Linear projection equations arise in numerous fields and play a significant role in mathematical programming. The linear complementarity problem [START_REF] Cottle | Complementary pivot theory of mathematical programming[END_REF] (LCP) u ≥ 0, (M u + q) ≥ 0, u T (M u + q) = 0 is equivalent to a special (LPE) with Ω = {u ∈ R n | u ≥ 0} [15]. Various constrained least squares problems [START_REF] Stoer | On the numerical solution of constrained least squares problems[END_REF] and convex quadratic programming problems can be tranlated into a linear projection equation [START_REF] Bruck | An iterative solution of a variational inequality for certain monotone operators in Hilbert space[END_REF] in which Ω is a general orthant [START_REF] He | A projection and contraction method for a class of linear complementarity problem and its application in convex quadratic programming[END_REF].

The complementarity problem has been studied starting with the works of Cottle, Dantzig [START_REF] Cottle | Complementary pivot theory of mathematical programming[END_REF], and Lemke [START_REF] Lemke | Bimatrix equilibrium points and mathematical programming[END_REF][START_REF] Lemke | Equilibrium points of bimatrix games[END_REF] and has been developed by many others. There is already a substantial number of algorithms for solving linear projection equations [START_REF] Bruck | An iterative solution of a variational inequality for certain monotone operators in Hilbert space[END_REF][START_REF] Dafermos | An iterative scheme for variational inequalities[END_REF][START_REF] Fang | An iterative method for generalized complementarity problems[END_REF][START_REF] Harker | A damped-Newton method for the linear complementarity problem[END_REF][START_REF] He | A projection and contraction method for a class of linear complementarity problem and its application in convex quadratic programming[END_REF][START_REF] He | A globally linearly convergent projection and contraction method for a class of linear complementarity problems[END_REF][START_REF] He | A new method for a class of linear variational inequalities[END_REF][10][START_REF] Kojima | A polynomial-time algorithm for a class of linear complementarity problems[END_REF][START_REF] Mangasarian | Solution of symmetric linear complementarity problems by iterative methods[END_REF][START_REF] Mizuno | A new polynomial time algorithm for a linear complementarity problems[END_REF][START_REF] Pang | Iterative methods for variational and complementarity problems[END_REF][START_REF] Pang | Variational inequality problems over product sets: applications and iterative methods[END_REF][START_REF] Stoer | On the numerical solution of constrained least squares problems[END_REF], especially for linear complementarity problems and linear constrained least squares problems. Let Ω * = {u * | u * is a solution of (LPE)} be the solution set of ( 1) and [START_REF] Dafermos | An iterative scheme for variational inequalities[END_REF] e(u) := u -P Ω [u -(M u + q)].

be the "error" by which a given point u fails to satisfy [START_REF] Bruck | An iterative solution of a variational inequality for certain monotone operators in Hilbert space[END_REF]. In the projection and contraction method of [START_REF] He | A projection and contraction method for a class of linear complementarity problem and its application in convex quadratic programming[END_REF][START_REF] He | A globally linearly convergent projection and contraction method for a class of linear complementarity problems[END_REF], the vector ( 5)

g(u) = M T e(u) + (M u + q)
is used as the search direction. The recursion (6)

u k+1 = P Ω [u k -ρ(u k )g(u k )]
with [START_REF] He | A projection and contraction method for a class of linear complementarity problem and its application in convex quadratic programming[END_REF] ρ(u) = e(u) 2 (M T + I)e(u) 2 produces a sequence {u k } ⊂ Ω, which satisfies

(8) u k+1 -u * 2 ≤ u k -u * 2 -ρ(u k ) e(u k ) 2 .
The main advantages of this method are its simplicity and ability to handle the linear projection equation (1) while some other algorithms (e.g. [START_REF] Luenberger | Introduction to Linear and Nonlinear Programming[END_REF]) can only solve special cases of [START_REF] Bruck | An iterative solution of a variational inequality for certain monotone operators in Hilbert space[END_REF]. Each iteration of this method consists essentially of only two matrix vector products and two projections of a vector onto Ω. Therefore the method allows the optimal exploitation of the sparsity of the matrix M and may thus be efficient for large sparse problems [10]. Since the method is easy to parallelise, it may be even more favorable for parallel computation. However, for ill-conditioned problems, the search direction (5) may lead to a very slow convergence. Our objective in this paper is to find better search directions and thereby to construct more efficient methods for solving problem [START_REF] Bruck | An iterative solution of a variational inequality for certain monotone operators in Hilbert space[END_REF]. Throughout this paper we assume that Ω * / = ∅ and that the projection onto Ω is simple to carry out (e.g. when Ω is a general orthant, a box, a sphere, a cylinder or a subspace).

The paper is organized as follows. In Sect. 2 we illustrate our motivation. The main theorem is proved in Sect. 3. In Sect. 4 some new methods are presented and their contractive properties are shown. In Sect. 5 we prove convergence. Finally, in Sect. 6, we give some extensions and conclusions.

We use the following notation. For u ∈ R n , the component i is denoted by u i .

A superscript such as in u k refers to a specific vector and usually denotes iteration index. The Eucliden norm and the max-norm will be denoted by • and • ∞ , respectively. Throughout this paper, G denotes a positive definite matrix and u G denotes (u T Gu) 1 2 .

Motivation

In order to illustrate our motiviation, we let

f (u) = 1 2 u T M u + q T u
and M be symmetric positive definite, and consider the following unconstrained optimization problem

(9) min u∈R n f (u).
Solving problem ( 9) is equivalent to finding a zero point of ∇f (u). The search direction in classical methods for unconstrained optimization is

(10) d(u) = Q∇f (u)
with different matrices Q. If Q = I, we obtain the direction of the steepest descent method. Setting Q = [∇ 2 f (u)] -1 yields the direction of Newton's method. When

Q = σI + (∇ 2 f (u)) -1 or Q = [σI + ∇ 2 f (u)] -1
for some nonegative value of σ > 0, the search direction can be regarded as some combination of steepest descent (σ very large) and Newton's method (σ = 0). For the convex constrained optimization problem

(11) min{f (u) | u ∈ Ω}, the Kuhn-Tucker theorem tells us that u * is a minimum if u * ∈ Ω and it satisfies (u -u * ) T ∇f (u * ) ≥ 0 for all u ∈ Ω.
This means that u * is a zero point of the function e(u). Note that in the case of

Ω = R n , e(u) = ∇f (u).
Since most search directions in unconstrained optimization are constructed from ∇f (u), a natural question is whether we can build useful search directions for the constrained optimization problem [START_REF] Kojima | A polynomial-time algorithm for a class of linear complementarity problems[END_REF] based on e(u). Further, for problem (1), if we take

(12) d(u) = Qe(u)
as the search direction, which step length should be taken?

The main theorem

The following theorem plays an important role in our new methods.

Theorem 1. Let u * ∈ Ω * . Then (13) (u -u * ) T (I + M T )e(u) ≥ e(u) 2 + (u -u * ) T M (u -u * ) ∀u ∈ R n .
Proof. Since Ω ⊂ R n is a closed convex set and u * ∈ Ω, we know by the properties of a projection on a closed convex set [14, Appendix B] that

{v -P Ω (v)} T {P Ω (v) -u * } ≥ 0 ∀v ∈ R n .
By setting v := u -(M u + q) we obtain ( 14)

{e(u) -(M u + q)} T {P Ω [u -(M u + q)] -u * } ≥ 0. Since P Ω (•) ∈ Ω, it follows from (2) that (15) (M u * + q) T {P Ω [u -(M u + q)] -u * } ≥ 0.
Adding ( 14) and ( 15) we get ( 16)

{e(u) -M (u -u * )} T {u -u * -e(u)} ≥ 0 and it follows that (u-u * ) T (I + M T )e(u) ≥ e(u) 2 + (u -u * ) T M (u -u * ).
A similar but weaker result of Theorem 1 was given in [START_REF] He | A new method for a class of linear variational inequalities[END_REF]. The above proof is an improved version of the one in [START_REF] He | A new method for a class of linear variational inequalities[END_REF]. We point out that inequality [START_REF] Mizuno | A new polynomial time algorithm for a linear complementarity problems[END_REF] is sharp. This can easily be seen by setting M = I. We then obtain {e(u)-(u-u * )} T {u-u * -e(u)} = 0. This implies that also the result of Theorem 1 is tight.

Remark. The methods in [START_REF] He | A projection and contraction method for a class of linear complementarity problem and its application in convex quadratic programming[END_REF] and [START_REF] He | A globally linearly convergent projection and contraction method for a class of linear complementarity problems[END_REF] take g(u) as the search direction. It was shown that

(u -u * ) T g(u) ≥ e(u) T (M u + q).
But only under the assumption that u ∈ Ω can we prove

e(u) T (M u + q) ≥ e(u) 2 . Therefore, -g(u) is a descent direction of F (u) = 1 2 u -u * 2 at u ∈ Ω. However,
here the assertion (13) in Theorem 1 is true for all u ∈ R n . Although, as in [START_REF] He | A new method for a class of linear variational inequalities[END_REF], -(I + M T )e(u) can be taken as a descent direction of F (u) for all u ∈ R n , Theorem 1 offers us the possibility to construct better search directions.

The methods and their contractive properties

In this section, based on Theorem 1, we give some new methods for solving linear projection equations and show their contractive properties. The iterative scheme of these methods is ( 17)

u k+1 = u k -ρ(u k )Qe(u k )
with different matrices Q and steplengths ρ(u).

Method 1.

(for symmetric M ≥ 0)

Q = I, ρ(u) = e(u) 2 e(u) T (I + M )e(u)
.

Method 2.

(for symmetric M > 0)

Q = M -1 , ρ (u) = e(u) 2 e(u) T (I + M -1 )e(u)
.

Method 3.

(for symmetric M > 0)

Q = I + M -1 , ρ (u k ) = e(u) 2 (I + M -1 )e(u) 2 M . Method 4.
(for M ≥ 0 but not necessarily symmetric)

Q = (I + M ) -1 , ρ (u) = 1.
The first method can be viewed as an extention of the steepest descent method for unconstrained optimization, because we take e(u) as the search direction and e(u) is the residue of the projection equation. Obviously, each iteration of this method consists essentially of only a projection to Ω and the computation of M u and M e(u).

The second method can be viewed as an extention of Newton's method for unconstrained optimization. As in Method 1, each iteration of this method consists essentially of only a projection to Ω and the computation of M u and M -1 e(u).

Method 3 can be regarded as a combination of steepest descent and Newton's method for unconstrained optimization. Method 4 can be viewed as an extention of the Levenberg-Marquardt method for unconstrained optimization.

Theorem 2. The sequence {u k } generated by each method of methods 1-4 for (LPE) satisfies

(18) u k+1 -u * 2 G ≤ u k -u * 2 G -ρ(u k ) e(u k ) 2 -2ρ(u k ) • (u k -u * )M (u k -u * ) ∀u * ∈ Ω * where G = ⎧ ⎪ ⎨ ⎪ ⎩ I + M in Method 1 (I + M )M in Method 2 M in Method 3 (I + M T )(I + M ) in Method 4 Proof. First, u k+1 -u * 2 G = (u k -u * ) -ρ(u k )Qe(u k ) 2 G = u k -u * 2 G -2ρ(u k )(u k -u * )GQe(u k ) + ρ 2 (u k )e(u k ) T Q T GQe(u k ).
Note that in all cases

GQ = I + M T and ρ(u) • e(u) T Q T GQe(u) = e(u) 2 .
Using [START_REF] Lemke | Equilibrium points of bimatrix games[END_REF] the theorem is proved.

The sequence {u k } generated by these methods does not necessarily lie in Ω. In general, (because G / = I and the projection is an orthogonal projection with respect to the Euclidean norm), we can not prove that

{u k } satisfies P Ω [u k+1 ] -u * G ≤ u k -u * G even if u k ∈ Ω.
Note that in all of these methods, the steplength ρ is bounded below. Therefore, there is a c > 0, so that the sequence {u k } generated by each of these methods satisfies

(19) u k+1 -u * 2 G ≤ u k -u * 2 G -c e(u k ) 2 ∀u * ∈ Ω * .
Due to [START_REF] Stoer | On the numerical solution of constrained least squares problems[END_REF] and the fact that each iteration performs a projection onto Ω (in the computation of e(u)), we call these methods the projection and contraction methods (PC methods).

Convergence

The PC methods in this paper generate an infinite sequence {u k }, which is not necessarily contained in the feasible set Ω, but, will be asymptotically feasible as e(u k ) → 0, and, in fact converges to a solution of (LPE).

Theorem 3. If the sequence {u k } satisfies [START_REF] Stoer | On the numerical solution of constrained least squares problems[END_REF], then it converges to a solution point u * .

Proof. See [START_REF] He | A new method for a class of linear variational inequalities[END_REF], Theorem 3.

In [START_REF] He | A new method for a class of linear variational inequalities[END_REF] we have also proved that an inequality of the form [START_REF] Stoer | On the numerical solution of constrained least squares problems[END_REF] implies the global linear convergence in the case that Ω is an orthant. Theorem 4. If the sequence {u k } satisfies [START_REF] Stoer | On the numerical solution of constrained least squares problems[END_REF] and

Ω = {u | u ≥ 0}, then {u k } converges to a solution point u * ∈ Ω * globally linearly.
Proof. See [START_REF] He | A new method for a class of linear variational inequalities[END_REF], Theorem 4.

The iterative scheme of the fundamental projection method (see [START_REF] Ciarlet | Introduction to matrix numerical analysis and optimization[END_REF]) (20)

u k+1 = P Ω [u k -(M u k + q)],
belongs to the class of steepest descent methods. In the case that M is positive semidefinite, we denote the largest and the smallest eigenvalue of the matrix M by λ max (M ) and λ min (M ), respectively. If 0 < δ ≤ λ min (M ) ≤ λ max (M ) ≤ 2δ, then the sequence {u k } generated by the fundemental projection method (20) satisfies ( 21)

e(u k+1 ) = u k+1 -P Ω [u k+1 -(M u k+1 + q)] = P Ω [u k -(M u k + q)] -P Ω [u k+1 -(M u k+1 + q)] ≤ (I -M )(u k -u k+1 ) = (I -M )e(u k ) ≤ (1 -δ) e(u k ) and (22) 
u k+1 -u * = P Ω [u k -(M u k + q)] -u * = P Ω [u k -(M u k + q)] -P Ω [u * -(M u * + q)] ≤ (I -M )(u k -u * ) ≤ (1 -δ) u k -u * .
In the following we prove that the PC methods in this paper have similar properties. Under the assumptions that M is positive definite and M ≤ 2, the seqeunce { e(u k ) } generated by Method 1 or Method 4 is monotonically decreasing. More precisely, we have the following theorem:

Theorem 5. Let M be positive semidefinite and symmetric. If λ max (M ) ≤ 2, then the sequence {e(u k )} generated by Method 1 or Method 4 for (LPE) satisfies

(23) e(u k+1 ) ≤ e(u k ) . Moreover, if δ ≤ λ min (M ) ≤ λ max (M ) ≤ 2 -δ for some δ > 0, then the sequence {e(u k )} satisfies (24) e(u k+1 ) ≤ (1 - δ 3 ) e(u k ) .
Proof. First, in Method 1, under the assumptions we have 1 3 ≤ ρ(u k ) ≤ 1. By using

u k+1 = u k -ρ(u k )e(u k ),
we get

e(u k+1 ) = u k -ρ(u k )e(u k ) -P Ω [u k+1 -(M u k+1 + q)] = (1 -ρ(u k ))e(u k ) + u k -e(u k ) -P Ω [u k+1 -(M u k+1 + q)] ≤ (1 -ρ(u k ))e(u k ) + P Ω [u k -(M u k + q)] -P Ω [u k+1 -(M u k+1 + q)] ≤ (1 -ρ(u k )) e(u k ) + (I -M )(u k -u k+1 ) ≤ (1 -ρ(u k )) e(u k ) + ρ(u k ) (I -M ) • e(u k ) . Since 0 ≤ λ min (M ) ≤ λ max (M ) ≤ 2, it follows that I -M ≤ 1 and e(u k+1 ) ≤ e(u k ) . Moreover, if δ ≤ λ min (M ) ≤ λ max (M ) ≤ 2 -δ, then I -M ≤ 1 -δ, and it follows that e(u k+1 ) ≤ (1 -ρ(u k )) e(u k ) + (1 -δ)ρ(u k ) e(u k ) ≤ (1 - δ 3 ) e(u k ) .
In Method 4, using

u k+1 = u k -(I + M ) -1 e(u k ) we get e(u k+1 ) = u k -(I + M ) -1 e(u k ) -P Ω [u k+1 -(M u k+1 + q)] = e(u k ) -(I + M ) -1 e(u k ) + u k -e(u k ) -P Ω [u k+1 -(M u k+1 + q)] ≤ (I + M ) -1 M e(u k ) + P Ω [u k -(M u k + q)] -P Ω [u k+1 -(M u k+1 + q)] ≤ (I + M ) -1 M e(u k ) + (I -M )(u k -u k+1 ) = (I + M ) -1 M e(u k ) + (I -M )(I + M ) -1 e(u k ) .
Let M = U T ΣU be the Schur normal form of M with Σ = diag(σ 1 , . . . , σ n ). Then

e(u k+1 ) ≤ (I + M ) -1 M e(u k ) + (I -M )(I + M ) -1 e(u k ) = (I + Σ) -1 ΣU e(u k ) + (I -Σ)(I + Σ) -1 U e(u k ) .
Since 0 ≤ σ i ≤ 2, it follows that

σ i 1 + σ i + |1 -σ i | 1 + σ i ≤ 1 and e(u k+1 ) ≤ (I + Σ) -1 ΣU e(u k ) + (I -Σ)(I + Σ) -1 U e(u k ) ≤ U e(u k ) = e(u k ) . Moreover, if δ ≤ σ i ≤ 2 -δ, it is straightforward to prove that σ i 1 + σ i + |1 -σ i | 1 + σ i ≤ 1 - δ 3 and it follows that e(u k+1 ) ≤ (1 - δ 3 ) e(u k ) .
The following theorem contrasts the convergence proofs for the fundamental projection methods, in that no advance knowledge of the largest and smallest eigenvalue of M is required. Theorem 6. Let M be positive definite, then all four PC methods are globally linearly convergent.

Proof. From (18) (Theorem 2) we have

u k+1 -u * 2 G ≤ u k -u * 2 G -2c(u k -u * ) T M (u k -u * ). Since M is positive definite, there exists a τ > 0, such that (u -u * ) T M (u -u * ) ≥ τ u -u * 2 G . It follows that u k+1 -u * 2 G ≤ (1 -2cτ ) u k -u * 2
G , which implies that {u k } converges to u * globally and linearly.

Extensions and conclusions

Let α > 0 be a constant. It is easy to see that problem (1) is equivalent to the following problem (25)

(LPE α ) u = P Ω [u -α(M u + q)].
Therefore, instead of taking M and q, we can use αM and αq in our PC methods. In addition, for some parameter γ, 0 < γ < 2, with the same direction d(u) and its relevant steplength ρ(u), the iterative scheme (26) u k+1 = u kγρ(u k )d(u k ) produces a sequence {u k }, which satisfies

(27) u k+1 -u * 2 G ≤ u k -u * 2 G -γ(2 -γ)ρ(u k ) e(u k ) 2
and thus also converges to a solution point u * . A close look at the inequalities used in the proof of Theorem 1 shows that the best choice of γ should be ≥ 1.

The search directions of the presented methods are the extensions of those in unconstrained optimization. If Ω = R n , then the search direction in [7] is

g(u) = (M T + I)(M u + q).
In this special case, the search directions in our new methods are d 1 (u) = (M u + q), (in Method 1) d 2 (u) = M -1 (M u + q), (in Method 2) d 3 (u) = (I + M -1 )(M u + q), (in Method 3) d 4 (u) = (I + M ) -1 (M u + q), (in Method 4)

respectively. Although we have only proved linear convergence, by comparing analogous direction for unconstrained optimization we are convinced that the directions d(u) developed in this paper are better than the direction g(u) in the original PC methods [START_REF] He | A projection and contraction method for a class of linear complementarity problem and its application in convex quadratic programming[END_REF][START_REF] He | A globally linearly convergent projection and contraction method for a class of linear complementarity problems[END_REF]. We believe that the use of Newton-like directions will lead to a substantial improvement in computational efficiency. Developing these methods for nonlinear problems is a topic of further research .
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