4	6 I 2 3 4 5	6 9 7 lO 1 3	0 0 0 0 0 0	0 0 0 () 0 0	12 22 14 23 ") ... 4	2.2e -15 l.2e -20 3.5e -10 1.5e -7 1.3e -23 1.2e -11 1.2e-20 3.5e -lO 0 0 4 . 3e -1 5 2. 1 e-7
	kojshin	4	4	6	5	0	0	7	6.3e -16 7.59e -8
	mathinum	3	3	1	'1') ,.._	0	0	47	4.le-1 4	6.4e -7
	mathinum mathinum	3 3	3 3	2 3	4 32	0 0	0 0	5 76	3.4e -16 4.3e -14	5.8e -8 6.5e -7

SP P-steps N-steps G-steps F-evaf.

TABLE I (

 I Continued)SP P-steps N-steps G-steps F-eval. gl>/l(. i) JJr(x)rl l

	Problem	n	m						
	mathinum mathisum mathisum mathisum mathisum methan08 nash nash obstacle	3 4 4 4 4 3 1 10 10 2500	3 4 4 4 4 1 5 10 10 5000	4 1 2 3 4 1 1 ') I	5 4 5 26 5 4 6 1 2 10	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	6 6 6 53 6 5 7 39 11	2 . 7e -1 4 5. le -7 2.0e -22 4.4e -11 5.4e -1 5 2.3e -7 3.7e -14 6. 1e -7 8.2e -21 2.8e -10 6.3e -24 7.9e --12 3.8e -17 1.9e-8 6.le -15 2.5e -7 3.3e -31 2.3e -15
	opt_cont3 1 opt_cont127 4096 1024 opt_cont255 8192 opt_cont 51 1 16384 16384 1 1 024 1 4096 1 8192 1 pgvon l05 105 105 1 pgvon l06 106 106 I ptes 42 52 1 powell 16 16 1 powell 16 16 2 powell 16 16 3 powell 16 16 4 powell_mcp 8 0 1 powell_m cp 8 0 2 powell_mcp 8 0 3	5 8 t l 12 20 20 4 6 0 0 6 7 8	0 0 0 0 0 6 3 4 12 7 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	12 32 51 52 91 153 1 7 "" -..:. 35 21 7 8 9	3.6e -30 4.3e -15 1.4e-29 9.0e -15 2.9e -29 l.2e -14 6.0e -2 9 l.6e -14 2.7e -12 5.2e -6 2. le-16 4.6e -8 7.5e -20 8.6e -10 L8e -16 4.3e -8 2.3e -2I l.Se-10 l.7e -17 1.3e -8 4.2e -24 6. 5e -12 4.7e -25 2.2e -12 2.2e -16 4.7e -8
	powell .... mcp scarf anum scarfanum scarf anum scarfasum scarf as urn scarfasmn scarfbnum scarfbnum scarfbsum scarfbsum sppe sppe to bin to bin	8 13 13 I3 14 14 14 39 39 40 40 27 27 42 42	0 13 1 3 13 1 4 14 14 39 39 40 40 27 27 42 42	4 1 2 3 1 2 3 2 2 I 2 1 2	7 0 0 9 4 0 9 13 26 23 21 15 22	0 4 5 0 0 3 0 0 0 3 4 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	8 20 20 12 6 16 12 62 66 60 59 46 83	l.?e-1 5 L3e-7 8.2e -13 2.9e -6 l.3e-16 3.7e -8 5.2e -20 7. 2e-l0 3.2e -18 5.6e -9 8.8e -13 3.0e-6 5.2e -20 7.2e -10 5.3e -14 7.3e-7 9.6e -14 9.8e -7 1.4e -22 3.7e -11 3. 1e -21 1.7e-10 9.6e -23 3J e-11 4.0e -21 2.0e-10

TABLE 11

 11 Numerical results fo r GAMSLIB test problems

	Problem	n	m						
	cafemgc cammcp cmmge co2mge dmcmge ers82mcp etamge han smcp hansmge harkmcp harmge kehomge kormcp mr5mcp nsmge	101 242 242 101 9 6 20� 208 170 170 232 () 114 114 43 43 43 43 32 32 !I 9 9 9 78 0 350 350 212 212	1 I 1 1 I 1 I I I I I I I I 1	10 6 6 2 147 5 15 33 5 26 I 12 3 I 5	0 () 0 0 33 0 0 ll 5 0 6 0 0 9 14	0 0 0 0 8 0 0 16 0 0 0 0 0 0 0	29 . 8 53 1 5 1658 6 42 787 62 60 18 18 5 51 59	3.3e -16 l.le-16 2.0e -32 4.4e-16 5.7e -8 3.3e -8 1.6e -15 1.3e -7 1.5e-14 3.9e -7 1.8e -24 4.2e -12 1 .5e -• 14 3.8e -7 2.4e -I3 1.6e-6 2.8e -13 1.7e -6 l.Oe -14 3.2e-7 1.4e -13 1.2e -6 4. 3e -23 2. 1 e-ll 1.8e -25 1.3e-12 7.3e -22 8.5e -11 2.3e-l 7 1.5e-8
	oligomcp scarfmcp scarfmoe c transmcp nvo 3mcp	6 18 18 1 1 6	6 18 IR 6	I I 1 1 I	6 0 0 0 8	0 4 6 1 0	0 0 0 0 0	9 14 18 3 16	l.Oe -20 3.2e -10 5.4e -12 7.3e -6 1.4e-1 5 1.2e -7 2.0e-1 7 1.4e -8 1.4e-15 1 .2e -7

SP P-steps N-steps G-steps F-eval. f g,3(X ) lfr(xf) ff
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