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Learning a Text-Video Embedding from
Incomplete and Heterogeneous Data

Antoine Miech, Ivan Laptev and Josef Sivic
https://github.com/antoine77340/Mixture-of-Embedding-Experts

Abstract—Joint understanding of video and language is an active research area with many applications. Prior work in this domain
typically relies on learning text-video embeddings. One difficulty with this approach, however, is the lack of large-scale annotated
video-caption datasets for training. To address this issue, we aim at learning text-video embeddings from heterogeneous data sources.
To this end, we propose a Mixture-of-Embedding-Experts (MEE) model with ability to handle missing input modalities during training.
As a result, our framework can learn improved text-video embeddings simultaneously from image and video datasets. We also show
the generalization of MEE to other input modalities such as face descriptors. We evaluate our method on the task of video retrieval and
report results for the MPII Movie Description and MSR-VTT datasets. The proposed MEE model demonstrates significant
improvements and outperforms previously reported methods on both text-to-video and video-to-text retrieval tasks.

F

1 INTRODUCTION

Automatic video understanding is an active research topic with
a wide range of applications including activity capture and recog-
nition, video search, editing and description, video summarization
and surveillance. In particular, the joint understanding of video
and natural language holds a promise to provide a convenient
interface and to facilitate access to large amounts of video data.
Towards this goal recent works study representations of vision and
language addressing tasks such as visual question answering [1],
[2], action learning and discovery [3], [4], [5], text-based event
localization [6] as well as video captioning, retrieval and summa-
rization [7], [8], [9], [10]. Notably, many of these works adopt and
learn joint text-video representations where semantically similar
video and text samples are mapped to close points in the joint
embedding space. Such representations have been proven efficient
for joint text-video modeling e.g., in [4], [6], [7], [8], [9].

Learning video representations is known to require large
amounts of training data [11], [12]. While video data with label
annotations is already scarce, obtaining a large number of videos
with text descriptions is even more difficult. Currently available
video datasets with ground truth captions include DiDeMo [6]
(27K unique videos), MSR-VTT [13] (10K unique videos) and
the MPII Movie Description dataset [14] (120K unique videos).
To compensate for the lack of video data, one possibility would
be to pre-train visual representations on still image datasets [12]
with object labels or image captions such as ImageNet [15],
COCO [16], Visual Genome [17] and Flickr30k [18]. Pre-training,
however, does not provide a principled way of learning from
different data sources and suffers from the “forgetting effect”
where the knowledge acquired from still images is removed during
fine-tuning on video tasks. More generally, it would be beneficial
to have methods that can learn embeddings simultaneously from
heterogeneous and partially-available data sources such as appear-
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Fig. 1: We learn a text-video embedding from heterogenous (here
Image-Text and Video-Text) data sources. At test time, we can query
concepts learnt from both Image-Caption and Video-Caption training
pair (e.g. the eating notion being learnt from video and the apple
notion from image).

ance, motion and sound but also from other modalities such as
facial expressions or human poses.

In this work we address the challenge of learning from hetero-
geneous data sources. Our method is designed to learn a joint text-
video embedding and is able to handle missing video modalities
during training. To enable this property, we propose a Mixture-
of-Embedding-Experts (MEE) model that computes similarities
between text and a varying number of video modalities. The
model is learned end-to-end and generates expert weights deter-
mining individual contributions of each modality. During training
we combine image-caption and video-caption datasets and treat
images as a special case of videos without motion and sound. For
example, our method can learn an embedding for “Eating banana”
even if “banana” only appears in training images but never in
training videos (see Fig. 1). We evaluate our method on the task of
video retrieval and report results for the MPII Movie Description
and MSR-VTT datasets. The proposed MEE model demonstrates
significant improvements and outperforms all previously reported
methods on both text-to-video and video-to-text retrieval tasks.

Our MEE model can be easily extended to other data sources
beyond global appearance, motion and sound. In particular, faces
in video contain valuable information including emotions, gender,
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age and identities of people. As not all videos contain people,
faces constitute a typical case of a potentially missing data source
for our model. To demonstrate the generalization of our model and
to show the importance of faces for video retrieval, we compute
facial descriptors for images and videos with faces. We then treat
faces as an additional data source in the MEE model and aggregate
facial descriptors within a video (see Fig. 2). The resulting MEE
combining faces with appearance, motion and sound produces
consistent improvements in our experiments.

1.1 Contributions
This paper provides the following contributions: (i) First, we
propose a new model for learning a joint text-video embedding
called Mixture-of-Embedding-Experts (MEE). The model is de-
signed to handle missing video modalities during training and
enables simultaneous learning from heterogeneous data sources.
(ii) We showcase two applications of our framework. First, we can
data augment video-caption datasets with image-caption datasets
during training. We can also leverage face descriptors in videos
to improve the joint text-video embedding. In both cases, we
show improvements in several video retrieval benchmarks. (iii)
By using MEE and leveraging multiple sources of training data
we outperform state-of-the-art on the standard text-to-video and
video-to-text retrieval benchmarks defined by the LSMDC [14]
challenge.

2 RELATED WORK

In this section we review prior work related to vision and language,
video representations and learning from sources with missing data.

2.1 Vision and Language
There is a large amount of work leveraging language in computer
vision. Language is often used as a more powerful and subtle
source of supervision than predefined classes. One way to leverage
language in vision is to find a joint embedding space for both
visual and textual modalities [7], [8], [9], [19], [20], [21], [22],
[23]. In this common embedding space, visual and textual samples
are close if and only if they are semantically similar. This common
embedding space enables multiple applications such as text-to-
image/video retrieval and image/video-to-text retrieval. The work
of Aytar et al. [24] is going further by learning a cross-modal
embedding space for visual, textual and aural samples. In vision,
language is also used in captioning where the task is to generate
a descriptive caption of an image or a video [10], [25], [26], [27].
Another related application is visual question answering [1], [2],
[28], [29]. A useful application of learning jointly from video
and text is the possibility of performing video summarization with
natural language [8]. Other works also tackle the problem of visual
grounding of sentences: it can be applied to spatial grounding
in images [18], [25], [30] or temporal grounding (i.e temporal
localization) in videos [4], [6]. Our method improves text-video
embeddings and has potential to improve any method relying on
such representations.

2.2 Multi-stream video representation
Combining different modalities is a straightforward way to im-
prove video representations for many tasks. Most state-of-the-
art video representations [31], [32], [33], [34], [35] separate
videos into multiple stream of modalities. The appearance, which

are features capturing visual cues, the motion, computed from
optical flow estimation or dense trajectories [36], and the audio
signal are the commonly used video modalities. Investigating on
which video descriptors to combine and how to efficiently fuse
them has been extensively studied. Most prior works [12], [31],
[33], [37], [38] address the problem of appearance and motion
fusion for video representation. Other more recent works [34],
[39] explore appearance-audio two-stream architectures for video
representation. This and other work has consistently demonstrated
the benefits of combining different video modalities for tasks such
as video classification and action recognition. Similar to previ-
ous work in video understanding, our model combines multiple
modalities but can also handle missing modalities during training
and testing.

2.3 Learning with missing data

Our work is also closely related to learning methods designed to
handle missing data. Handling missing data in machine learning
is far from being a solved problem, yet it is widespread in various
fields. Data can be missing due to several reasons: it can be cor-
rupted, it may have not been possible to record the data or, in some
cases, the data may be intentionally missing (take an example
of forms with answers to some fields being optional). Common
practices in machine learning aim at imputing the missing values
with a default value such as zero, the mean, the median or the
most frequent value in the discrete case1. In the matrix completion
theory, a low rank approximation of the matrix [40] can be
performed to fill the missing values. In computer vision, one main
application of learning with missing data is the inpainting task.
Several approaches such as: Low rank matrix factorization [41],
Generative Adversarial Network [42] have successfully addressed
the problem. The UberNet network [43] is a universal multi-
task model aiming at solving multiple problems such as: object
detection, object segmentation or surface normal estimation. To do
so, the model is trained on a mix of different annotated datasets,
each one having its own task-oriented set of annotation. Their
work is also related to ours as we also combine diverse types of
datasets. However in our case, we have to address the problem of
missing video modalities instead of missing task annotation.

Handling missing modalities can be seen as a specific case
of learning from missing data. In image recognition the recent
work [44] has tackled the task of learning with missing modalities
to treat the problem of missing sensor information. In this work,
we address the problem of missing video modalities. As explained
above, videos can be divided into multiple relevant modalities such
as appearance, audio and motion. Being able to train and infer
models without all modalities makes it possible to mix different
type of data such as illustrated in Figure 1.

3 MIXTURE OF EMBEDDING EXPERTS FOR VIDEO
AND TEXT

In this section we introduce the proposed mixture of embedding
experts (MEE) model and explain how this model handles hetero-
geneous input sources with incomplete sets of data streams during
both training and inference.

1. http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
Imputer.html
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Fig. 2: Mixture of embedding experts (MEE) model that computes
similarity score s between input sentence X and video Y as a
weighted combination of expert embeddings, one for each input
descriptor type including appearance, motion, facial descriptors or
audio. The appropriate weight of each expert is estimated from the
input text. Our model can deal with missing video input such as face
descriptors missing for videos without people depicted above.

3.1 Model overview and notation

Our goal is to learn a common embedding space for video and
text. More formally, if X is a sentence and Y a video, we
would like to learn embedding functions f and g such that
similarity s = 〈f(X), g(Y )〉 is high if and only if X and Y are
semantically similar. We assume that each input video is composed
of N different streams of descriptors, {Ii}i∈1...N that represent,
for example, motion, appearance, audio, or facial appearance of
people. Note that as we assume the videos come from diverse
data sources a particular video may contain only a subset of these
descriptor types. For example, some videos may not have audio,
or will not have face descriptors when they don’t depict people.
As we will show later, the same model will be able to represent
still images as (very) simple videos composed of a single frame
without motion. To address the issue that not all videos will have
all descriptors, we design a model inspired by the mixture of
experts [45], where we learn a separate “expert” embedding model
for each descriptor type. The expert embeddings are combined in
an end-to-end trainable fashion using weights that depend on the
input caption. As a result, the model can learn to increase the
relative weight of motion descriptors for input captions concerning
human actions, or increase the relative weight of face descriptors
for input captions that require detailed face understanding.

The overview of the model is shown in Figure 2. Descriptors
of each input stream Ii are first aggregated over time using the
temporal aggregation module hi and the resulting aggregated
descriptor is embedded using a gated embedding module gi (see
3.4). Similarly, the individual word embeddings from the input
caption are first aggregated using a text aggregation module
into a single descriptor, which is then embedded using gated
embedding modules fi, one for each input source i. The resulting
expert embeddings for each input source are then weighted using
normalized weights wi(X) estimated by the weight estimation
module from caption X to obtain the final similarity score s.
Details of the individual components are given next.

3.2 Text representation
The textual input is a sequence of word embeddings for each
input sentence. These individual word embedding vectors are then
aggregated into a single vector representing the entire sentence
using a NetVLAD [46] aggregation module, denoted h(X). This
is motivated by the recent results [34] demonstrating superior
performance of NetVLAD aggregation over other common aggre-
gation architectures such as long short-term memory (LSTM) [47]
or gated recurrent units (GRU) [48].

3.3 Temporal aggregation module
Similar to input text, each input stream Ii of video descriptors is
first aggregated into a single vector using temporal aggregation
module hi. For this, we use NetVLAD [46] or max pooling,
depending on the input descriptors. Details are given in Section 4.

3.4 Gated embedding module
The gated embedding module Z = f(Z0) takes a d1-dimensional
feature Z0 as input and embeds (transforms) it into a new feature
Z in d2-dimensional output space. This is achieved using the
following sequence of operations:

Z1 =W1Z0 + b1, (1)

Z2 = Z1 ◦ σ(W2Z1 + b2), (2)

Z =
Z2

‖Z2‖2
, (3)

where W1 ∈ Rd2×d1 ,W2 ∈ Rd2×d2 , b1 ∈ Rd2 , b2 ∈ Rd2 are
learnable parameters, σ is an element-wise sigmoid activation
and ◦ is the element-wise multiplication (Hadamard product).
Note that the first layer, given by (1), describes a projection of
the input feature Z0 to the embedding space Z1. The second
layer, given by (2), performs context gating [34], where individual
dimensions of Z1 are reweighted using learnt gating weights
σ(W2Z1+b2) with values between 0 and 1, where W2 and b2 are
learnt parameters. The motivation for such gating is two-fold: (i)
we wish to introduce non-linear interactions among dimensions
of Z1 and (ii) we wish to recalibrate the strengths of different
activations of Z1 through a self-gating mechanism. Finally, the
last layer, given by (3), performs L2 normalization to obtain the
final output Z .

3.5 Estimating text-video similarity with a mixture of
embedding experts
In this section we explain how to compute the final similarity score
between the input text sentence X and video Y . Recall, that each
video is represented by several input streams Ii of descriptors.
Our proposed model learns separate (expert) embedding between
the input text and each of the input video streams. These expert
embeddings are then combined together to obtain the final simi-
larity score. More formally, we first compute a similarity score si
between the input sentence X and input video stream Ii

si(X, Ii) = 〈fi(h(X)), gi(hi(Ii))〉, (4)

where fi(h(X)) is the text embedding composed of aggregation
module h() and gated embedding module fi(); gi(hi(Ii)) is the
embedding of the input video stream Ii composed of descriptor
aggregation module hi and gated embedding module gi; and 〈a, b〉
denotes a scalar product. Please note that we learn a separate
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text embedding fi for each input video stream i. In other words,
we learn different embedding parameters to match the same
input sentence X to different video descriptors. For example,
such embedding can learn to emphasize words related to facial
expressions when computing similarity score between the input
sentence and the input face descriptors, or to emphasize action
words when computing the similarity between the input text and
input motion descriptors.
Estimating the final similarity score with a mixture of experts.
The goal is to combine the similarity scores si(X, Ii) between the
input sentence X and different streams of input descriptors Ii into
the final similarity score. To achieve that we employ the mixture of
experts approach [45]. In detail, the final similarity score s(X,Y )
between the input sentence X and video Y is computed as

s(X,Y ) =
N∑
i=1

wi(X)si(X, Ii),with wi(X) =
eh(X)>ai∑N
j=1 e

h(X)>aj

,

(5)

where wi(X) is the weight of similarity score si predicted
from the input sentence X , h(X) is the aggregated sentence
representation and ai, i = 1 . . . N the learnt parameters. Please
note again that the weights wi of experts si are predicted from
sentence X . In other words, the input sentence provides a prior on
which of the embedding experts to put more weight to compute
the final global similarity score. The estimation of the weight of
the different input streams can be seen as an attention mechanism
that uses the input text sentence. For instance, we may expect to
have high weight on the motion stream for input captions such
as: “The man is practicing karate”, facial descriptors for captions
such as “Barack Obama is giving a talk”, or on audio descriptors
for input captions such as “The woman is laughing out loud”.
Single text-video embedding. Please note that equation (5)
can be viewed as a single text-video embedding s(X,Y ) =
〈f(X), g(Y )〉, where:
f(X) = [w1(X)f1(h(X)), . . . , wN (X)fN (h(X))] is the vec-
tor concatenating individual text embedding vectors fi(h(X))
weighted by estimated expert weights wi, and g(Y ) =
[g1(h1(I1)), . . . , gN (h(IN ))] is the concatenation of the indi-
vidual video embedding vectors gi(hi(Ii)). This is important
for retrieval applications in large-scale datasets, where individual
embedding vectors for text and video can be pre-computed offline
and indexed for efficient search using techniques such as product
quantization [49].
Handling videos with incomplete input streams. The formu-
lation of the similarity score s(X,Y ) as a mixture of experts
provides a proper way to handle situations where the input set of
video streams is incomplete. For instance, when audio descriptors
are missing for silent videos or when face descriptors are missing
in shots without people. In detail, in such situations we estimate
the similarity score s using the remaining available experts by
renormalizing the remaining mixture weights to sum to one as

s(X,Y ) =
∑
i∈D

[
wi(X)∑

j∈D wj(X)

]
si(X, Ii), (6)

where D ⊂ {1 . . . N} indexes the subset of available input
streams Ii for the particular input video Y . When training the
model, the gradient thus only backpropagates to the available
branches of both text and video.

3.6 Bi-directional ranking loss

To train the model, we use the bi-directional max-margin ranking
loss [21], [22], [50], [51] as we would like to learn an embedding
that works for both text-to-video and video-to-text retrieval tasks.
More formally, at training time, we sample a batch of sentence-
video pairs (Xi, Yi)i∈[1,B] where B is the batch size. We wish
to enforce that, for any given i ∈ [1, B], the similarity score
si,i = s(Xi, Yi) between video Yi and its ground truth caption
Xi is greater than every possible pair of scores si,j and sj,i, where
j 6= i of non-matching videos and captions. This is implemented
by using the following loss for each batch of B sentence-video
pairs (Xi, Yi)i∈[1,B]

l =
B∑
i=1

∑
j 6=i

[
max(0,m+ si,j − si,i) + max(0,m+ sj,i − si,i)

]
,

(7)

where si,j = s(Xi, Yj) is the similarity score of sentence Xi and
video Yj , and m is the margin. We set m = 0.2 in practice.

4 EXPERIMENTS

In this section, we report experiments with our mixture of embed-
ding experts (MEE) model on different text-video retrieval tasks.
We perform a thorough ablation study to highlight the benefits
of our approach and compare the proposed model with current
state-of-the-art methods.

4.1 Experimental setup

In the following, we describe the used datasets and details of data
pre-processing and training procedures.
Datasets. We perform experiments on the following three datasets:
1 - MPII movie description/LSMDC dataset. We report re-
sults on the MPII movie description dataset [14]. This dataset
contains 118,081 short video clips extracted from 202 movies.
Each video has a caption, either extracted from the movie script
or from transcribed audio description. The dataset is used in the
Large Scale Movie Description Challenge (LSMDC). We report
experiments on two LSMDC challenge tasks: movie retrieval and
movie annotation. The first task evaluates text-to-video retrieval:
given a sentence query, retrieve the corresponding video from
1,000 test videos. The performance is measured using recall@k
(higher is better) for different values of k, or median rank (lower is
better). The second, movie annotation task evaluates video-to-text
retrieval: we are provided with 10,053 short clips, where each clip
comes with five captions, with only one being correct. The goal
is to find the correct one. The performance is measured using the
accuracy. For both tasks we follow the same evaluation protocol
as described on the LSMDC website2.
2 - MSR-VTT dataset. We also report several experiments on
the MSR-VTT dataset [13]. This dataset contains 10,000 unique
Youtube video clips. Each of them is annotated with 20 different
text captions, which results in a total of 200,000 unique video-
caption pairs. Because we are only provided with URLs for each
video, some of the video are, unfortunately, not available for
download anymore. In total, we have successfully downloaded
7,656 videos (out of the original 10k videos). Similar to the
LSMDC challenge and [14], we evaluate on the MSR-VTT dataset

2. https://sites.google.com/site/describingmovies/lsmdc-2017
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TABLE 1: Ablation study on the MPII movie dataset. R@k denotes
recall@k (higher is better), MR denotes mean rank (lower is better).
Multiple choice is measured in accuracy (higher is better).

Evaluation task Text-to-Video Video-to-Text

Method R@1 R@5 R@10 MR MC

0-padding 9.2 24.9 35.0 28 73.0
0-padding + Face 10.1 25.3 35.0 27 73.2
0-padding + COCO 10.2 25.9 35.1 26 75.1
0-padding + COCO + Face 10.5 26.1 37.1 26 75.1

MEE 10.0 24.8 34.8 25 74.7
MEE + Face 11.6 28.0 37.6 22 75.3
MEE + COCO 10.8 26.6 35.3 27 74.9
MEE + COCO + Face 12.7 28.9 39.6 21 76.0

the text-to-video retrieval task on randomly sampled 1,000 video-
caption pairs from the test set.
3 - COCO 2014 Image-Caption dataset. We also report results
on the text to still image retrieval task on the 2014 version
of the COCO image-caption dataset [16]. Again, we emulate
the LSMDC challenge and evaluate text-to-image retrieval on
randomly sampled 1000 image-caption pairs from the COCO 2014
validation set.
Data pre-processing. For text pre-processing, we use the Google
News3 trained word2vec word embeddings [52]. For sentence
representation, we use NetVLAD [46] with 32 clusters. For videos,
we extract frames at 25 frames per seconds and resize each frame
to have a consistent height of 300 pixels. We consider up to four
different descriptors representing the visual appearance, motion,
audio and facial appearance. We pre-extract the descriptors for
each input video resulting in up to four input streams of descrip-
tors. The appearance features are extracted using the Imagenet
pre-trained ResNet-152 [53] CNN. We extract 2048-dimensional
features from the last global average pooling layer. The motion
features are computed using a Kinetics pre-trained I3D flow
network [12]. We extract the 1024-dimensional features from the
last global average pooling layer. The audio features are extracted
using the audio CNN [54]. Finally, for the face descriptors, we use
the dlib framework4 to detect and align faces. Facial features are
then computed on the aligned faces using the same framework,
which implements a ResNet CNN trained for face recognition.
For each detected face, we extract 128-dimensional representation.
We use max-pooling operation to aggregate appearance, motion
and face descriptors over the entire video. To aggregate the audio
features, we follow [34] and use a NetVLAD module with 16
clusters.
Training details. Our work was implemented using the PyTorch5

framework. We train our models using the ADAM optimizer [55].
On the MPII dataset, we use a learning rate of 0.0001 with a batch
size of 512. On the MSR-VTT dataset, we use a learning rate of
0.0004 with a batch size of 64. Each training is performed using
a single GPU and takes only several minutes to finish.

4.2 0-padding baseline

To assess benefits of the proposed mixture of embeddings model,
we introduce a standard embedding baseline that learns a single
embedding function for both text and video without re-weighting

3. GoogleNews-vectors-negative300
4. http://dlib.net/
5. http://pytorch.org/

TABLE 2: The effect of augmenting the MPII movie caption dataset
with captioned still images from the MS COCO dataset. R@k denotes
recall@k (higher is better), MR denotes Median Rank (lower is better)
and MC denotes Multiple Choice (higher is better).

Evaluation set COCO images MPII videos

Model R@1 R@5 R@10 MR R@1 R@5 R@10 MR MC

0-padding + Face 11.0 27.6 42.6 14 10.1 25.3 35.0 27 73.2
0-padding + Face + COCO 29.5 64.6 80.1 3 10.5 26.1 37.1 26 75.1

MEE + Face 10.4 29.0 42.6 15 11.6 28.0 37.6 22 75.1
MEE + Face + COCO 31.4 64.5 79.3 3 12.7 28.9 39.6 21 76.0

TABLE 3: The effect of augmenting the MSR-VTT video caption
dataset with captioned still images from the MS COCO dataset when
relative image to video sampling rate α = 0.5. R@k stands for
recall@k, MR stands for Median Rank.

Evaluation set COCO images MSR-VTT videos

Model R@1 R@5 R@10 MR R@1 R@5 R@10 MR

0-padding + Face 6.1 20.3 34.1 20 14.3 38.3 52.8 10
0-padding + Face + COCO 8.6 27.0 42.8 14 13.2 37.1 51.2 10

MEE + Face 8.4 24.9 38.9 18 12.9 36.4 51.8 10
MEE + Face + COCO 20.7 54.5 72.0 5 16.8 41.0 54.4 9

the input streams. In detail, we concatenate the aggregated video
descriptors into a single vector and pad unavailable descriptors
with zeros. Then we learn a single text to video embedding using
the same data and ranking loss.

4.3 Benefits of learning from heterogeneous data
The proposed embedding model is designed for learning from
diverse and incomplete inputs. We demonstrate this ability on
two examples. First, we show how a text-video embedding model
can be learnt by augmenting captioned video data with captioned
still images. For this we use the Microsoft COCO dataset [16]
that contains captions provided by humans. Methods augmenting
training data with still images from the COCO dataset are denoted
(+COCO). Second, we show how our embedding model can
incorporate an incomplete input stream of facial descriptors, where
face descriptors are present in videos containing people but are
absent in videos without people. Methods that incorporate face
descriptors are denoted (+Face). We also compare results to the
baseline embedding with 0-padding described in section 4.2.
Ablation study on the MPII movie dataset. Table 1 shows a de-
tailed ablation study on the LSMDC Text-to-Video and Video-to-
Text retrieval tasks on the MPII movie dataset. The results clearly
demonstrate that our model (MEE) is effective in incorporating
captioned still images and face descriptors at training time clearly
outperforming the 0-padding baseline.
Augmenting videos with images. Next, we evaluate in detail
the benefits of augmenting captioned video datasets (MSR-VTT
and MPII movie) with captioned still images from the Microsoft
COCO dataset. Table 2 shows the effect of adding the still image
data during training. For all models, we report results on both the
COCO image dataset and the MPII videos. For both our mixture
of embeddings (MEE) model and the 0-padding baseline adding
COCO images to the video training set improves performance on
both COCO images but also MPII videos, showing that a single
model trained from the two different data sources can improve
performance on both datasets. This is an interesting result as the
two datasets are quite different in terms of depicted scenes and
textual captions. MS COCO dataset contains mostly Internet im-
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Fig. 3: The importance of still image (COCO) to video (MSR-VTT)
sampling rate α for model training. Text to video retrieval results
(R@1, R@5 and R@10) are shown on both MSR-VTT (top) and MS-
COCO (bottom) datasets. α = 0 means no still image augmentation
is performed.

ages of scenes containing multiple objects. MPII dataset contains
video clips from movies often depicting people interacting with
each other or objects.

We also evaluate the impact of augmenting MSR-VTT video
caption dataset with the captioned still images from the MS COCO
dataset. As the MSR-VTT is much smaller than the COCO dataset,
it becomes crucial to carefully sample COCO image-caption
samples when augmenting MSR-VTT during training. In detail,
for each epoch, we randomly inject image-caption samples such
that the ratio of image-caption samples to video-caption samples
is set to a fixed sampling rate: α ∈ R≥0. Note that α = 0 means
that no data augmentation is performed and α = 1.0 means that
exactly the same amount of COCO image-caption and MSR-VTT
video-caption samples are used at each training epoch. Table 3
shows the effect of still image augmentation on the MSR-VTT
dataset for the text-to-video retrieval task when the proportion
of image-caption samples is half of the MSR-VTT video caption
samples, i.e. α = 0.5. Figure 3 then illustrates the effect of varying
the sampling rate α. As opposed to the MPII dataset, the 0-padding
baseline does not leverage the still image data augmentation as
increasing α decreases the retrieval performance. On the other
hand, our proposed MEE model fully leverages the additional still
images. Indeed, we observe significant gains in video retrieval
performances for all metrics. Figure 4 shows qualitative results of
our model highlighting some of the best relative improvement in
retrieval ranking using the still image data augmentation. Note that
many of the improved queries involve objects frequently appearing
in the COCO dataset including elephant, umbrella or baseball.
Embedding face descriptors. The MPII movie dataset contains
a significant amount of captions involving facial appearance
including emotions (smiling, crying or sad), gender, facial
features (blue eye, mustache or large nose), age (young, adult
or an old person) or actions that involve faces (gazing, frowning
or mouth opening). Here we evaluate the effect of adding face
descriptors for videos that contain faces on the LSMDC retrieval
tasks. Table 1 shows benefits of including face descriptors (+face).
We observe a significant increase in retrieval performance for our
MEE model on all metrics while performance of the 0-padding
baseline achieves only moderate improvements. Figure 5 shows
qualitative results of some of the best relative improvements in
retrieval ranking when adding face descriptors to our MEE model.

In summary, we observe that in comparison with the 0-padding

TABLE 4: Text-to-video and Video-to-Text retrieval results from the
LSMDC test sets. MR stands for Median Rank, MC for Multiple
Choice.

Evaluation task Text-to-Video Video-to-Text

Method R@1 R@5 R@10 MR MC

Random baseline 0.1 0.5 1.0 500 20.0
C+LSTM+SA+FC7 [56] 4.2 13.0 19.5 90 58.1
SNUVL [51] (LSMDC16 Winner) 3.6 14.7 23.9 50 65.7
CT-SAN [2] 5.1 16.3 25.2 46 67.0
Miech et al. [3] 7.3 19.2 27.1 52 69.7
CCA (FV HGLMM) [20] (same features) 7.5 21.7 31.0 33 72.8
JSFusion [57] (LSMDC17 Winner) 9.5 25.1 38.9 25 73.4

MEE + COCO + Face (Ours) 12.7 28.9 39.6 21 76.0

embedding baseline the proposed MEE model obtains significant
improvements in video retrieval performance when trained from
heterogeneous (still images and videos) and incomplete (missing
face descriptors in some videos) data sources.
Modality activation qualitative analysis. We computed mixture
weights for all 1000 test captions from the LSMDC retrieval task.
We have manually inspected examples with the highest (top 50)
and lowest (bottom 50) predicted weights for each input stream
type. Figure 6 shows examples of captions that have the highest
(top 50) predicted mixture weight for each input stream.

We noticed that sentences with highest predicted mixture
weights for the motion expert are rather short and involve action
verbs such as: hugs, kisses, shakes, runs, leaves, grabs, claps.
In contrast, sentences with the highest predicted mixture weights
for the visual expert are longer and involve nouns describing
objects and scenes, e.g. : kitchen, fridge, microphone, living room,
airport, car, table, bus, house. Interestingly, sentences with highest
predicted mixture weights for the Face expert often refer to gender
with words such as: he, she, woman, women, man or facial
actions and facial features using words such as: young, round-
faced, look, overlooking. We also looked at sentences with lowest
predicted mixture weights for the Face expert and found that they
mostly contain the MPII neutral token SOMEONE. Sentences
that trigger audio tend to refer to objects that produce sound
(e.g. closing/opening door, musing instruments) or (romantic /
dramatic) scenes that tend to be accompanied by music in movies.

4.4 Comparison with state-of-the-art

Table 4 compares our best approach to the state-of-the-art results
on the LSMDC challenge test sets. Note that our approach
significantly outperforms all other available results including
JSFusion [57]6, which is the winning method of the LSMDC
2017 Text-to-Video and Video-to-Text retrieval challenge. We
also reimplemented the normalized CCA approach from Klein et
al. [20]. To make the comparison fair, we used our video features
and word embeddings. Finally, we also significantly outperform
the C+LSTM+SA+FC7 [56] baseline that augments the MPII
movie dataset with COCO image caption data.

5 CONCLUSIONS

We have described a new model, called mixture of embedding
experts (MEE), that learns text-video embeddings from heteroge-
neous data sources and is able to deal with missing video input

6. This method is yet unpublished, only slides from the LSMDC17 work-
shop are available.
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there is baby elephant playing with 

his mother

people with umbrella in the rain having

 a confrontation with another man

a baseball player falls down and the 

other teammates laugh at him

a person is making paper art

Rank: 76    1 Rank: 14    1 Rank: 26    2 Rank: 12    1

an old women putting some liquid 

into a vessel to prepare something

Rank: 12   1

Fig. 4: Example videos with large relative improvement in text-to-video retrieval ranking (out of 1000 test videos) on the MSR-VTT dataset
when incorporating still images from the COCO dataset at training using our proposed MEE model. Notice that the improved videos involve
querying objects frequently present in the COCO dataset including: elephant, umbrella or baseball.

"... pass them to the young inmate 

and man."

"SOMEONE brings SOMEONE a 

tissue for her nosebleed."

"He stands up and looks at it." "Opens, revealing a tall man with 

rugged features."

"They find him gazing sadly out of 

the window at Buckbeak, ..."

Rank: 104    9 Rank: 22    2 Rank: 95   12 Rank: 21    5 Rank: 135    13

Fig. 5: Example videos from the MPII dataset with large relative improvement in text-to-video retrieval ranking (out of 1000 test videos) when
incorporating the face descriptor embedding using our proposed MEE model.

Fig. 6: Examples of captions that maximize face, audio, motion and visual modalities. Videos are only shown as illustration, they do not
impact weights.

modalities during training. We have shown that our model can
be trained from image-caption and video-caption datasets treating
images as a special case of videos without motion and sound.
In addition, we have demonstrated that our model can optionally
incorporate at training, input stream of facial descriptors, where
faces are present in videos containing people but missing in videos
without people. We have evaluated our model on the task of video
retrieval. Our approach outperforms all reported results on the
MPII Movie Description. Our work opens-up the possibility of
learning text-video embedding models from large-scale weakly-
supervised image and video datasets such as the Flickr 100M [58].

ACKNOWLEDGMENTS

This work has been partly supported by ERC grants ACTIVIA (no.
307574) and LEAP (no. 336845), CIFAR Learning in Machines
& Brains program, European Regional Development Fund under
the project IMPACT (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000468)
and a Google Research Award.

REFERENCES

[1] M. Tapaswi, Y. Zhu, R. Stiefelhagen, A. Torralba, R. Urtasun, and
S. Fidler, “Movieqa: Understanding stories in movies through question-
answering,” in CVPR, 2016.



8

[2] Y. Yu, H. Ko, J. Choi, and G. Kim, “End-to-end concept word detection
for video captioning, retrieval, and question answering,” in CVPR, 2017.

[3] A. Miech, J.-B. Alayrac, P. Bojanowski, I. Laptev, and J. Sivic, “Learning
from Video and Text via Large-Scale Discriminative Clustering,” in
ICCV, 2017.

[4] P. Bojanowski, R. Lajugie, E. Grave, F. Bach, I. Laptev, J. Ponce, and
C. Schmid, “Weakly-supervised alignment of video with text,” in ICCV,
2015.

[5] J.-B. Alayrac, P. Bojanowski, N. Agrawal, I. Laptev, J. Sivic, and
S. Lacoste-Julien, “Unsupervised learning from narrated instruction
videos,” in CVPR, 2016.

[6] L. A. Hendricks, O. Wang, E. Shechtman, J. Sivic, T. Darrell, and
B. Russell, “Localizing moments in video with natural language,” ICCV,
2017.

[7] Y. Pan, T. Mei, T. Yao, H. Li, and Y. Rui, “Jointly modeling embedding
and translation to bridge video and language,” in CVPR, 2016.

[8] B. A. Plummer, M. Brown, and S. Lazebnik, “Enhancing video summa-
rization via vision-language embedding,” in CVPR, 2017.

[9] R. Xu, C. Xiong, W. Chen, and J. J. Corso, “Jointly modeling deep
video and compositional text to bridge vision and language in a unified
framework.” in AAAI, vol. 5, 2015, p. 6.

[10] H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu, “Video paragraph
captioning using hierarchical recurrent neural networks,” in CVPR, 2016,
pp. 4584–4593.

[11] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in ICCV, 2015.

[12] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in CVPR, 2017.

[13] J. Xu, T. Mei, T. Yao, and Y. Rui, “Msr-vtt: A large video description
dataset for bridging video and language,” in CVPR, 2016.

[14] A. Rohrbach, M. Rohrbach, N. Tandon, and B. Schiele, “A dataset for
movie description,” in CVPR, 2015.

[15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR. IEEE, 2009, pp.
248–255.

[16] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in ECCV, 2014.

[17] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz,
S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, M. Bernstein, and
L. Fei-Fei, “Visual genome: Connecting language and vision using
crowdsourced dense image annotations,” 2016. [Online]. Available:
https://arxiv.org/abs/1602.07332

[18] B. A. Plummer, L. Wang, C. M. Cervantes, J. C. Caicedo, J. Hocken-
maier, and S. Lazebnik, “Flickr30k entities: Collecting region-to-phrase
correspondences for richer image-to-sentence models,” in ICCV. IEEE,
2015, pp. 2641–2649.

[19] Y. Gong, Q. Ke, M. Isard, and S. Lazebnik, “A multi-view embedding
space for modeling internet images, tags, and their semantics,” IJCV,
2014.

[20] B. Klein, G. Lev, G. Sadeh, and L. Wolf, “Associating neural word
embeddings with deep image representations using fisher vectors,” in
CVPR, 2015.

[21] L. Wang, Y. Li, and S. Lazebnik, “Learning deep structure-preserving
image-text embeddings,” in CVPR, 2016, pp. 5005–5013.

[22] L. Wang, Y. Li, J. Huang, and S. Lazebnik, “Learning two-branch neural
networks for image-text matching tasks,” PAMI, 2018.

[23] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krähenbühl, “Sampling
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