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large ohmic drop proportional to the inter electrode distance
[9].

(ii) its low soluble COD load (150e400mg/L [10]), which limits
the kinetics of the bioanode when no artificial carbon source,
such as acetate, is added to the electrolyte [11,12].

(iii) its pH, often close to neutrality (6.5e7.5 [7,13]), which is
unfavourable for the electrochemical reduction of water into
hydrogen. Commercial electrolysers operate more conven
tionally with concentrated alkaline electrolytes (alkaline
electrolysis [14]) or strongly acidic pH (polymer electrolyte
membrane fuel cell technologies [15,16]).

(iv) the microbial production of gaseous by products (H2S, CO2,
ammonia, CH4), which are related to the microbial activity of
the aerobic, anaerobic and fermenting consortia and degrade
the purity of the hydrogen gas produced. Using a membrane
to separate anodic and cathodic compartments limits gas
mixing but also creates a barrier to the exchange of ions
between compartments, increasing the ohmic drop and
creating a pH gradient in the cell [17].

Many areas of improvement have been proposed to reduce the
Ucell of MECs fed with domestic wastewater. The anode over
potential can be reduced by using 3D electrodes or porous elec
trodes that promote biofilm development thanks to their huge
specific surface area [18]. The cathode overpotential can be lowered
by usingmetallic catalysts, e.g. Ni based catalysts [19,20], applied to
the cathode surface or biological catalysts naturally forming from
wastewater [21,22]. The ohmic drop in theMEC can be decreased by
designing specific reactor geometries that minimize the distance
between electrodes [23] or by using membrane electrode assem
blies [24].

Homogeneous catalysis has, so far, been little exploited for
reducing the cathode overpotential of MECs. Weak acids have been
demonstrated to catalyse hydrogen evolution reaction on metallic
materials [25,26]. The mechanism of water reduction catalysed by
weak acids has been investigated in depth with phosphate species
[27] and has been described as a four step process (HA and A� are
the non dissociated and dissociated forms, respectively):

HA þ e� 4 Had þ A� (2)

Had þ HA þ e� 4 H2 þ A� (3)

2Had 4 H2 (4)

A� þ H2O 4 HA þ OH� (5)

The use of carbonate instead of phosphate as a homogeneous
catalyst would have many environmental and economic advan
tages. Carbonate has less effect on the environment than phos
phate, which causes problems of eutrophication and
dystrophication in aquatic environments, and carbonate is nearly
50% cheaper than phosphate.

The purpose of this work was to assess the capacity of carbonate
to catalyse H2 evolution on metallic cathodes. The effect of the
carbonate concentration on the kinetics of water reduction was
studied. The kinetics of water reduction in carbonate solutions and
in domestic wastewater were compared in order to estimate the
cathode potential (Ec) gain due to the carbonate solution. Experi
ments were conducted at pH ranging from 7.0 to 12.0 so as to un
derstand which carbonate species (CO3

2�, HCO3
�, H2CO3) were

involved in the mechanism of water reduction catalysis. Finally,
various grades of stainless steels and Ni alloys were compared to
graphite as cathode material to determine which one would be the
most suitable to enhance the catalytic effect of carbonate.
2. Materials and methods

2.1. Chemicals

The chemical products used in the experiments were: potas
sium hydrogen carbonate (KHCO3, 99.5%; Sigma Aldrich), potas
sium carbonate (K2CO3, 99þ%; Acros Organics), potassium chloride
(KCl, 99þ%; Acros Organics), potassium hydroxide (KOH, 85%; Acros
Organics), and hydrochloric acid (HCl, 37%; Acros Organics).

All solutions were prepared with deionized water (Elga Purelab
Option R; 15MU cm). The pH of the solutions was measured with a
pH meter (Eutech Instruments) and, in some cases, adjusted using
3M solutions of KOH or HCl. The conductivity of the solutions was
measured with an EC meter (RadioMeter) and, in some cases,
adjusted to a given value by adding KCl.

2.2. Domestic wastewater

Domestic wastewater was collected at the wastewater treat
ment plant of Castanet (France) and stored at 4 �C before use.

2.3. Materials

Working electrodes (cathodes) were rectangular plates
(1.5 cm� 2 cm). Current densities were expressed with respect to
the surface area of the two sides of the electrode, i.e. 6 cm2. Seven
materials were tested: stainless steels AISI 316L, 304, 310, 430 and
254SMO; nickel alloy (Ni 80%, Fe 20%), and graphite. The compo
sitions of the materials were determined by energy dispersive X
ray spectroscopy (EDX). Before each experiment, the electrodes
were ground with abrasive discs (P800, P1200, P2400; Presi). No
chemical treatment was applied to the electrodes. The current
collectors were threaded titanium rods insulated along their length
with heat shrinkable tube.

2.4. Voltammetric study

Electrochemical experiments were carried out in a 150 mL
three electrode cell using a VSP2 potentiostat (Bio Logic SA,
France) controlled by the EC Lab software. The reference electrode
was a saturated calomel electrode (SCE) and the counter electrode
was a DSA plate 1.5� 2 cm2 purchased from Magneto
(Netherlands).

The current/potential curves were recorded with the linear
sweep voltammetry technique of EC Lab. Ec was ramped from the
open circuit potential to 1.3 or 1.5 V vs. SCE at 10mV/s. Each
curve was recorded 3 times to ensure the reproducibility of the
results. The curves were superimposable so only one was chosen to
be displayed in the results.

Unless otherwise stated, carbonate solutions were deaerated by
bubbling nitrogen gas at a rate of 10mL/s for 15min. The pH was
measured after air removal so that its variation due to the N2
bubbling could be taken into account. The pH of all carbonate so
lutions was pH 8.7 after deaeration. The nitrogen flux was main
tained above the solution during the experiments.

3. Results

3.1. Preliminary calculations to determine the targeted MEC
electrolysis voltage and the average current density

Wastewater treatment by MEC technology can be considered as
energy neutral when the energy recovered from the hydrogen
produced is equal to the energy supplied to the MEC to produce the
hydrogen. The energy supplied (Esup) depends on the cell voltage



(Ucell) according to Equation (6):

Esup Ucell Ne� F (6)

where Ucell is the cell voltage, Ne- is the quantity of electrons
extracted by the bioanode and F is the Faraday constant ( 96500 C/
mol).

Assuming that the faradaic yield of hydrogen evolution at the
cathode is 100%, the energy recovered (Er) from the combustion of
hydrogen is:

Er
Ne�
2

LCVH2
(7)

where LCVH2 is the net calorific value of hydrogen ( 242.7 kJ/mol).
By combining Equations (6) and (7), the limit value of Ucell for

Esup� Er should not exceed 1.2 V and this voltage does not depend
on the number of electrons extracted by the bioanode. Several
studies conducted with domestic wastewater fed MECs have dis
played an applied voltage lower than 1.2 V but the production rates
of hydrogen reported were far below those of conventional in
dustrial water electrolysis cells (Table 1).

Basically, bioanodes operate at potentials ranging from 0.4 V
vs. SCE to þ0.6 V vs. SCE [39]. In this range of anode potential, the
best performances reported in the literature in terms of current
density obtained with bioanodes fed with real wastewater were
about 10 A/m2, which corresponds to a hydrogen production of
approximately 4 L/h/m2

cathode at 100% coulombic efficiency
[26,40,41]. This highest value of current density obtained from the
oxidation of real domestic wastewater will be used further in this
study as a reference of current density for optimizing the cathode
reaction.
3.2. Influence of the carbonate concentration on the water
reduction kinetics

Current/potential reduction curves were recorded with a
254SMO stainless steel cathode immersed in potassium carbonate
solutions (Fig. 1). In the first set of experiments, carbonate con
centrations ranged from 0.01 to 0.2M and the solutions contained
0.1M of KCl as supporting electrolyte (Fig. 1. A&B). In the second set
(Fig. 1. C&D), a wider range of carbonate concentrations was tested,
up to the saturation concentration (2.8M). To avoid any possible
bias caused by a difference in conductivity, the conductivity of all
the solutions was adjusted with KCl to the same constant value of
152mS/cm. This value corresponds to the conductivity of a satu
rated carbonate solution (2.8M at 20 �C). A current/potential curve
was also recorded in domestic wastewater without any addition of
KCl (conductivity 0.9 S/m) as is commonly done in the literature
Table 1
Applied voltages and operating conditions reported in the literature for domestic-waste

Applied voltage Current density H2 productio

MECs 1 V 0.25 A/m2 0.15 L/g-COD
0.41 V 0.47 A/m2 0.045 L/d
1.1 V 0.27 A/m2 0.088 L/d
1 V 0.2 A/m2 0.03 L/d
0.75 V 0.42 A/m2

0.7 V 0.45 A/m2

0.9 V 3.77 A/m2 0.18 L/d
1 V 0.2 A/m2

0.9 V 1.1 A/m2

Industrial electrolysers 2 Va 5 Nm3/h
2Va 12 Nm3/h
2 Va 1100 Nm3/h

a Applied voltages calculated from energy consumption of industrial water electrolysi
on wastewater treatment by MEC.
In the concentration range of 0Me2.8M of carbonate, the water

reduction kinetics improved when the carbonate concentration
rose (Fig. 1A and 1C).

For carbonate concentrations ranging from 0.01M to 0.2M, the
current density at 1.3 V vs. SCE was directly proportional to the
carbonate concentration (correlation coefficient 0.989) (Fig. 1B).
These results are consistent with those obtained by De Silva et al.
with phosphate solutions having concentrations ranging between
0.01M and 0.5M on a 316L SS cathode at pH 8.0 [27].

In the concentration range 0.2e2.8M, the relation between
carbonate concentration and water reduction rate was no longer
linear (Fig. 1D). The electro catalytic mechanism proposed by Da
Silva et al. [25] involves the deprotonation of the weak acid and the
adsorption of the H atom on the cathode surface (reaction (2)). The
nonlinear behaviour observed in Fig. 1D may have been due to the
saturation of H atom adsorption sites on the cathode surface or the
fact that there were no longer any carbonate ion transport related
limitations when the carbonate concentration was higher than
0.2M.

At a current density of 10 A/m2, Ec in 1M and 2.8M carbonate
solutions was 1.04 V vs. SCE. This represents a 380mV gain in Ec
compared with that obtained at the same current density in do
mestic wastewater ( 1.42 V vs. SCE). Working with a 1M carbonate
solution as catholyte instead of domestic wastewater would reduce
the value of Ucell by 32% compared to the 1.2 V MEC limit voltage
calculated in 3.1. This reduction of Ec is due to both the increase of
the electrolyte conductivity and the catalytic effect of the carbonate
species.
3.3. Influence of the pH of the carbonate solution on water
reduction catalysis

Linear sweep voltammetries were performed on a 254SMO
stainless steel electrode in aqueous 1M carbonate solutions where
the pHwas adjusted in the range of 7e12 (Fig. 2). The highest water
reduction rate was obtained at pH 8. The water reduction rates
obtained at pH 7, pH 9 and pH 10 were lower than at pH 8 but still
satisfactory. At pH 11 and pH 12, the water reduction rates were
significantly lower than at more acidic pH.

According to the predominance diagram of carbonic acid
(Fig. 3A), the HCO3

� form is predominant in the pH range from 6.3 to
10.3 (85% at pH 7; 97% at pH 8; 90% at pH 9; 52% at pH 10). Fig. 3B
plots the cathode potential at 10 A/m2 versus pH (Fig. 3B, tri
angles) and the percentage of the HCO3

� species at the same pH
values (Fig. 3B, diamonds). The two curves are almost identical in
shape, which implies that HCO3

� is the key species involved in the
water reduction catalysis.
water-fed MECs and abiotic industrial electrolysers for water electrolysis.

n COD removal Reference

45% [28]
87-100% [29]
Av 34% [30]
80% [31]
76% [32]
max 92% [13]
81-86% [33]
85% [34]
75% [35]
N/A BPMP 5000 from Sagim-gip [36]
N/A S18 MP from McPhy [37]
N/A Electrolyser producing H2 for the Ariane V rocket [38]

s cells (kW=m3
H2
) and maximum H2 production.







consistent with many studies in the literature in which different
associations of Cr, Ni, Mo and Mn are used as alloy elements to
catalyse the hydrogen evolution reaction in alkaline media. Nickel
alloy seems to catalyse hydrogen production even more efficiently
than pure nickel. Bachvarov et al. [43] tested a nickel alloy elec
trodeposit, containing iron, cobalt and phosphorus, as a catalyst for
hydrogen production through alkaline water electrolysis. The
presence of iron, cobalt and phosphorus in nickel alloys signifi
cantly decreased the overpotential of the hydrogen evolution re
action compared to pure nickel. Gonzales Buch et al. [44] also
studied alkaline water electrolysis with 3D macroporous Ni and
NiMo cathodes. NiMo electrodes had higher catalytic activity than
Ni for the hydrogen evolution reaction. Tang et al. studied a
nanosheet of Co Mn carbonate hydroxide deposited on nickel foam
as a cathode material for the hydrogen evolution reaction and
observed a reduced cathode overpotential in comparison with any
other metal carbonate hydroxide [45]. All these results were ob
tained in highly concentrated alkaline solutions. This suggests that
there is a parallel between water deprotonation and weak acid
deprotonation since the same elements (Cr, Ni, Mo andMn) seem to
intensify the reaction rate in both cases. These elements could
intervene in a key adsorption step, probably limiting, of the cata
lytic mechanism.

4. Discussion

4.1. Reducing the cathode potential by optimizing the catalytic
effect of carbonate on stainless steel

4.1.1. Concentration of the carbonate solution
The maximum hydrogen evolution on 254SMO SS was obtained

with a highly concentrated carbonate solution (1M and 2.8M).
At 10 A/m2, working with a 1M carbonate solution as the cath
olyte instead of domestic wastewater reduced Ec by 380mV, which
represents a gain of 32% over the 1.2 V MEC limit voltage calculated
in III.1.

In addition, using a highly concentrated carbonate solution
instead of domestic wastewater as catholyte in an MEC also in
creases the ionic conductivity in the cathode compartment very
significantly (by a factor of 10). High conductivity facilitates ion
transport in the solution and reduces the internal resistance of the
MEC [8].

4.1.2. Cathode material
Platinum is known to be a great heterogeneous electrocatalyst

for hydrogen evolution but its high price discourages its use in
industrial scale electrolysis cells. Nickel is also known to be an
efficient catalyst for water reduction reaction and nickel based
materials are viewed as a cheaper alternative to platinized cath
odes [19,20,46e49]. For example, Raney nickel is a Ni Al based
powder used as a catalyst in many industrial processes and espe
cially in water electrolysis [38]. Also, De Silva et al. have demon
strated that SS AISI 316L is a more stable cathode material than
platinum when associated with the homogeneous catalysis of wa
ter reduction by phosphate [27].

316L and 254SMO SS proved to be the most appropriate to
implement in the carbonate catalysis of water reduction. The choice
of the MEC cathode material must be relevant in terms of perfor
mance and also in terms of cost, availability and durability. 254SMO
is a high quality SS, often used in media containing chlorides, e.g.
marine environments [50] and HCl solutions [51], where the other
grades of stainless steel are corroded. It is 30% more expensive, on
average, than 316L, which is more commonly used in industry. The
use of 316L as cathode material is thus a reasonable choice since it
showed some of the best performance levels in terms of current
density at 1.3 V vs. SCE, is relatively cheap and is easily available.
Additional studies will be needed to validate its long term dura
bility in MEC operating conditions.

4.2. Impact of using a concentrated carbonate solution as catholyte
on the MEC design

4.2.1. Presence of a membrane
In an MEC in which the anode compartment contains domestic

wastewater and the catholyte is a carbonate solution, a membrane
is necessary to avoid mixing the two solutions. Since domestic
wastewater has a relatively low ion concentration [10], the use of a
concentrated carbonate solution could create overpressure or
overflow due to water osmosis from the wastewater to the car
bonate solution. This issue may be easily solved by accepting some
slight overpressure in the catholyte compartment. The best
compromise should be found between improving the performance
and minimizing technical constraints due to water osmosis.

4.2.2. pH balance within the cell
The water reduction reaction produces OH� ions and so the pH

increases near the cathode during electrolysis. In the case of a
single chamber separator less MEC operating in batch mode, the
global pH is balanced because Hþ ions are produced at the anode. In
a dual chamber MEC, the separator limits the movement of ions
within the cell. If a solution containing predominantly HCO3

� ions is
used as the catholyte, a cation exchange membrane should be used
to prevent loss of these anions to the anolyte via diffusion and
migration. In this case, electricity transport through the cell is
mainly ensured by the motion of cations through the membrane,
which do not contribute to the pH balance and result an enhanced
pH increase in the cathode compartment [8]. At 10 A/m2, the
water reduction potential is significantly more negative at pH 11
and pH 12 than at pH between 7 and 10 (Fig. 2). To ensure stable
and fast water reduction, the pH of the cathode compartment
should be regulated to stay between 7 and 10.

A sustainable way to buffer the pH in the cathode compartment
is to pass CO2 gas into the catholyte. Bubbling gaseous CO2 into an
aqueous solution:

CO2 þ H2O 4 H2CO3 (CO2, H2O) (10)

shifts the pH towards lower values, according to the acid/base
equilibrium (Equation (8)). Bubbling CO2 into anMEC catholyte will
lead to saturation of the carbonate solution. The precipitated car
bonate salts can be recovered and reused [52]. This is a way to store
CO2 in solid form, which may be less hazardous for the environ
ment than gaseous storage in deep geological formations, with risk
of CO2 leakage [53].

5. Conclusion

The catalytic effect of HCO3
� for hydrogen evolution on stainless

steel has been demonstrated and optimized. Using a 1M potassium
carbonate solution instead of domestic wastewater as the catholyte
enabled the cell voltage to be reduced by 32%, at 10 A/m2, in rela
tion to the calculated objective of 1.2 V. The water reduction reac
tion reached its highest rate at pH 8 but the kinetics remained
satisfactory in the pH range from 7 to 10. Testing various materials
as cathodes highlighted that the electro catalytic effect of HCO3

�

was enhanced on 316L and 254SMO SS. These results are a first step
towards the design of an energy neutral MEC for wastewater
treatment. The next challenge is to associate a carbonate catalysed
cathode with a microbial anode to evaluate and fix the possible
issues connected with osmosis and pH drift.
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