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ABSTRACT

We study the topology generated by the temperature fluctuations of the cosmic microwave background (CMB) radiation, as quantified
by the number of components and holes, formally given by the Betti numbers, in the growing excursion sets. We compare CMB
maps observed by the Planck satellite with a thousand simulated maps generated according to the ΛCDM paradigm with Gaussian
distributed fluctuations. The comparison is multi-scale, being performed on a sequence of degraded maps with mean pixel separation
ranging from 0.05 to 7.33◦. The survey of the CMB over S2 is incomplete due to obfuscation effects by bright point sources and
other extended foreground objects like our own galaxy. To deal with such situations, where analysis in the presence of “masks” is
of importance, we introduce the concept of relative homology. The parametric χ2-test shows differences between observations and
simulations, yielding p-values at percent to less than permil levels roughly between 2 and 7◦, with the difference in the number of
components and holes peaking at more than 3σ sporadically at these scales. The highest observed deviation between the observations
and simulations for b0 and b1 is approximately between 3σ and 4σ at scales of 3–7◦. There are reports of mildly unusual behaviour of
the Euler characteristic at 3.66◦ in the literature, computed from independent measurements of the CMB temperature fluctuations by
Planck’s predecessor, the Wilkinson Microwave Anisotropy Probe (WMAP) satellite. The mildly anomalous behaviour of the Euler
characteristic is phenomenologically related to the strongly anomalous behaviour of components and holes, or the zeroth and first
Betti numbers, respectively. Further, since these topological descriptors show consistent anomalous behaviour over independent mea-
surements of Planck and WMAP, instrumental and systematic errors may be an unlikely source. These are also the scales at which the
observed maps exhibit low variance compared to the simulations, and approximately the range of scales at which the power spectrum
exhibits a dip with respect to the theoretical model. Non-parametric tests show even stronger differences at almost all scales. Cru-
cially, Gaussian simulations based on power-spectrum matching the characteristics of the observed dipped power spectrum are not
able to resolve the anomaly. Understanding the origin of the anomalies in the CMB, whether cosmological in nature or arising due
to late-time effects, is an extremely challenging task. Regardless, beyond the trivial possibility that this may still be a manifestation
of an extreme Gaussian case, these observations, along with the super-horizon scales involved, may motivate the study of primor-
dial non-Gaussianity. Alternative scenarios worth exploring may be models with non-trivial topology, including topological defect
models.
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1. Introduction

The Λ cold dark matter (or ΛCDM) standard paradigm of cos-
mology postulates that the Universe consists primarily of cold
non-relativistic dark matter, which reveals its presence only
through gravitational interactions, and the Universe is currently
driven by dark energy, causing accelerated volume expansion in
this model. The cosmic microwave background (CMB) radia-
tion, which originates at the epoch of recombination, is the most
important observational probe into the validity of the standard
paradigm today (Jones 2017). It is the earliest visible light and
offers a glimpse into the processes during the nascent stage of the
Universe. Fluctuations about the mean in the temperature field
of the CMB correspond to the fluctuations in the distribution of
matter in the early Universe. Understanding the CMB is there-
fore crucial to understanding the primordial Universe.

The ΛCDM paradigm together with the inflationary theories
in their simplest forms, predict the primordial perturbations to
be realizations of a homogeneous and isotropic Gaussian ran-
dom field (Guth & Pi 1982). This hypothesis is supported exper-
imentally by CMB observations (Smoot et al. 1992; Bennett
et al. 2003; Spergel et al. 2007; Komatsu et al. 2011; Planck
Collaboration XIII 2016) and theoretically by the central limit
theorem. While it has largely been agreed upon that the CMB
exhibits characteristics of a homogeneous and isotropic Gaus-
sian field, there are lingering doubts. The pioneering works of
Eriksen et al. (2004a) and Park (2004) challenge the assump-
tion of homogeneity, and the alignment of low multipoles
(Copi et al. 2015) challenges the assumption of isotropy. Other
noted anomalies include the vanishing correlation function at
large scales, and the unusually low variance at approximately
3◦; see Schwarz et al. (2016) for a review and possible
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interpretations. Planck Collaboration XXIII (2014) indepen-
dently confirms these anomalies.

The primordial non-Gaussianity remains a topic of ongo-
ing debate. Deviations from Gaussianity, if found, will point to
new physics driving the Universe in its nascent stages. The con-
sensus is in relative favour of the absence of non-Gaussianity
(Komatsu et al. 2011; Planck Collaboration XXIII 2014; Planck
Collaboration XXIV 2014; Matsubara 2010; Bartolo et al. 2010);
see also Buchert et al. (2017) for a review and a model-
independent route of analysis. Despite mildly unusual behaviour
of the Euler characteristic, pointed out in Eriksen et al. (2004b)
and Park (2004), the methods employed until today have not pro-
vided compelling evidence of non-Gaussianity in the CMB. In
contrast, the topological methods of this paper find the observed
CMB maps (Planck Collaboration IX 2016) to be significantly
different from the Full Focal Plane 8 (FFP8) simulations (Planck
Collaboration XXIII 2014; Planck Collaboration XII 2016) that
assume the initial perturbations to be Gaussian.

Topology is the branch of mathematics concerned with prop-
erties of shapes and spaces preserved under continuous defor-
mations, such as stretching and bending, but not tearing and
gluing. It is related to but different from geometry, which mea-
sures size and shape. Both geometry and topology have been
used in the past to study the structure of the CMB radiation
and other cosmic fields. Historically, the predominant tools in
this endeavour were the Minkowski functionals, which for a
2-manifold embedded in the three-dimensional space are related
to the enclosed volume, the area, the total mean curvature, and
the total Gaussian curvature. By the Gauss–Bonnet Theorem, for
2-manifolds, the latter is 2π times the Euler characteristic (Euler
1758), thus providing a bridge between geometry and topol-
ogy. Early topological studies of the cosmic mass distribution
were based on the Euler characteristic of the iso-density sur-
faces, which generically are 2-manifolds (Doroshkevich 1970;
Bardeen et al. 1986; Gott et al. 1986; Park et al. 2013). The
full set of Minkowski functionals was later introduced to cos-
mology in Mecke et al. (1994), Schmalzing & Buchert (1997),
Sahni et al. (1998), Schmalzing & Gorski (1998). For Gaussian,
and Gaussian-related random fields, the expected values of the
Minkowski functionals of excursion sets have known analytic
expressions (Adler 1981; Adler & Taylor 2010), which is one
of the main reasons they have played a key role in the study
of real valued fields arising in cosmology and other disciplines.
Analyses based on Minkowski functionals have been used for
predicting and quantifying the presence of non-Gaussianity in
the CMB maps obtained with the Planck satellite (Ducout et al.
2013; Buchert et al. 2017).

While the Minkowski functionals have been instructive, the
topological information contained in them is limited and con-
volved with geometric information. Moreover, they are not
equipped to address the hierarchical aspects of the matter
distribution directly, although partial Minkowski functionals
(Schmalzing et al. 1999) may be useful in certain settings. We
therefore analyse CMB fluctuations in terms of the purely topo-
logical concepts of homology (Munkres 1984), as quantified by
Betti numbers (Betti 1871) and persistence (Edelsbrunner et al.
2002; Edelsbrunner & Harer 2010). Following the Euler-Poincaré
formula, the Euler characteristic is the alternating sum of the Betti
numbers, implying that the latter provide a finer description of
topology (Munkres 1984). A broad exposition of these concepts
in a cosmological setting is given in Pranav et al. (2017), Pranav
(2015), van de Weygaert et al. (2011); also see Park et al. (2013),
Sousbie (2011), Shivashankar et al. (2016), Adler et al. (2017),
Makarenko et al. (2018), Cole & Shiu (2018) for some applica-

tions. Related but slightly different methodologies used for the
analysis of cosmological datasets, emanating from concepts in
Morse theory, maybe found in Colombi et al. (2000), Novikov
et al. (2006), Sousbie et al. (2008).

Our main result is an anomaly of the observed CMB radia-
tion when compared with simulations based on Gaussian pre-
scriptions. The χ2-test yields a significant difference between
the number of components and holes in the observed sky com-
pared to the simulations, with p-values at percent to less than
permil levels at scales of roughly 2–7◦. The differences peak
sporadically at more than 3σ at these scales. Non-parametric
tests reveal an even more significant difference between the
observation and the simulations at almost all scales. The χ2-
test shows the anomaly at roughly the same scales at which the
power spectrum exhibits a dip. Eriksen et al. (2004b) reports a
mildly unusual Euler characteristic at approximately 3◦ in the
earlier measurements of the CMB radiation by the Wilkinson
Microwave Anisotropy Probe (WMAP) satellite, which is related
to the anomalous behaviour of components and holes. The
noted anomaly motivates a closer look at the standard paradigm.
Possible scenarios include but are not limited to primordial non-
Gaussianity, topological defect models, and models with non-
trivial topology (Bouchet et al. 2002; Aurich & Steiner 2001;
Aurich et al. 2007; Bernui et al. 2018).

The workflow in this paper is as follows. Topological descriptors
are computed from cosmology data, and statistical tests based on
these descriptors are used to compare the observations with sim-
ulations. Section 2 gives a summary of the topological concepts.
Section 3 describes the data, the computational pipeline, and a
brief account of the statistical tests employed. Section 4 presents
the main results of the paper, followed by a summary and con-
clusions in Sect. 5.

2. Topological background

Since the CMB radiation is observed as a scalar field on the
two-dimensional sphere, the topological concepts needed in this
paper are elementary, namely the components and the holes of
subsets of this sphere. To count them in the presence of regions
with unreliable data, we compute the ranks of the homology
groups relative to the mask that covers these regions.

2.1. Excursion sets and absolute homology

Writing S2 for the two-dimensional sphere and f : S2 → R for
the temperature field of the CMB, the excursion set at a tem-
perature ν is the subset of the sphere in which the temperature
is ν or larger: E(ν) = {x ∈ S2 | f (x) ≥ ν}. It is a closed set,
and we write β0(ν) for its number of components. A hole is
a component of the complement, S2 \ E(ν). Assuming there is
at least one hole, we write β1(ν) + 1 for the number of holes,
and we set β2(ν) = 0, because E(ν) does not cover the entire
sphere. On the other hand, if there is no hole, we set β1(ν) = 0
and β2(ν) = 1; see the left panel of Fig. 1 for an illustra-
tion. These definitions are motivated by the more general theory
(Munkres 1984) in which the p-th Betti number is the rank of
the p-th homology group: βp = rank Hp for p = 0, 1, 2. These
are the basic objects of homology. The Euler characteristic of
the excursion set is the alternating sum of the Betti numbers:
EC(ν) = β0(ν) − β1(ν) + β2(ν).

The Euler characteristic has a long history in the CMB lit-
erature, largely due to the fact that a simple analytic formula
for its expected value is known when the CMB is modelled as

A163, page 2 of 30



P. Pranav et. al.: Unexpected topology of the CMB

Fig. 1. Left: blue excursion set on the sphere consisting of an upper-left
component with a hole, an upper-right component, and a lower com-
ponent. Its Betti numbers are β0 = 3, β1 = 1, β2 = 0, and its Euler
characteristic is EC = 3 − 1 + 0 = 2. Middle: pink mask in which the
data are not reliable. The mask covers part of the upper-left component
and hole; its hole is fully contained in the upper-right component, and it
overlaps the lower component in two disconnected pieces. Right: visual-
ization of the relative homology groups obtained by shrinking the mask
to a point and pulling the excursion set with it. We have b0 = 0 because
all three components connect to the shrunken mask, b1 = 2 because
the loop in the upper-left component is preserved and a new loop in the
lower component is formed, and b2 = 1 because the upper-right compo-
nent takes on the shape of a sphere. The (relative) Euler characteristic
is therefore ECrel = 0 − 2 + 1 = −1.

a Gaussian random field (Adler 1981; Adler & Taylor 2010).
While such formulas are not known for the Betti numbers, the
information they carry is richer. Pranav et al. (2019) present a
numerical study of the Betti numbers of Gaussian random fields,
and compare them to the Euler characteristic and Minkowski
functionals, and find that Betti numbers present a more detailed
account of the topological properties of the field compared to the
Euler characteristic (also see Park et al. 2013). In general, near
the mean level of ν, one expects the components and holes of
the excursion set to be of similar size and number. Accordingly,
one expects β0(ν) and β1(ν) to be of similar magnitude, combin-
ing to give an Euler characteristic close to zero. Such an Euler
characteristic tells us nothing about the individual Betti numbers
beyond the fact that they are similar.

2.2. Masks and relative homology

We define the mask to be the region in which the data is not
reliable, and denote it by M ⊆ S2. In our application, the mask
includes a belt around the equator corresponding to the thickened
disc of the Milky Way, along with other galactic and extra-
galactic bright foreground objects that interfere with the obser-
vation of the CMB radiation. In an effort to exclude the mask
from our computations, we consider the reduced excursion set:
E(ν) \M. TreatingM as a closed set, this difference is not neces-
sarily closed. An appropriate topological measure is the relative
homology of a pair of closed spaces, (E,M), with the second
being contained in the first. In our setting, the pair is E = E(ν)
and M = M ∩ E(ν). Just as in the absolute case, we get relative
homology groups in dimensions 0, 1, and 2, and we use their
ranks for quantification. It is tempting to refer to these ranks as
relative Betti numbers, but this is not the traditional terminol-
ogy, and we simply write bp = rank Hp(E,M) for p = 0, 1, 2.
If M = ∅, then bp = βp, for all three choices of p, but if the
mask overlaps with the excursion set, then there are differences.
We explain some of these differences with reference to Fig. 1: If
M overlaps with a component of E, this component is no longer
counted because every vertex in it bounds a path connecting it to
the mask. IfM overlaps with the component in two disconnected
pieces, we count a new loop, namely the path connecting these
two pieces. If M covers part of a hole, this hole is still counted

Fig. 2. Small section of the sphere of directions, with the temperature
field visualized by the green landscape that complements the blue mask
drawn at lower altitude. We see one closed loop surrounding a rela-
tive depression of the temperature field, and two open loops connect-
ing points in the mask along locally highest paths. The visualization is
based on the observed CMB maps cleaned using the NILC technique,
and smoothed at 4◦.

because the part of its boundary curve outside the mask is open,
with endpoints inM. If a hole ofM is contained in the excursion
set, we get a surface without a boundary. The relation between
absolute and relative homology is compactly expressed by the
exact sequence of the pair M ⊆ E (Munkres 1984):

0→ H2(M)→ H2(E)→ H2(E,M)→ H1(M)→ H1(E) (1)
→ H1(E,M)→ H0(M)→ H0(E)→ H0(E,M)→ 0.

Briefly, this means that we can assign non-negative integers to
the arrows, meaning that the rank of each group is the sum
of integers assigned to its incoming and outgoing arrows. For
example, in Fig. 1, we have 0 → 0 → 0 → 1 → 1 → 1 → 2 →
4→ 3→ 0→ 0, and it is easy to find the assignment of integers
that satisfies the stated property.

2.3. Variationally maximal loops

When we count β1 + 1 holes in absolute homology, we in fact
count β1 loops needed to separate them. In relative homology, the
connection is not as intuitive because we also have open loops,
whose endpoints lie in the mask; see Fig. 2. Generally, there are
uncountably many ways to draw a loop, and in homology they are
all considered equivalent. The set of equivalent loops is called a
homology class, and any one of the loops in the class is a repre-
sentative. These classes are the elements of the one-dimensional
homology group, which is a vector space. The rank of this group
counts the classes that are needed to span the vector space.

For visualization, it is desirable to have a unique represen-
tative for each class. Similar to the intuitive notion of the rim
of a crater, we choose this representative to be as high as pos-
sible, alternating between peaks and saddles of f which it con-
nects via ridges within the reduced excursion set. We refer to
this loop as the variationally maximal representative of its class;
see Fig. 2 for an example. While constructing variational max-
ima for smooth scalar fields may be problematic, the persistence
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Fig. 3. Facets of the rhombic dodecahedron which serve as patches
in the HealPix representation of the sphere. In sequence, we show the
12 patches decomposed into 1, 4, 16, and 64 pixels. The final representa-
tion is obtained by central projection of the pixel centres and a distortion
yielding an approximately equal-area decomposition of the sphere (not
shown).

Fig. 4. UT78 mask released by the Planck team. It is a conservative
mask, that masks the known point sources and other bright foreground
objects, in addition to the galactic disc.

algorithm applied to a piecewise linear scalar field produces
them as a byproduct of reducing the boundary matrix; see
Sect. 3.2.

3. Data and methods

3.1. Data

Decades after the accidental discovery of the CMB, its first
space-based observational probe was carried out by the CMB
Explorer (COBE) satellite (Smoot et al. 1992), establishing that
the CMB is a perfect black-body radiation. Later, the WMAP
was launched to study the temperature fluctuations in greater
detail (Spergel et al. 2007). Most recently, the high-precision
Planck mission was launched, measuring temperature fluctua-
tions to an accuracy of 10−5 degrees (Planck Collaboration I
2014), and at a resolution of five arc-minutes, giving the most
detailed and precise measurement of CMB temperature fluctua-
tions currently available. We use the Planck maps for our anal-
yses (Planck Collaboration IX 2016; Planck Collaboration XII
2016).

Format . The CMB sky maps are presented in the HealPix
format (Górski et al. 2005), which is an equal-area pixelisation of
the sphere, which we denote as S2; see Fig. 3. Using the faces of
the rhombic dodecahedron, we start by decomposing the sphere
into twelve patches. Fine resolution is achieved by dividing these
patches into N2 equal area pixels each, meaning that the total
number of pixels at this resolution is 12 × N2. At maximum res-
olution N = 2048, the maps have about 50 million pixels.

Observed sky. The Planck satellite observes the sky at
seven different frequency bands, leading to component-separated
maps using four different techniques: Commander-Ruler (C-
R), NILC, SEVEM, and SMICA; cf. Planck Collaboration IX
(2016). These are the publicly available maps from Planck data
release 2 (PR2-2015)1. We use these component-separated CMB
maps throughout. These maps are contaminated by noise from
various sources, including inherent detector noise, and efforts by
the Planck team to denoise the data have not been completely
successful. Consequently, our analysis is performed on the maps
produced by combining the CMB and noise maps for each real-
isation of the simulation. This is a fairly simple task, given that
the map-making exercise is linear in nature:

ffinal = fCMB + fnoise. (2)

Simulations. In addition to the observed data, the Planck
team released a set of Full Focal Plane 8 (or FFP8) simulations
(Planck Collaboration XII 2016) of both the CMB and noise.
We use 1000 NILC simulations for our computational experi-
ments. These simulations assume that the CMB is a Gaussian
random field, consistent with the null hypothesis of Gaussian-
ity for the CMB, which is what we wish to check, and we use
them to estimate the error-bars for testing the significance of
differences between observed and simulated maps. Important to
note is that these simulations include the effects of realistic fore-
ground models for gravitational lensing, Reyleigh scattering, and
more (Planck Collaboration XII 2016, Sect. 3.3.1).

Degradation. In order to perform a scale-dependent analy-
sis of the CMB maps, we degrade them to resolutions between
N = 1024 and 8, dividing N by two from one level to the next.
The process of degradation amounts to decomposing them into
spherical harmonics on the full sky at the input resolution. The
spherical harmonics coefficients alm are then convolved to the
new resolution using the formula (Planck Collaboration XXIII
2014):

aout
lm =

bout
l pout

l

bin
l pin

l

ain
lm, (3)

where, bl is the beam transfer function, pl is the pixel window
function, and in and out denote the input and the output functions
at the different resolutions, respectively. These are then synthe-
sised into maps at the output resolution directly.

Masks. The observation of the CMB by the Planck satellite
is incomplete in some regions of the sky, typically as a result
of interference from bright foreground objects such as our own
galactic disc and bright point sources. In these regions, the CMB
sky map is reconstructed as a constrained Gaussian field. In order
to avoid these areas in the analysis, we use the most conservative
UT78 mask released by the Planck team; see Fig. 4. This mask
is a combination of all foreground objects with the least sky cov-
erage and therefore leads to a conservative analysis. The mask is
a binary map, where reliable pixels of the CMB map are marked
by the value 1, and the unreliable parts by 0.

1 Available at https://pla.esac.esa.int/
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 5. Degraded masks before binarization. For high-enough resolutions, the masks have a similar appearance to the original one, but are distin-
guishable when zooming into the image.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 6. Degraded masks after binarization, thresholded at 0.9.

Table 1. Percentage of sky area covered by the unmasked regions for
the various degraded resolutions between N = 1024 and 16, for mask
binarization threshold 0.9.

Resolution % Unmasked

1024 77.19
512 76.52
256 75.50
128 73.37
64 72.41
32 69.39
16 66.24

For the scale-dependent analysis, we also degrade the masks,
so that the map and the mask have the same resolution. Degrad-
ing the original binary UT78 mask converts it into a non-binary
mask in a thickened zone at the boundary separating the reliable
part of the mask from the non-reliable part. Figure 5 presents

these yet-to-be-binarized masks. To re-convert them to binary
masks, we set a range of binarization thresholds for our experi-
ments: 0.7, 0.8, 0.9, 0.95. Pixels with values above or equal to the
binarization threshold are marked as 1, and the rest as 0. Figure 6
presents the binarized maps at various degraded resolutions, for
binarization threshold 0.9. Table 1 presents the percentage of
sky that is useable for analysis after masking at various reso-
lutions for this threshold. The percentage of usable area drops
with decreasing resolution, with only 66% for N = 16. Figure 7
presents a visualization of the degraded and masked maps for all
the resolutions analysed in this paper in the Mollweide projec-
tion view.

3.2. Computational pipeline

The computational pipeline is tailored specifically to the Planck
data. The preprocessing step involves converting the CMB maps
given in absolute units to a dimensionless unit, corrected for
mean and scaled by the standard deviation (computed using
the non-masked pixels only). We use the HealPix package
for the preprocessing step. The output of this operation is the
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 7. Visualization of the masked maps at various degraded resolutions.

normalized temperature values on 12N2 pixels, along with their
coordinates on the sphere, which is the input to subsequent steps,
which we discuss in five sections: (i) triangulating the surface
of the sphere with the pixel centres as vertices, (ii) sorting the
vertices, edges, and triangles to form an upper-star filteration,
(iii) computing the persistence in terms of a reduced boundary
matrix, (iv) computing the ranks of the relative homology groups
bp, p = 0, 1, 2, and (v) computing the variationally optimal loops
from the reduced matrix. The software is written in C++ and
designed to handle very large data sets2.

Triangulation. The HealPix format stores the data in twelve
square arrays of N2 pixels each, with N = 2048 at the finest
resolution. The centres of these pixels are points on the faces of
a rhombic dodecahedron. With central projection, these points
are mapped to the 2-sphere and distorted to achieve an approx-
imately equal-area decomposition. Taking the convex hull of
these points in R3, we get a convex polytope whose boundary
is homeomorphic to the sphere. Most of the faces will be trian-
gles, and the occasional faces with k ≥ 4 sides can be subdivided
into k − 2 triangles to obtain a triangulation of the sphere. This
triangulation is the input to all the downstream computations;
consisting of V = 12N2 vertices, 3V − 6 edges, and 2V − 4 trian-
gles, it represents the temperature field, f : S2 → R, by storing
the temperature value at every vertex. We implicitly assume a
piecewise linear interpolation along the edges and the triangles.
Figure 8 illustrates such a triangulation, using colours to visual-
ize the temperature field. We use the CGAL library (The CGAL
Project 2018) to implement the triangulation.

Upper-star filtration. Given a triangulation K of S2, let
K(ν) ⊆ K contain all simplices (vertices, edges, and triangles)
whose temperature values are ν or larger. We use K(ν) as a proxy
for E(ν), the corresponding excursion set. Indeed, because of the
linear interpolation, there is a deformation retraction from E(ν)
to K(ν) (Edelsbrunner & Harer 2010), which implies that the
two have corresponding components and holes. To process the
sequence of excursion sets, it makes sense to sort the vertices
of K in the order of decreasing temperature value. More pre-
cisely, we order the simplices of K such that σ precedes τ if (i)
f (σ) > f (τ) or (ii) f (σ) = f (τ) and dimσ < dim τ, in which

2 All codes, analysed data, and results available from the correspond-
ing author on request.

f (σ) is the minimum temperature value of the one, two, or three
vertices of σ. The remaining ties are broken arbitrarily. Assum-
ing any two vertices have different temperature values, then the
edges and triangles that immediately follow a vertex are exactly
the ones in the upper star of that vertex. We therefore refer to any
ordering that satisfies (i) and (ii) as an upper-star filter of K and
f . The corresponding upper-star filtration consists of all prefixes
of the filter, each representing an excursion set. This filtration
is instrumental in computing the persistence of components and
holes.

Computing persistence. Given an upper-star filter of the
piecewise linear temperature field, there is optimised software
available to compute its persistence (Bauer et al. 2014). We
base our persistence computation on an adaptation of the soft-
ware. This software is a sophisticated implementation of the
basic algorithm, which we now describe and modify to obtain
the variationally optimal loops. We write σ1, σ2, . . . , σn for the
simplices in the triangulation of the sphere, sorted into an upper-
star filter. Let ∂[1 . . . n, 1 . . . n] be the corresponding ordered
boundary matrix, with ∂[i, j] = 1, if σi is a face of σ j and
dimσi = dimσ j − 1, and ∂[i, j] = 0, otherwise. This matrix
is sparse and stored as such. The standard persistence algorithm
reduces the matrix from left to right. To reduce column j, we
subtract columns to the left of j with the goal to move the lowest
1 in column j higher or eliminate it altogether. We use modulo
2 arithmetic, and therefore subtracting is the same as adding:
1− 1 = 1 + 1 = 0. We refer to column j as reduced if it is zero or
its lowest 1 has only zeros in the same row to its left. We modify
the standard algorithm by continuing the reduction even if the
lowest 1 can no longer be changed, referring to the final result
as fully reduced. To be unambiguous, we explain this algorithm
in pseudo-code, where we write pivot( j) for the row index of the
lowest 1 in column j.

for j = 1 to n do
while ∃k < j with ∂[pivot(k), j] = 1 do

add column k to column j
endwhile
endfor.

The running time of this algorithm is cubic in the number of
simplices in the worst case, but the available optimised software
is typically much faster.
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Fig. 8. Visualization of the temperature field for the NILC observed
maps at N = 16. Also visible is the corresponding triangulation, for
which the pixel centres of the maps serve as the vertices. The tempera-
ture values are stored in the vertices of this triangulation.

Ranks of relative homology groups. For computing the
ranks of the homology groups relative to the mask, we set the
vertices belonging to the mask at +∞, and consider the complex
M induced by the union of these vertices. This mask is closed by
definition. We then compute the filtration and persistence dia-
gram corresponding to absolute homology of E ∪ M. Writing
Dgmp(E ∪ M) for the p-dimensional persistence diagram, and
recalling that each diagram consists of intervals with real birth
and death values, b > d, we obtain the ranks of homology groups
relative to the mask:

b0 = #{[b, d) ∈ Dgm0(E ∪M) | +∞ > b ≥ ν > d}; (4)
b1 = #{[b, d) ∈ Dgm0(E ∪M) | +∞ = b > d ≥ ν}

+ #{[b, d) ∈ Dgm1(E ∪M) | +∞ > b ≥ ν > d};
b2 = #{[b, d) ∈ Dgm1(E ∪M) | +∞ = b > d ≥ ν}

+ #{[b, d) ∈ Dgm2(E ∪M) | +∞ > b ≥ ν > d}.

For computing absolute homology, we set the mask pixels at −∞
and consider the union of such vertices as the mask, which is
open by definition.

3.3. Statistical tests

The data consist of topological summaries (b0, b1,ECrel)
obtained from 1000 simulations, as well as of the observed CMB
field, processed according to the NILC scheme. The goal is to
estimate the probability that the physical model that produced
the simulations produces quantities consistent with those from
the observed CMB field. Let xi ∈ R

m, i = 1, . . . , n, be a sam-
ple of i.i.d. m-dimensional vectors drawn from a distribution
F. Let y ∈ Rm be another sample point, assumed to be drawn
from a distribution G. We wish to test the (null) hypothesis that
F = G, and give the test results in terms of p-values, which com-
pute the probability that y is “consistent” with this hypothesis.
We consider two methods of testing for statistical consistency.
The first is a parametric test based on the Mahalanobis distance

(Mahalanobis 1936), also known as the χ2-test. The second is
a non-parametric test based on the Tukey depth (Tukey 1975).
The χ2-test is more standard but has the disadvantage of assum-
ing that the compared quantities follow a Gaussian distribution,
while the Tukey depth works without any assumption on the
distribution.

Mahalanobis distance or χ2-test. Let
x̄ =
∑n

i=1 xi/n
and
S =
∑n

i=1(xi − x̄)(xi − x̄)T/(n − 1),
the sample mean and covariance matrix of the sample x1, . . . , xn,
respectively. The squared Mahalanobis distance of y to x̄ is then

d2
Mahal(y) = (y − x̄)TS−1(y − x̄). (5)

If F is assumed to be Gaussian and n is large, then under
the hypothesis that G = F the squared Mahalanobis distance
(5) is approximately distributed as a χ2 distribution with m◦ of
freedom. Thus the corresponding p-value is

pMahal(y) = P[χ2
m > d2

Mahal(y)]. (6)

Tukey depth. As shown in the data analysis below, the dis-
tribution F does not always conform to elliptical contours and
therefore may not be Gaussian. In such a setting, p-values com-
puted using the Mahalanobis distance may not be reliable.

The Tukey half-space depth provides a general metric for
identifying outliers in a flexible manner and in a non-parametric
setting. Take xi, i = 1, . . . , n and y as above, making no assump-
tions on the structure of F and G, and let z be any point in Rm.
Then the half-space depth ddep(z; x1, . . . , xn) of z within the sam-
ple of the xi is the smallest fraction of the n points x1, . . . , xn to
either side of any hyperplane passing through z. By definition,
the half-space depth is a number between 0 and 0.5. Points that
have the same depth constitute a non-parametric estimate of the
isolevel contour of the distribution F.

To evaluate a p-value for y, we first compute d j =
ddep(x j; x1, . . . , xn) for every point x j, j = 1, . . . , n, yielding an
empirical distribution of depth. The p-value is then computed as
the proportion of points whose depth is lower than that of y:

pdep(y) = #{ j | d j > ddep(y)}/n. (7)

We note that by construction the depth p-value increases in
units of 1/n. For computing half-space depths below, we use the
R package depth.

4. Results

We use the Planck maps for our analyses, which measure fluc-
tuations about the mean in the CMB temperature to an accuracy
of 10−5 K (Planck Collaboration I 2014). Our primary resources
for the comparison between the observations and the simula-
tions are the component-separated observed maps obtained using
NILC, C-R, SEVEM, and SMICA techniques, as well as 1000
FFP8 simulations obtained using the NILC technique (Planck
Collaboration XII 2016). The simulations are based on the
ΛCDM paradigm and assume that the temperature fluctuations
have a Gaussian distribution. We perform our analyses for a
range of scales between 0.05 and 7.33◦, which correspond to res-
olutions between N = 1024 and N = 8 in the HealPix format
(Górski et al. 2005). Further degradation of the maps destabilises
the statistics due to the low number of data points in these cases.
We do this for a range of mask binarization thresholds: 0.7,
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0.8, 0.9, and 0.95; see Sect. 3 for the details of degradation and
masking.

In addition, we also compare the observed maps cleaned
using the NILC, C-R, SEVEM, and SMICA techniques with
100 simulations each based on the SEVEM and SMICA tech-
niques. The graphs and the p-value tables for these two cases are
presented in the appendix. The motivation for this comparison
based on a smaller number of simulations is primarily to ascer-
tain if the trends observed are generally consistent irrespective
of the cleaning methods. We confirm that this is indeed the case.

We present our analyses in terms of the ranks of relative
homology groups, bp for 0 ≤ p ≤ 1. The relative components
and loops are quantified by the relative component function, b0 :
R → R, and the relative loop function, b1 : R → R. We present
the graphs of b0, b1, and of the (relative) Euler characteristic,
ECrel, followed by statistical tests that estimate the significance
of results. If f (x) : S2 → R is the absolute temperature at a
location x, and f0 the mean temperature of the distribution, the
dimensionless temperature is given by: ν(x) = ( f (x) − f0)/σ( f ),
where σ( f ) is the standard deviation computed from the non-
masked pixels. We then obtain the ranks of relative homology
groups as functions of the normalized temperature.

4.1. Ranks of relative homology groups

To carry out omnibus tests, we choose 13 a priori levels,
`−6, . . . , `6, where `k = k/2, meaning that the normalized temper-
ature thresholds run from −3 to +3 in steps of 0.5, and consider
collections of random variables b0(`k), b1(`k), and ECrel(`k), for
−6 ≤ k ≤ 6.

The top two rows of Figs. 9–11 present the curves of b0,
b1, and ECrel, respectively, for resolutions between N = 1024
and N = 8, for mask threshold 0.9. The graphs present the
average curve (black) from 1000 NILC simulations, with error-
bands drawn up to 3σ. The individual curves from simulations
are drawn as dotted black lines, a few of which escape the 3σ
band. Also plotted are curves from NILC, C-R, SEVEM, and
SMICA observed maps. The bottom two rows present the dif-
ference between the observations and simulations in terms of
the number of standard deviations for the various temperature
thresholds. b0(ν), b1(ν) and ECrel(ν) show a difference from sim-
ulations peaking near 2σ for some temperature levels for all
resolutions. Additionally, b0 and b1 show differences peaking
between 3 and 4σ sporadically between N = 32 and N = 8.
Noteworthy is the 4.5σ deviation of b1 between the observa-
tions and simulations at N = 8 at the normalized temperature
threshold ν = −3 in Fig. 10. For the same case, the numbers
based on the SEVEM and the SMICA simulations are approx-
imately 5.5σ. However, the low temperature and resolution at
which this deviation occurs entail a small number of topo-
logical objects on which the statistics are based. As a result,
these numbers should perhaps be regarded with a degree of
scepticism.

At N = 1024, the observed maps based on SEVEM and
SMICA simulations deviate very significantly from the NILC
simulations map in the range 4−6σ at the mean temperature
threshold ν = 0. This may perhaps be attributed to the differences
in the cleaning pipelines. However, the fact that for lower reso-
lutions the curves are broadly consistent with each other points
to the robustness of the underlying data measurement, as well
as the mutual consistency of the cleaning methods. A similarly
consistent trend is observed in the graphs based on SEVEM and
SMICA simulations in the appendix.

Similar graphs based on a comparison between the four
observation maps and 100 of each of the SEVEM and SMICA
simulations are presented in Figs. B.1–B.6. Figures B.1–B.3
present the graphs based on the SEVEM simulations, while
Figs. B.4–B.6 present the graphs for the SMICA simulations.
It is evident that the comparisons based on the NILC (in
the main paper), the SEVEM, and the SMICA simulations
(in the appendix) show consistent trends.

4.2. Experimental evidence of Euler characteristic
suppression

As noted above, the Euler-Poincaré formula states that the Euler
characteristic is the alternating sum of the Betti numbers. As a
consequence, the signals in Euler characteristic are suppressed
by design, due to the cancellation of the constituent Betti num-
bers. Our experiments provide evidence for such suppressions of
the topological signals emanating from the Euler characteristic.
As an example, consider the quantities at the degraded resolu-
tion N = 16, and temperature threshold value ν = 0.5. At this
resolution and threshold, there is a significant difference in b0
between observations and simulations at 3.7σ (Fig. 9), but the
corresponding value for the Euler characteristic is 2.4σ (Fig. 11).
This is because of the cancellation effects between b0 and b1
in determining the Euler characteristic. More instances of such
cancellation effects can be seen in the graphs, particularly at
N = 1024, where even though the graphs for b0 and b1 from
SEVEM and SMICA observed maps deviate by 4−6σ from the
NILC simulations at ν = 0, the graph of ECrel shows no signifi-
cant deviation at this threshold.

4.3. Statistical significance of the results

We consider the two methods detailed in Sect. 3.3, and present
p-values of the observed maps for both. We consider the vari-
ables b0(`k=0,...,6), b1(`k=−6,...,0), and ECrel(`k=−6,...,6) for estimat-
ing the statistical significance of the results. The choice of
regions is determined by the fact that b0(ν) tends to be small,
and carries little information for ν < 0, b1(ν) tends to be small
for ν > 0, and the Euler characteristic is informative over the full
range of levels. We perform summary and specific tests for mask
binarization threshold values corresponding to 0.7, 0.8, 0.9, and
0.95. Appendix A presents the table of p-values and the principal
component graphs based on 1000 NILC simulations.

4.3.1. Global or summary tests

As a global test for the evidence of a non-random discrepancy in
any of the degraded resolutions analysed, we take the full set of
normalised differences – for the eight degraded resolutions and
the relevant thresholds – as a single vector for each of the three
topological quantities separately. Thus, in terms of the notations
in Sect. 3.3, for each of b0 and b1, seven thresholds result in
m = 56 (8 degraded resolutions and 7 temperature thresholds for
each resolution); and for the EC, 13 thresholds result in m = 104
(8 degraded resolutions and 13 temperature thresholds for each
resolution). The last entry for each mask threshold in Table A.1
presents the summary χ2 and depth p-values. Overall, there is
strong indication that the observations differ from the simula-
tions. While at any given degraded resolution the p-value to test
for differences is not always small, the fact that they all point in a
consistent direction is captured by the summary statistics, which
show a very high level of statistical significance.
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Fig. 9. b0 graphs for resolutions between N =
1024 and N = 8. Top two rows: observed
curve obtained using NILC, C-R, SEVEM,
and SMICA methods, and the expected (black)
curve computed from 1000 NILC simulations,
along with bands drawn up to 3σ. Also plot-
ted underneath are the curves from individual
simulations. Bottom two rows: curve present-
ing the difference between the observations and
simulations in terms of the number of standard
deviations for the various temperature thresh-
olds. Maximum noted deviation is at N = 16
at 3.7σ. The threshold along the horizontal axis
runs from positive to negative, in view of the
fact that we analyse superlevel sets of the nor-
malized temperature field.

4.3.2. Tests for specific degraded resolutions

This is followed by specific tests for each resolution. The rest of
the entries in Table A.1 present the Mahalanobis and the depth
p-values for each resolution, for different mask thresholds. The
Mahalanobis distances are particularly small for b1 at N = 16,
and very significant at N = 8, across all binarization thresholds.
Although they are not stable across binarization thresholds, b0
and ECrel also show significance. The depth p-values are very
significant for b1 for N = 16 and N = 8, while b0 shows high sig-
nificance at N = 32 consistently across the range of binarization
thresholds. The depth p-values also show high significance at
higher resolutions, more often for b1 than for b0, but not at all for
ECrel, presumably because of cancellation effects. When consid-
ering Tukey depth, b1 shows significance more often than b0 and
ECrel, and is an order of magnitude more significant compared to
b0 and ECrel when considering the Mahalanobis distance. These

trends are broadly consistent irrespective of the cleaning method.
Tables of p-values based on 100 SEVEM and SMICA simu-
lations are presented in Tables B.1 and B.2. The Mahalanobis
p-values are consistent with those obtained with the NILC simu-
lations. For the Tukey depth test, 100 simulations are inadequate
to resolve the p-values in most cases.

Regardless of the choice of test or the cleaning pipeline, it
is evident that the model and observations disagree significantly
at least in the number of loops on a range of scales between
approximately 1 and 7◦. For the Mahalanobis values, the general
trend of significance increases up to N = 8, providing additional
evidence that the deviations are not purely due to chance. For
both tests, the p-values for the summary tests tend to be more
significant than for individual resolutions. Another general trend
is that the non-parametric test shows the difference between the
observed and the simulated maps to be starker than the paramet-
ric test. To help interpret this difference, Figs. A.1–A.4 present
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Fig. 10. b1 graphs for resolutions between N =
1024 and N = 8. Top two rows: observed curve
obtained using NILC, C-R, SEVEM, and SMICA
methods, and the expected (black) curve computed
from 1000 NILC simulations, along with bands
drawn up to 3σ. Also plotted underneath are the
1000 curves from individual simulations. Bottom
two rows: curve presenting the difference between
the observations and simulations in terms of the
number of standard deviations for the various tem-
perature thresholds. Maximum noted deviation is
at N = 8 at 4.5σ. It is difficult to judge the validity
of this number, as the low temperature threshold
(ν = −3) entails a low total number of objects on
which the statistics are based. The next peak in the
curve is located at a moderate threshold (ν = −0.5),
and indicates a deviation at 2.9σ. The threshold
along the horizontal axis runs from positive to neg-
ative, in view of the fact that we analyse superlevel
sets of the normalized temperature field.

plots that visualise to what extent the assumption of a Gaus-
sian distribution for the compared quantities is justified; see
also Table C.1 for a comparison with p-values for the abso-
lute homology. The results indicate similar trends to the relative
homology case.

4.4. Principal-component graphs

Figure A.1 presents the projection onto the first two principal
components for the summary tests, which include results from
all resolutions. Mahalanobis and depth contours corresponding
to p-values of 0.1, 0.01, and 0.001 are shown in blue (top) and
purple (bottom). Observed CMB points are in red. Examining
the diagrams corresponding to the Mahalanobis distance, the
hypothesis that the distribution conforms to elliptical contours
is questionable.

Figures A.2–A.4 present the projection onto the first two
principal components for b0, b1, and ECrel, respectively, for
specific resolutions. Also drawn are the Mahalanobis (top two

rows) and Tukey depth (bottom two rows) contours. In gen-
eral, the symmetric Mahalanobis contours do not always fit the
data. However, as the resolution decreases, the Mahalanobis con-
tours, which are Gaussian in nature, seem to fit the data well,
and may be a reasonable approximation after all. Such graphs
based on SEVEM and SMICA simulations are presented in
Figs. B.7–B.10. It is evident that 100 simulations may not be
enough to reliably resolve the p-values.

5. Summary and conclusions

We provide evidence for the deviation of the observed Planck
CMB maps from the Gaussian predictions of the standard
ΛCDM model. Specifically, we find an over-abundance of loops
in the observed maps, deviating from the simulations at per cent
to less than per mil levels. This is in terms of p-values com-
puted using χ2 statistics, between the resolutions N = 32 and
N = 8. The difference in the number of components and loops
peaks sporadically at more than 3σ from the predictions between
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Fig. 11. Euler characteristic graphs for res-
olutions between N = 1024 and N = 8. Top
two rows: observed curve obtained using
NILC, C-R, SEVEM, and SMICA meth-
ods, and the expected (black) curve com-
puted from 1000 NILC simulations, along
with bands drawn up to 3σ. Also plot-
ted underneath are the 1000 curves from
individual simulations. Bottom two rows:
curve presenting the difference between the
observations and simulations in terms of
the number of standard deviations for the
various temperature thresholds. Maximum
noted deviation is at N = 32 at 2.9σ.
The threshold along the horizontal axis runs
from positive to negative, in view of the fact
that we analyse superlevel sets of the nor-
malized temperature field.

N = 32 and N = 8. Results based on smoothed maps corrobo-
rate with those based on degraded maps in terms of approximate
scales at which the anomaly is observed. We also compute the
absolute homology for the dataset, and confirm that the results
are consistent with those from relative homology. External evi-
dence that these deviations are not a result of overanalysing
the data comes from the fact that the variance of the observed
CMB is anomalous with respect to the standard model at N = 16
(Planck Collaboration XXIII 2014), and the computed power
spectrum exhibits a dip roughly at this range of scales. In addi-
tion, there are reports of a mildly significant Euler characteris-
tic at 3.66◦ (N = 16) (Eriksen et al. 2004b), computed from
independent measurements of the CMB by Planck’s predeces-
sor – Wilkinson Microwave Anisotropy Probe (WMAP) satel-
lite. This can be explained by the significantly high number of

loops and components, together with cancellation effects that the
Euler characteristic suffers from. Similar observations by inde-
pendent satellites suggests that it is unlikely that the source of
the anomaly has its origin in instrumental noise or systematic
effects. Moreover the medium super-horizon scales at which we
observe it, could possibly point to a cosmological origin. The
non-parametric Tukey depth test shows the observations to be
different from the simulations at almost all resolutions. Regard-
less of the preferred test, the topological structure of the CMB
appears to deviate from the simulations, at least on some scale.
This trend is robust and consistent irrespective of the choice of
the cleaning method, thus ruling out the possibility that the devi-
ations we observe are merely an artifact of the cleaning method.

We can rule out this anomaly being the effect of the cold
spot in the CMB sky, or any previously detected directional
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Fig. 12. Visualization of the loops for the largest excursion set, which consists of the entire sphere minus the mask. To improve the visualization,
the temperature field has been smoothed by a small amount, and we do not draw very short loops. From left to right: the sphere from the top, the
bottom, the left, and the right views.

anomalies. Our statistics are based on a large number of loops
surrounding the low-density regions, to which the loop gener-
ated by the cold spot may contribute at most only a few, and often
only one. Moreover, to support this claim, we visually confirm
that these loops are scattered all over the sky (see Fig. 12). We
also test and confirm that simulations that are based on Gaus-
sian prescriptions and match the characteristics of the observed
“dipped” power spectrum cannot resolve this anomaly. Addi-
tionally, we present topological methods that are suitable in the
presence of obfuscating masks. As such, the results presented in
this paper are robust despite lacking full sky coverage, and are
model-independent.

In conclusion, we reiterate that we present clear evidence of
departure of the observed CMB maps with respect to the simu-

lations based on the ΛCDM paradigm, but make no attempt to
address the issue of the physical mechanism behind this phe-
nomenon; a question we leave to the wider cosmological com-
munity. Nevertheless, our analysis demonstrates the existence of
unexpected topology in the CMB. Possible, but non-exhaustive
scenarios worth exploring may be primordial non-Gaussianity,
as well as models with non-trivial topology including topologi-
cal defect models.
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Appendix A: Table of significance and principal
component graphs based on NILC simulations

This appendix presents the table of significance and princi-
pal component graphs, computed in terms of p-values for the

Mahalanobis distance and the Tukey depth tests. The values are
obtained using 1000 NILC simulations, analysed in the main
body of the paper.

Table A.1. Two-tailed p-values for relative homology obtained from parametric (Mahalanobis distance) and non-parametric (Tukey depth) tests,
for four mask binarization thresholds.

Relative homology Relative homology
Mahalanobis Tukey Depth Mahalanobis Tukey Depth

Resolution Method b0 b1 ECrel b0 b1 ECrel Resolution Method b0 b1 ECrel b0 b1 ECrel

Threshold = 0.70 Threshold = 0.80
1024 NILC 0.236 0.244 0.472 <0.001 <0.001 0.302 1024 NILC 0.225 0.278 0.472 <0.001 <0.001 0.410

C-R 0.048 0.170 0.130 <0.001 <0.001 <0.001 C-R 0.048 0.169 0.130 <0.001 <0.001 <0.001
SEVEM <0.001 <0.001 0.124 <0.001 <0.001 <0.001 SEVEM <0.001 <0.001 0.095 <0.001 <0.001 <0.001
SMICA <0.001 0.001 0.208 <0.001 <0.001 <0.001 SMICA <0.001 0.002 0.217 <0.001 <0.001 <0.001

512 NILC 0.492 0.325 0.666 0.134 <0.001 0.685 512 NILC 0.499 0.348 0.686 0.130 <0.001 0.649
C-R 0.276 0.487 0.661 <0.001 <0.001 0.530 C-R 0.289 0.491 0.690 <0.001 <0.001 0.537

SEVEM 0.660 0.303 0.751 0.389 <0.001 0.586 SEVEM 0.657 0.362 0.813 0.268 <0.001 0.649
SMICA 0.478 0.472 0.908 0.134 <0.001 0.870 SMICA 0.463 0.522 0.919 0.130 <0.001 0.784

256 NILC 0.602 0.513 0.760 0.201 0.211 0.579 256 NILC 0.559 0.481 0.679 0.139 0.218 0.538
C-R 0.518 0.635 0.750 0.259 0.353 0.579 C-R 0.541 0.631 0.752 0.139 0.380 0.604

SEVEM 0.390 0.490 0.496 0.136 0.211 0.313 SEVEM 0.377 0.512 0.503 0.139 0.149 0.334
SMICA 0.480 0.571 0.695 0.136 0.211 0.313 SMICA 0.459 0.562 0.723 0.139 0.218 0.604

128 NILC 0.260 0.441 0.627 <0.001 0.171 0.327 128 NILC 0.295 0.484 0.633 <0.001 <0.001 0.331
C-R 0.331 0.547 0.705 0.152 0.171 0.451 C-R 0.363 0.609 0.695 <0.001 0.149 0.434

SEVEM 0.399 0.543 0.807 0.152 0.222 0.630 SEVEM 0.318 0.640 0.755 <0.001 0.149 0.517
SMICA 0.383 0.564 0.763 0.232 0.171 0.524 SMICA 0.370 0.637 0.735 <0.001 <0.001 0.517

64 NILC 0.335 0.278 0.528 0.171 <0.001 <0.001 64 NILC 0.250 0.269 0.382 <0.001 <0.001 <0.001
C-R 0.319 0.366 0.528 0.237 <0.001 0.314 C-R 0.192 0.363 0.438 <0.001 <0.001 0.311

SEVEM 0.211 0.352 0.488 <0.001 <0.001 <0.001 SEVEM 0.166 0.336 0.408 <0.001 <0.001 0.311
SMICA 0.259 0.306 0.448 <0.001 <0.001 <0.001 SMICA 0.172 0.339 0.351 <0.001 <0.001 0.000

32 NILC 0.082 0.302 0.442 <0.001 <0.001 <0.001 32 NILC 0.082 0.406 0.538 <0.001 <0.001 <0.001
C-R 0.166 0.292 0.509 <0.001 0.252 <0.001 C-R 0.149 0.452 0.707 <0.001 0.345 0.652

SEVEM 0.160 0.444 0.704 <0.001 0.252 0.351 SEVEM 0.175 0.515 0.774 <0.001 0.292 0.810
SMICA 0.155 0.294 0.472 <0.001 <0.001 0.351 SMICA 0.133 0.384 0.578 <0.001 0.292 0.607

16 NILC 0.018 0.030 0.120 <0.001 <0.001 <0.001 16 NILC 0.024 0.043 0.082 <0.001 <0.001 <0.001
C-R 0.032 0.016 0.102 <0.001 <0.001 <0.001 C-R 0.028 0.042 0.119 <0.001 <0.001 <0.001

SEVEM 0.037 0.016 0.178 <0.001 <0.001 <0.001 SEVEM 0.064 0.024 0.119 <0.001 <0.001 <0.001
SMICA 0.017 0.001 0.021 <0.001 <0.001 <0.001 SMICA 0.039 0.007 0.046 <0.001 <0.001 <0.001

8 NILC 0.373 <0.001 0.012 0.430 <0.001 <0.001 8 NILC 0.202 <0.001 0.013 0.142 <0.001 0.220
C-R 0.706 <0.001 0.022 0.693 0.108 <0.001 C-R 0.573 <0.001 0.013 0.599 <0.001 <0.001

SEVEM 0.546 <0.001 0.009 0.563 <0.001 <0.001 SEVEM 0.352 <0.001 0.012 0.358 <0.001 <0.001
SMICA 0.401 <0.001 0.004 0.380 <0.001 <0.001 SMICA 0.331 <0.001 0.012 0.323 <0.001 <0.001

Summary NILC 0.002 0.001 0.002 <0.001 <0.001 <0.001 Summary NILC 0.001 0.001 0.002 <0.001 0.032 <0.001
C-R <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 C-R 0.001 0.001 0.001 0.001 0.032 0.001

SEVEM <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 SEVEM 0.001 0.001 0.001 0.001 0.032 0.001
SMICA <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 SMICA 0.001 0.001 0.001 0.001 0.032 0.001

Threshold = 0.90 Threshold = 0.95
1024 NILC 0.225 0.278 0.472 <0.001 <0.001 0.410 1024 NILC 0.225 0.278 0.472 <0.001 <0.001 0.410

C-R <0.001 0.169 0.130 <0.001 <0.001 <0.001 C-R 0.048 0.169 0.130 <0.001 <0.001 <0.001
SEVEM <0.001 <0.001 0.095 <0.001 <0.001 <0.001 SEVEM <0.001 <0.001 0.095 <0.001 <0.001 <0.001
SMICA <0.001 <0.001 0.217 <0.001 <0.001 <0.001 SMICA <0.001 0.002 0.217 <0.001 <0.001 <0.001

512 NILC 0.526 0.340 0.661 0.264 <0.001 0.641 512 NILC 0.531 0.340 0.654 0.207 <0.001 0.445
C-R 0.307 0.484 0.673 <0.001 <0.001 0.596 C-R 0.322 0.462 0.664 <0.001 <0.001 0.445

SEVEM 0.645 0.389 0.809 0.414 <0.001 0.685 SEVEM 0.606 0.403 0.803 0.262 <0.001 0.530
SMICA 0.465 0.517 0.906 0.132 0.139 0.685 SMICA 0.454 0.540 0.896 0.207 0.134 0.592

256 NILC 0.601 0.584 0.738 0.150 0.306 0.589 256 NILC 0.602 0.550 0.702 0.139 0.345 0.434
C-R 0.529 0.675 0.754 0.271 0.385 0.589 C-R 0.547 0.620 0.739 0.139 0.274 0.434

SEVEM 0.326 0.525 0.509 0.150 0.150 <0.001 SEVEM 0.342 0.504 0.521 0.139 0.000 0.316
SMICA 0.437 0.633 0.724 0.150 0.214 0.589 SMICA 0.482 0.658 0.734 0.215 0.380 0.511

Notes. The last entry for each threshold is the p-value for the summary statistic computed across all resolutions. Marked in boldface are p-values
of 0.05 or smaller.
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Table A.1. continued.

Relative homology Relative homology
Mahalanobis Tukey Depth Mahalanobis Tukey Depth

Resolution Method b0 b1 ECrel b0 b1 ECrel Resolution Method b0 b1 ECrel b0 b1 ECrel

Threshold = 0.90 Threshold = 0.95
128 NILC 0.259 0.525 0.486 <0.001 0.160 <0.001 128 NILC 0.309 0.524 0.554 <0.001 0.165 0.446

C-R 0.355 0.605 0.614 0.180 0.238 <0.001 C-R 0.313 0.601 0.612 0.169 0.165 0.530
SEVEM 0.275 0.681 0.683 <0.001 0.160 0.344 SEVEM 0.381 0.624 0.795 0.169 0.237 0.674
SMICA 0.250 0.617 0.528 <0.001 0.160 <0.001 SMICA 0.308 0.597 0.563 <0.001 0.237 0.446

64 NILC 0.611 0.248 0.444 0.547 <0.001 0.428 64 NILC 0.420 0.157 0.430 0.276 <0.001 <0.001
C-R 0.571 0.369 0.651 0.426 <0.001 0.428 C-R 0.491 0.125 0.440 0.319 <0.001 <0.001

SEVEM 0.597 0.336 0.630 0.559 <0.001 0.663 SEVEM 0.466 0.082 0.292 0.276 <0.001 <0.001
SMICA 0.430 0.348 0.458 0.397 <0.001 0.307 SMICA 0.438 0.111 0.259 0.276 <0.001 <0.001

32 NILC 0.053 0.305 0.300 <0.001 0.243 0.340 32 NILC 0.076 0.246 0.174 <0.001 <0.001 <0.001
C-R 0.248 0.633 0.754 0.190 0.441 0.700 C-R 0.375 0.513 0.767 0.356 0.342 0.715

SEVEM 0.175 0.638 0.715 <0.001 0.370 0.585 SEVEM 0.217 0.493 0.634 <0.001 0.166 0.522
SMICA 0.141 0.389 0.514 <0.001 0.333 0.531 SMICA 0.107 0.367 0.431 <0.001 <0.001 <0.001

16 NILC 0.009 0.054 0.081 <0.001 <0.001 <0.001 16 NILC 0.436 0.016 0.027 0.383 <0.001 <0.001
C-R 0.026 0.038 0.087 <0.001 <0.001 <0.001 C-R 0.358 0.007 0.022 0.339 <0.001 <0.001

SEVEM 0.024 0.025 0.055 <0.001 <0.001 <0.001 SEVEM 0.582 0.020 0.021 0.562 <0.001 <0.001
SMICA 0.013 0.014 0.081 <0.001 <0.001 <0.001 SMICA 0.353 0.012 0.062 0.339 <0.001 <0.001

8 NILC 0.408 <0.001 0.007 0.401 <0.001 <0.001 8 NILC 0.871 0.047 0.188 0.846 <0.001 0.517
C-R 0.610 <0.001 0.023 0.568 <0.001 0.330 C-R 0.773 0.144 0.384 0.525 0.160 0.611

SEVEM 0.502 <0.001 0.012 0.528 <0.001 0.237 SEVEM 0.735 0.104 0.265 0.451 <0.001 0.564
SMICA 0.414 <0.001 0.014 0.455 <0.001 <0.001 SMICA 0.887 0.081 0.181 0.816 0.195 0.466

Summary NILC 0.010 <0.001 0.001 <0.001 0.002 <0.001 Summary NILC 0.213 0.003 0.010 <0.001 0.009 0.001
C-R <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 C-R <0.001 <0.001 <0.001 <0.001 <0.001 0.001

SEVEM <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 SEVEM <0.001 <0.001 <0.001 <0.001 <0.001 0.001
SMICA <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 SEVEM <0.001 <0.001 <0.001 <0.001 <0.001 0.001

Fig. A.1. Summary test. Projection onto first two principal components. Mahalanobis and depth contours corresponding to p-values of 0.1, 0.01,
and 0.001 are shown in blue (top) and purple (bottom). Observed CMB points are in red (filled circles). Points from simulations are denoted by
black empty circles.
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Fig. A.2. Projection onto first two principal components for specific resolution tests for b0. Mahalanobis and depth contours corresponding to
p-values of 0.1, 0.01, and 0.001 are shown in blue (top two rows) and purple (bottom two rows). Observed CMB points are in red (filled circles).
Points from simulations are denoted by black empty circles.
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Fig. A.3. Projection onto first two principal components for specific resolution tests for b1. Mahalanobis and depth contours corresponding to
p-values of 0.1, 0.01, and 0.001 are shown in blue (top two rows) and purple (bottom two rows). Observed CMB points are in red (filled circles).
Points from simulations are denoted by black empty circles.
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Fig. A.4. Projection onto first two principal components for specific resolution tests for ECrel. Mahalanobis and depth contours corresponding to
p-values of 0.1, 0.01, and 0.001 are shown in blue (top two rows) and purple (bottom two rows). Observed CMB points are in red (filled circles).
Points from simulations are denoted by black empty circles.
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Appendix B: Comparison with SEVEM and SMICA
simulations

This appendix presents the results from the comparison of the
observed maps with a hundred simulations from each of SEVEM

and SMICA methods. In summary, the results are consistent with
those based on the NILC simulations presented in the main paper
and Appendix A.
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Fig. B.1. b0 graphs for resolutions between N = 1024 and N = 8. Top two rows: observed curves from all the simulation methods, and the
expected (black) curve computed from 100 SEVEM simulations, along with bands drawn up to 3σ. Also plotted underneath are 100 curves from
the individual simulations. Bottom two rows: curve presenting the difference between the observations and simulations in terms of the number of
standard deviations for the various temperature thresholds.
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Fig. B.2. b1 graphs for resolutions between N = 1024 and N = 8. Top two rows: observed curves from all the simulation methods, and the
expected (black) curve computed from 100 SEVEM simulations, along with bands drawn up to 3σ. Also plotted underneath are 100 curves from
the individual simulations. Bottom two rows: curve presenting the difference between the observations and simulations in terms of the number of
standard deviations for the various temperature thresholds.
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Fig. B.3. ECrel graphs for resolutions between N = 1024 and N = 8. Top two rows: observed curves from all the simulation methods, and the
expected (black) curve computed from 100 SEVEM simulations, along with bands drawn up to 3σ. Also plotted underneath are 100 curves from
the individual simulations. Bottom two rows: curve presenting the difference between the observations and simulations in terms of the number of
standard deviations for the various temperature thresholds.
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Fig. B.4. b0 graphs for resolutions between N = 1024 and N = 8. Top two rows: observed curves from all the simulation methods, and the
expected (black) curve computed from 100 SMICA simulations, along with bands drawn up to 3σ. Also plotted underneath are 100 curves from
the individual simulations. Bottom two rows: curve presenting the difference between the observations and simulations in terms of the number of
standard deviations for the various temperature thresholds.
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Fig. B.5. b1 graphs for resolutions between N = 1024 and N = 8. Top two rows: observed curves from all the simulation methods, and the
expected (black) curve computed from 100 SMICA simulations, along with bands drawn up to 3σ. Also plotted underneath are 100 curves from
the individual simulations. Bottom two rows: curve presenting the difference between the observations and simulations in terms of the number of
standard deviations for the various temperature thresholds.
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Fig. B.6. ECrel graphs for resolutions between N = 1024 and N = 8. Top two rows: observed curves from all the simulation methods, and the
expected (black) curve computed from 100 SMICA simulations, along with bands drawn up to 3σ. Also plotted underneath are 100 curves from
the individual simulations. Bottom two rows: curve presenting the difference between the observations and simulations in terms of the number of
standard deviations for the various temperature thresholds.
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(a) (b)

Fig. B.7. Summary test computed from SEVEM (panel a) and SMICA (panel b) simulations. Projection onto first two principal components.
Mahalanobis and depth contours corresponding to p-values of 0.1, 0.01, and 0.001 are shown in blue (top) and purple (bottom). Observed CMB
points are in red (filled circles). Points from simulations are denoted by black empty circles.

(a)

(b)

(c)

(d)

Fig. B.8. Projection onto first two principal components for specific resolution tests for b0 for SEVEM and SMICA simulations. Mahalanobis and
depth contours corresponding to p-values of 0.1, 0.01, and 0.001 are shown in blue (top two rows) and purple (bottom two rows). Observed CMB
points are in red (filled circles). Points from simulations are denoted by black empty circles. Panels a and c: Mahalanobis and Tukey depth graphs
for the SEVEM simulations. Panels b and d: Mahalanobis and Tukey depth graphs for the SMICA simulations, respectively.
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(a)

(b)

(c)

(d)

Fig. B.9. Projection onto first two principal components for specific resolution tests for b1 for SEVEM and SMICA simulations. Mahalanobis and
depth contours corresponding to p-values of 0.1, 0.01, and 0.001 are shown in blue (top two rows) and purple (bottom two rows). Observed CMB
points are in red. Panels a and c: Mahalanobis and Tukey depth graphs for the SEVEM simulations, respectively. Panels b and d: Mahalanobis and
Tukey depth graphs for the SMICA simulations, respectively.
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(a)

(b)

(c)

(d)

Fig. B.10. Projection onto first two principal components for specific resolution tests for ECrel for SEVEM and SMICA simulations. Mahalanobis
and depth contours corresponding to p-values of 0.1, 0.01, and 0.001 are shown in blue (top two rows) and purple (bottom two rows). Observed
CMB points are in red. Panels a and c: Mahalanobis and Tukey depth graphs for the SEVEM simulations, respectively. Panels b and d: Mahalanobis
and Tukey depth graphs for the SMICA simulations, respectively.
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Table B.1. Two-tailed p-values based on a comparison of the observed maps with 100 SEVEM simulation maps.

Relative homology Relative homology
Mahalanobis Tukey Depth Mahalanobis Tukey Depth

Resolution Method b0 b1 ECrel b0 b1 ECrel Resolution Method b0 b1 ECrel b0 b1 ECrel

Threshold = 0.70 Threshold = 0.80
1024 NILC <0.010 <0.010 0.679 <0.010 <0.010 0.840 1024 NILC <0.010 <0.010 0.681 <0.010 <0.010 <0.010

C-R 0.001 <0.001 0.214 <0.010 <0.010 <0.010 C-R 0.001 <0.010 0.193 <0.010 <0.010 <0.010
SEVEM 0.081 0.100 0.237 <0.010 <0.010 <0.010 SEVEM 0.073 0.111 0.190 <0.010 <0.010 <0.010
SMICA 0.133 0.025 0.385 <0.010 <0.010 <0.010 SMICA 0.136 0.029 0.405 <0.010 <0.010 <0.010

512 NILC 0.238 0.124 0.310 <0.010 <0.010 <0.010 512 NILC 0.259 0.148 0.343 <0.010 <0.0100 <0.010
C-R 0.059 0.291 0.297 <0.010 <0.010 <0.010 C-R 0.066 0.305 0.352 <0.010 <0.010 <0.010

SEVEM 0.468 0.109 0.513 <0.010 <0.010 <0.010 SEVEM 0.476 0.157 0.625 <0.010 <0.010 <0.010
SMICA 0.316 0.237 0.761 <0.010 <0.010 <0.010 SMICA 0.303 0.306 0.784 <0.010 <0.010 0.820

256 NILC 0.495 0.445 0.637 <0.010 <0.010 <0.010 256 NILC 0.443 0.436 0.547 <0.010 <0.010 <0.010
C-R 0.462 0.505 0.622 <0.010 <0.010 <0.010 C-R 0.469 0.545 0.662 <0.010 <0.010 <0.010

SEVEM 0.353 0.274 0.249 <0.010 <0.010 <0.010 SEVEM 0.337 0.362 0.323 <0.010 <0.010 <0.010
SMICA 0.393 0.405 0.525 <0.010 <0.010 <0.010 SMICA 0.380 0.462 0.600 <0.010 <0.010 <0.010

128 NILC 0.288 0.321 0.529 <0.010 <0.010 <0.010 128 NILC 0.301 0.385 0.559 <0.010 <0.010 <0.010
C-R 0.376 0.415 0.606 <0.010 <0.010 <0.010 C-R 0.424 0.503 0.625 <0.010 <0.010 <0.010

SEVEM 0.457 0.348 0.637 <0.010 <0.010 <0.010 SEVEM 0.325 0.494 0.648 <0.010 <0.010 <0.010
SMICA 0.371 0.431 0.618 <0.010 <0.010 <0.010 SMICA 0.341 0.532 0.639 <0.010 <0.010 <0.010

64 NILC 0.279 0.159 0.397 <0.010 <0.010 <0.010 64 NILC 0.188 0.175 0.366 <0.010 <0.010 <0.010
C-R 0.282 0.283 0.347 <0.010 <0.010 <0.010 C-R 0.145 0.296 0.286 <0.010 <0.010 <0.010

SEVEM 0.175 0.232 0.320 <0.010 <0.010 <0.010 SEVEM 0.121 0.244 0.312 <0.010 <0.010 <0.010
SMICA 0.282 0.254 0.383 <0.010 <0.010 <0.010 SMICA 0.167 0.271 0.374 <0.010 <0.010 <0.010

32 NILC 0.102 0.259 0.368 <0.010 <0.010 <0.010 32 NILC 0.119 0.319 0.442 <0.010 <0.010 <0.010
C-R 0.212 0.373 0.643 <0.010 <0.010 <0.010 C-R 0.192 0.488 0.718 <0.010 <0.010 <0.010

SEVEM 0.203 0.456 0.750 <0.010 <0.010 <0.010 SEVEM 0.191 0.501 0.764 <0.010 <0.010 <0.010
SMICA 0.228 0.243 0.502 <0.010 <0.010 <0.010 SMICA 0.205 0.310 0.583 <0.010 <0.010 <0.010

16 NILC 0.014 0.003 0.026 <0.010 <0.010 <0.010 16 NILC 0.015 0.010 0.017 <0.010 <0.010 <0.010
C-R 0.025 0.001 0.010 <0.010 <0.010 <0.010 C-R 0.016 0.007 0.020 <0.010 <0.010 <0.010

SEVEM 0.037 0.001 0.036 <0.010 <0.010 <0.010 SEVEM 0.048 0.003 0.023 <0.010 <0.010 <0.010
SMICA 0.012 <0.010 0.001 <0.010 <0.010 <0.010 SMICA 0.026 <0.010 0.003 <0.010 <0.010 <0.010

Summary NILC <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 Summary NILC <0.010 <0.010 <0.010 <0.010 <0.010 <0.010
C-R <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 C-R <0.010 <0.010 <0.010 <0.010 <0.010 <0.010

SEVEM <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 SEVEM <0.010 <0.010 <0.010 <0.010 <0.010 <0.010
SMICA <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 SMICA <0.010 <0.010 <0.010 <0.010 <0.010 <0.010

Threshold = 0.90 Threshold = 0.95
1024 NILC <0.010 <0.010 0.681 <0.010 <0.010 <0.010 1024 NILC <0.010 <0.010 0.681 <0.010 <0.010 <0.010

C-R 0.001 <0.010 0.193 <0.010 <0.010 <0.010 C-R 0.001 <0.010 0.193 <0.010 <0.010 <0.010
SEVEM 0.073 0.111 0.190 <0.010 <0.010 <0.010 SEVEM 0.073 0.111 0.190 <0.010 <0.010 <0.010
SMICA 0.136 0.029 0.405 <0.010 <0.010 <0.010 SMICA 0.136 0.029 0.405 <0.010 <0.010 <0.010

512 NILC 0.307 0.131 0.318 <0.010 <0.010 <0.010 512 NILC 0.323 0.130 0.324 <0.010 <0.010 <0.010
C-R 0.085 0.287 0.306 <0.010 <0.010 <0.010 C-R 0.104 0.266 0.316 <0.010 <0.010 <0.010

SEVEM 0.491 0.162 0.628 <0.010 <0.010 <0.010 SEVEM 0.475 0.181 0.669 <0.010 <0.010 <0.010
SMICA 0.337 0.294 0.762 <0.010 <0.010 0.800 SMICA 0.323 0.328 0.742 <0.010 <0.010 <0.010

256 NILC 0.483 0.553 0.649 <0.010 <0.010 <0.010 256 NILC 0.480 0.519 0.573 <0.010 <0.010 <0.010
C-R 0.444 0.596 0.694 <0.010 <0.010 <0.010 C-R 0.458 0.534 0.636 <0.010 <0.010 <0.010

SEVEM 0.286 0.381 0.394 <0.010 <0.010 <0.010 SEVEM 0.303 0.362 0.392 <0.010 <0.010 <0.010
SMICA 0.343 0.538 0.650 <0.010 <0.010 <0.010 SMICA 0.383 0.574 0.605 <0.010 <0.010 <0.010

128 NILC 0.237 0.422 0.425 <0.010 <0.010 <0.010 128 NILC 0.248 0.403 0.448 <0.010 <0.010 <0.010
C-R 0.401 0.516 0.581 <0.010 <0.010 <0.010 C-R 0.323 0.516 0.569 <0.010 <0.010 <0.010

SEVEM 0.271 0.518 0.545 <0.010 <0.010 <0.010 SEVEM 0.338 0.440 0.631 <0.010 <0.010 <0.010
SMICA 0.218 0.507 0.412 <0.010 <0.010 <0.010 SMICA 0.249 0.476 0.437 <0.010 <0.010 <0.010

64 NILC 0.562 0.162 0.257 <0.010 <0.010 <0.010 64 NILC 0.219 0.075 0.245 <0.010 <0.010 <0.010
C-R 0.473 0.285 0.353 <0.010 <0.010 <0.010 C-R 0.265 0.055 0.251 <0.010 <0.010 <0.010

SEVEM 0.547 0.240 0.387 <0.010 <0.010 <0.010 SEVEM 0.259 0.031 0.124 <0.010 <0.010 <0.010
SMICA 0.432 0.274 0.333 <0.010 <0.010 <0.010 SMICA 0.272 0.050 0.147 <0.010 <0.010 <0.010

32 NILC 0.097 0.199 0.258 <0.010 <0.010 <0.010 32 NILC 0.187 0.190 0.149 <0.010 <0.010 <0.010
C-R 0.363 0.595 0.738 <0.010 <0.010 <0.010 C-R 0.524 0.494 0.767 <0.010 <0.010 <0.010

SEVEM 0.273 0.600 0.699 <0.010 <0.010 0.860 SEVEM 0.377 0.488 0.680 <0.010 <0.010 <0.010
SMICA 0.241 0.279 0.469 <0.010 <0.010 <0.010 SMICA 0.228 0.274 0.411 <0.010 <0.010 <0.010

16 NILC 0.007 0.015 0.026 <0.010 <0.010 <0.010 16 NILC 0.369 0.012 0.003 <0.010 <0.010 <0.010
C-R 0.012 0.008 0.022 <0.010 <0.010 <0.010 C-R 0.218 0.004 0.001 <0.010 <0.010 <0.010

SEVEM 0.012 0.003 0.013 <0.010 <0.010 <0.010 SEVEM 0.472 0.013 0.002 <0.010 <0.010 <0.010
SMICA 0.011 0.002 0.018 <0.010 <0.010 <0.010 SMICA 0.208 0.007 0.011 <0.010 <0.010 <0.010

Summary NILC <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 Summary NILC <0.010 <0.010 <0.010 <0.010 <0.010 <0.010
C-R <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 C-R <0.010 <0.010 <0.010 <0.010 <0.010 <0.010

SEVEM <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 SEVEM <0.010 <0.010 <0.010 <0.010 <0.010 <0.010
SMICA <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 SMICA <0.010 <0.010 <0.010 <0.010 <0.010 <0.010

Notes. The tables display relative homology obtained from parametric (Mahalanobis distance) and non-parametric (Tukey depth) tests, for four
mask binarization thresholds. The last entry for each threshold is the p-value for the summary statistic computed across all resolutions. Marked in
boldface are p-values of 0.05 or smaller.
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Table B.2. Two-tailed p-values based on a comparison of the observed maps with 100 SMICA simulation maps.

Relative homology Relative homology
Mahalanobis Tukey Depth Mahalanobis Tukey Depth

Resolution Method b0 b1 ECrel b0 b1 ECrel Resolution Method b0 b1 ECrel b0 b1 ECrel

Threshold = 0.70 Threshold = 0.80
1024 NILC 0.018 0.005 0.813 <0.010 <0.010 0.860 1024 NILC 0.018 0.006 0.814 <0.010 <0.010 0.830

C-R 0.380 0.066 0.482 <0.010 <0.010 <0.010 C-R 0.366 0.069 0.493 <0.010 <0.010 <0.010
SEVEM <0.010 0.002 0.264 <0.010 <0.010 <0.010 SEVEM <0.010 0.002 0.217 <0.010 <0.010 <0.010
SMICA 0.314 0.109 0.320 <0.010 <0.010 <0.010 SMICA 0.330 0.121 0.305 <0.010 <0.010 <0.010

512 NILC 0.450 0.403 0.533 <0.010 <0.010 <0.010 512 NILC 0.459 0.428 0.574 <0.010 <0.010 <0.010
C-R 0.024 0.407 0.557 <0.010 <0.010 <0.010 C-R 0.025 0.409 0.585 <0.010 <0.010 <0.010

SEVEM 0.667 0.386 0.800 <0.010 <0.010 <0.010 SEVEM 0.668 0.443 0.863 <0.010 <0.010 0.890
SMICA 0.578 0.512 0.858 <0.010 <0.010 0.890 SMICA 0.574 0.566 0.888 <0.010 <0.010 0.890

256 NILC 0.450 0.423 0.679 <0.010 <0.010 <0.010 256 NILC 0.384 0.467 0.628 <0.010 <0.010 <0.010
C-R 0.533 0.471 0.656 <0.010 <0.010 <0.010 C-R 0.487 0.560 0.703 <0.010 <0.010 <0.010

SEVEM 0.430 0.317 0.418 <0.010 <0.010 <0.010 SEVEM 0.382 0.422 0.459 <0.010 <0.010 <0.010
SMICA 0.467 0.414 0.544 <0.010 <0.010 <0.010 SMICA 0.417 0.550 0.654 <0.010 <0.010 <0.010

128 NILC 0.325 0.437 0.736 <0.010 <0.010 <0.010 128 NILC 0.313 0.571 0.731 <0.010 0.600 <0.010
C-R 0.553 0.574 0.767 <0.010 <0.010 <0.010 C-R 0.532 0.734 0.686 <0.010 0.600 <0.010

SEVEM 0.576 0.593 0.881 <0.010 <0.010 <0.010 SEVEM 0.408 0.752 0.792 <0.010 0.600 <0.010
SMICA 0.398 0.619 0.900 <0.010 <0.010 0.800 SMICA 0.340 0.767 0.855 <0.010 0.700 <0.010

64 NILC 0.435 0.036 0.424 <0.010 <0.010 <0.010 64 NILC 0.337 0.032 0.303 <0.010 <0.010 <0.010
C-R 0.428 0.094 0.345 <0.010 <0.010 <0.010 C-R 0.252 0.104 0.290 <0.010 <0.010 <0.010

SEVEM 0.286 0.113 0.437 <0.010 <0.010 <0.010 SEVEM 0.240 0.094 0.355 <0.010 <0.010 <0.010
SMICA 0.419 0.079 0.313 <0.010 <0.010 <0.010 SMICA 0.280 0.098 0.282 <0.010 <0.010 <0.010

32 NILC 0.175 0.696 0.689 <0.010 0.660 <0.010 32 NILC 0.214 0.762 0.691 <0.010 0.740 <0.010
C-R 0.336 0.611 0.720 <0.010 0.660 0.850 C-R 0.347 0.743 0.871 <0.010 0.740 0.850

SEVEM 0.328 0.699 0.859 <0.010 0.660 0.850 SEVEM 0.397 0.695 0.894 <0.010 0.740 0.850
SMICA 0.379 0.539 0.635 <0.010 0.660 0.850 SMICA 0.357 0.613 0.701 <0.010 0.610 0.850

16 NILC 0.077 0.010 0.032 <0.010 <0.010 <0.010 16 NILC 0.083 0.042 0.071 <0.010 <0.010 <0.010
C-R 0.081 0.007 0.059 <0.010 <0.010 <0.010 C-R 0.087 0.056 0.149 <0.010 <0.010 <0.010

SEVEM 0.092 0.005 0.138 <0.010 <0.010 <0.010 SEVEM 0.152 0.023 0.134 <0.010 <0.010 <0.010
SMICA 0.048 <0.010 0.011 <0.010 <0.010 <0.010 SMICA 0.104 0.013 0.098 <0.010 <0.010 <0.010

Summary NILC <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 Summary NILC <0.010 <0.010 <0.010 <0.010 <0.010 <0.010
C-R <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 C-R <0.010 <0.010 <0.010 <0.010 <0.010 <0.010

SEVEM <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 SEVEM <0.010 <0.010 <0.010 <0.010 <0.010 <0.010
SMICA <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 SMICA <0.010 <0.010 <0.010 <0.010 <0.010 <0.010

Threshold = 0.90 Threshold = 0.95
1024 NILC 0.018 0.006 0.814 <0.010 <0.010 0.830 1024 NILC 0.018 0.006 0.814 <0.010 <0.010 0.830

C-R 0.366 0.069 0.493 <0.010 <0.010 <0.010 C-R 0.366 0.069 0.493 <0.010 <0.010 <0.010
SEVEM <0.010 0.002 0.217 <0.010 <0.010 <0.010 SEVEM <0.010 0.002 0.217 <0.010 <0.010 <0.010
SMICA 0.330 0.121 0.305 <0.010 <0.010 <0.010 SMICA 0.330 0.121 0.305 <0.010 <0.010 <0.010

512 NILC 0.476 0.423 0.517 <0.010 <0.010 <0.010 512 NILC 0.471 0.423 0.529 <0.010 <0.010 <0.010
C-R 0.026 0.408 0.568 <0.010 <0.010 <0.010 C-R 0.027 0.408 0.572 <0.010 <0.010 <0.010

SEVEM 0.679 0.439 0.840 <0.010 <0.010 <0.010 SEVEM 0.653 0.456 0.859 <0.010 <0.010 <0.010
SMICA 0.550 0.541 0.881 <0.010 <0.010 0.860 SMICA 0.542 0.578 0.890 <0.010 <0.010 0.880

256 NILC 0.454 0.597 0.741 <0.010 <0.010 <0.010 256 NILC 0.434 0.474 0.652 <0.010 <0.010 <0.010
C-R 0.436 0.649 0.737 <0.010 <0.010 <0.010 C-R 0.422 0.458 0.621 <0.010 <0.010 <0.010

SEVEM 0.335 0.487 0.528 <0.010 <0.010 <0.010 SEVEM 0.326 0.378 0.473 <0.010 <0.010 <0.010
SMICA 0.380 0.676 0.700 <0.010 0.650 <0.010 SMICA 0.411 0.623 0.648 <0.010 <0.010 <0.010

128 NILC 0.233 0.553 0.533 <0.010 0.600 <0.010 128 NILC 0.278 0.531 0.678 <0.010 0.550 <0.010
C-R 0.498 0.729 0.673 <0.010 0.600 <0.010 C-R 0.454 0.717 0.644 <0.010 0.550 <0.010

SEVEM 0.298 0.841 0.718 <0.010 0.680 <0.010 SEVEM 0.457 0.763 0.861 <0.010 0.550 <0.010
SMICA 0.203 0.710 0.625 <0.010 0.600 <0.010 SMICA 0.273 0.655 0.674 <0.010 0.550 <0.010

64 NILC 0.866 0.093 0.410 0.810 <0.010 <0.010 64 NILC 0.502 0.133 0.518 <0.010 <0.010 <0.010
C-R 0.811 0.222 0.539 0.650 <0.010 <0.010 C-R 0.677 0.142 0.503 0.620 <0.010 <0.010

SEVEM 0.864 0.216 0.610 0.760 <0.010 <0.010 SEVEM 0.627 0.088 0.396 <0.010 <0.010 <0.010
SMICA 0.721 0.213 0.449 <0.010 <0.010 <0.010 SMICA 0.617 0.150 0.422 <0.010 <0.010 <0.010

32 NILC 0.223 0.625 0.410 <0.010 0.570 <0.010 32 NILC 0.487 0.526 0.340 0.670 <0.010 <0.010
C-R 0.617 0.872 0.907 <0.010 0.780 0.910 C-R 0.838 0.786 0.924 0.800 0.720 0.920

SEVEM 0.431 0.837 0.887 <0.010 0.780 0.800 SEVEM 0.579 0.707 0.754 0.670 0.640 <0.010
SMICA 0.504 0.563 0.711 <0.010 0.570 0.800 SMICA 0.385 0.616 0.600 <0.010 0.570 <0.010

16 NILC 0.056 0.022 0.003 <0.010 <0.010 <0.010 16 NILC 0.714 0.001 0.001 0.830 <0.010 <0.010
C-R 0.136 0.017 0.009 <0.010 <0.010 <0.010 C-R 0.651 0.001 0.002 0.620 <0.010 <0.010

SEVEM 0.093 0.013 0.004 <0.010 <0.010 <0.010 SEVEM 0.830 0.004 0.001 0.620 <0.010 <0.010
SMICA 0.097 0.025 0.060 <0.010 <0.010 <0.010 SMICA 0.666 0.003 0.008 0.620 <0.010 <0.010

Summary NILC <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 Summary NILC <0.010 <0.010 <0.010 <0.010 <0.010 <0.010
C-R <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 C-R <0.010 <0.010 <0.010 <0.010 <0.010 <0.010

SEVEM <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 SEVEM <0.010 <0.010 <0.010 <0.010 <0.010 <0.010
SMICA <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 SMICA 0.001 <0.010 <0.010 <0.010 <0.010 <0.010

Notes. The tables display relative homology obtained from parametric (Mahalanobis distance) and non-parametric (Tukey depth) tests, for four
mask binarization thresholds. The last entry for each threshold is the p-value for the summary statistic computed across all resolutions. Marked in
boldface are p-values of 0.05 or smaller.
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Appendix C: Table of p-values for absolute
homology

This appendix presents the table of p-values computed from the
absolute homology of the data sets.

Table C.1. Two-tailed p-values for absolute homology obtained from
parametric (Mahalanobis distance) and non-parametric (Tukey depth)
tests, for four mask binarization thresholds, obtained using 1000 NILC
simulations.

Absolute homology

Mahalanobis Tukey Depth
Resolution β0 β1 EC β0 β1 EC

Threshold = 0.70
1024 0.416 0.318 0.629 <0.001 <0.001 0.501
512 0.492 0.371 0.573 0.241 0.133 0.437
256 0.535 0.308 0.488 0.131 <0.001 <0.001
128 0.490 0.316 0.542 0.163 <0.001 0.445
64 0.413 0.184 0.396 0.180 <0.001 <0.001
32 0.012 0.024 0.035 <0.001 <0.001 <0.001
16 0.220 0.017 0.135 0.164 <0.001 <0.001
8 <0.001 0.584 0.004 <0.001 0.647 <0.001
Summary 0.064 0.276 0.040 0.152 0.502 <0.001

Threshold = 0.80
1024 0.416 0.318 0.629 <0.001 <0.001 0.501
512 0.492 0.371 0.573 0.241 0.133 0.437
256 0.535 0.308 0.488 0.131 <0.001 <0.001
128 0.490 0.316 0.542 0.163 <0.001 0.445
64 0.413 0.184 0.396 0.180 <0.001 <0.001
32 0.012 0.024 0.035 <0.001 <0.001 <0.001
16 0.220 0.017 0.135 0.164 <0.001 <0.001
8 0.001 0.584 0.004 <0.001 0.647 <0.001
Summary <0.001 0.204 0.001 <0.001 0.010 0.001

Threshold = 0.90
1024 0.281 0.339 0.642 <0.001 <0.001 0.301
512 0.523 0.389 0.697 0.135 <0.001 0.520
256 0.402 0.329 0.422 <0.001 <0.001 0.307
128 0.542 0.216 0.342 0.153 <0.001 0.298
64 0.276 0.228 0.421 <0.001 <0.001 0.448
32 0.045 0.172 0.231 <0.001 0.175 <0.001
16 0.058 0.019 0.037 <0.001 <0.001 <0.001
8 0.223 0.475 0.071 0.199 0.510 <0.001
Summary 0.009 0.386 0.024 0.371 0.631 0.206

Threshold = 0.95
1024 0.281 0.339 0.642 <0.001 <0.001 0.301
512 0.523 0.407 0.698 0.250 <0.001 0.512
256 0.380 0.339 0.302 0.132 <0.001 <0.001
128 0.456 0.226 0.248 <0.001 <0.001 <0.001
64 0.491 0.449 0.794 0.235 0.346 0.431
32 0.261 0.262 0.553 <0.001 0.308 <0.001
16 0.137 0.066 0.050 0.155 <0.001 <0.001
8 0.155 0.024 0.008 <0.001 <0.001 <0.001
Summary 0.049 0.033 0.036 <0.001 <0.001 <0.001

Notes. The last entry for each threshold is the p-value for the sum-
mary statistic computed across all resolutions. Marked in boldface are
p-values of 0.05 or smaller.
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