
HAL Id: hal-01975050
https://hal.science/hal-01975050v1

Submitted on 4 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topology and Geometry of Gaussian random fields I: on
Betti Numbers, Euler characteristic and Minkowski

functionals
Pratyush Pranav, Rien van de Weygaert, Gert Vegter, Bernard J.T. Jones,

Robert J. Adler, Job Feldbrugge, Changbom Park, Thomas Buchert, Michael
Kerber

To cite this version:
Pratyush Pranav, Rien van de Weygaert, Gert Vegter, Bernard J.T. Jones, Robert J. Adler, et al..
Topology and Geometry of Gaussian random fields I: on Betti Numbers, Euler characteristic and
Minkowski functionals. Monthly Notices of the Royal Astronomical Society, 2019, 485 (3), pp.4167-
4208. �10.1093/mnras/stz541�. �hal-01975050�

https://hal.science/hal-01975050v1
https://hal.archives-ouvertes.fr


MNRAS 485, 4167–4208 (2019) doi:10.1093/mnras/stz541
Advance Access publication 2019 February 25

Topology and geometry of Gaussian random fields I: on Betti numbers,
Euler characteristic, and Minkowski functionals

Pratyush Pranav ,1,2,3‹ Rien van de Weygaert,2 Gert Vegter,4 Bernard J. T. Jones,2

Robert J. Adler,3 Job Feldbrugge,2,5 Changbom Park,6 Thomas Buchert1 and
Michael Kerber7

1Univ Lyon, ENS de Lyon, Univ Lyon1, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69007 Lyon, France
2Kapteyn Astronomical Institute, Univ. of Groningen, PO Box 800, NL-9700 AV Groningen, the Netherlands
3Technion – Israel Institute of Technology, Haifa 32000, Israel
4Johann Bernoulli Inst. for Mathematics and Computer Science, Univ. of Groningen, P.O. Box 407, NL-9700 AK Groningen, the Netherlands
5Perimeter Institute for Theoretical Physics, University of Waterloo, Waterloo ON N2L 2Y5, Canada
6Korean Institute of Advanced Studies, Hoegiro 87, Dongdaemun-gu, Seoul 130-722, Korea
7Institut für Geometrie, TU Graz, Kopernikusgasse 24A 8010 Graz

Accepted 2019 February 18. in original form 2018 December 18

ABSTRACT
This study presents a numerical analysis of the topology of a set of cosmologically interesting
3D Gaussian random fields in terms of their Betti numbers β0, β1, and β2. We show that Betti
numbers entail a considerably richer characterization of the topology of the primordial density
field. Of particular interest is that the Betti numbers specify which topological features –
islands, cavities, or tunnels – define the spatial structure of the field. A principal characteristic
of Gaussian fields is that the three Betti numbers dominate the topology at different density
ranges. At extreme density levels, the topology is dominated by a single class of features.
At low levels this is a Swiss-cheeselike topology dominated by isolated cavities, and, at high
levels, a predominantly Meatball-like topology composed of isolated objects. At moderate
density levels, two Betti numbers define a more Sponge-like topology. At mean density, the
description of topology even needs three Betti numbers, quantifying a field consisting of several
disconnected complexes, not of one connected and percolating overdensity. A second important
aspect of Betti number statistics is that they are sensitive to the power spectrum. They reveal
a monotonic trend, in which at a moderate density range, a lower spectral index corresponds
to a considerably higher (relative) population of cavities and islands. We also assess the level
of complementary information that the Betti numbers represent, in addition to conventional
measures such as Minkowski functionals. To this end, we include an extensive description of
the Gaussian Kinematic Formula, which represents a major theoretical underpinning for this
discussion.

Key words: cosmology: theory – large-scale structure of universe – cosmic background radi-
ation – methods: numerical – methods: data analysis – methods: statistical.

1 IN T RO D U C T I O N

The richness of the big data samples emerging from astronom-
ical experiments and simulations demands increasingly complex
algorithms in order to derive maximal benefit from their exis-
tence. Generally speaking, most current analyses express inter-

� E-mail: pratyuze@gmail.com, pratyush.pranav@ens-lyon.fr

relationships between quantitative properties of the data sets, rather
than geometric or topological, i.e. structural, properties.

In this study, we introduce a new technique that successfully
attacks the problem of characterizing the structural nature of data.
This exercise involves an excursion into the relatively complex and
unfamiliar domain of homology, which we attempt to present in a
straightforward manner that should enable others to use and extend
this aspect of data analysis. On the application side, we demonstrate
the power of the formalism through a systematic study of Gaussian
random fields using this novel methodology.
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A Gaussian random field is a stochastic process, X, defined
over some parameter space of S, and characterized by the fact
that the vector (X(s1), . . . , X(sk)) has a k-dimensional, multivariate
normal distribution for any collection of points (s1, . . . , sk) in S.
Gaussian random fields play a key role in cosmology: in the standard
cosmological view, the primordial density and velocity fields have
a Gaussian character, making Gaussian fields the initial conditions
for the formation of all structure in the Universe. A Gaussian
random field is fully specified by its power spectrum, or in the real
space, its correlation function. As a result, the determination and
characterization of the power spectrum of the theoretical models,
as well as observational data, has been one of the main focal points
in the analysis of the primordial cosmic fluctuation field as well as
the Megaparsec – large scale – matter and galaxy distribution at low
redshifts.

A substantial body of theoretical and observational evidence
underpins the assumption of Gaussianity of the primordial cosmic
density and velocity fields. These have established Gaussian random
fields as a prominent aspect of the current standard cosmological
worldview. The primary evidence for this is the near-perfect
Gaussian nature of the Cosmic Microwave Background (CMB)
radiation temperature fluctuations. These directly reflect the density
and velocity perturbations on the surface of last scattering, and thus
the mass distribution at the recombination and decoupling epoch
379 000 yr after the big bang, at a redshift of z ≈ 1090 (see e.g.
Peebles 1980; Jones 2017). In particular the measurements by the
COBE, WMAP, and Planck satellites established that, to a high
accuracy, the CMB temperature fluctuations define a homogeneous
and isotropic Gaussian random field (Smoot et al. 1992; Bennett
et al. 2003; Spergel et al. 2007; Komatsu et al. 2011; Planck
Collaboration XIII 2016; Buchert, France & Steiner 2017; Aghanim
et al. 2018). Second, that the primordial fluctuations have a Gaussian
nature, narrowly follows from the theoretical predictions of the
inflationary scenario, at least in its simplest forms. According to this
fundamental cosmological theory, the early Universe underwent a
phase transition at around t ≈ 10−35 s after the big bang (Guth
1981; Linde 1981; Kolb, Salopek & Turner 1990; Liddle & Lyth
2000). As a result, the Universe underwent a rapid exponential
expansion over at least 60 e-foldings. The inflationary expansion of
quantum fluctuations in the generating inflation (field) leads to a key
implication of this process, the generation of cosmic density, and
velocity fluctuations. It involves the prediction of the resulting den-
sity fluctuation field being adiabatic and a homogeneous Gaussian
random field, with a near scale-free Harrison–Zeldovich spectrum,
P(k) ∝ k1 (Harrison 1970; Zeldovich 1972; Mukhanov & Chibisov
1981; Guth & Pi 1982; Starobinsky 1982; Bardeen, Steinhardt &
Turner 1983). Third, the Central Limit Theorem states that the
statistical distribution of a sum of many independent and identically
distributed random variables will tend to assume a Gaussian distri-
bution. Given that when the Fourier components of a primordial
density and velocity field are statistically independent, each having
the same Gaussian distribution, then the joint probability of the
density evaluated at a finite number of points will be Gaussian
(Bardeen et al. 1986).

On the basis of these facts, Gaussian random fields have played a
central role in describing a multitude of fields of interest that arise in
cosmology, making their characterization an important focal point
in cosmological studies (Doroshkevich 1970; Bardeen et al. 1986;
Hamilton, Gott & Weinberg 1986; Bertschinger 1987; Mecke &
Wagner 1991; Scaramella & Vittorio 1991; Mecke, Buchert &
Wagner 1994; van de Weygaert & Bertschinger 1996; Schmalzing &
Buchert 1997; Matsubara 2010). When assessing the structure and

patterns of the temperature fluctuations in the CMB, the interest
is that of Gaussian fields on the 2D surface of a sphere, i.e. on
2D space S2. When studying the cosmic galaxy and matter distri-
bution, the parameter space is that of a large, but essentially fine,
subset of 3D space R3 (i.e. assuming curvature of space is almost
perfectly flat, as has been inferred from the WMAP and Planck
CMB measurements; Spergel et al. 2007; Planck Collaboration
XIII 2016).

In this study, we address the topological characteristics of 3D
Gaussian fields, specifically in terms of the topological concepts and
language of homology (Munkres 1984; Robins 2006; Rote & Vegter
2006; Zomorodian 2009; Edelsbrunner & Harer 2010; Robins 2013;
Robins 2015). These concepts are new to cosmology (see below) and
will enrich the analysis of cosmological data sets considerably (see
e.g. Adler, Agami & Pranav 2017; Elbers & van de Weygaert 2018).
The principal rationale for this study of Gaussian field homology is
the definition and development of a reference base line. In most cos-
mological scenarios Gaussian fields represent the primordial mass
distribution out of which 13.8 Gyr of gravitational evolution has
morphed the current cosmic mass distribution. Hence, for a proper
understanding of the rich (persistent) homology of the cosmic web,
a full assessment of Gaussian field homology as reference point is
imperative.

Topology is the branch of mathematics that is concerned with
the properties of space that are preserved under continuous de-
formations, including stretching (compression) and bending, but
excluding tearing or glueing. It also includes invariance of properties
such as connectedness and boundary. As such it addresses key
aspects of the structure of spatial patterns, the ones concerning
the organization, i.e. shape, and connectivity (see e.g. Robins 2006;
Robins 2013; Patania, Vaccarino & Petri 2017). The topological
characterization of the models of cosmic mass distribution has been
a focal point of many studies (Doroshkevich 1970; Adler 1981;
Bardeen et al. 1986; Gott, Dickinson & Melott 1986; Hamilton
et al. 1986; Canavezes et al. 1998; Canavezes & Efstathiou 2004;
Pogosyan, Gay & Pichon 2009; Choi et al. 2010; Park & Kim 2010).
Such topological studies provide insights into the global structure,
organization, and connectivity of cosmic density fields. These
aspects provide key insight into how these structures emerged, and
subsequently interacted and merged with neighbouring features.
Particularly helpful in this context is that topological measures
are relatively insensitive to systematic effects such as non-linear
gravitational evolution, galaxy biasing, and redshift-space distortion
(Park & Kim 2010).

The vast majority of studies of the topological characteristics of
the cosmic mass distribution concentrate on the measurement of the
genus and the Euler characteristic (Gott et al. 1986; Hamilton et al.
1986; Gott et al. 1989). The notion of genus is, technically, only
well defined for 2D surfaces, where it is a simple linear function of
the Euler characteristic. For 3D manifolds with smooth boundaries,
there is also a simple relationship between the Euler characteristic
of a set and the genus of its boundary. Beyond these examples,
however, these relationships break down and, in higher dimensions,
only the Euler characteristic is well defined. We will therefore
typically work with the Euler characteristic, rather than the genus,
even when both are defined.

While the genus, the Euler characteristic – and the Minkowski
functionals discussed below – have been extremely instructive in
gaining an understanding of the topology of the mass distribution
in the Universe, there is a substantial scope for an enhancement
of the topological characterization in terms of a richer and more
informative description. In this study, we present a topological
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analysis of Gaussian random fields through homology (Munkres
1984; Adler et al. 2010; Edelsbrunner & Harer 2010; van de
Weygaert et al. 2011; Feldbrugge & van Engelen 2012; Park et al.
2013; Bobrowski & Kahle 2014; Kahle 2014; Pranav et al. 2017;
Wasserman 2018). Homology is a mathematical formalism for
specifying in a quantitative and unambiguous manner about how a
space is connected,1 through assessing the boundaries of a manifold
(Munkres 1984). To this end, we evaluate the topology of a manifold
in terms of the holes that it contains, by assessing their boundaries.

A d-manifold can be composed of topological holes of 0 up to d
− dimensions. For d < 3, the holes have an intuitive interpretation.
A 0-dimensional hole is a gap between two isolated independent
objects. A 1D hole is a tunnel through which one can pass in any one
direction without encountering a boundary. A 2D hole is a cavity or
void fully enclosed within a 2D surface. This intuitive interpretation
in terms of gaps and tunnels is only valid for surfaces embedded
in R3, S3, or T3. Following the realization that the identity, shape,
and outline of these entities is more straightforward to describe in
terms of their boundaries, homology turns to the definition of holes
via cycles. A 0-cycle is a connected object (and hence, a 0-hole is
the gap between two independent objects). A 1-cycle is a loop that
surrounds a tunnel. A 2-cycle is a shell enclosing a void. The d-cycle
for a d-dimensional manifold is trivially zero till the superlevel set
includes the whole manifold, and one otherwise.

The statistics of the holes in a manifold and their boundaries are
captured by its Betti numbers. Formally, the Betti numbers are the
ranks of the homology groups. The p-th homology group is the
assembly of all p-dimensional cycles of the manifold, and the rank
of the group is the number of independent cycles. In all, there are d +
1 Betti numbers βp, where p = 0, . . . , d (Betti 1871; Vegter 1997;
Robins 2006; Rote & Vegter 2006; Edelsbrunner & Harer 2010;
van de Weygaert et al. 2011; Robins 2013; Pranav et al. 2017).
The first three Betti numbers have intuitive meanings: β0 counts
the number of independent components, β1 counts the number of
loops enclosing the independent tunnels, and β2 counts the number
of shells enclosing the isolated voids.

There is a profound relationship between the homology charac-
terization in terms of Betti numbers and the Euler characteristic.
The Euler-Poincaré formula (Euler 1758) states that the Euler
characteristic is the alternating sum of the Betti numbers (see
Equation 35 below). One immediate implication of this is that
the set of Betti numbers contain more topological information
than is expressed by the Euler characteristic (and hence the genus
used in cosmological applications). Visually imagining the 3D
situation as the projection of three Betti numbers on to a 1D line,
we may directly appreciate that two manifolds that are branded
as topologically equivalent in terms of their Euler characteristic
may actually turn out to possess intrinsically different topologies
when described in the richer language of homology. Evidently, in
a cosmological context this will lead to a significant increase of
the ability of topological analyses to discriminate between different
cosmic structure formation scenarios.

The Euler characteristic of a set is an essentially topological quan-
tity. For example, the Euler characteristic of a 3D set is the number
of its connected components, minus the number of its holes, plus the
number of voids it contains (where each of the terms requires careful
definition). Numbers are important here, but the sizes and shapes of

1There is a notion of k-connectedness, k = 0, . . . , d, where d is the dimension
of the manifold. Within this, 0-connectedness is the same as the ‘usual’
notion of connectedness.

the various objects are not. Nevertheless, it is a deep result, known
as the Gauss–Bonnet–Chern–Alexandrov Theorem, going back to
Euler (1758), requiring both Differential and Algebraic Topology2

to prove that – at least for smooth, stratified manifolds3 – the Euler
characteristics can actually be computed from geometric quantities.
That is, the Euler characteristic also has a geometric interpretation
and is actually associated with the integrated Gaussian curvature of
a manifold. In fact, together with other quantities related to volume,
area, and length, the Euler characteristic forms a part of a more
extensive geometrical description via the Minkowski functionals, or
Lipschitz-Killing curvatures of a set.

There are d + 1 Minkowski functionals, {Qk}k = 0, . . . , d, defined
over nice subsets of Rd (Mecke et al. 1994; Schmalzing & Buchert
1997; Sahni, Sathyprakash & Shandarin 1998; Schmalzing et al.
1999; Kerscher 2000). All are predominantly geometric in nature.
For compact subsets of R3, the four Minkowski functionals, in
increasing order, are proportional to volume, surface area, integrated
mean curvature, or total contour length, and integrated Gaussian
curvature, itself proportional to the Euler characteristic. Analyses
based on Minkowski functionals, genus, and Euler characteristic
have played key roles in understanding and testing models and
observational data of the cosmic mass distribution (Gott et al. 1986;
Hamilton et al. 1986; Mecke et al. 1994; Kerscher et al. 1997;
Schmalzing & Buchert 1997; Canavezes et al. 1998; Kerscher et al.
1998; Sahni et al. 1998; Kerscher et al. 1999, 2001; Hikage et al.
2003; Canavezes & Efstathiou 2004; Pogosyan et al. 2009; Choi
et al. 2010; Park & Kim 2010; van de Weygaert et al. 2011; Codis
et al. 2013; Park et al. 2013; Wiegand, Buchert & Ostermann
2014). Generalizations of Minkowski functionals for vector and
tensor fields have also been applied in cosmology and have been
useful in quantifying substructures in galaxy clusters (Beisbart,
Buchert & Wagner 2001). Tensor-valued Minkowski functionals
allow to probe directional information and to characterize preferred
directions, e.g. to measure the anisotropic signal of redshift space
distortions (Appleby et al. 2018), or to characterize anisotropies
and departures from Gaussianity in the CMB (Chingangbam et al.
2017; Ganesan & Chingangbam 2017; Joby et al. 2019).

The topological analysis of Gaussian fields using genus, Euler
characteristic, and Minkowski functionals has occupied a place of
key importance within the methods and formalisms enumerated
above. Of fundamental importance, in this respect, has been the
realization that the expected value of the genus in the case of a 2D
manifold, and the Euler characteristic in the case of a 3D manifold,
as a function of density threshold has an analytic closed form
expression for Gaussian random fields (Adler 1981; Bardeen et al.
1986; Adler & Taylor 2010). Amongst others, this makes them an
ideal tool for validating the hypothesis of initial Gaussian conditions
through a comparison with the observational data. Important to note
is that the functional form of the genus, the Euler characteristic, and
the Minkowski functionals is independent of the specification of
the power spectrum for Gaussian fields, and is a function only of
the dimensionless density threshold ν. The contribution from power

2Algebraic Topology is a branch of mathematics that uses concepts from
abstract algebra to study topological spaces. Differential Topology is the
field of mathematics dealing with differentiable functions on differentiable
manifolds.
3A topologically stratified manifold M is a space that has been decomposed
into pieces called strata; these strata are topological submanifolds and are
required to fit together in a certain way. Technically, M needs to be a ‘C2

Whitney stratified manifold’ satisfying mild side conditions (Adler & Taylor
2010).
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spectrum is restricted to the amplitude of the genus curve through
the variance of the distribution, or equivalently, the amplitude of the
power spectrum. This indicates that the shape of these quantities is
invariant with respect to the choice of the power spectrum. While
this makes them highly suitable measures for testing fundamental
cosmological questions such as the Gaussian nature of primordial
perturbations, they are less suited when testing for differences
between different structure formation scenarios is the primary
focus.

Given the evident importance of being able to refer to solid ana-
lytical expressions, in this study we will report on the fundamental
developments of the past decade which have demonstrated that
the analytic expressions for the genus, Euler characteristic, and
Minkowski functionals of Gaussian fields belong to an extensive
family of such formulae, all emanating from the so-called Gaussian
kinematic formula or GKF (Adler & Taylor 2010, 2011; Adler,
Taylor & Worsley 2018). The GKF, in one compact formula, gives
the expected values of the Euler characteristic (and so genus), all
the Lipschitz-Killing curvatures, and so Minkowski functionals,
as well as their extensions, for the superlevel sets (and their
generalizations in vector-valued cases) of a wide class of random
fields, both Gaussian and only related somehow to Gaussian.
This is for both homogeneous and non-homogeneous cases, and
cover all examples required in cosmology. Even though hardly
known in the cosmological and physics literature, its relevance
and application potential for the study of cosmological matter and
galaxy distributions, as well as other general scenarios, is self-
evident (see e.g. Codis et al. 2013).

Because of its central role for understanding a range of relevant
topological characteristics of Gaussian and other random fields, we
discuss the GKF extensively in Section 4. Of conclusive importance
for the present study, the interesting observation is that homology
and the associated quantifiers such as Betti numbers are not covered
by the GKF. In fact, a detailed and complete statistical theory parallel
to the GKF for them does not exist. In this respect, it is good to
realize that the GKF is mainly about geometric quantifiers. The
exception to this is the Euler characteristic. Nonetheless, in a sense
the latter may also be seen as a geometric quantity via the Gauss–
Bonnet Theorem. To date there is no indication that – along the
lines of the GKF – an analytical description for Betti numbers and
other homological concepts is feasible (also see Wintraecken &
Vegter 2013). Nonetheless, this does not exclude the possibility of
analytical expressions obtained via alternative routes. One example
is analytical expressions for asymptotic situations, such as those
for Gaussian field excursion sets at very high levels. For this
situation, the seminal study by Bardeen et al. (1986) obtained
the statistical distribution for Betti numbers, i.e. for the islands
and cavities in the cosmic matter distribution. Even more generic
is the approach followed by the recent study of Feldbrugge &
van Engelen (2012); (Feldbrugge et al., in preparation). They
derived path integral expressions for Betti numbers and additional
homology measures, such as persistence diagrams. While it is
not trivial to convert these into concise formulae, the numerically
evaluated approximate expression for 2D Betti numbers turns out
to be remarkably accurate.

This paper presents a numerical investigation of the topological
properties of Gaussian random fields through homology and Betti
numbers. Given the observation that generic analytical expressions
for their statistical distribution are not available, this study is mainly
computational and numerical. It numerically infers and analyses
the statistical properties of Betti numbers, as well as those of
the corresponding Euler characteristic and Minkowski functionals.

The extensive analysis concerns a large set of 3D Gaussian field
realizations, for a range of different power spectra, generated in
cubic volumes with periodic boundary conditions.

In an earlier preliminary paper (Park et al. 2013), we presented
brief but important aspects of the analysis of the homology of 3D
Gaussian random fields via Betti numbers. It illustrated the thesis
forwarded in van de Weygaert et al. (2011) that Betti numbers
represent a richer source of topological information than the Euler
characteristic. For example, while the latter is insensitive to the
power spectrum, Betti numbers reveal a systematic dependence on
power spectrum. It confirms the impression of homology and Betti
numbers as providing the next level of topological information.
This paper extends this study to a more elaborate exploration
of the property of Gaussian random fields as measured by the
Betti numbers, paying particular attention to the statistical aspects.
Together with the information contained in Minkowski functionals,
it shows that homology establishes a more comprehensive and
detailed picture of the topology and morphology of the cosmological
theories and structure formation scenarios.

A powerful extension of homology is its hierarchical variant
called persistent homology. The related numerical analysis of
the persistent homology of the set of Gaussian field realizations
presented in this paper is the subject of the upcoming related
article (Pranav et al., in preparation). Our work follows up on early
explorations of Gaussian field homology by Adler & Bobrowski
(Adler et al. 2010; Bobrowski 2012; Bobrowski & Borman 2012).
These studies address fundamental and generic aspects, and are
strongly analytically inclined, but also give numerical results on
Gaussian field homology. Particularly insightful were the presented
results on their persistent homology in terms of bar diagrams.

In addition to the topological analysis of Gaussian fields by
means of genus, Minkowski functionals, and Betti numbers, we
also include a thorough discussion of the computational procedure
that was used for evaluating Betti numbers. The homology compu-
tational procedure detailed in Pranav et al. (2017) is for a discrete
particle distribution. On the other hand, in this paper, we detail the
homology procedure for evaluating the Betti numbers for random
fields whose values have been sampled on a regular cubical grid.
The procedure is generic and can be used for the full Betti number
and persistence analysis of arbitrary random fields. In the case
of Gaussian fields, one may exploit the inherent symmetries of
Gaussian fields to compute only two Betti numbers, from which
one may then seek to determine the third one via the analytical
expectation value for the Euler characteristic. Indeed, this is the
shortcut that was followed in our preliminary study (Park et al.
2013).

This study, along with earlier articles (van de Weygaert et al.
2011; Pranav 2015; Pranav et al. 2017), gives the fundamental
framework and so forms the basis of a planned series of articles
aimed at introducing the topological concepts and language of
homology – new to cosmology – for the analysis and description of
the cosmic mass distribution. They define a program for an elaborate
topological data analysis of cosmological data (see Wasserman
2018, for an up-to-date review of topological data analysis in
a range of scientific applications). The basic framework, early
results, and program are described and reviewed in van de Weygaert
et al. (2011), which introduced the concepts of homology to the
cosmological community. Following this, in Pranav (2015) and
Pranav et al. (2017) we described in formal detail the mathematical
foundations and computational aspects of topology, homology, and
persistence. These provide the basis for our program to analyse and
distinguish between models of cosmic structure formation in terms
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of their topological characteristics, working from the expectation
that they offer a considerably richer, more profound, and insightful
characterization of their topological structure.

Our program follows the steadily increasing realization in the
cosmological community that homology and persistent homology
offer a range of innovative tools towards the description and analysis
of the complex spatial patterns that have emerged from the gravita-
tional evolution of the cosmic matter distribution from its primordial
Gaussian conditions to the intricate spatial network of the cosmic
web seen in the current Universe on Megaparsec scales. In this
respect, we may refer to the seminal contribution by Sousbie (2011);
Sousbie, Pichon & Kawahara (2011) (see also Shivashankar et al.
2016), and the recent studies applying these topological measures to
various cosmological and astronomical scenarios (van de Weygaert
et al. 2011; Park et al. 2013; Chen et al. 2015; Shivashankar et al.
2016; Adler et al. 2017; Makarenko et al. 2017; Codis, Pogosyan &
Pichon 2018; Cole & Shiu 2018; Makarenko et al. 2018; Xu
et al. 2018).

The remainder of the paper is structured as follows: We begin
in Section 2 by providing an introduction to Gaussian random
fields, and the presentation of the set of Gaussian field realizations
that forms the basis of this study’s numerical investigation. A
description of the topological background follows in Section 3.
Gaussian fields and topology are then combined in Section 4 with
a discussion of the GKF, which gives a rigorous formulation of
what is known about mean Euler characteristic and Minkowski
Functionals for Gaussian level sets. This section also explains why,
with topological quantifiers such as Betti numbers, analytic results at
least appear far from trivial to obtain. These sections all describe pre-
existing material, but it is their combination which represents a novel
approach towards characterizing the rich topology of cosmological
density fields. The novel computational aspects of this study are
outlined in detail in Section 5. This is followed by a description
of the model realizations used for the computational studies in
Section 6. Section 7 describes the Betti number analysis of our
sample of Gaussian random field realizations. Subsequently, the
relationship and differences between the distribution of ‘islands’
and ‘peaks’ in a Gaussian random field is investigated in Section 8.
This is followed in Section 9 by an assessment of the comparative
information content of Minkowski functionals and Betti numbers.
The homology characteristics of the LCDM Gaussian field are
discussed in Section 10. Finally, we conclude the paper with some
general discussion in Section 11.

2 G AU SSIAN RANDOM FIELDS: DEFINIT I ONS

In this section, we define the basic concepts of Gaussian random
fields, along with definitions and a description of the models
analysed in this paper. Standard references for the material in this
section are Adler (1981) and Bardeen et al. (1986).

2.1 Definitions

Recall that, at the most basic level, a random field is simply a
collection of random variables, f(x), where the values of x run over
some parameter space X . This space might be finite or infinite,
countable or not. The probabilistic properties of random fields are
determined by their m-point, joint, distribution functions,

P [f1, . . . , fm] df1 . . . dfm, (1)

where the f1, . . . , fm are the values of the random field at m points
x1, . . . , xm.

A random field is called zero mean, Gaussian, if the m-point
distributions are all multivariate Gaussian, so that

P [f1, . . . , fm] df1 . . . dfm (2)

= 1

(2π)N (detM)1/2
× exp

(
−1

2

∑
fi(M

−1)ij fj

)
df1 . . . dfm,

where M is the m × m covariance matrix of the fi, determined by
the covariance or autocovariance function

ξ (x1, x2) = 〈f (x1)f (x2)〉 (3)

via the correspondence

Mij = ξ (xi, xj ). (4)

The angle bracket in (3) denotes ensemble averaging.
It follows from (2) that the distribution of zero mean Gaussian ran-

dom fields is fully specified by second-order moments, as expressed
via the autocovariance function. (From now on we shall always
assume zero mean.) If we now specialize to random fields defined
over RD , D ≥ 1, so that the points in the parameter set are vectors,
we can introduce the notions of homogeneity (or stationarity) and
isotropy. A Gaussian random field is called homogeneous if ξ (�x, �y)
can be written as a function of the difference �x − �y, and isotropic
if it is also a function only of the (absolute) distance ‖�x − �y‖. In
the homogeneous, isotropic, case we write, with some abuse of
notation,

ξ (r) = ξ (‖�r‖) ≡ 〈f (�x)f (�x + �r)〉 . (5)

An immediate consequence of homogeneity is that the variance

σ 2 = ξ (0) = 〈f 2(�x)〉 (6)

of f is constant. Normalizing the autocovariance function by σ 2

gives the autocorrelation function.
In many situations and generally for cosmological applications

of homogeneous random fields, it is more natural to work with the
Fourier transform

f̂ (�k) =
∫

RD

dD �x f (�x) exp(i�k · �x),

f (�x) =
∫

RD

dD �k
(2π)D

f̂ (�k) exp(−i�k · �x) (7)

of both f and, particularly, its autocovariance function ξ . The Fourier
transform of ξ is known as the power spectrumP (�k). Here, and
throughout our study, we follow the Fourier convention of Bardeen
et al. (1986).4 For a random field to be strictly homogeneous and
Gaussian, its Fourier modes f̂ (�k) must be mutually independent,
and the real and imaginary parts f̂r (�k) and f̂i(�k),

f̂ (�k) = f̂r (�k) + if̂i(�k) , (8)

each have a Gaussian distribution, whose dispersion is given by the
value of the power spectrum for the corresponding wavenumber �k,

P (f̂r (�k)) = 1√
2πP (k)

exp

(
− f̂ 2

r (�k)

2P (k)

)
,

P (f̂i(�k)) = 1√
2πP (k)

exp

(
− f̂ 2

i (�k)

2P (k)

)
. (9)

This means that the Fourier phases φ̂(�k),

f̂ (�k) = ‖f̂ (�k)‖ eiφ(�k) , (10)

4also known as ‘Kaiser convention’, personal communication.
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4172 P. Pranav et al.

of the field are random, i.e. if the phases φ̂(�k) have a uniform dis-
tribution, U[0, 2π ]. The moduli |f̂ (�k)| have a Rayleigh distribution
(Bardeen et al. 1986).

Under an assumption of ergodicity, which we will assume
throughout, the power spectrum, denoted by P (�k), is continuous.
For �k ∈ RD this leads to

(2π)D P (�k) δD(�k − �k′) =
〈
f̂ (�k)f̂ ∗(�k′)

〉
, (11)

where δD is the Dirac delta function.
In the case of isotropic f, P is spherically symmetric, and, once

again abusing notation, we write

P (k) = P (‖�k‖) = P (�k) . (12)

The power spectrum breaks down the total variance of f into
components at different frequencies, in the sense that

σ 2 =
∫

RD

dD �k
(2π)D

P (�k) = 2

(4π)D/2
(D/2)

∫ ∞

0
dk kD−1P (k)

= 2

(4π)D/2
(D/2)

∫ ∞

0
d(lnk) kDP (k).(13)

where 
(x) is the Gamma function. From this, one can interpret
kDP(k) – with the addition as the contribution of the power spectrum,
on a logarithmic scale, to the total variance of the density field.
The numerical prefactors can be computed with the help of the
recurrence relation 
(1 + x) = x
(x), and the values 
(1) = 1 and

(1/2) = √

π for the Gamma function. For 2D space, D = 2, the
field variance σ 2 is given by

σ 2 = 1

2π

∫ ∞

0
d(lnk) k2P (k) , (14)

while for 3D space, D = 3, we have

σ 2 = 1

2π2

∫ ∞

0
d(lnk) k3P (k) . (15)

Finally, we make the observation that since the distribution of a
homogeneous Gaussian random field is completely determined by
its covariance function, the distribution of isotropic Gaussian fields
is determined purely and fully by the spectral density P(k).

2.2 Filtered fields

When assessing the mass distribution by a continuous density field,
f (�x), a common practice in cosmology is to identify structures of a
particular scale Rs by studying the field smoothed at that scale. This
is accomplished by means of a convolution of the field f (�x) with a
particular smoothing kernel function Ws(�r; Rs),

fs(�x) =
∫

f (�y) Ws(�y − �x; Rs) d�y . (16)

Following Parseval’s theorem, this can be written in terms of the
Fourier integral,

fs(�x) =
∫

R3

d3�k
(2π)3

f̂ (�k) Ŵ (kRs) exp(−i�k · �x) , (17)

in which Ŵ (kRs) is the Fourier transform of the filter kernel.
From this, it is straightforward to see that the corresponding power
spectrum Ps(k) of the filtered field is the product of the unfiltered
power spectrum P(k) and the square of the filter kernel Ŵ (kRs)

Ps(k; Rs) = P (k) Ŵ 2(kRf ) . (18)

2.3 Excursion sets

The superlevel sets of the smoothed field fs(�x) define a manifold
Mν and consists of the regions

Mν = {�x ∈ M | fs(�x) ∈ [fν, ∞)}
= f −1

s [fν, ∞). (19)

In other words, they are the regions where the smoothed density is
less than or equal to the threshold value fν ,

ν = fν

σ
, (20)

with σ the dispersion of the smoothed density field.
Our analysis of the Betti numbers, Euler characteristic, and

Minkowski functionals of Gaussian random fields consists of a
systematic study of the variation of these topological and geometric
quantities as a function of excursion manifolds Mν , i.e. as a
function of density field threshold ν. In other words, we investi-
gate topological and geometric quantities as function of density
parameter ν.

3 TO P O L O G Y A N D G E O M E T RY: B E T T I
NUMBERS, EULER CHARACTERI STI C, AND
M I N KOW S K I FU N C T I O NA L S

In this section, we first define the cosmologically familiar genus,
Euler characteristic, and the Minkowski functionals. Subsequently,
we give an informal presentation and a summary on the theory
of homology, and the concepts essential to its formulation. For a
more detailed description, in a cosmological framework, we refer
the reader to van de Weygaert et al. (2010), van de Weygaert et al.
(2011), Pranav (2015), and Pranav et al. (2017).

3.1 Euler characteristic and genus

The Euler characteristic (or Euler number, or Euler-Poincaré char-
acteristic) is a topological invariant, an integer that describes aspects
of a topological space’s shape or structure regardless of the way it
is bent. It was originally defined for polyhedra but, as we will see in
the following subsection, has deep ties with homological algebra.

Despite this generality, for the moment we will concentrate on the
2D and 3D settings, since these are the most relevant to cosmology.
Suppose M is a solid body in R3, and we triangulate it, and its
boundary ∂M using v vertices, e edges, and t triangles and T
tetrahedra, all of which are examples of simplices. A vertex is a
0-dimensional simplex, an edge is a 1D simplex, a triangle is a 2D
simplex, and a tetrahedron is a 3D simplex (Vegter 1997; Okabe
2000; Rote & Vegter 2006; Zomorodian 2009; Edelsbrunner &
Harer 2010; Pranav et al. 2017). The triangulation of ∂M is made up
of a subset of the vertices, edges, and triangles used to triangulate
M, and we denote the numbers of these by v∂ , e∂ , and t∂ .

Formulae going back, essentially, to Euler (1758), define the
Euler characteristics of M and ∂M – traditionally denoted as χ (M)
and χ (∂M) – as the alternating sums

χ (M) = v − e + t − T , χ (∂M) = v∂ − e∂ + t∂, (21)

with similar alternating sums appearing in higher dimensions. It is
an important and deep result that the Euler characteristic does not
depend on the triangulation.

A more global, but equivalent, definition of the Euler character-
istic would be to take χ (M) to be the number of its connected
components, minus the number of its ‘holes’ (also known as

MNRAS 485, 4167–4208 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/485/3/4167/5364559 by C
N

R
S - ISTO

 user on 04 July 2023



Topology and geometry of Gaussian fields 4173

‘handles’ or ‘tunnels’; regions through which one can poke a finger)
plus the number of its enclosed voids (connected, empty regions).
For ∂M, or, indeed, any general, connected, closed 2D surface, the
Euler characteristic is equal to twice the number of components
minus twice the number of tunnels. If the surface is not closed, but
has b boundary components, then the number of such components
needs to be subtracted from this difference.

The number of holes of a connected, closed surface S can be
formalized in terms of its genus, g(S). For a connected, orientable
surface, the genus is defined, up to a constant factor, as the maximum
number of disjoint closed curves that can be drawn on S, so that
cutting along them does not leave the surface disconnected. It thus
follows that the genus of a surface is closely related to its Euler
characteristic, via

χ (S) = 2 − 2g(S). (22)

Another result linking the Euler characteristic with the genus is
that for 3D regions M that have smooth, closed manifolds ∂M as
boundary, χ (M) = 1

2 χ (∂M). It thus follows from (22) that

χ (M) = 1
2 χ (∂M) = 1 − g(∂M) . (23)

Both the genus and the Euler characteristic have been an im-
portant focal point of topological studies in cosmology since their
introduction in the cosmological setting (Gott et al. 1986; Hamilton
et al. 1986). Both have been used extensively in the study of models
as well as observational data, with a strong emphasis on the test
of the assumption of Gaussianity of the initial phases of matter
distribution in the Universe, as well as the large-scale structure at
the later epochs. One reason for this is because of the existence
of a closed analytical expression for the mean genus and the Euler
characteristic of the excursion sets of Gaussian random fields. For
excursion sets Mν of a Gaussian field at normalized level ν = f/σ (
Equation 19), the mean Euler characteristic 〈χ (ν)〉 in a unit volume
is given by (Doroshkevich 1970; Adler 1981; Bardeen et al. 1986;
Hamilton et al. 1986):

〈χ (ν)〉 = − λ3

2π2
(1 − ν2)e−ν2/2, (24)

where λ is proportional to the second-order moment 〈k2〉 of the
power spectrum P(k), and thus proportional to the second-order
gradient of the autocorrelation function,

λ2 = 〈‖k2‖〉
3

= σ 2
1

σ 2
=

∫ ∞
0 d3�k k2P (k)∫ ∞

0 d3�k P (k)
, (25)

or, in other words, proportional to the second-order gradient of the
correlation function,

λ2 = − ξ ′′(0)

ξ (0)
. (26)

From this expression, we may immediately observe that the Euler
characteristics has only a weak sensitivity on the power spectrum of
a Gaussian field. It is limited to the overall amplitude, via its second-
order moment, while the variation as a function of threshold level ν

does not bear any dependence on power spectrum. For the purpose
of evaluating the Gaussianity of a field, the Euler characteristic
– and related genus – therefore provide a solid testbed. It is one
of the reasons why the analytical expression of Equation (24)
plays a central role in topological studies of the Megaparsec scale
cosmic mass distribution. Nonetheless, the principal reason is that
it establishes the reference point for the assessment and comparison
of the majority of topological measurements.

Nonetheless, some care should be taken. As we will argue
below, when discussing in Section 4 the general context for such
geometric measures in terms of the GKF, this expression is valid
only under strict conditions on the nature of the manifold Mν . The
expression is only valid in the case where the superlevel set is
a smooth, closed manifold. Additional terms would appear when
the boundary ∂Mν of the manifold has edges or corners. For the
idealized configurations of the cubic boxes with periodic boundary
conditions, such additional terms are not relevant. However, in the
real-world setting of cosmological galaxy surveys, selection effects
may yield effective survey volumes that suffer a range of artefacts.

The Euler characteristic and Genus have been used extensively
in the study of models as well as observational data, with a strong
emphasis on the test of the assumption of Gaussianity of the initial
phases of matter distribution in the Universe, as well as the large-
scale structure at the later epochs.

3.2 Minkowski functionals

Although, as we emphasized in the previous subsection, the Euler
characteristic is an essentially topological concept, it also has
a role to play in geometry, as one of a number of geometric
quantifiers, which include the notions of volume and surface area.
There are D + 1 such quantifiers for D-dimensional sets, and
they go under a number of names, orderings, and normalizations,
including, Minkowski functionals, quermassintegrales, Dehn and
Steiner functionals, curvature integrals, intrinsic volumes, and
Lipschitz–Killing curvatures. Most of the mathematical literature
treating them is integral geometric in nature (e.g. Mecke et al.
1994; Schmalzing & Buchert 1997; Sahni et al. 1998; Schmalzing
et al. 1999) but they are also often computable via differential
geometric techniques, for which Adler & Taylor (2010) is a useful
reference for what we need. We need only Minkowski functions Qj

and Lipschitz–Killing curvatures Lj , which, when both are defined,
are related by the fact that

Qj (M) = j !ωjLD−j (M), j = 0, . . . , D, (27)

and ωk = π k/2
(1 + k)/2) is the volume of a k-dimensional unit ball
(ω0 = 1, ω1 = 2, ω2 = π , ω3 = 4π /3). We will invest a little more
space on these quantities than actually necessary for this paper,
exploiting the opportunity to clarify some inconsistencies in the
ways these terms are used in the cosmological and mathematical
literatures.

A useful way to define these quantities is via what is known
as Steiner’s formula (which is generally quoted in the integral
geometric setting of convex sets) or Weyl’s tube formula (in
the differential geometric setting of regions bounded by pieces
of smooth manifolds, glued together in a ‘reasonable’ fashion).
Writing VD to denote D-dimensional volume, this reads as

VD

({
x ∈ RD : min

y∈M
‖x − y‖

}
≤ ρ

)
=

D∑
j=0

ρj

j !
Qj (M)

=
D∑

j=0

ωD−j ρ
D−jLj (M),

(28)

where ρ is small, and the set in the left-hand side is known as the
tube around M of radius ρ.

In any dimension, it is trivial (set ρ = 0) to check from the
definition (28) that Q0 and LD measure D-dimensional volume. It
is not a lot harder to see that Q1 and 2L2 measure surface area. The
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4174 P. Pranav et al.

other functionals are somewhat harder to define, but it is always
true, and a deep result, that

χ (M) = L0(M) = 1

D!ωD

QD(M) . (29)

In the 3D case of most interest to us, this leaves only Q2 and L1

to be defined. Integral geometrically, if the manifold M is convex,
L1(M) = Q2(M)/2π is twice the caliper diameter of M. The latter is
defined as follows: place M between two parallel planes (calipers),
measure the distance between the planes, and average over all
rotations of M.

A property that will actually be important for us later is the scaling
property that, for any λ > 0,

Lj (λM) = Lj (λx : x ∈ M) = λjLj (M). (30)

As we already noted, in general all the LKCs can also be calculated
via differential geometry and curvature integrals, at least when ∂M
is a smooth stratified manifold. These include, for example, cubes,
for which the interior of the sides, edges, along with the corners,
are all submanifolds of the cube, along with cubes that have been
deformed in a smooth manner. In the future, we will assume that M is
a nice stratified manifold. The simplest situation for describing the
differential geometric approach to Minkowski functionals occurs
when ∂M is actually a smooth closed, manifold, i.e. non-stratified,
and without a boundary. The formulae, for D = 3, are then

Q̃0(M) =
∫

M
d3x, (31)

Q̃1(M) =
∫
∂M

d2S(x), (32)

Q̃2(M) =
∫
∂M

d2S(x) (κ1 + κ2) , (33)

Q̃3(M) = 2
∫
∂M

d2S(x) κ1κ2, (34)

where κ1(x) and κ2(x) are the principal curvatures of ∂M at the
point x ∈ ∂M, and S is surface measure. Equation (34), known as
the Gauss–Bonnet theorem, encapsulates the remarkable fact that a
topological characteristic such as the Euler characteristic of a set,
which is invariant to bending and stretching, is accessible as the
integral of the curvature of its boundary. In Section 4.5, we will
relate these formulae to the standard formulae used in cosmology
to compute the Minkowski functionals.

There are two very important facts to always remember when
using the above four formulae. The first is that different authors
often define the Qj slightly differently, so that factors of 2 and π may
appear in front of the integrals. As long as there is consistency within
a particular paper, this is of little consequence. Our own choice of
constants is dictated by the tube formula of (28) and the simple
connection (27) between the Lipschitz–Killing and Minkowski
functionals. More important, however, is the fact that the simple
expressions in (31)–(34) hold only because of the assumption that
the space M is a smooth, closed, manifold. As we will argue in the
discussion in Section 4 on the GKF, in less idealistic circumstances
the situation is less straightforward. If the boundary ∂M has edges or
corners then there are additional terms, involving curvature integrals
along the edges and angle calculations at the corners. These terms
have typically been ignored in the cosmological literature when
discussing the mean values of excursion sets, leading to results that

are actually approximations, rather than exact formulae, as they
are often presented. This point will be taken up again below, in
Section 4, where, while giving exact results, we shall also show
why the approximations are well justified.

3.3 Homology and Betti numbers

We now return to purely topological descriptions of sets, in essence
breaking up the information encoded in the Euler characteristic to
component, and more informative, pieces.

A stratified manifold, which need not be connected, can be
composed of a number of objects of different topological natures.
For example, in 3D, each of these might be topological balls,
or might have tunnels and voids in them. These independent
objects, tunnels, and voids are different topological components
of a manifold, and have direct relevance to some familiar properties
of the cosmic mass distribution. For example, the distribution and
statistics of independent components as a function of scale or density
threshold is a direct measure of the clustering properties of the mass
distribution. The number of tunnels as well as the changes in their
connectivity, as a function of scale or density threshold, can be an
indicator of percolation properties of the cosmic mass distribution.
Similarly, the topological voids have a direct correspondence with
the vast near empty regions of cosmic mass distribution called the
cosmic voids.

The notions of connectedness, tunnels, and voids, along with their
extensions to higher dimension, have formal definitions through the
notion of homology (see e.g. Munkres 1984). They are associated
with the p-dimensional cycles of a d-dimensional manifold (p =
0. . . d). In dimension 3, a 0-cycle corresponds to a connected object,
a 1-cycle to a loop enclosing a tunnel, and a 2-cycle to a shell
enclosing a void. In general, when properly formulated, a k-cycle
in an object of dimension greater than k corresponds to the k-
dimensional boundary of a (k + 1) dimensional void.

Not all these cycles are independent. For example, one can
draw many loops around a cylinder, all of which are topologically
equivalent. The collection of all p-dimensional cycles is the p-th
homology group Hp of the manifold, and the rank of this group
is the collection of all linearly independent cycles. The rank is
denoted by the Betti numbers βp, where p = 0, . . . , d (Betti 1871).
In dimension 3, the three Betti numbers have simple, intuitive
meanings: β0 counts the number of independent components, β1

counts the number of loops enclosing the independent tunnels, and
β2 counts the number of shells enclosing the independent voids.

A more mathematically rigorous definition of these concepts can
be found in the traditional literature of homology (e.g. Munkres
1984). For more details, in an intuitive and cosmological setting,
see van de Weygaert et al. (2011) and Pranav et al. (2017).

3.3.1 Betti numbers and Euler characteristic

Like the Euler characteristic, the Betti numbers are topological
invariants of a manifold, meaning that they do not change under
systematic transformations under rotation, translation, and defor-
mation. Their relationship to the Euler characteristic is given by
the following formula, which is an algebraic topological version of
the original Euler–Poincaré Formula, in which the summands were
numbers of simplices of varying dimension in a triangulation.

χ = β0 − β1 + β2 − · · · + (−1)dβd . (35)

Yet, even the Betti numbers do not determine a manifold completely.
Two topologically inequivalent manifolds my have equal Betti
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Topology and geometry of Gaussian fields 4175

numbers. One implication of this is that the set of d Betti numbers
contain more topological information than is contained in the Euler
characteristic. Hence, two manifolds may have the same Euler
characteristic, yet be topologically distinctly different in terms of
their Betti numbers. In the context of Gaussian random fields we
will see that this finds its expression of power spectrum sensitivity:
while the variation of the Euler characteristic as a function of density
threshold of a superlevel set is independent of power spectrum, we
find distinct sensitivities of Betti numbers on the power spectrum
(see Section 7 and Park et al. 2013).

3.3.2 Meatball-like, Swiss-cheeselike, and Sponge-like topologies

The description of topology through connected components, tun-
nels, and voids has parallels in the earlier works related to the
topological studies of cosmic mass distribution. Gott et al. (1986)
introduced the terms Meatball-like and Swiss-cheeselike topologies
to describe the dominance of either islands – connected components
– and voids. As is apparent from the terms, Meatball-like topology
refers to sets dominated by mainly isolated objects. Opposite to this
are the Swiss-cheeselike topologies denoting a manifold composed
of a single or a few components with the presence of fully enclosed
cavities much like the inside of cheese. In other words, while a
pattern with Meatball-like topology resembles that of black polka
dots on a white background, the Swiss-cheeselike topology is that
of white polka dots on a dark background (see Gott et al. 1986).
These terminologies are intuitively meaningful, and present a clear
picture in the mind of the reader. Formally, however, they are no
more than a colourful way of indicating the dominant Betti number.
Nevertheless, we will borrow these terms from Gott et al. (1986) to
augment intuitive understanding for the reader.

The topological Meatball-like and Swiss-cheeselike configura-
tions are characteristic for two extreme outcomes of different
cosmological structure formation scenarios. The Meatball-like
topology would involve the formation of high-density islands –
dependent on scale galaxy haloes, clusters, or superclusters – in
a low-density ocean. It was supposed to be the typical outcome
of bottom-up hierarchical formation scenarios such as Cold Dark
Matter cosmologies. The Swiss-cheeselike topologies were more
characteristic of the top-down formation scenarios, which produce
a texture in which low-density or empty void regions appear to
be carved out on an otherwise higher density background. This
would be the result of a formation scenario in which primordial
perturbations over a narrow range of scales would assume a
dominant role, manifesting itself with voids would occupy most
of space (see e.g. van de Weygaert 2002).

Gott et al. (1986) and subsequent studies of the genus or Euler
characteristic of the cosmic matter and galaxy distribution claimed
that its topology is only manifestly Meatball-like at high-density
thresholds, and Swiss-cheeselike at very low-density thresholds,
while it is characteristically Sponge-like at the median density
level. A Sponge-like topology points to a set with a percolating
structure, which signifies the presence of a single or a few connected
components, each marked by the presence of tunnels that percolate
the structure. In this phase, tunnels are the dominant topological
features. Strictly speaking, and usually interpreted as such in
cosmology (see e.g. Gott et al. 1986, 2008), a sponge-like topology
means that at median density level (which for the symmetric
Gaussian fields corresponds to the mean density level ν = 0), at
which high- and low-density regions each take up 50 per cent of
the volume, the high-density regions form one multiply connected

region while the low-density regions also form one connected region
that is interlocking with the high-density region (Gott et al. 2008).
In other words, in a pure Sponge-like topology there is only one
underdense void region and only one overdense region, each of
these evidently characterized by an irregular and indented surface
and by numerous percolating alleys or tunnels. In other words, these
claims suggest that Sponge-like topologies correspond to one where
the Betti numbers β0 = 1 and β1 = 1 at the median density. We will
soon see that the reality is slightly more complex.

For a visual appreciation of the different topological identities,
Figure 1 presents the isodensity surfaces of a simulated Gaussian
random field over a cubic region for three different density thresh-
olds ν = √

3, 1, 0, and for two different Gaussian fields with a
power-law power spectrum, namely the n = 1 and the n = −2
models. The left-hand column presents the contour surfaces for
the n = 1 model, the right-hand column the contour surfaces for
the n = −2 model. By means of enclosing translucent spheres
we highlight a typical tunnel, and we highlight isolated objects by
means of an enclosing green translucent sphere. The visualizations
in Figure 1 immediately reveal the considerable contrast in topology
between the different Gaussian field realizations, most evidently
when assessed at around the mean density level ν = 0. While both
are Sponge-like at around this threshold, we do note some stark
differences. For the n = 1 model, the topology is predominantly
sponge-like, with a dominant presence of short loops, most of which
are like indentations of a single, large connected surface. By contrast
the topology of the n = −2 model is a visible mixture of loops and
as well as isolated islands. In general, the overall topology consists
of a mixture of the various topological components, with different
mixing fractions for Gaussian fields with different power spectra.

It is at this point that we may appreciate the increased information
content of Betti numbers, as opposed to the more limited topological
characterization by the Euler characteristic or genus only. In the
context of homology, we can directly relate terms like Meatball-like,
Swiss-cheeselike, or Sponge-like topology to a more quantitative
characterization in terms of the relative values of β0, β1 and β2.
The situation where the β0 assumes the vast share of the topological
signal is the Meatball-like topology of Gott et al. (1986). The
opposite situation of a dominant β2 signal is that of the Swiss-
cheeselike topology, while a Sponge-like topology corresponds
to the entire field divided into a low number of overdense and
underdense regions, and thus low values for β0 and β2, always in
combination with a large value for β1, corresponding to the tunnels
and loops that form indentations of these connected regions.

We refer to Section 7 for a considerably more quantitative
evaluation of the relative contributions of topological features in
terms of the corresponding Betti numbers β0, β1, and β2.

4 TH E G AU S S I A N K I N E M AT I C F O R M U L A

As mentioned above, one of the main reasons that the Euler
characteristic, genus, and the Minkowski functionals have played
such a useful role in cosmology is that there are exact, analytic,
formula for their expected values, when the characteristics that are
being computed are generated by the superlevel sets of Gaussian
random fields. These formulae are old, going back to Doroshkevich
(1970) for a simple 2D case, with the cosmological literature
generally relying mainly on Adler (1981) and Bardeen et al. (1986)
for full results. Over the last decade or so, major extensions of
these formulae have been developed, going under the name of the
Gaussian kinematic formula, or, hereafter, GKF. The GKF, in one
compact formulae, gives the expected values of the Euler charac-
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4176 P. Pranav et al.

Figure 1. Isodensity surfaces denoting the structure of the field for three different density thresholds ν = √
3, 1, and 0, for the n = 1 and the n = −2 models.

The left-hand column presents the isodensity surfaces for the n = 1 model and the right-hand column presents the contour surfaces for the n = −2 model.
Examples of typical tunnels are enclosed in translucent red spheres; examples of typical isolated islands are enclosed in green spheres. The topology of the
contour surfaces shows a dependence on the choice of the power spectrum, as well as the density threshold.
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Topology and geometry of Gaussian fields 4177

teristic (and so genus), all the Lipschitz–Killing curvatures (and so
Minkowski functionals) described earlier as well as extensions of
them, for the superlevel sets (and their generalizations in vector-
valued cases) of a wide class of random fields, both Gaussian and
only related somehow to Gaussian, and both homogeneous and non-
homogeneous. The parameter sets of these random fields are also
very general, and cover all examples required in cosmology, without
any need to ignore boundary effects.

We do not actually use the GKF in this paper, since later
on we shall be more concerned with Betti numbers than Euler
characteristics or Minkowski functionals, and, unfortunately, these
are not covered by the GKF. In fact, for reasons we shall explain
later, there is no detailed statistical theory for them, which is why
this paper is mainly computational. Nevertheless, since most of the
literature around the GKF is highly technical differential topology,
we take this opportunity to discuss the GKF in a language that
should be more natural for cosmology. Our basic references are
Adler & Taylor (2010) for all the details, and Adler & Taylor (2011)
and Adler et al. (2018) for less detailed, but more user-friendly,
treatments.

4.1 The GKF

The first component of the GKF is a D-dimensional parameter
space M, which is taken to be a C2 Whitney stratified manifold. As
mentioned earlier, this is a set made out of glued together pieces,
each one of which is a submanifold of M, along with rules about
how to glue the pieces together. We group all the k-dimensional
submanifolds together, and write the collection as ∂Mk , k = 0, . . . ,
D. For example, if M is a 3D cube, then ∂M3 is the interior of the
cube, ∂M2 contains the interiors of its six sides, ∂M1 collects the
interiors of the eight edges, and ∂M0 is the collection of the eight
vertices. In general, we write

M =
D⊔

k=0

∂Mk, (36)

where the union is of disjoint sets. The parameter space M could
be a subset of a Euclidean space, or a general, abstract, stratified
manifold. To the best of our knowledge, the Euclidean setting is (so
far) the only one used in cosmology.

The second component of the GKF is a twice differentiable,
constant mean, Gaussian random field, f : M → R, with constant
variance. There is no requirement of stationarity or isotropy, only
of constant mean and variance. For convenience, we take these to
be 0 and 1, respectively. Changing them in the formulae to follow
involves nothing more than addition, or multiplication, by constants.
An extension of the second component, which is crucial for getting
away from the purely Gaussian setting, is to take d ≥ 1 independent
copies, f1, . . . , fd of f, and we write �f = (f1, . . . , fd ) for the vector-
valued random field made up of these as components.

The third, and final, component is a set H ⊂ Rd , called a hitting
set. In most of the cases of interest to cosmology, d = 1 and H =
[ν,∞) for some ν.

The aim of the GKF is to give a formula for the expectations of
geometric and topological measures of the excursion sets

AH ≡ AH

(
�f , M

)
=

{
x ∈ M : �f (x) ∈ H

}
. (37)

In the particular case that d = 1, so that f is real-valued, and H is
the set [ν, ∞), we are looking at super level sets of f, and write

Aν ≡ Au

(
�f , M

)
= {x ∈ M : f (x) ≥ ν}. (38)

In order to formulate the GKF, we need to revisit one definition and
add an additional one. Recall the Lipschitz–Killing curvatures of
(28), which, together with the Minkowski functionals, we chose to
define via a tube volume formula. This definition is adequate for a
Euclidean set, but the most general version of the GKF works on
abstract stratified manifolds. In that case the most natural definition
of the Lipschitz–Killing curvatures is not via a tube formula, but
rather via curvature integrals akin to Equations (31)–(34). These
curvatures will now involve the Riemannian curvatures and second
fundamental forms of all the submanifolds in all the ∂Mk , and the
Riemannian metric underlying all these turns out to be one related
to the covariance function of the random field. All of this is beyond
the scope of this paper. Nevertheless, although we shall concentrate
on stationary random fields on subsets of Euclidean spaces, for
which the decomposition (Equation 36) will still be relevant, for the
remainder of this paper, it is worthwhile remembering that this is
but a small part of a much larger theory.

The remaining definition is of a Minkowski-like functional
which, instead of measuring the size of objects, measures their
(Gaussian) probability content. To define it, let �X be a vector of
d independent, identically distributed, standard Gaussian random
variables, and, for a nice subset (e.g. locally convex, stratified
manifold)H ⊂ Rd , and sufficiently small ρ > 0, consider the Taylor
series expansion

Pr

{
X ∈

{
x ∈ Rd : min

y∈H
‖y − x‖

}
≤ ρ

}
=

∞∑
j=0

ρj

j !
Md

j (H). (39)

The coefficients, Md
j (H), in this expansion, due to Taylor (2006),

are known as the Gaussian Minkowski functionals of H, and play a
similar role to the usual Minkowski functionals, with the exception
that all measurements of size are now weighted with respect to
probability content.

In dimension d = 1, with H = [ν, ∞), the M1
j (H) take a

particularly simple form, and it is easy to check from a Taylor
expansion of the Gaussian density that

M1
j ([ν,∞)) = Hj−1(ν)

e−ν2/2

√
2π

, (40)

where, for n ≥ 0, Hn is the n-th Hermite polynomial,

Hn(x) = n!
�n/2�∑
j=0

(−1)j xn−2j

j ! (n − 2j )! 2j
,

and, for n = −1, we set

H−1(x) =
√

2πex2/2�(x). (41)

where

�(x) = 1√
2π

∫ ∞

u

e−x2/2 dx (42)

is the Gaussian tail probability.
We now have all we need to define the GKF, which is the result

that, under all the conditions above, and some minor technical
conditions for which Adler & Taylor (2010) is the best reference,

〈Li (AH(f , M))〉 =
D−i∑
j=0

[
i + j

j

]
(2π)−j/2Li+j (M)Md

j (H), (43)

where the combinatorial ‘flag coefficients’ are defined by[
n

j

]
=

(
n

j

)
ωn

ωn−j ωj

, (44)
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4178 P. Pranav et al.

where ωm is the volume of the unit ball in Rm:

ωm = πm/2


( n
2 + 1)

, (45)

i.e. ω1 = 2, ω2 = π , and ω3 = 4π /3. (Note that all Lj for j > D are
defined to be identically zero, so that the highest order Lipschitz–
Killing curvature in Equation 43 is always LD(M.)

All this is very general. The parameter space M might be an
abstract stratified manifold, and the Lipschitz–Killing curvatures on
both sides of the GKF might be Riemannian curvature integrals. On
the other hand, the Gaussian Minkowski functionals are independent
of the structure of the random field, and dependent only on the
structure of the hitting set H. To see how this result works in
simpler cases, we look at some more concrete examples.

4.2 Examples: rectangles, cubes, and spheres

To start, we will take f to be a mean zero Gaussian random field on
D-dimensional Euclidean space and allow a little more generality,
with possibly general variance

〈f 2(x)〉 = σ 2. (46)

To make the formulae tidier, we will also assume that f has a
mild form of isotropy, in that the covariance between two partial
derivatives of f, in directions �v1 and �v2, is equal to λ2〈�v1, �v2〉; viz., it
is proportional to the usual Euclidean product of the directions. This
will be the case, for example, if f is homogeneous and covariance
function has a Taylor series expansion at the origin of the form

ξ (x) = σ 2 − 1
2 λ2σ 2‖x‖2 + o(‖x‖2) . (47)

Isotropy implies this, but we are actually assuming far less. This
requirement implies that λ2 is the variance of any partial derivative
of f, and that this variance is independent of the direction in which
the derivative is taken. In the homogeneous, isotropic case (see
Equation 25 for the specific 3D case),

λ2σ 2 = − 1

D

D∑
j=1

∂2ξ (x)

∂x2
j

∣∣∣
x=0

= 〈‖�k‖2〉
D

ξ (0) , (48)

where the partial derivative can be taken in any of the D directions.
Thus λ2 can be found directly from the covariance function or,
equivalently, as the second spectral moment.

For our first example, let M be the D-dimensional rectangle
MRec = ∏D

j=1[0, mi]. The usual, Euclidean, Lipschitz–Killing cur-
vatures of M will then be

LE
j (MRec) =

∑
mi1 · · · mij , (49)

where the sum is taken over the

(
D

j

)
different choices of

subscripts i1, . . . , ij, and the additional superscript E is to emphasize
the Euclidean nature of the Lipschitz–Killing curvatures. The
corresponding Minkowski functionals are just products of reordered
Lipschitz–Killing curvatures, as in Equation (27). The Riemannian
Lipschitz–Killing curvatures needed for substitution in the GKF are
then given by

Lj (MRec) = λjLE
j (MRec) . (50)

Let Ok denote the collection of all

(
D

k

)
k-dimensional faces of

MRec which include the origin. The k-dimensional volume of a face
J ∈ Ok is written as |J|. Then replacing the Riemannian Lipschitz–
Killing curvatures in the GKF by the Euclidean ones, for this case

Figure 2. A mean Euler characteristic curve for a Gaussian field over a 3D
cube of limited size. Notice the substantial difference with the conventionally
known and expected symmetric curve (see Equation 29). The latter forms
the asymptotic situation for a very large sample size T and a relatively
‘quiet’ field f within that volume. In a cosmological context this means that
the symmetric curve can only be used as a reference for a cosmic volume
that is sufficiently large and represents a fair sample of the cosmic mass
distribution (see the text for details).

the GKF reads as follows.

〈LE
i (Aν)〉

= e−ν2/2σ 2
D−i∑
j=0

[
i + j

j

]
λj

(2π)(j+1)/2
Hj−1

( ν

σ

)
LE

i+j (M). (51)

It is easy to rewrite this in terms of Minkowski functionals, when it
becomes the slightly less elegant formula

〈Qi (Aν)〉

= e−ν2/2σ 2
i∑

j=0

[
D + j − i

j

][
i

j

]
ωjj !λj

(2π)(j+1)/2
Hj−1

( ν

σ

)
Qi−j (M).

(52)

To get a better feel for this Equation, let us look the mean value of
the Euler characteristic 〈χ (M)〉, i.e. of the zeroth Lipschitz–Killing
curvature L0(M)R, in the cases D = 2 and D = 3, taking M to be a
square or cube of side length T, and setting σ 2 = 1 for simplicity.
In the 2D case, we obtain

〈χ (Aν)〉 =
[

T 2λ2

(2π)3/2
ν + 2T λ

2π

]
e

−ν2
2 + �(ν). (53)

In 3D, for the mean Euler characteristic (Equation 51) yields, again
for σ 2 = 1,

〈χ (Aν)〉 =
[

T 3λ3

(2π)2
(ν2 − 1) + 3T 2λ2

(2π)3/2
ν + 3T λ

2π

]
e

−ν2
2 + �(ν).

(54)

Figure 2 gives an example, over the unit cube, with λ = 880
(see Equation 48). It is clear that the Euler characteristic curve
in Figure 2 differs substantially from the more conventionally
known symmetric curve specified by Equation (24). As may be
inferred from Equation (54), the symmetric curve only represents a
sufficiently valid asymptotic limit if the sample size T is large and
the field within this volume is relatively ‘quiet’. In a cosmological
context this means that the symmetric curve can only be used
as reference for a cosmic volume that is sufficiently large and
represents a fair sample of the cosmic mass distribution. This is
still a relatively unknown fact in cosmological applications.
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Topology and geometry of Gaussian fields 4179

Similar expressions as Equation (54) hold for the mean values of
all the Lipschitz–Killing curvatures and Minkowski functionals of
excursion sets.

There is an important point that one should note about these
formulae, which, while obvious in the simplest cases such as in
Equation (51) are actually general phenomena. All of these formula
contain obvious, or sometimes hidden, power series expansions. In
the simple case of Equation (51) there are three such series. The
most obvious one is in the size of the cube, as expressed through
the side length T. If T is large, then the first term, in T3, is dominant.
The opposite is true if T is small. Overall, one can, correctly, relate
to the coefficients of the powers of T as expressions affected by the
behaviour of f in the interior of M, then on its boundary, and so forth.
There is also an expansion in the second spectral moment, λ2. The
larger this moment, the rougher will be the field f, and this will lead
to large Lipschitz–Killing curvatures and Minkowski functionals.
In the case of the general GKF (43) in which the Lipschitz–Killing
curvatures are all Riemannian quantities, the measurements of the
various ‘sizes’ of M involve a delicate combination of both the
‘physical’ size and shape of M, along with the roughness of f in
different regions. Nevertheless, the same general interpretation of
these expansions still holds. The final expansion is in the height
parameter ν. Clearly, as ν becomes large, the first term in the GKF
– the one associated with the volume LD – is the dominant one.

The last two paragraphs are important for applications of the
GKF. For example, while the formulae of this subsection will look
vaguely familiar to integral geometers, they probably look unusually
complicated to a reader familiar only with the cosmology literature.
We will explain the differences in Section 4.5, but first briefly
mention how to use the GKF for non-Gaussian random fields.

4.3 Gaussian related random fields and the GKF

Although the GKF is about Gaussian random fields, the way it is
formulated, in terms of vector values fields and the general hitting
set H, allows it to also treat a certain class of non-Gaussian random
fields as well. The class, while somewhat limited, turns out to be
broad enough to cover many, if not most, statistical applications of
random fields.

To be more precise, we shall call a random field g : M → Rd

a Gaussian related, Rd -valued, random field if we can find a
vector-valued Gaussian random field, �f : M → RD , satisfying all
the conditions of the GKF, and a function F RD → Rd, such that �g
has the same multivariate distributions as F ( �f ).

In the trivial case that D = 1, or, in general D = d and F is
invertible, then the corresponding Gaussian related process is not
much harder to study than the original Gaussian one, since what
happens at the level u for �f is precisely what happens at the uniquely
defined level F−1(u) for �g. In the more interesting cases in which F is
not invertible, �g = F ( �f ) can provide a process that is qualitatively
different to �f . Three useful examples are given by the following
three choices for F, where in the third we set D = n + m.

D∑
1

x2
i ,

x1
√

D − 1

(
∑D

2 x2
i )1/2

,
m
∑n

1 x2
i

n
∑n+m

n+1 x2
i

. (55)

The corresponding random fields are known as χ2 fields with D
degrees of freedom, the T field with D − 1 degrees of freedom,
and the F field with n and m degrees of freedom. These three
random fields all have very different spatial behaviour, and each is
as fundamental to the statistical applications of random field theory.
In note of these three cases, as in general for a Gaussian related

random field, there is no simple point-wise transformation which
will transform it to a real-valued Gaussian field.

Note that for a Gaussian-related field �g the excursion sets AH
can be rewritten as

AH(�g, M) = AH(F ( �f ), M) = AF−1(H)( �f , M).

Thus, for example, the excursion set of a real-valued non-
Gaussian g = F ( �f ) above a level u is equivalent to the excursion
set for a vector-valued Gaussian �f in F−1([u,∞)) ∈ RD . Conse-
quently, as long as F is smooth enough, expressions for the mean
Lipschitz–Killing curvatures of �g follow immediately from the
GKF, once one knows how to compute the corresponding Gaussian
Minkowski functionals. This can be easy or hard depending on the
form of F. Examples are given in Adler & Taylor (2010, 2011) and
Adler et al. (2018) .

4.4 Non-homogeneity

Before turning to the connections between the GKF and related
geometric results in the cosmology literature, we add a brief
comment about computing the Lipschitz–Killing curvatures in the
non-homogeneous setting. As mentioned above, the Lipschitz–
Killing curvatures, in general, implicitly incorporate information
on the variance structure of the random field f. To see how this
works, take M to be a subset of RD , retain the assumptions of zero
mean and constant unit variance, and write the (two-parameter)
covariance function of f as

ξ (x, y) = 〈f (x)f (y)〉. (56)

Define a matrix-valued function �(x) = (λij(x))i, j = 1, . . . , D of
second-order spectral moments by

λij (x) = 〈
kikj

〉 = − 1

ξ (0)

∂2ξ (x)

∂xi∂xj

∣∣∣
x=0

. (57)

In terms of the previous notation for the isotropic case, with second
spectral moment λ2, we have λ2 = λii(x), independent of i and x,
and λij ≡ 0 when i �= j. In the homogeneous, but non-isotropic, case,
the matrices �(x) may be a general covariance matrix, but will be
independent of x.

It turns out that this is all that one needs to compute the leading
Lipschitz–Killing curvature in the general case, where we have

LD =
∫

M

√
det(�(x)) dx. (58)

If M has a smooth boundary, then the next Lipschitz–Killing
curvature can be calculated as a surface integral of a (Riemannian)
curvature function, although the integrating measure is a little
complicated. An easy case is that of 2D M, in which case if we
first parametrize ∂M by a C2 function γ : [0, 1] → R2, we have

L1 = 1

2

∫ 1

0

√(
dγ (t)

dt

)T

�(γ (t))
dγ (t)

dt
dt . (59)

For full details of the general case see Adler & Taylor (2010), and
some specific worked cases in Adler, Subag & Taylor (2012); Adler
et al. (2018).

In many cases, it is possible to avoid analytic computation of the
Lipschitz–Killing curvatures, and simply estimate them from data.
Differing approaches to this can be found in Adler et al. (2017);
Schwartzman et al. (); Taylor & Worsley (2007).
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4180 P. Pranav et al.

4.5 Cosmology: approximations and boundaries

For the reader familiar with the cosmological literature on mean
Euler characteristics and mean Minkowski functionals, much of the
discussion will probably seem unfamiliar and perhaps unnecessarily
complicated. There are three reasons for this. The first is that
cosmology has typically worked under assumptions of homogeneity
and isotropy, and we have already seen that in this case the
Lipschitz–Killing curvatures are considerably simpler than in the
general case. The second reason lies in the fact that there are only
two main examples in cosmology: the 2D sphere, for CMB studies,
and subsets of R3, for the Megaparsec galaxy and matter density
studies. Under the restrictions of homogeneity and isotropy for these
two cases, a general theory seems superfluous.

The third reason, however, is not so obvious, and is relevant to
both of these parameter spaces. The fact is that the CMB is not
observed over the full sky, typically as a result of interference from
bright foreground objects, such as our own galactic disc and bright
point sources. Thus the parameter space M in these cases is an, often
complicated, subset of the sphere, with a convoluted boundary.
Similarly, the data on the large-scale galaxy and matter density
are estimable only over sectors of the 3D universe that have been
covered by observational surveys. Nearly without exception these
are limited in terms of sky coverage and include objects only out to a
certain distance. Also, they tend to suffer from incompleteness, and
usually involve similar foreground issues such as the obscuration
by the gas and dust in the disc of our own Galaxy along the zone of
avoidance. In this case, M is a compact 3D region with a complicated
boundary and which, in fact, may not even be connected.

In other words, the boundary terms, which even in the homo-
geneous, isotropic case, make the GKF so complicated, cannot be
ignored in exact computations. A simple way out of this conundrum
is to replace all the measures described above with dimensionless,
‘normalized’ measures. For example, rather than computing the total
Euler characteristic χ (Aν(f ,M)) of a superlevel set, one works with
|M|−1χ (Aν(f , M)), where LD(M) = |M| is the volume, or surface
area, of M, giving a ‘per unit volume’ notion of Euler characteristic.
The effect of this normalization on the GKF is minimal. All terms,
on both the right and left of the GKF, are similarly normalized.
Working then on the implicit assumption thatLD(M)/Lj (M) is small
for large M, the GKF of Equation (43) leads to the approximation〈

1

|M|Li (AH(f , M))

〉
≈

[
D

i

]
(2π)−(D−i)/2 Md

D−i(H), (60)

while the simpler, Euclidean examples (51) and (52), in which f is
real valued, become〈

1

|M|L
E
i (Aν)

〉
≈ e−ν2/2σ 2

[
D

i

]
λD−i

(2π)(D−i+1)/2
HD−i−1

( ν

σ

)
(61)

and〈
1

|M|Qi (Aν)

〉
≈ e−ν2/2σ 2

[
D

i

]
ωii!λi

(2π)(i+1)/2
Hi−1

( ν

σ

)
. (62)

Up to unimportant factors of 2 and π due to slightly different
definitions of the Minkowski functionals, the last of these approxi-
mations is equivalent to the formulae given as exact Equations in,
for example, Tomita (1993) and Schmalzing & Buchert (1997),
following a tradition of ignoring the contributions of boundary
effects going back at least half a century, to Doroshkevich (1970).

Under the – key – assumption that the space M on which the
Minkowski functionals are measured is a smooth, closed, manifold,
their expected values for Gaussian random fields, obtained from
the evaluation of (31)–(34), are given by rather straightforward

analytical expressions. These then coincide with the expected values
of the Minkowski functionals Q̃m per unit volume for 3D manifolds
M defined as the excursion sets at normalized field levels ν = f/σ ,
found by Tomita (1993) and Schmalzing & Buchert (1997):

〈Q̃0(ν)〉 = 1

2
− 1

2
�

(
1√
2
ν

)
, (63)

〈Q̃1(ν)〉 = λ

3π
exp

(
−1

2
ν2

)
, (64)

〈Q̃2(ν)〉 = 2

3

λ2

(2π)3/2
ν exp

(
−1

2
ν2

)
, (65)

〈Q̃3(ν)〉 = λ3

4π2
(ν2 − 1) exp

(
−1

2
ν2

)
, (66)

where λ2 = −ξ ′′(0)/ξ (0), as defined in Equation ( 26), and

�(x) =
∫ x

0
dte−t2

(67)

is the standard error function. These Equations are equivalent to
Equations (31)–(34).

4.6 On mean Betti numbers

Returning now to the main theme of this paper, which revolves
around purely topological concepts such as homology and asso-
ciated quantifiers such as Betti numbers, the question that arises
naturally is whether or not there is a parallel to the GKF, which,
with the exception of the Euler characteristic, is about geometric
quantifiers, for Betti numbers.

Unfortunately, to date the answer is mainly negative, and all
indications are that it will remain that way for a while (see e.g.
Wintraecken & Vegter 2013). While there are some high level,
asymptotic as ν → ∞ results about the Betti numbers of excursion
sets of Gaussian excursion sets in the mathematical literature, these
are a consequence of the simple structure of Gaussian fields at
these levels, and so the information on Betti numbers is minimal
and indirect (see e.g. Section 8). Perhaps most promising is the
alternative approach forwarded in the recent study by Feldbrugge &
van Engelen (2012) and Feldbrugge et al. (in preparation). On
the basis of a graph theoretical approach to Morse theory, they
derived path integral expressions for Betti numbers and additional
homology measures, such as persistence diagrams. While it is not
trivial to convert these into concise formulae such as entailed in
the GKF, the numerically evaluated approximate expression for 2D
Betti numbers turns out to be remarkably accurate.

From a mathematical point of view, the underlying problem is that
while geometric quantities, such as the Lipschitz–Killing curvatures
and Minkowski functionals, can be expressed as integrals of local
functionals, the same is not true for purely topological quantities.
However, even the briefest review of the derivation of the GKF
in Adler & Taylor (2010), or any of its simpler variants over
the past half century, shows that this localization is crucial to the
calculations. The Euler characteristic is the exception that proves
the rule here, since, while topological, Gauss’s Theorema Egregium
expresses it via local characteristics.

Consequently, a study of the systematics and characteristics of
Betti numbers of Gaussian fields cannot be based on insightful
and versatile analytical formulae. Hence, we turn to a numerical
study of their properties, assessing these on the basis of the
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measurements and statistical processing of Betti numbers inferred
from realizations of Gaussian fields. This involves the generation
of a statistical sample of discrete realizations of Gaussian fields in
finite computational (cubic) volumes, described in Section 2. Our
investigations also involve the use of an efficient and sophisticated
numerical machinery to extract the homology characteristics, and
in particular Betti numbers. It is to this computational issue that we
turn in the next section.

5 C O M P U TAT I O N

The formal definition of Betti numbers relate to a continuous field
f (R3) → R. In most practical situations, including ours, the field
or image is represented on a regular cubic grid. It results in a
grid representation of the field by arrays of voxels, the cubic cells
centred at the field sample points. In our study, we have generated
the Gaussian field realizations on a 1283 grid. For exploring the
systematics of Betti numbers as a function of the Gaussian field
properties, we need a large set of 3D Gaussian field realizations.
To facilitate the computation of the topological characteristics of
these, we have defined a procedure consisting of two complementary
algorithms. The first algorithm, detailed in Bendich, Edelsbrunner &
Kerber (2010), defines a formal procedure for computing all Betti
numbers of a discretely sampled image on a cubic grid. While
optimal and exact, it is computationally expensive. We use it to
infer rigorously correct results. In addition, we use it to assure
ourselves of the validity of the results obtained by our Gaussian
field optimization method (Park et al. 2013), a considerably faster
computational procedure that is strictly valid only for Gaussian
fields and limits the calculation to two Betti numbers. The latter
exploits the intrinsic symmetries of Gaussian fields, in conjunction
with the unique circumstance of knowing the analytical expression
for the genus of isodensity surfaces of a Gaussian field (Adler 1981;
Bardeen et al. 1986; Weinberg, Gott & Melott 1987).

Specifically, first we compute the number of isolated islands
by counting the number of isolated hot-spots (areas with positive
contours as the boundary). Subsequently, we compute the Euler
characteristic by evaluating the local curvature and invoking the
Gauss–Bonnet theorem to relate it to the Euler characteristic.
Finally, we note that the distribution of β2 is symmetric to β0. Using
this, we arrive at the value of the first Betti number by invoking the
Euler–Poincaré formula, which states that the Euler characteristic
is the alternating sum of Betti numbers. Since the zeroth and the
second Betti number, and the Euler characteristic are known a-
priori, finding the first Betti number reduces to a simple exercise
of addition (subtraction). In contrast, in this work, we provide for
methods to compute them in a more generic situation from first
principles. This will be particularly useful in scenarios where the
fields are not symmetric, and little known about their distribution.

5.1 The algorithm

5.1.1 Regular grids and triangulation

The central idea of the algorithm for the homology computation of
Betti numbers of a field ρ sampled on a regular cubical grid is to
construct a triangulation on the sample voxels. The geometric com-
ponents of a triangulation – vertices, edges, faces, and tetrahedra
– define a simplicial complex whose topological characteristics are
equivalent to that of the sampled field. For homology calculations
on the basis of such simplicial complexes, one has access to a range
of efficient algorithms (see e.g. Morozov 2005).

It is not possible to construct a unique triangulation K from a
regular cubical grid of sample voxels. This is because such a cubical
grid suffers from various degeneracies: the corners are shared by
eight voxels, the edges by four and faces by two. The algorithm
solves this by slightly perturbing the regularly spaced grid points
along the space diagonal. It leads to a deformed grid where the
corners are shared by four voxels, the edges by three, and the
faces by two. This transformation defines the elements of the dual
triangulation uniquely – the vertices of this triangulation are defined
by voxel centres, the edges defined by the centres of the voxels that
share a common face, the triangles by the centres of the voxels that
share a common edge, and the tetrahedra by the centres of the voxels
that share a common corner.

5.1.2 Piece-wise linear interpolation

In a second step of the algorithm, the field values at the vertices
in the triangulation are used to interpolate the values on the
higher dimensional simplices, much akin to that used in the DTFE
formalism developed by van de Weygaert & Schaap (Schaap & van
de Weygaert 2000; van de Weygaert & Schaap 2009; Cautun & van
de Weygaert 2011). This results in a continuous simplicial field – i.e.
a field defined on the edges, faces, and tetrahedra of the resulting
simplicial complex – that preserves the topology of the original
density field. Of crucial importance is the fact that the choice of
interpolation – linear, or constant – has no effect on topology. In
this paper we use a piecewise constant interpolation: if τ k(k = 1, . . . ,
i) are the simplices on the boundary of σ , then ρ(σ ) = max [ρ(τ 1),
ρ(τ 2), . . . , ρ(τ i)]. This yields field values on the edges, faces, and
throughout the tetrahedral volumes of the triangulation K.

5.1.3 (Upper star) filtration

For the topology calculation, we assess the homology of a filtration
of superlevel sets of the piecewise linear density field. A filtration is a
nested sequence of subspaces Si of the field sample volume S ⊆ R3,
such that i ≤ j implies Si⊆Sj. This leads to a nested sequence of
subspaces

∅ = S0 ⊆ S1 ⊆ S2 ⊆ . . . ⊆ Sm = S . (68)

While m can take infinitely many values, we constrain it to a finite
number of values by noting that, according to Morse theory, the
superlevel set does not change topology as long as the density level
ν does not pass a critical point. The critical points of the density
function are the minima, maxima, and saddle points. It suffices to
compute homology of any one value of the level set between two
critical points. This is equally true for a smooth field as for the
simplicial linear piecewise field that approximates it, except that
one need to slightly adjust the concept of a critical point in the latter
case. In the study reported here, the subspaces correspond to the
regions where the density value is in excess of the corresponding
density threshold νm.

The Betti numbers are computed for a range of superlevel
sets. Computationally, this is achieved by constructing the upper
star filtration of the simplicial complex. Note that the upper star
filtration, defined for piecewise continuous fields, is the discrete
version of superlevel sets of the corresponding smooth continuous
field. Consider a vertex vi, and the simplices σ k(i = 1, . . . , p)
incident to it. The incident simplices σ k define the star of the vertex.
The upper star of this vertex vi consists of all the simplices that
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have vi as their lowest vertex

St+(vi) = {σ ∈ St vi |x ∈ σ ⇒ ρ(x) ≥ ρ(vi)}. (69)

Computing homology of the superlevel set defined by a particular
field value ν corresponds to computing the homology of the union
of upper stars of all vertices whose field value is greater than or
equal to ν.

5.1.4 Boundary matrix and its reduction

To compute the Betti numbers corresponding to a superlevel set,
the algorithm subsequently proceeds by constructing the boundary
matrix of the union of the upper-star filtration of the vertices
whose value is higher or equal to the superlevel set value ν. A p-
dimensional boundary matrix is a representation where the columns
correspond to p-dimensional simplices and the rows to (p − 1)
dimensional simplices. The (i, j)th element of the matrix is 1 if the
ith simplex belongs to the boundary of the jth simplex. All other
entries are uniformly 0. The boundary matrix is reduced to its Smith
normal form, with a part of the matrix in diagonalized form, and
the rest of it with empty elements.

5.1.5 Betti numbers: rank of the reduced boundary matrix

The pth Betti number is then given by

βp = rank(Zp) − rank(Bp), (70)

where Zp is the null part of the pth boundary matrix and Bp is
the non-zero diagonalized part of the (p + 1)th boundary matrix.
The Betti numbers for subsequent superlevel sets are computed by
incremental addition of simplices in the upper star of the newly
introduced vertices, and updating the boundary matrix as we lower
the density threshold. Finally, a reader inclined to gain a deeper
understanding of these concepts, may refer to Pranav et al. (2017),
where we present the concepts in a greater detail with examples.

6 MO D E L S

From now on we concentrate on Gaussian random fields over
R3, since these are the ones important for the cosmological mass
distribution. In order to see how different spectra impact on the
topological behaviour of these fields, we consider a number of
specific spectra common in cosmological modelling. The first class
of examples are those with power-law spectra.

6.1 Power-law spectra

The power-law power spectra are a generic class of spectra, specified
by the spectral index n, and given by

P (k) = An kn. (71)

We will treat the cases n = 1, 0, −1, and −2. In case when n = 1,
the Harrison–Zel’dovich spectrum is the conventionally expected
spectrum for the primordial density perturbations (Harrison 1970;
Peebles & Yu 1970; Zeldovich 1972). The measured spectrum of
the primordial perturbations is very close to this, with n ∼ 0.96
(Dunkley et al. 2009; Komatsu et al. 2011; Planck Collaboration
XIII 2016). In a cosmological context, we assume that the amplitude
of fluctuations at high frequencies is higher than that at low
frequencies, which means that n > −3. This implies hierarchical

evolution of the subsequently evolving mass distribution, with
small-scale perturbations growing faster than the large-scale ones.

To facilitate comparison between the field realizations we have
normalized our spectra by equating the spectral amplitude at one
particular scale of 8 h−1 Mpc, corresponding to a frequency of kc ≈
0.785 h Mpc−1. Hence, all spectra are set such that all power-law
spectra realizations have

P (kc) = Ank
n
c = A0 = 1. (72)

For a visual appreciation of the impact of these spectra on
the behaviour of the corresponding random field, we turn to the
visualizations in Figure 3. The figure displays panels showing
Gaussian field realizations in thin 2D slices, for power-law spectra
with power-law index ranging from n = 1 to n = −2. Each of the
random field realization has been constructed in a simulation box of
side 128 h−1 Mpc with a grid resolution of 1 h−1 Mpc. The panels in
the left-hand column are smoothed with a Gaussian kernel of scale
Rf = 2 h−1 Mpc, and in the right-hand column with a Gaussian
kernel of scale Rf = 4 h−1 Mpc. The panels clearly show the
increasing dominance of small-scale fluctuations for realizations for
higher spectral indices, while the amplitude of large-scale features
increases towards progressively negative spectral indices. As the
images nicely illustrate, this results in a growing spatial coherence
for fields with a more negative spectral index.

The power spectra themselves are shown in Figure 4. Note that
the spectra shown are the ones measured from the field realizations.
The top left-hand panel shows a realization of the LCDM power
spectrum. The remaining panels show realizations of power-law
power spectra. For these models, there is relatively more power
at the small scales for a higher spectral index in comparison to a
lower spectral index. As a result, the field fluctuates rapidly for high
spectral indices. As the spectral index decreases, the power shifts
towards larger scales. This results in a smoother field with structures
at larger scales.

6.2 LCDM spectrum

The LCDM power spectrum stems from the standard concordance
model of cosmology. It fits the measured power spectrum of the
CMB as well as the power spectrum measured in the nearby large-
scale Universe to high accuracy. The shape of the power spectrum
can be inferred by evaluating the evolving processes through the
epoch of recombination through the Boltzmann Equation (Seljak &
Zaldarriaga 1999). A good numerical fit is given by (Bardeen et al.
1986; Eisenstein & Hu 1999; Hu & Eisenstein 1999)

PCDM(k) ∝
kn

[1+3.89q+(16.1q)2+(5.46q)3+(6.71q)4]1/2 × [ln(1+2.34q)]2

(2.34q)2 , (73)

where

q = k/
, 
 = �mh exp

{
−�b − �b

�m

}
, (74)

�m and �b are the total matter density and baryonic matter density,
respectively, and 
 is referred to as the shape parameter. We have
used the value 
 ∼ 0.21, which forms a reasonable approximation
for the currently best estimates for �b and �m as obtained from the
Planck CMB observations (Planck Collaboration XIII 2016). In our
study, the power spectrum of the LCDM Gaussian field realizations
is normalized by means of σ 8 = 1.0.
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Topology and geometry of Gaussian fields 4183

Figure 3. 2D slices of a single realization of 3D Gaussian random field models investigated in this study. The models are constructed in a simulation box of
side 128 h−1 Mpc with a grid resolution of 1 h−1 Mpc. Subsequently, they are smoothed with a Gaussian kernel of scale Rf = 2 h−1 Mpc. The panels in the
left-hand column show realizations of power-law power spectra with spectral indices n = 1, 0, −1, and −2, smoothed at 2 h−1 Mpc. As we go from positive
to progressively negative spectral indices, the amplitude of large-scale flucutations grows, resulting in structures of larger spatial coherence. The panels in the
right-hand column show the same realizations smoothed at 4 h−1 Mpc.
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Figure 4. The power spectrum P(k), as well as power spectrum per unit logarithmic bin k3 P (k). Graphs are presented for the different spectral indices of the
power-law model (left-hand column), as well as the LCDM model (right-hand column). The power-law spectra are scaled such that different models have the
same variance of the density fluctuations, when filtered with a top hat filter of radius 8 h−1 Mpc.

Locally, the spectrum resembles a power law, with spectral index
neff(k), showing a dependence on the scale k, through the relation

neff (k) = d lnP (k)

d lnk
. (75)

In the asymptotic limit of small and large k, the limits of neff(k)
are well defined. At very large scales, its behaviour tends towards
a power law with index n = 1, as can be seen in the plot. At small
scales, the LCDM power spectrum behaves like a power-law power
spectrum with index n = −3. The effective index of the model
varies steeply between neff ∼ −0.5 to neff ∼ −2.5 for our models.
At the lower limit, the Nyquist mode of the box corresponds to the
scale of galaxies of the size of the Milky Way. At the other end the
fundamental mode of the box corresponds to scales well beyond
which the Universe appears homogeneous.

6.3 Model realizations and data sets

The samples of Gaussian field realizations are generated in a cubic
volume on a finite grid, with periodic boundaries, achieved by
identifying and gluing opposite sides, transforming a finite R3

domain to T3. It concerns field realizations on a grid with N =
1283 grid points. The fields are generated by our (constrained) initial
conditions code (van de Weygaert & Bertschinger 1996). It involves
the generation of 1283 independent Gaussian distributed Fourier
field components f̂ (�ki), and the subsequent inverse FFT transform
to yield the corresponding density field. The FFT automatically
assures a cubic volume field realization with periodic boundary

conditions. Table 1 lists the relevant parameters of the sample of
Gaussian field realizations used in our study.

In effect, the field realizations have the specified power spec-
trum amplitude (Equation 71) between the fundamental mode and
Nyquist mode of the grid, while they are zero for lower and higher
frequencies. Effectively, the realized spectrum is therefore a block
spectrum. For the power-law spectra this circumvents the diver-
gences that beset pure power-law spectra. The cubic sample volumes
have a side of 128 h−1 Mpc with a grid resolution of 1 h−1 Mpc, cor-
responding to a fundamental mode of kfund = 2π/128 h Mpc−1 ≈
0.049 h Mpc−1 and an Nyquist frequency kNyq = 2π/2 h Mpc−1 ≈
3.14 h Mpc−1.

The statistical results that we obtain in our numerical study
of homology and Betti numbers are based on 100 different field
realizations for each tested power spectrum. For each realization
we evaluate Betti numbers, Euler characteristic, and Minkowski
functionals. Subsequently, we average over these 100 realizations.
It is these averages that form the data set which we will subsequently
analyse in Sections 7 until 10.

7 BETTI NUMBER ANALYSI S: 3 D G AU SSIAN
R A N D O M FI E L D S

In this section, we analyse the topological characteristics of the
models in terms of the Betti numbers on the basis of our numerical
study of the homology of our sample of Gaussian field realizations.
The discussion is based on the statistical evaluation of these results.
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Topology and geometry of Gaussian fields 4185

Table 1. Parameters Gaussian field realization data set. The columns specify: (1) class number, (2) name power
spectrum, (3) index power spectrum, (4) number of grid points, (5) number of field realizations, (6) normalization
power spectrum, and (7) normalization wavenumber kc.

Number Power Index n # grid # field Normal kc

spectrum point realizations ( h Mpc−1)

1 LCDM – 1283 100 σ 8 = 1.0 –
2 Power law − 2.0 1283 100 σ 8 = 1.0 0.785
3 Power law − 1.0 1283 100 σ 8 = 1.0 0.785
4 Power law − 0.0 1283 100 σ 8 = 1.0 0.785
5 Power law 1.0 1283 100 σ 8 = 1.0 0.785

The intention of the analysis is an evaluation of the generic
properties of Betti numbers as a function of field power spectrum
and to compare the properties of Betti numbers with the topological
behaviour in terms of the Euler characteristic. To this end, the three
Betti numbers β0, β1, and β2 are computed for superlevel sets
of the (filtered) Gaussian fields, defined by dimensionless density
threshold ν = f/σ . The variation of the Betti numbers as a function of
the threshold ν forms the principal resource for our investigation of
the topological properties of Gaussian random fields. An important
thing to note is that we perform our analyses on periodic cubes,
or equivalently, the manifold is T3, which is without boundary. An
important consequence is that the Euler characteristic curve (and
hence the Betti numbers also), are symmetrized due to the absence
of boundary terms; see Section 4.5 for an explanation on how the
boundary terms affect the Euler characteristic computation.

In an earlier article, we presented a brief investigation of Betti
numbers of Gaussian fields, focusing on their important features
with respect to a comparison with genus statistics (Park et al. 2013).

7.1 Gaussian Betti characteristics: general properties

Figure 5 presents the Betti number curves for a typical realization
of a Gaussian field. For Gaussian fields, β0 and β2 appear to mirror
each other about ν = 0. The number of independent tunnels, in terms
of β1, appears symmetric to itself under reflection about ν = 0. The
symmetries observed in the Betti number curves are a reflection
of the underlying symmetry in the field itself. Because of their
symmetry, an analysis with respect to the islands is also indicative
of the properties of voids.

At ν =∼ ±√
3, the number of isolated islands and voids attain

their maximum. At ν = 0, the number of isolated islands equals
the number of isolated voids, i.e. β0 = β2. It is an interesting
observation that these numbers are not equal to unity, as should
have been the case for a pure Sponge-like topology. This is evident
from the inset where we zoom into the median density threshold
region where β0 and β2 overlap, resulting in small but non-unity
numbers for both islands and voids. At the same threshold, we see
that the number of tunnels/loops reaches a maximum. It signifies
a morphology in which several large interconnected overdense
island and void regions are interspersed with a complex anatomy of
percolating tunnels, a result of the complex mutual intertwining of
these manifolds.

To appreciate the topological characterization, the Betti numbers
clearly provide crucial new insights. By evaluating β0 and β2 at
a given density level, we may assess what the contributions of
the overdense islands and underdense cavities are to the genus
characterization, and in how far tunnels through, and in these
features contribute to the definition of a complex topology. The
symmetric and relatively simple nature of Gaussian fields is helpful

in identifying the connection between Betti numbers, genus, and
overall topological character.

One of the principal topological characteristics of Gaussian fields
is their relative simplicity, in that the three Betti numbers dominate
the topology at different density ranges. In this sense, Gaussian field
are rather unique. In the case of most complex patterns encountered
in nature, the density range over which all three Betti numbers
have significant non-zero values is far larger than that in Gaussian
fields. In this sense, we may consider Gaussian fields to have a
comparatively simple topological structure. Both Figs 5 and 6 reveal
this circumstance.

The left-hand panel of Figure 6 plots the sum of the Betti
numbers in dot-dashed curves, alongside the different Betti numbers
themselves (solid curves). It is clear that for |ν| � 2σ , β0 and β2

dominate the topology for the positive and the negative thresholds,
respectively. In between |ν|� 1σ , β1 is the dominating component.
Similar information can also be gleaned from the right-hand panel,
where we present the fractional Betti numbers, denoting the ratio
of a particular Betti number to the sum of all Betti numbers as
a function of the density threshold. It is evident that the three
Betti numbers dominate different density regimes, albeit with a
substantial range of overlap for |ν| � 2σ .

Characteristic therefore for Gaussian fields is that the topology
at extreme density values is dominated by a single class of features,
cavities, or islands. At very high density levels the topology is
entirely dominated by the islands and thus fully specified by β0. The
topology is predominantly Meatball-like, marked by the presence
of isolated components (or islands). The same is true at very low
density levels, where the topology is entirely specified by β2 and
thus exclusively dominated by cavities, i.e. the central region of
voids. Here the topology is distinctly Swiss-cheeselike.

At more moderate levels, for |ν| � 2, the topology attains an
increasingly Sponge-like character. In these regimes at least two
Betti numbers are needed to describe the topology of the superlevel
manifolds. On the lower density side, the topology is dominated
by β2 and β1. It reflects a pattern of isolated cavities indicating
agglomerates of density troughs, interspersed by tunnels and loops.
On the higher density side, the topological signal consists mostly
of β0 and β1. The corresponding spatial pattern is that of an
agglomerate of isolated islands, infused and punctured by numerous
tunnels. In a relatively narrow density range around the mean
density, for |ν| � 0.1 − 0.2, we even observe the simultaneous
existence of all three topological features, cavities, islands, and
tunnels. In that regime, all three Betti numbers are needed to
quantify the Gaussian field topology.

An interesting aspect of the Gaussian field topology concerns
the role of tunnels. Starting at high-density values and proceeding
towards lower density values, the number of disconnected islands
reaches a maximum at threshold ν = √

3. At a slightly higher

MNRAS 485, 4167–4208 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/485/3/4167/5364559 by C
N

R
S - ISTO

 user on 04 July 2023



4186 P. Pranav et al.

Figure 5. The Betti numbers for the n = −1 model. It is evident that the different Betti numbers dominate the topology in the different density thresholds
regions, and also the Euler characteristic curve. For high thresholds, β0 is the dominant topological feature. For intermediate thresholds, β1 dominates, while
for low thresholds β2 is the dominant topological entity. Inset: The zone of overlap between β0 and β2 curves, at the median density threshold. Both the
quantities are non-unity, indicating that the manifold is not a single connected surface, and hence does not exhibit pure Sponge-like topology.

Figure 6. Figure illustrating the dominance of different Betti numbers in the different density threshold regions. The left-hand panel plots the sum of Betti
numbers for the different thresholds, along side the individual Betti numbers. The right-hand panel presents the ratio of the individual Betti numbers to their
sum as a function of the density threshold.

threshold, ν ≈ 2, we start to see the rapid increase of the β1

curve. This is the result of the formation of ever larger island
complexes by the merger of higher density objects, along with
the emergence of tunnels that permeate their interior and surface.

At intermediate thresholds, |ν| � 1, tunnels become the most
populous topological feature. They gradually attain their maximum
presence at the median density threshold, as nearly all high-density
components have merged into one huge percolating and irregularly
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shaped complex. The surface and interior of the complex is marked
by the presence of a large number of these permeating tunnels.
To follow the entire process in detail, we refer to our description
and discussion of the corresponding persistence diagrams in the
upcoming accompanying paper (Pranav et al., in preparation).

A similar role of tunnels and loops is seen on the low-density
side of the Gaussian field. Starting at the very low densities, from
the β2 curve we note the dominant presence of underdense troughs
and enclosed cavities. The number of independent cavities reaches
a maximum at threshold ν = −√

3. Proceeding towards higher
density values, an increasing number of cavities that were isolated,
start to connect and merge, forming ever larger ‘oceans’. By density
level ν = −2, the merged ocean complexes are accompanied
by a strongly growing presence of loops, signifying a complex
topology. The steep rise of the β1 curve reflects this quantitatively.
Approaching median density levels, nearly all cavities have been
absorbed in one large ocean, whose irregular shape and surface is
reflected in the β1 curve reaching its maximum value.

It is also interesting to assess the topological identity at the
median density level, ν = 0. At that level, we see the presence
of an equal number of islands and cavities. That is, β0 and β2

are equal at ν = 0. Conventionally in the literature, for Gaussian
fields, it is assumed that all overdense regions have merged into one
percolating complex at the median density threshold, interlocked
with one equivalent interlocking underdense ocean. This would
define a pure Sponge-like topology. This has been assumed on
the basis of the analyses of genus curves, e.g. Gott et al. (1986,
1989). However, it remains to be seen whether indeed such an ideal
sponge-like topology exists, even in the case of Gaussian random
fields. Below we will find that, in general, this is not true, with
the topology at median levels determined by a few – disconnected
– overdense complexes, intertwined with a few underdense ones.
The dissection of the genus curve into the contributing Betti curves
reveals this phenomenon, shedding new insights on to this issue.

7.2 Betti number characteristics: dependence on power
spectrum

Having established the generic behaviour of the Betti curves of
Gaussian fields, we investigate their systematic trends and depen-
dence on the power spectrum of the field realizations. One of the
findings that we earlier reported in Park et al. (2013) is that Betti
numbers depend on the shape of the power spectrum. The top panel
of Figure 7 shows the unscaled Betti number curves for the various
power-law models. The bottom-left and the bottom-right panels plot
enlargements of the regions of overlap between (β0, β2) and (β0,
β1), respectively.

The first direct observation is that there is a steep increase of
all three Betti curves, over the entire density range, as the power
spectrum index n increases. That is, the number of topological
features – islands, cavities, and tunnels – is steeply increasing as
the small-scale fluctuations in the density field are more prominent
and have a higher amplitude. This is in line with what would be
expected for Gaussian fields.

For all power spectra, we find that the β0 curve reaches its
maximum at the characteristic density threshold ν = √

3, while the
β2 reaches its maximum at ν = −√

3, and β1 at the mean density
level ν = 0. Also, for all power spectra we find that at ν = 0, the
number of overdense islands is the same as underdense cavities,
i.e. β0 = β2. Furthermore, there is an overlap of the different Betti
numbers in determining the topological identity of the manifold
at different density thresholds. The bottom two panels of Figure 7

substantiate this claim. The number of isolated islands is equal to
the number of isolated voids at ν = 0, and the number of isolated
islands (voids) is equal to the number of isolated tunnels at ν =
1(− 1). This symmetry is related to the fact that the simulations
are realized on the 3-torus, implying that the manifold is without
boundary.

The corresponding scaled Betti curves are shown in Figure 8.
The top panel plots Betti numbers, where each β i of a model is
normalized by the β1 corresponding to that model. The bottom
panel plots the Betti numbers, where each β i is normalized by the
amplitude of β i of n = 0 model. Interestingly, both the figures
present identical shapes for the curves, even though differing in
the normalization procedure (see the vertical axes for values and
units). The amplitudes of β0 (β2) curves compared to that of β1 are
also different for the different normalization procedure. The top-left
and the top-right panels of Figure 9 presents the enlargements of
the relevant regions of overlap between the different scaled Betti
number curves.

7.2.1 Overlap of Betti curves: topological identity

The scaled Betti number curves provide supplementary information
on systematic trends with respect to the relative importance and
prevalence of the various topological features. It allows us to
investigate in how far the observed changes in Betti number curves
affect the range over which we can speak of Meatball-like and
Swiss-cheeselike topology. It also allows us to assess in how far the
Sponge-like appearance at median density range is affected.

All models retain the exclusive Meatball-like topology at high-
density thresholds ν � √

3, i.e. an almost exclusive presence of
isolated islands, and a similar exclusive dominance by cavities
for ν � −√

3, outlining a typical Swiss-cheeselike topology. At
intermediate density range, we notice a few interesting trends as
the spectral index n decreases and large-scale fluctuations attain a
larger prominence in the Gaussian fields. We see a systematically
growing overlap between the various Betti curves.

The β0 and β2 curves become less skewed and hence more
symmetric as the value of n decreases. It means that the number of
these features at |ν| <

√
3 is more comparable to that at the higher

density levels. Instead of a steep falloff of β0 and β2 for |ν| <
√

3
due to the rapid merging of objects and cavities into a single
percolating island and ocean, a relatively large number of them
remain intact over a wider density range. It implies that the presence
of stronger large-scale perturbations goes along with a – relatively
– higher number of disconnected objects and cavities at medium
density values and that these characteristically large-scale objects
and cavities remain independent down to lower density levels. It
is most likely a manifestation of the lower level of clustering in
Gaussian fields with a lower spectral index n.

Also interesting is the fact that as the index n decreases, we start
to see an increasing range of overlap between β0 and β2. In other
words, at |ν| <

√
3 we not only see a relatively larger number of

islands or cavities, there is also the presence – in absolute numbers
– of an increasing number of these that even remain below the mean
density value ν = 0. In terms of β0, from Figure 8, and zoom-ins
in the concerned overlapping regions in Figure 9, we see there are
isolated islands living in large underdense regions. The presence of
a progressively larger number of isolated islands at density levels
below the mean can also be inferred from the fractional Betti number
plots in Figure 10. For the n = −2 model, we find a non-zero β0

for thresholds as low as −2σ . In a sense, it is reminiscent of the
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4188 P. Pranav et al.

Figure 7. Top: Unscaled Betti number curves of Gaussian random fields for the power-law models. The curves are drawn for spectral index n = 1, 0, −1,
and −2, as a function of the dimensionless density threshold ν. β0 and β 2 curves are symmetric to each other with respect to the median density threshold,
but exhibit visible skewness, increasing with increasing spectral index. β1 curve is symmetric to itself with respect to ν = 0, and exhibits no skewness.
Bottom-left: Zoom-in into the region around median density threshold of the top panel shows the small but non-zero contributions from β 0 and β2 , more for
lower spectral indices. The manifold is not strictly Sponge-like in general, but consists of multiple isolated objects as well as enclosed cavities, as opposed to
the expectation of a single percolating overdense region intertwined with a single percolating underdense network of tunnels, for all the models examined.
Bottom-right: Zoom-in into the region of overlap for β 0 and β 1 .

cloud-in-void process identified by Sheth & van de Weygaert (2004)
in their description of the formation of voids in the cosmic mass
distribution. One aspect of this is existence of overdense isolated
haloes (islands) in an overall underdense void region, which would
emanate from precisely the primordial configuration identified here
by the β0 Betti number curve being non-zero at negative density
values ν. The opposite process, void-in-cloud, is reflected in the
increasing presence of β2 at positive density thresholds while the
spectral index n is lower. Such cavities still existing at positive
densities ν may be compared to lakes in a mountain range.

The presence of tunnels also changes as a function of the power
spectrum. Relatively speaking, for decreasing spectral index n, there
is a lower number of tunnels per object at the lower density levels |ν|
< 1 (Figure 10). As tunnels are often forming along with the merging
of islands, the lower number of tunnels may be a consequence of the
relatively large number of islands – and cavities – that did not yet

connect up at these density levels. Interestingly, at higher density
levels of |ν| > 1, there appear to be more tunnels per island or cavity
for lower spectral indices n. At lower density levels, a sizeable
number of these tunnels appear to have filled up and disappeared.
The bottom-left and the bottom-right panels of Figure 9 plot the
value Aeq at which the overlap occurs, and the numbers for the
concerned topological identities are equal, as a function of (n + 3),
where n is the spectral index, in absolute and log units, respectively.

Finally, we may answer the question in how far we can still
describe the topology around the mean density threshold as Sponge-
like. Clearly, as the spectral index n decreases, we see an increasing
presence of islands and cavities at the mean density, going along
with a decreased presence of tunnels. Instead of one connected and
percolating overdense region intertwined with a similarly connected
underdense region, the topological identity of the density field
at median density is one in which more than one disconnected
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Topology and geometry of Gaussian fields 4189

Figure 8. Scaled Betti number curves of Gaussian random fields. The top panel plots Betti numbers, where each β i of a model is normalized by the β1

corresponding to that model (also cf. Park et al. 2013). The bottom panel plots the Betti numbers, where each β i is normalized by the amplitude of β i of the
n = 0 model.

overdense region is filling up space with several similarly shaped
underdense regions. These regions are also marked by irregular,
intricately shaped boundaries, marking a complex intertwining of
each other, involving a large number of tunnels and loops. The
number of disjunct overdense and underdense complexes increases
with decreasing spectral index n. Strictly speaking this is not a
Sponge-like topology, although practically speaking it shares a
similar morphology of a complex convoluted structural pattern.
See Figure 1 for a visualization of the contour surfaces for different
density thresholds for the n = 1 and n = −2 models.

7.3 Spectral scaling properties of Betti numbers

Given the clear dependence of the Betti number curves on the
power spectrum of the Gaussian field, it would be insightful to
evaluate the scaling of descriptive parameters of the Betti curves.
We find that the systematic changes are entirely equivalent for
the β0 and β2 curves. Two aspects that we investigate are the
amplitude and shapes of the Betti number curves. The shapes
are investigated in terms of the skewness and curtosis of the
curves.
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4190 P. Pranav et al.

Figure 9. The top-left and the top-right panels present the enlargements of the density range where scaled Betti number curves of Gaussian random fields
overlap. The curves are drawn for the power-law models as a function of the dimensionless density threshold ν. The bottom-left and bottom-right panels plot
the value of ν at which the overlap occurs as a function of (n + 3), where n is the spectral index, in absolute and log units, respectively.

7.3.1 Scaling of Betti number amplitude with spectral index

The amplitudes of the unscaled Betti numbers depend on the value of
the spectral index n. The trend of the dependence of the maximum
of the Betti number curves on the value of the spectral index is
shown in Figure 11. The amplitude of the Betti numbers, defined
as the maximum of the Betti number curves, approximately follows
an exponential. By fitting

f (n) = A0 exp
{n

τ

}
, (76)

we find a decay parameter τ ≈ 2. Amongst others, it implies
that the amplitude of the Betti number curves decreases roughly
exponentially as the value of spectral index n decreases.

7.3.2 Shape of the Betti curves: skewness and curtosis

The shape of the Betti number curves show a dependence on the
choice of the power spectrum: the Betti number curves become
broader as n decreases, the β0 and β2 curves also appear more
symmetric. To appreciate this optimally, we scale the Betti number
curves. Figure 8 nicely illustrates the systematic changes in width
and asymmetry of the curves as a function of n. The figure also
shows that changes of the Betti number curves on n are nearly
exclusively confined to the range |ν| ≤ √

3.

Quantities that characterize the shape of the Betti number curves
are the skewness μ3 and curtosis μ4, quantifying properties such as
asymmetry and narrowness of the curves. The systematic relation
between these quantities and power-law index is presented in
Table 2. All the quantities exhibit non-zero skewness. Interestingly,
this is also the case for β1, even though examining by eye they
look symmetric for all the models. This is perhaps due to the
influence of the tail of the distribution, where, even though, the
numbers are small, they are not the same for positive and negative
thresholds.

7.3.3 Scaling of Betti number amplitude with Gaussian filter
radius Rg

Figure 12 presents the graphs of the Betti number curves for the
various power-law models, where they are smoothed by a Gaussian
filter radius Rg = 2, 3, 4, and 5 h−1 Mpc. Panels (a) to (d) present the
curves for n = 1, 0, −1, and −2 models, respectively. Within each
panel, the different colours of the curves represent the different
smoothing radii. Panel (e) shows the graph of the amplitude of
the Betti curves as a function of smoothing radius. Curves with
the same colours represent the same model. The dotted curves
are for β1, while the solid and the dashed curves represent β0

and β2, respectively. The curves for β0 and β2 coincide with
each other, indicating that their amplitudes are identical. Panel
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Topology and geometry of Gaussian fields 4191

Figure 10. The fractional contribution of islands, tunnels, and voids to the sum of Betti numbers in all three dimensions for rms threshold range between
(−5σ : 5σ ) for the different power-law models. Top-left: β0/(β0 + β1 + β2) – fractional contribution of islands to the total sum of Betti numbers. Top-right:
β1/(β0 + β1 + β2) – fractional contribution of tunnels to the total sum of Betti numbers. Bottom-left: β2/(β0 + β1 + β2) – fractional contribution of voids to
the total sum of Betti numbers.

(f) presents the same curves as panel (e), but on a logarithmic
scale.

The amplitudes for β0, β1, and β2 scale the same as a function
of the smoothing length Rg. We fit the maximum of the peaks to the
function βmax

i = A0R
−τ
g . The value of the power-law index of the

fit is τ = 3, irrespective of the model.

7.4 Betti numbers and Euler characteristic

The top panel of the Figure 13 presents the Betti curves for the
n = −1 model. The bottom panel of the same Figure presents the
Euler characteristic. The extrema of the three 3D Betti numbers
correspond to the three extrema of the Euler characteristic curve.
Only for large thresholds of |ν| > 3, β0 and β2 are almost equal to
−χ . This is because the absolute value of the Euler characteristic is
very close to the number of excursion sets or peaks in the asymptotic
limit of high-density thresholds (Adler 1981; Bardeen et al. 1986;
Park et al. 2013). For thresholds as large as ν ∼ 2, there is a
significant contribution from β1 to χ .

The left-hand panel of the Figure 14 presents the Betti numbers as
well as the Euler characteristic for the different power-law models.
Note that the different Betti numbers dominate different regions of
the Euler characteristic curve. The magnitude of the amplitude of
the Euler characteristic curve is lower in general compared to the

Betti curves; as an example, for the n = −2 model, this is even
as large as 10–15 per cent. This can be confirmed independently
from the right-hand panel of Figure 10. Similarly, in the right-
hand panel of Figure 14 we see that the amplitude of χ is lower
than the amplitude of β1. The difference becomes larger as the
spectral index decreases. It is an indication of the presence of a
significant number of islands and voids at ν = 0 for lower spectral
indices.

The above observations can be related to the nature of the density
fluctuation field as a function of spectral index. For higher spectral
indices, there is significant power only at smaller scales. This results
in high-density peaks connected by low-density saddles, giving
the field a distinctly spiky appearance. These peaks get connected
before they start forming tunnels and voids, resulting in a clear
cut demarcation of Meatball-like, Sponge-like, or Swiss-cheeselike
topology. As the spectral index decreases, the demarcation diffuses.
As the spectral index decreases, progressively more and more
isolated islands contain additional topological holes of higher
dimensions, at thresholds well before the manifold becomes a singly
connected entity. This is reflected in the broadening and increased
overlap of the Betti number curves, indicating an increase in the
mixture of topology as the spectral index decreases. In contrast,
the Euler characteristic curve does not have this dependence. As
a result, this additional information about the inherent differences
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4192 P. Pranav et al.

Figure 11. Amplitude of Betti numbers as a function of the spectral index (also cf. Park et al. 2013). The curves are fit to an exponential of the form A0 ·
exp n/τ , with τ = 2 ± 0.19.

Table 2. Table listing the skewness and kurtosis values for the Betti curves of the various models.

Skewness Kurtosis
Model β0 β1 β2 β0 β1 β2

n = 1 − 4.583 5.727e−05 4.584 9.134 0.047 9.136
n = 0 − 4.737 − 7.33e−05 4.736 9.546 0.055 9.541
n = −1 − 4.977 − 2.117e−05 4.974 10.260 0.090 10.260
n = −2 − 5.015 − 3.789e−05 5.029 10.764 0.280 10.803

in the topological structure of the various power-law models is not
available from the Euler characteristic curves.

The left-hand panel of Figure 15 shows the unscaled Euler
characteristic curves for the power-law models. The right-hand
panel presents the scaled Euler characteristic curves for the same
models. The scaled curves fall on top of each other, indicating
that the shape of the Euler characteristic curve is insensitive to the
choice of power spectrum. This is unlike the Betti numbers, whose
shapes show a characteristic dependence on the choice of the power
spectrum. The dependence of Euler characteristic on the choice of
the power spectrum is restricted to the expression for amplitude
through the variance term.

The above remarks lead us to conclude the following. In general,
only for positive spectral indices, it is feasible to describe the
topology of the field as either Meatball-like, or Sponge-like or Swiss-
cheeselike. For negative spectral indices, the demarcation is not
clear, except near the tails of the density distribution. The topology
is an increasing mixture of the three types as the spectral index
decreases. It is clear that the Betti numbers add extra information
to the description of topology than that by the Euler characteristic.

7.5 β- and ζ -tracks

Another means of gleaning the topological information content
from the Betti numbers is to visualize them assuming they define

coordinates in a 3D space of (β0, β1, β2). The left-hand panel of
Figure 16 presents such Betti tracks for a typical Gaussian field
realization. There are more ways to exploit the additional infor-
mation content of the Betti numbers. Since the Euler characteristic
is the alternating sum of Betti numbers, χ = β0 − β1 + β2, this
can be interpreted as the projection of (β0, β1, β2) on to the line in
direction (1,-1,1). Following this geometrical interpretation, we may
identify combinations of the Betti numbers that are orthogonal to the
line (1,-1,1), and thus provide independent additional topological
information to the Euler characteristic:

ζ1 = β0 − β2

ζ2 = β0 + 2β1 + β2

= (β0 + β1) + (β1 + β2), (77)

i.e. the vectors (1,0,−1), (1,2,1), and (1,−1,1) form an orthogonal
system. By looking at the distribution of (ζ 1, ζ 2) (ζ -tracks from
now on) in the plane defined by axes (1,0,−1) and (1,2,1) we get an
appreciation for the supplementary topological information yielded
by Betti numbers, in addition to the Euler characteristic. The right-
hand panel of Figure 16 presents the curves for ζ -track for a typical
field realization. We notice that for high-density thresholds up to ν

∼ 2, ζ 1 and ζ 2 coincide with each other, but show different trends
for lower thresholds. Note that the β- and the ζ -tracks may provide
additional tools when model discrimination is the primary focus.
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Topology and geometry of Gaussian fields 4193

Figure 12. Dependence of the amplitude of Betti number curves on the filter radius Rg. Panels (a) to (d): Betti number curves for the n = 1, 0, −1, and −2,
respectively, where for each model, the field is smoothed by a Gaussian kernel of varying radii Rg = 2, 3, 4, and 5. Panel (e): Graph presenting the amplitude
of the Betti curves as a function of smoothing radius. Curves with the same colours represent the same model. The dotted curves are for β1, while the solid and
the dashed curves represent β0 and β2, respectively. Panel (f): Same as panel (e), but on a logarithmic scale.

7.5.1 Spectral dependence of β- and ζ -tracks

Figure 17 presents the β- and ζ -tracks for the various models.
The left-hand panel plots the β-tracks and the right-hand panel

plots the ζ -tracks for the models. Recall that the β-tracks trace the
quantity (β0, β1, β2) in a coordinate where the axis represent the
individual Betti numbers. Similarly, ζ 1 and ζ 2 (see Section 7.5 for
definitions) are various combinations of the Betti numbers and pro-
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Figure 13. Betti numbers and Euler characteristic for a single model. Different topological entities dominate the different density threshold ranges in the Euler
characteristic curve.

vide orthogonal information compared to the Euler characteristic.
It is evident from the left-hand and the right-hand panels of the
figure that both the quantities show a dependence on the spectral
index.

8 PE A K S V E R S U S I S L A N D S

There is a telling distinction between peaks such as described by
Bardeen et al. (1986), and the islands of our definition. A peak is
the location of a local maximum of the function. An island is a
single connected object. In general, an island may be marked by
many peaks. However, at the higher density thresholds, when no

saddle points have yet been introduced in the manifold, there will
be necessarily one peak per island. As the threshold is lowered, the
number of peaks per island increases. As this happens, the manifold
starts developing complex connectivity. This happens because the
peaks merge through saddles, such that they are a part of a single
connected component. As the density threshold lowers still further,
such a connected component may exhibit more topological features,
like a hole.

Figure 18 illustrates the above-mentioned phenomenon in 2D.
The left-hand panel illustrates two separate peaks. They are com-
posed of a single maximum. However, since they are trivially
connected and isolated objects, they can also be classified as islands.
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Topology and geometry of Gaussian fields 4195

Figure 14. Comparison of relative contributions of β1 versus Euler characteristic. As the spectral index lowers, the peak of the Euler characteristic has
progressively lower amplitude compared to the β1 curve.

Figure 15. Scaling behaviour of the Euler characteristic curves for the power-law models. Left-hand panel: unscaled Euler characteristic curves for the
power-law models. Right-hand panel: scaled curves for the same. The curves for the different models are scaled so that their amplitudes coincide. The scaled
curves are indistinguishable from each other.

The middle and the right-hand panels illustrate islands with a more
complex topology. In the middle panel, the island is a connected
object and contains many peaks. This is due to the fact that as
the density threshold lowers, saddle points are also introduced in
the manifold, which connect two disjoint maxima to form a single
connected component. In general, at sufficiently low thresholds, one
may identify islands composed of multiple maxima and saddles, as
is the case in the middle panel. In this context, we point out that the
number of peaks per island, as a function of the density threshold, is
a topological quantification of the strength of clustering of a model.

In the right-hand panel, the island encloses a loop as well. This is
due to the introduction of a saddle point that connects the boundary
of an already connected component forming a closed loop. Below,
we investigate the model-dependent variation of the number of
peaks and islands for the 3D Gaussian field models.

8.1 Peaks versus islands: the Gaussian case

As we noted earlier, peaks and islands (see definition above) are
related yet different topological entities. In particular, peaks are a
submanifold of islands. The former are the local maxima, while
the latter grow depending on the density threshold ν. An island

may contain multiple peaks. In fact, as an island grows it might
get arbitrarily complicated, acquiring tunnels and even voids, while
always staying connected. But in the asymptotic limit of high ν,
every island will contain only one peak. In this connection, it is
instructive to examine the number distribution of critical points in
general, and peaks in particular.

8.1.1 Number distribution of peaks (critical points)

Bardeen et al. (1986) derive the differential number distribution of
peaks for Gaussian random fields as a function of the dimensionless
density threshold ν (see appendix A for details):

Npk(ν) dν = 1

(2π)2R3
�

e−ν2
G(γ, γ ν). (78)

The function G(γ , γ ν) depends on the spectral parameter γ and
height ν of the peaks. Bardeen et al. (1986) derived and specified
a highly accurate fitting function for G(γ , γ ν), whose details are
specified in appendix A. The parameters γ and R� are combinations
of several moments σ j of the (filtered) power spectrum Ps(k) (see
appendix A. The spectral scale R� is proportional to the smoothing
scale Rs of the field, i.e. R� ∝ Rs. For power-law power spectra, γ

and R�/Rs depend on the spectral index n (see appendix A).

MNRAS 485, 4167–4208 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/485/3/4167/5364559 by C
N

R
S - ISTO

 user on 04 July 2023



4196 P. Pranav et al.

Figure 16. β-track (top) and ζ -track (bottom) for a typical Gaussian field model. They represent orthogonal information to the Euler characteristic, see the
text for details.

For the total number of peaks npk(ν) in excess of a density
threshold ν in the smoothed density field, we may compute the
cumulative peak density,

npk(ν) =
∫ ∞

ν

Npk(ν) dν . (79)

From this, we may infer – analytically – that the total density of
peaks npk(− ∞) is given by

npk = 0.016 R−3
� . (80)

In other words, in a Gaussian field one expects in total some 62 to
63 peaks per cubic volume R3

� .
Figure 19 plots the number distribution of the critical points for

the n = −1 model as computed from a single realization. One may
notice that the distribution is symmetric about the mean density
threshold. In particular, the distribution of maxima is symmetric
with respect to the minima. Similarly, the distribution of the 2-
saddles is symmetric with respect to the 1-saddles. To arrive at the
expressions for the spatial density of all critical points – maxima,
minima, and saddle points – one may follow a similar calculation
as that for maxima (peaks). Along these lines, Pogosyan et al.
(2009) arrives at approximations for the distribution function of
the critical points, while Codis et al. (2013) even managed to obtain

expressions for mildly non-Gaussian fields. More recently, Cheng &
Schwartzman (2015) specified the exact formula for the number
distribution of critical points for the Gaussian case.

Figure 20 presents the distribution of critical points for the
different power-law models. The left-hand panel plots the curves
for maxima/minima, and the right-hand panel plots the curves for
2-saddles/1-saddles. As the spectral index decreases, the amplitude
of the curves drop, accompanied by a broadening of the curves.
This indicates that, as the spectral index decreases, there is a bigger
overlap between the distribution of the various critical points as a
function of the density threshold. The lower amplitude of the curves
can be seen as the effect of a generally smoother field, as the spectral
index decreases, which results in lesser number of critical points in
the same given volume. As we will see shortly, these characteristics
of the critical point distribution have a repercussion on the overall
distribution of peaks and islands as well as their ratio.

8.1.2 Asymptotic behaviour of peaks and islands

For very high values of rms density threshold, as long as the
peaks do not start merging, we expect the cumulative number
density of peaks to be equal to the number density of islands.
This is confirmed in Figure 21 where we present the cumulative
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Topology and geometry of Gaussian fields 4197

Figure 17. Betti tracks and (ζ 1, ζ 2) for the various power-law models as a function of the spectral index. There is a clear dependence on the power spectrum
for the quantities.

number density of peaks npk and the number density of islands
β0 per unit volume, as a function of ν, for the n = 0 and n = 2
models in the left-hand and the right-hand panels, respectively. The
cumulative number density of peaks equals the number density of
islands asymptotically for very large rms density thresholds. The
equivalence starts breaking down rapidly at thresholds even as high
as ν ∼ 4. This is attributed to the fact that for high thresholds all
the peaks represent disconnected regions almost surely (Bardeen
et al. 1986), while they start connecting up and forming complex

topology as the threshold decreases. In general, one can also notice
from both the panels that the distribution of peaks and islands show
a characteristic dependence on the choice of the power spectrum.

For high values of spectral index, the small scales are dominant.
In terms of the structures in the density fluctuation field, this means
that the number of small scale peaks of high amplitude is large. They
are also separated by low-density saddles. There is no discernible
large-scale feature in the density field. As the index of the power
spectrum decreases, the power shifts to large scales. The small-
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Figure 18. Figure illustrating the difference between peaks and islands. The left-hand panel illustrates two peaks. They are composed of a single maximum.
However, since they are also trivially connected and isolated objects, they double up as islands also. The middle and the right-hand panels illustrate islands
with a more complex topology. In the middle panel the island is a connected object and contains many peaks. In the right-hand panel, the island encloses a
loop as well.

Figure 19. Number distribution of critical points for the n = −1 model. Critical points with different indices are dominant over different ranges, but there is a
strong overlap between them as a function of the density threshold.

scale peaks are separated by saddles occurring at relatively high-
density thresholds. It is also accompanied by a decrease in the
amplitude of the global maximum of the field. As noted earlier, this
is because the variance of the density field in the box decreases
with decreasing spectral index: σ 0 ∝ R−(n + 3). This phenomenon is
reflected in the curves of the number distribution of peaks in the top-
left panel and top-right panels of the Figure 22. For a larger n, the
number distribution of peaks attains its maximum at a higher density
threshold compared to a smaller n. For the n = 1 model, the maxima
is located as high as ν = 2. In contrast, for the n = −2 model, the
maximum is located at ν ∼ 1, and there are significant number of
peaks even below ν = 0. As noted earlier, this is a direct reflection

of the fact that there are progressively more number of peaks for
lower thresholds, as the spectral index decreases (Bardeen et al.
1986). In contrast, in the same figure, the location of the maxima of
β0 curves shows a negligible dependence on the value of spectral
index.

8.2 Distribution of peaks and islands: a comparison

The top left-hand and top right-hand panels of Figure 22 plots the
number distribution of peaks and the Betti numbers for the 3D
Gaussian fields. The left-hand and the right-hand panels plot the
specific number distribution of peaks and the zeroth Betti number
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Topology and geometry of Gaussian fields 4199

Figure 20. Number distribution of critical points as a function of the spectral index. The left-hand panel plots the distribution of the maxima/minima as a
function of the spectral index and density threshold. The right-hand panel plots the same for 1- and 2-saddles.

Figure 21. Cumulative number distribution of peaks and the distribution of islands (zeroth Betti number) for comparison as a function of density threshold.
The left-hand panel presents the graphs for the n = 0 model, and the right-hand panel plots it for the n = −2 model.

β0, respectively. The curves show the behaviour of these quantities
as a function of the dimensionless density threshold ν. The curves
for both quantities reveal a largely similar behaviour as a function
of the density threshold ν, and in their dependence on the spectral
index of the power spectrum.

Nonetheless, we identify subtle properties that manifest them-
selves in distinct differences when we assess the number of peaks
– or saddles and minima – that populate a given island complex.
From the top panels of Figure 22, it is evident that as the spectral
index decreases, the location of peaks shifts towards lower density
thresholds for both the quantities as the spectral index decreases.
This effect is strong for the cumulative distribution of peaks, but
small for β0. We also note a substantial difference in amplitudes
of the distribution functions. The (cumulative) number density of
peaks therefore differs substantially from that for the zeroth Betti
number, indicating that they measure different features associated
with the topology of the density distribution.

The bottom left-hand panel of Figure 22 presents the cumulative
number density of peaks for the different models. The bottom
right-hand panel plots the ratio of the cumulative peak density
and the number of islands β0. This quantity is an indicator of the

average number of peaks of height ν and higher, which populate
an island at ν. The average number of peaks per island shows a
characteristic dependence on the power spectrum. As expected, for
high-density thresholds the number of peaks per island approaches
unity. While the density thresholds have a positive value, lower
spectral indices correspond to a higher number of peaks per island.
A major reason for this is that Gaussian fields with a lower spectral
index contain larger coherent features. Net, this lower number
of large islands contains a higher number of peaks (and other
singularities).

In this context, we may also identify a subtle complementary
effect. The interior structure of each island is marked and largely
determined by the spatial distribution of peaks and 2-saddles. In
general, the number density of these behave differently (Bardeen
et al. 1986; Pogosyan et al. 2009). This can be immediately inferred
from their distribution functions in Figure 20. Not all 2-saddles
at a given density threshold are therefore responsible for bridging
two previously disconnected peaks. Moreover, the fraction of 2-
saddles that join two isolated objects is, in general, a function
of the density threshold (also see Feldbrugge & van Engelen
2012 for a semi-analytic approximation describing this). At low
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4200 P. Pranav et al.

Figure 22. Figure illustrating the relation between peaks and islands. The top left-hand panel plots the number distribution of peaks, Npk. The top right-hand
panel plots the number of independent islands as denoted by β0. The zeroth Betti number counts the number of isolated islands at a particular density threshold.
The curves for both the quantities show a characteristic dependence on the index of the power spectrum. The location of the maximum shifts towards lower
density thresholds considerably for the number distribution of peaks as the spectral index decreases. The location of the maximum for the β0 curve remains
unaffected as the spectral index changes. The bottom left-hand panel plots the cumulative number density of peaks as a function of the spectral index. It
increases with increasing spectral index, which is related to the fact that as the power shifts to smaller scales for larger spectral index, it is accompanied by
larger number small-scale peaks packed in a given volume. The bottom-right panel plots the cumulative number of peaks per island as a function of power
spectrum and density threshold ν. For very large values of ν there is one peak per island irrespective of the spectral index. As the density threshold decreases,
this number has a characteristic dependence on the spectral index.

densities we therefore see an increasing fraction of them involved
in establishing connections between two or more already connected
peaks, thereby forming loops or tunnels (Edelsbrunner & Harer
2010; Pranav et al. 2017), and the crackled appearance of the
island.

The spectral dependence of the peak population of islands
reverses at median and low field densities. As borne out by Figure 22
at underdense field values we observe a steep rise in the number of
peaks per island as the density decreases. It reflects the merging of
an increasingly larger fraction of the volume into an ever larger
connected and percolating complex as individual disconnected
overdense islands start to connect. They merge into a single or a few
volume percolating regions, leading to a field topology attaining a
Sponge-like character (see Section 3.3.2). As we descend to lower
densities, we therefore see the absorption of the remaining peaks
into the remaining percolating region(s). It results in the observed
steep rise of the number of peaks per island.

As we described extensively in Section 7.2, Gaussian fields with a
lower spectral index retain a slightly higher number of disconnected
islands at low-density thresholds than those with higher spectral
index (also see Figure 7). Meanwhile, as a consequence of the

dominance of high frequency modes in high spectral index Gaussian
fields, they are marked by a considerably higher number of peaks
(see Figure 22, lower left-hand panel). It translates into the steeper
rise of the ratio npk/β0 for Gaussian fields that have a higher spectral
index seen in Figure 22 (right-hand panel).

9 MI N KOW S K I F U N C T I O NA L S O F T H E
M O D E L S

The left-hand column of Figure 23 presents the unnormalized
(original) graph of the Minkowski functionals for the power-
law models. The graphs are averaged over 100 realizations. The
quantities are plotted as a function of the density threshold ν.
The fractional volume Q0 is invariant with respect to the choice
of the power spectrum. This is to be expected, because the first
Minkowski functional simply takes the form of the error function.
All the other functionals show a systematic dependence on the
choice of the power spectrum. The amplitude of the graphs of the
area functional, the integrated mean curvature functional, and the
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Topology and geometry of Gaussian fields 4201

Figure 23. Minkowski functionals of the power-law models. From the top to
the bottom, we present the volume, area, integrated curvature, and Gaussain
curvature, or the Euler characteristic. The left-hand column presents the
unscaled version, while the right-hand panel presents the scaled version. All
the functionals are normalized by the total volume of the simulation box.
The volume functional is invariant with respect to the choice of the power
spectrum. The amplitude of the area, contour length, and Euler characteristic
show a dependence on the choice of the power spectrum. The shape of the
scaled curves is indistinguishable across the models. This implies the shape
of the Minkowski functionals has no dependence on the spectral index.

Euler characteristic decreases monotonically with the decrease in
the index of the power spectrum.

The right-hand column of the Figure 23 presents the rescaled
Minkowski functional curves. The graphs for the rest of the power-
law models have been scaled to the amplitude of the curve of the
n = 0 model. The shape of the rescaled graphs falls neatly on top of
each other. This indicates that the shape of the Minkowski functional
curves is independent of the choice of the power spectrum. This
observation is in line with Equation (66). The dependence on the
choice of the power spectrum comes in only through the amplitude
term. This dependence is parametrized in terms of λ, which is
a function of the correlation function, or equivalently, the power
spectrum.

That the shape of the Minkowski functional curves is independent
of the choice of the power spectrum is an important observation,
when seen in comparison to the shape of the Betti number curves,
which show a characteristic dependence on the choice of the power
spectrum. We present a detailed analysis of the Betti numbers with
respect to the Euler characteristic in Section 7. This indicates that

the Betti numbers are potentially more discriminatory than the
Minkowski functionals, an observation we have already established
in Park et al. (2013).

9.1 Minkowski functionals as shapefinders

Recall that the ratio of the Minkowski functionals are simplistic
indicator of the morphological properties of manifold, given by
(Sahni et al. 1998; Sheth et al. 2003; Shandarin, Sheth & Sahni 2004)
(also see Schmalzing et al. (1999) for the relation to isoperimetric
inequalities and Blaschke diagrams):

H1 = Q0/Q1; H2 = Q1/Q2; H3 = Q2. (81)

For example, a high surface area to volume ratio indicates a more
pancake like morphology of structures. The reverse indicates a more
filamentary morphology. Figure 24 presents the shapefinders for the
models in the top panel, and their inverse quantities in the bottom
panel. In the left-hand column, we present H1 and H−1

1 , in the top
and the bottom panels, respectively. The middle and the right-hand
columns present H2(H−1

2 ), and H3(H−1
3 ), respectively. The curves

are drawn with respect to the dimensionless density threshold ν.
All three quantities show a characteristic dependence on the

choice of the power spectrum, more clearly in the inverse quantities
for H1 and H2, and directly for H3. The curves for the lower power
spectra increase more steeply towards the extremes of the density
threshold, and flatten out as the threshold moves to further extremes.
For all the models, the surface area to volume ratio is high for high-
density thresholds. It indicates that the structures are more flattened
for high thresholds. Interesting is the sharp rise in the value for
the negative spectra. This indicates that at very high thresholds,
the structures in the n = −2 model are the most flat. This ties
in with the observation that for the n = −2 model, the large-
scale structures have significant power, giving rise to the overall
flattened characteristics of the density field. The large structures are
a consequence of significant powers at those scales.

In summary, the Minkowski functionals characterize the ge-
ometric properties of the manifold predominantly. The connec-
tion to topology comes through the Euler characteristic. Hence,
the Minkowski functionals maybe seen as complimentary to the
topological descriptors such as the Betti numbers. The Minkowski
functionals, together with the information on the homology of a
manifold, provide a richer and more comprehensive morphological
and topological information about the manifold.

9.2 Betti numbers versus Minkowski functionals

As we learnt in the previous sections, the Betti numbers are
topological quantities. They measure topology by assessing the
number of independent holes in the different dimensions. On the
other hand, the Minkowski functionals are primarily morphological
measures, the exception being the Minkowski functional Q3, or
the Euler characteristic, χ . The first three Minkowski functionals
are associated with the volume (Q0), surface area (Q1), and the
integrated mean curvature length (Q2) of the manifold. However,
an important question one may ask is if the Betti numbers and
the Minkowski functionals convey different information about the
manifold characteristics. With a view to investigate this, we assess
the correspondence between the Betti numbers and the Minkowski
functionals.

Figure 25 presents the Betti numbers plotted against the various
Minkowski functionals. The top left-hand panel of the figure plots
β0 on the vertical axis against Q0 on the horizontal axis, and
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4202 P. Pranav et al.

Figure 24. Ratios of Minkowski functionals. Left-hand panel: The ratio Q1/Q0 denoting the ratio between the total occupied volume and the total surface area
corresponding to the occupied volume. Middle: The ratio Q2/Q1 denoting the ratio between the total length of contours and the total surface area. Right-hand
panel: The ratio Q2/Q0 denoting the total length of contours per unit volume occupied. The curves are drawn with respect to the dimensionless density threshold
ν. For the bottom row, the numbers for high-density thresholds, are not reliable, due to division by small numbers.

Figure 25. Betti numbers versus the Minkowski functionals.

so on. We notice that almost all the pairs of quantities exhibit a
degeneracy. For example, in the top left-hand panel, we notice that
there are two values of Q0 for which the value of β0 is the same.
The exception is the peak of the curve, at which β0 is associated
with a unique value of Q0. The only exception to this trend of

degeneracy is the middle panel of the middle row, where we plot
β1 against Q1. The curve is monotonic indicating that β1 and Q1

behave in a similar fashion. In general, a monotonic curve between
any two plotted quantities indicates a similar behaviour of the
quantities.
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Topology and geometry of Gaussian fields 4203

The ratio of the Betti numbers to the Minkowski functionals is
another interesting quantity to analyse, particularly in certain cases,
where they can be readily associated with a particular features of
the manifold. For example, the ratio β0/Q0 represents the number of
isolated objects per unit occupied volume. Note that the occupied
volume is different from the total volume of the manifold. The
total volume is a constant, while the occupied volume is a function
of the density threshold. Similarly, the ratio β1/Q1 indicates the
number of independent tunnels per unit surface area. This may be
regarded equivalent to the information on the genus density of the
manifold.

Figure 26 presents the ratio of the various Betti numbers to the
various Minkowski functionals as a function of the density threshold
ν. The plots are presented for the different power-law models. We
notice a dependence of the quantities on the choice of the spectral
index. It is important to note that a constant, or a monotonically
increasing or decreasing curve indicates that quantities have a
simple dependence on each other. We notice that none of the pair of
quantities exhibit a monotonic ratio. This indicates crudely that the
Betti numbers and the Minkowski functionals behave differently
from each other in general.

1 0 TO P O L O G Y O F T H E LC D M M O D E L

In this section, we briefly discuss the topology of the LCDM
model. This is pertinent, since the LCDM model is the standard
model of cosmology. However, recall that the LCDM model is
also characterized in terms of a spectral index, which is a running
function of the wavelength. This is unlike the power-law models,
where the spectral index is constant. Due to a corresponding
description through the index of the power spectrum, for both the
LCDM and the power-law models, it makes sense to compare the
characteristics of the power law and the LCDM models.

Figure 27 presents the Betti curves for the LCDM model (drawn
in black). We also present the curves for the power-law models with
spectral index n = 0, −1, and −2 models. Here we compare the
spectra at a scale of Rf = 2 h−1 Mpc, with an effective index neff ≈
−2. Our topological analysis appears to yield Betti number curves
that lie in between those for power-law spectra with n = −1 and
n = −2, tending more towards the first.

For a complete comparison, we need to take into account that over
the range of the simulation box, the LCDM spectrum is represented
by frequencies running from Nyquist frequency to fundamental
frequency (see Figure 4, Section 6.2). Hence, the effective index
at the frequencies respresented in the realized LCDM Gaussian
density fluctuation field varies from neff ∼ −2.5 to neff ∼ −0.5.
The combination of these fluctuations appear to lead to a Betti
number topology that resembles best that of a power-law power
spectrum close to n = −1. In order to get more insight in how these
topological synergy between different modes works, we need to
invoke the concept of persistence. For this we refer to the upcoming
accompanying study Pranav et al. (in preparation).

11 DISCUSSION AND SUMMARY

In this study we present a largely numerical study of the topology
of Gaussian random fields on the basis of homology, specifically
in terms of Betti numbers. Homology describes the topological
structure of a manifold in terms of the topological features – or
topological holes – it contains, whereby it concentrates on their
boundaries. These and other concepts from algebraic topology
provide a fundamental and rich framework for a quantitative

characterization of the shapes and connectivity of structures in the
cosmological mass distribution. An important aspect is the intimate
relationship with the Euler characteristic, which is equal to the
alternating sum of the Betti numbers. Their individual assessment
therefore enables us to understand the role and contribution of the
various structural components in establishing the overall topology
of the cosmic mass distribution encapsulated in the Euler charac-
teristic. This can be obtained from the decomposition of the well-
known curve for the genus or Euler characteristic, as a function of
superlevel threshold, into separate curves for the individual Betti
numbers.

The topology of Gaussian random fields functions as key refer-
ence against which topological measures of the cosmic mass and
galaxy distribution in more advanced evolutionary stages should be
assessed. In cosmology, the topological and geometric structure of
2D and 3D Gaussian random fields has been extensively analysed in
terms of genus, the Euler characteristic, and Minkowski functionals.
An aspect of importance for the use of Gaussian random fields as
reference point is the existence of closed analytical expressions
for the statistical distribution of their Euler characteristic and
Minkowski functionals (Adler 1981; Bardeen et al. 1986; Weinberg
et al. 1987; Tomita 1993; Schmalzing & Buchert 1997). In fact,
the analytic expressions for the mean of the Euler characteristic
and Minkowski functionals of Gaussian random fields belong to
an extensive family of such formulae, all emanating from the so-
called Gaussian kinematic formula or GKF (Adler & Taylor 2010,
2011; Adler et al. 2018). While hardly known in the cosmological
literature, given its central role for our assessment and understanding
of the topology and morphology of Gaussian fields, we devote
an extensive discussion on its formulation and ramifications in
Section 4. Most relevant for our purpose is the observation that it is
not possible via this GKF route to establish similar closed analytical
expressions for Betti numbers and persistence. While other routes
might be feasible, it establishes the principal motivation for the
numerical approach used here.

This study is part of a series of papers that seeks to extend this
to the richer language of homology, with the second part (Pranav
et al. 2018) discussing the description of the multiscale topological
aspects of Gaussian fields in terms of persistence (Edelsbrunner &
Harer 2010; Robins 2013; Robins 2015; Pranav et al. 2017). An
accompanying upcoming article (Feldbrugge et al., in preparation)
contains a mathematical analysis and formalism for the description
of Gaussian random field homology.

11.1 Gaussian field Betti numbers: properties

Our statistical study of 3D Gaussian field homology consists of
Betti number curves β0, β1, and β2 as a function of density field
threshold ν of the corresponding superlevel set of a Gaussian field
realization. The curves are averaged over 100 field realizations for
each separate power spectrum.

In Section 5 we computed the Betti numbers using the Bendich
et al. (2010) algorithm, an optimal and exact algorithm for comput-
ing all Betti numbers of a discretely sampled image on a cubic grid.
It starts with a slight deformation of the grid, the calculation of the
corresponding unique simplicial complex defined by the grid-point
distribution, and the subsequent computation of Betti numbers of
superlevel sets of the field – for a range of density thresholds –
via the construction and simplification of a boundary matrix of the
simplicial elements.
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Figure 26. Ratio of Betti numbers to the various Minkowski functionals. The graphs as plotted for a range of density threshold.

Figure 27. Betti numbers of the LCDM model (in black). Alongside are plotted the curves for the power-law models, n = 0, −1, and −2. The curves for the
LCDM model are closest to the n = −1 model.
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Topology and geometry of Gaussian fields 4205

The Gaussian fields for which we evaluate the homology mea-
sures are 3D in nature and consist of two classes. The first family
of realizations is a series of pure power-law power spectra, with
the intention to assess systematic trends as the power shifts from
dominant high frequency modes to low frequency modes. We also
measure the Betti numbers in Gaussian fields with an LCDM power
spectrum.

11.1.1 Gaussian fields: topological components

At extreme low- and high-density values, the topology of Gaussian
fields is dominated by a single class of features. At very high density
levels these are islands and thus fully specified by β0, defining a
predominantly Meatball-like topology. The same is true at very low
density levels, where the topology is distinctly Swiss-cheeselike,
exclusively dominated by cavities and thus entirely specified by β2.

At more moderate levels, for |ν| � 2, the topology attains an
increasingly Sponge-like character. In these regimes at least two
Betti numbers are needed to describe the topology of the superlevel
manifolds. On the lower density side, the topology is dominated by
β2 and β1. It reflects a pattern of isolated cavities and agglomerates
of density troughs interspersed by tunnels and loops. On the higher
density side, the topological signal consists mostly of β0 and β1.

The corresponding spatial pattern is that of isolated islands and
large agglomerates of islands, connected by bridges/loops, and
infused and punctured by numerous tunnels. In a relatively narrow
density range around the mean density, for |ν| � 0.1 − 0.2, we even
observe the simultaneous existence of all three topological features,
cavities, islands, and tunnels. In that regime, all three Betti numbers
are needed to quantify the Gaussian field topology.

Also interesting is the finding that the topological identity at the
median density level, at ν = 0 for Gaussian fields, is not exactly
– i.e. ideally – sponge-like. At that level, we see the presence of
an equal number of islands and cavities as β0 = β2 at ν = 0.
Conventionally, it is assumed that all overdense regions have merged
into one percolating complex, interlocking with an one equivalent
underdense ‘ocean’. While this is the definition for a pure sponge-
like topology, we find that in general this is not even the case for
Gaussian fields. The topology at median levels is determined by
a few – disconnected – overdense complexes, intertwined with a
few underdense ones. The dissection of the genus curve into the
contributing Betti curves leads to new insights on to this issue.

11.1.2 Betti numbers versus power spectrum

An important aspect of Betti numbers of Gaussian fields is that they
are sensitive to their power spectra. In other words, they reflect
the nature of Gaussian random fields. The shifting prominence
from large wavelength modes to that of short wavelength modes
has a significant impact on the resulting topology. This is entirely
different from the behaviour of the Euler characteristic, whose curve
is known to be entirely independent of the nature of the underlying
power spectrum (see Equation 24) (Adler 1981; Bardeen et al. 1986;
Weinberg et al. 1987).

This aspect of Gaussian field topology is most clearly revealed in
the scaled Betti number curves – scaled with respect to the maximum
of the β1 curves, i.e. with respect to the maximum number of tunnels.
While the spectral insensitivity of the Euler characteristic makes it
a highly robust measure for testing the level of Gaussianity of a
field, it also implies that it yields only a rather limited amount
of topological information. This concerns key aspects such as the

topological composition of the cosmic mass distribution and the
connectivity of the various topological elements. The implication
is that considering homology, in terms of Betti numbers and even
more that of topological persistence (Pranav et al. 2017) represent
a major advance in understanding Gaussian fields.

The Betti number curves reveal a systematic dependence of
relative populations of isolated mass concentrations, tunnels, and
enclosed voids as a function of the power spectrum of a Gaussian
random field. Our study finds a monotonic increase of the width
of the β1 curves as the power spectrum index n decreases’: the
number of tunnels increases steeply as the large-scale wavelength
modes become more prominent. In addition, we find that there
is a considerably larger density range over which the topology
resembles a sponge-like morphology. In other words, configurations
marked by the simultaneous presence of tunnels and cavities at
the low-density regime, and of tunnels and islands at the high-
density regime, exist over a wider density range as the spectral
index n is lower. This also concerns the narrow density regime
around the median density where all three topological features exist
simultaneously.

The implications for the topology of the resulting spatial pattern
of the evolved mass distribution are substantial. Gravitational evo-
lution amplifies the topological differences in the initial conditions.
A sponge-like topology evolves into a mass distribution resembling
a connected network, while one that only involves isolated islands
would merely produce a field of isolated collapsed density clumps.
Given that primordial Betti numbers already elucidate and highlight
such fundamental topological differences, suggests they have the
potential of quantifying crucial aspects of the connectivity of the
evolved cosmic matter distribution.

For true insight into the hierarchical evolution and development
of the topology of the mass field, we will need to characterize in
more detail how the various features connect up with each other.
This is the subject of the second part of our investigation, to be
reported in (Pranav et al., in preparation), where we will present
and discuss the persistent homology of Gaussian fields.

11.1.3 Singularities and Betti numbers

As a prelude to our study of the persistent topology of Gaussian
random fields (Pranav et al., in preparation), we also evaluate the
relation between minima, saddle points, and maxima in the density
field and Betti numbers. We focused in particular on the relationship
between the zeroth Betti number and the number of maxima,
i.e. peaks, in the density field. Assisted by the useful analytical
expressions for the number density of peaks and minima (Bardeen
et al. 1986) as consistency check, we have subsequently assessed
the growth of peak number per density island in Gaussian fields. It
reveals the subtle dependence of number of peaks per island as a
function of power spectrum. While the number of islands and peaks
are similar at very high density levels, we see that the convergence
towards unity of the ratio of peaks to islands is very slow. This
shifts strongly and systematically towards higher density levels as
the index n decreases.

11.1.4 Betti numbers and Minkowski functionals

We also study in detail the extent to which Betti numbers contain
topological information that is complementary to Minkowski func-
tionals. One immediate observation is that of the power spectrum
dependence of Betti numbers, which is a fundamental difference
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with the power spectrum independence of the Minkowski functional
curves.

One major difference concerns the power spectrum dependence
of Betti numbers. By contrast, the shape of Minkowski functional
curves, i.e. the value of Minkowski functionals as a function
of density level ν, is independent of the Gaussian field’s power
spectrum. Nonetheless, ratios of Minkowski functionals do reveal
a dependence on power spectrum, a fact that was exploited in a
series of studies by Sahni and collaborators (see e.g. Sahni et al.
1998; Sheth et al. 2003; Shandarin et al. 2004) in the morphological
analysis of structural Megaparsec features in evolved cosmic density
fields. As we show here, it manifests itself in features in the
primordial Gaussian field having a more flattened shape as the
spectral index is lower.

We present a comprehensive visual assessment of the differences
between Minkowski functionals and Betti numbers. In combination
with the difference in power spectrum dependence, the system-
atic comparison demonstrates that Betti numbers, and persistence
(Pranav et al., in preparation), contain a considerable amount of
topological information that is complementary to that contained in
Minkowski functionals.

11.2 Homology and cosmology: potential

The potential for exploiting the rich topological language of ho-
mology to the observational reality of the Universe is substantial.
It opens the path towards a richer, more powerful, and insightful
analysis of the connectivity and organization characteristics of
emerging cosmic mass distribution in the form of the topologically
complex and intricate structure of the cosmic web. Also, it allows a
better understanding of structural aspects of the Gaussian primordial
density field, and might even shed new light on the nature of the
primordial CMB perturbations.

One particular intriguing example where topological signatures
might reveal yet unknown cosmological features concerns the de-
tection of possible non-Gaussianities in the primordial perturbation
field. The discovery of such primordial non-Gaussianities in the
temperature fluctuations in the CMB would provide unique insights
on the physical processes that determined the nature of our Universe
during the inflationary epoch (Bartolo et al. 2004; Baumann 2009;
Chen 2010).

Even while the Planck satellite has set stringent upper limits on
the amplitude of primordial non-Gaussian fluctuations, one may
not exclude that these had a more intricate and elusive character
than suggested by most multifield inflation theories. It may reflect
itself in subtle topological markings for which the rich language
of homology, in terms of Betti numbers and even more so of topo-
logical persistence, may provide a means of uncovering. There are
theoretical indications, such as those presented by Feldbrugge et al.
(in preparation), that demonstrate the potential of persistence to find
non-Gaussian signatures. Even only Betti numbers have the ability
to detect non-Gaussian signatures, as was discussed in considerable
detail by Chingangbam et al. (2012) (for a recent contribution,
see also Cole & Shiu 2018). In fact, the recent study by Pranav
et al. (2018) of the homology of CMB measurements by the Planck
satellite have uncovered some interesting effects, when comparing
the observed CMB maps with respect to simulations based on
Gaussian prescriptions. However, it remains to be ascertained if
these signals are a genuine cosmological signal, and not arising
from yet unknown data systematic or foregrounds.

Notwithstanding such uncertainties, as this study has argued in
detail, homology considerably enriches the language for exploring

the nature and describing the spatial patterns of cosmological
structures.
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APPENDIX A : G AU SSIAN FIELD PEAK
DENSITY

For an evaluation of the number density of peaks in a Gaussian
field, we use the expressions derived by Bardeen et al. (1986)
for the (comoving) differential peak density Npk(ν) for peaks of
(normalized) density ν = fpk/σ in a density field fs(�x) filtered on a
spatial scale Rs.

A Gaussian field f (�x) filtered on a scale Rs with filter kernel
Ws(�r; Rs),

fs(�x) =
∫

f (�y) Ws(�y − �x; Rs) d�y , (A1)

can be written in terms of the Fourier integral, following Parseval’s
theorem,

fs(�x) =
∫

R3

d3�k
(2π)3

f̂ (�k) Ŵ (kRs) exp(−i�k · �x) , (A2)

in which Ŵ (kRs) is the Fourier transform of the filter kernel.
From this, it is straightforward to see that the corresponding power
spectrum Ps(k) of the filtered field is the product of the unfiltered
power spectrum P(k) and the square of the filter kernel Ŵ (kRs)

Ps(k; Rs) = P (k) Ŵ 2(kRf ) . (A3)

Two spectral parameters are instrumental for assessing the number
density of peaks – and dips and other singularities – in the filtered
density field. The spectral parameter γ and spectral scale R� are
combinations of various moments of the filtered power spectrum
Ps(k),

γ = σ 2
1

σ2σ0
, R� =

√
3

σ1

σ2
, (A4)

in which the spectral moments σ j are defined as

σ 2
j =

∫ ∞

0

d3�k
(2π)3

k2jPs(k) , (A5)

(and thus σ = σ 0). To appreciate the dependence of the spectral
parameters γ and R� on the power spectrum and filter scale Rs of

the field, a useful reference is the values for a field with a power-law
power spectrum of index n and filter scale Rs (Bardeen et al. 1986),

γ 2 = (n + 3)

(n + 5)
, R� =

(
6

n + 5

)1/2

Rs . (A6)

The influence of the power spectrum and smoothing scale Rs on
the cumulative and differential peak number densities propagates
via the values and behaviour of the spectral parameters γ and R�.
The differential number density of peaks Npk(ν) in the filtered field
fs(�x) at normalized (dimensionless) density level ν = fs/σ is given
by (Bardeen et al. 1986),

Npk(ν) dν = 1

(2π)2R3
�

e−ν2
G(γ, γ ν) . (A7)

While an analytical expression for the function G(γ , w) is not
available, Bardeen et al. (1986) provide a fitting formula for the
function G(γ , w) that is accurate to better than 1 per cent over the
range 0.3 < γ < 0.7 and −1 < w < ∞, and even better than 1 in
10 000 for w > 1,

G(γ, w) = w3 − 3γ 2 w + [B(γ )w2 + C1(γ )] exp [−A(γ )w2

1 + C2(γ ) exp[−C3(γ )w]
. (A8)

The coefficients A and B can be inferred by assuring the fitting
formula to agree with the asymptotic behaviour for peak at high ν,
while C1, C2, and C3 follow from the fitting procedure (see Bardeen
et al. 1986, Section 4),

A = 5/2

(9 − 5γ 2)
, B = 432

(10π)1/2 (9 − 5γ 2)5/2
,

C1 = 1.84 + 1.13(1 − γ 2)5.72 ,

C2 = 8.91 + 1.27 exp (6.51γ 2) ,

C3 = 2.58 exp (1.05γ 2) . (A9)

To find the cumulative number density npk(ν) of peaks in the
filtered field fs(�x) with a height of ν or higher, we need to evaluate
the integral,

npk(ν) =
∫ ∞

ν

Npk(ν) dν . (A10)

While in general the integral has to be evaluated numerically,
its asymptotic value for the full peak density npk can be inferred
analytically (Bardeen et al. 1986),

npk = npk(−∞) = 29 − 6
√

6

53/22(2π)2 R3
�

= 0.016 R−3
� . (A11)

We refer to the diagram in Figure 2 of Bardeen et al. (1986) for a
representative sample of differential number density Npk(ν) curves
for different values of spectral parameters γ . Likewise, Figure 3
in the same study shows the dependence of the cumulative peak
density as function of normalized density threshold ν.
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