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Abstract –  
This paper presents a series of new high-level analytical tools for the modeling of one-dimensional, transient 

or periodic, heat transfer in media presenting graded thermal properties (conductivity and/or specific heat), 

possibly in a layered configuration. They capitalize on a recent work on sequences of analytically solvable 

profiles and the related exact temperature solutions. These profiles describe the square root of thermal 

effusivity or its inverse; the independent variable is the square root of the integrated diffusion time along the 

considered path, as obtained after a Liouville transformation. The profiles addressed here are linear, 

hyperbolic or trigonometric functions of this variable. A systematic presentation is given on how to build 

these profiles in both partner forms, on the so-called Liouville inverse transformation to step back into the 

physical-depth space, and on the three quadrupole formulations. As compared to other graded profiles from 

the literature, the three transfer matrices are very easy to compute (only elementary functions are involved). 

The quadrupole approach is particularly suitable for modeling multilayers. We apply it to calculate the 

thermal response of a two-layer system with a graded coating of one or other of the three classes. The 

modulated and the transient regime have been considered. The ease of obtaining these results indicates that, 

upon proper arrangement, these three classes of solvable profiles may be used to compute the thermal 

response of continuously (or piece-wise continuously) heterogeneous media of arbitrary complexity (e.g., 

functionally graded materials). This also paves the way to new methods for photothermal inversion. Other 

research fields could benefit from these tools insofar as the evolution equation governing the observed 

phenomena involves variable coefficients (e.g., advection-diffusion equation, wave equation, etc.). 

 

Keywords: Heterogeneous, Coating, Functionally graded material, Effusivity profile, Liouville 

transformation, Photothermal. 

 

 

 

 

Nomenclature 

DCBA ,,,  Quadrupole entries  

DB
AA ,  Constant coefficients related to     DB ,   

PK
AA ,  Constant coefficients related to    pPpK ,,,    

a  Thermal diffusivity m
2
.s

-1
 

b  Thermal effusivity W.s
1/2

.m
-2

.K
-1

 

    DB ,  LIS defining the profile  s  - 

c Volumetric heat capacity W.s.m
-3

.K
-1

 

 C  Function  pcosh  - 

f Frequency s
-1 

h Heat transfer coefficient W.m
-2

.K
-1 

 
 pP

pK

,

,,




 

LIS defining the thermal field  p,  - 
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p Laplace variable or Fourier variable s
-1

 or s
-1

.rad 

q,r Constant parameters - 

 s  Metaproperty representing either  21b  or  21b   

 S  Function   psinh  - 

t Time s 

T  Temperature K 

V  “Potential” function s
-1

 

 gfW ,  Wronskian of f  and g   

z Depth coordinate m 

Z  Impedance W
-1

.m
2
. K 

  Coefficient (constant value of potential V ) s
-1 

  Heat flux density  W.m
-2 

  Laplace/Fourier transform of the heat flux density  W.s.m
-2

(.rad) 

  Thermal conductivity W.m
-1

.K
-1

 

  Laplace/Fourier transform of temperature s.K(.rad) 

  Square root of diffusion time (SRDT) s
1/2

 

c
  Characteristic SRDT of the profile element s

1/2
 

  Liouvillian “transformed” temperature or heat flux density  

  Normalized logarithmic derivative of  s  
 

  Angular frequency rad.s
-1 

Symbols 

̂  Modified SRDT - 

ff ,  Primes denote derivatives with respect to    

Subscript 

i Left (i =0) or right (i =1) layer boundary  
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c Characteristic (depth or SRDT) of the profile element  

Operators 

   gfh  means h  is a LC of f  and g   

Abbreviations 

BC Boundary Condition  

LC Linear Combination  

LF Laplace-Fourier  

LIS Linearly independent solutions  

PROFIDT Joint Property & Field Darboux Transformation  

SRDT Square Root of Diffusion Time   

VHC Volumetric heat capacity   

T ,   With reference to the heat equations expressed in temperature or in 

heat flux 
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1. Introduction 

Analytical modeling of the dynamic thermal response of materials with gradation of thermal properties in the 

direction perpendicular to the surface is of interest in various fields. This is an essential step in the design and 

optimization of the structure of functionally graded materials, such as those intended to withstand high thermal 

loads (e.g., thermal barriers) [1], [2], [3]. This may also be useful for interpreting the thermal response of 

functionally graded materials designed for other purposes, such as achieving a specific mechanical property 

(e.g., hardness). More specifically, it may happen that the mechanical property gradient is correlated with a 

thermal-property gradient, thus opening the possibility of performing an indirect evaluation of the first through a 

non-destructive evaluation of the latter, for example with a photothermal method (see, e.g., [4]-[15]). The 

thermal characterization of living biological systems, tissue engineering and biotechnology in medicine are other 

areas where advances in thermal modeling in complex media (namely graded media) provide indisputable 

benefits [16]-[19]. 

Analytical methods for thermal diffusion problems are restricted to objects with simple geometry and 

boundary conditions. In more complex situations, e.g. complicated shape, presence of inclusions, fracture or 

holes, complex boundary conditions or complex distribution of thermal loads, the use of numerical methods 

is necessary. A large number of numerical methods have been developed to solve the problem of heat 

diffusion in graded media: the boundary element method [20], meshfree methods like the method of 

fundamental solutions [21]-[23], the finite element method and its non-remeshing version, e.g. the extended 

finite element method [24] and the version based on extended isogeometric analysis [25]. Nevertheless, 

although numerical methods are capable of solving complex problems, the obtained solutions correspond to 

one specific case and generalization is not easy. On the opposite, in their domain of applicability, the 

analytical solutions are faster, more insightful, they are easy to parameterize and thus open a clearer way to a 

sensitivity analysis. In addition, numerical methods require some expertise in the discretization/meshing 

phase, which is absent from analytical methods. Because of this additional complexity, analytical methods 

are favored in the early stages of design or analysis. The tradeoffs between different design parameters are 

then easier to analyze. In a sense, analytical methods are less accurate because of the simplifying 

assumptions required. On the other hand, in the frame of these hypotheses, they are exact, contrary to 

numerical methods which always suffer from discretization errors. This is the reason for striving to widen as 

much as possible the scope of analytical methods. With this in mind, the purpose of present paper is to 

describe a new method for one-dimensional thermal modeling in graded layers or multilayers. 

There is no closed-form solution for the dynamic temperature in the case of arbitrary spatial distributions of the 

thermal properties (basically, conductivity and the volumetric heat capacity (VHC)), even in the simplified 

case of one-dimensional linear transfer. This applies to both time-space and the Laplace-Fourier (LF) space. 

Series solutions have been proposed in time-space by implementing either the Generalized Integral Transform 

Technique [19], [26]-[28], radial basis functions [21]-[23] or the Spectral Parameter Power Series method 

[29]. However, the series must be truncated, which makes the methods approximate in essence. In addition, 

it is not easy to guess which set of property profiles truly corresponds to the inferred temperature solution 

obtained after truncation (if such a set ever exists). Moreover, steep property profiles are expected to require 

longer series to achieve a given accuracy. 

Until recently, exact, analytical and closed-form solutions to the heat equation in the LF space were known 

only for a limited number of profile configurations (in time-space, their number is still lower). A profile 

configuration is typically defined by a set of two functions of depth z  describing the profiles of two among 

the following four thermal properties: conductivity  z , VHC  zc , diffusivity      zczza   and 

effusivity      zczzb  . The profiles constituting these particular configurations will be called “solvable 

profiles”, keeping in mind that in the z -space these solvable profiles go in pairs. For example, linear and 

power-law functions of z  for conductivity  z  and VHC  zc  are solvable profiles [30]. The 

corresponding temperature solution in the LF space involves the modified Bessel functions of order 

   21  nmn , where n  and m  are, respectively, the powers of depth describing conductivity and 

VHC [30], [31], [32] (Ref. [33] considered the case in which m =0). In particular, the solution related to a 

linear conductivity profile involves the Bessel functions of order 0; this “linear” model has been used in 

Refs. [4], [13], [32]-[39]. Another specific case is when conductivity is constant and VHC is a linear 

function of position; the temperature is then expressed in terms of Airy functions [40]. Only for a few 
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particular cases, i.e., when ...2,1,0,21  jj , the temperature expression in LF space reduces to 

elementary functions (exponential and algebraic functions). Among them are the profiles   jzz 2  (with 

otherwise constant diffusivity) and the profiles    124  jjzz  (with otherwise constant VHC), which lead to 

the limiting profile   2zz   for j . In the latter case, which corresponds to a linear profile of 

effusivity in z -space, the solutions in LF space can be expressed as a linear combination of power functions 

of the effusivity profile itself [6], [30], [33] (alternative representations are given in Refs. [34] and [41]). All 

previous considerations were about power-law functions of the Cartesian coordinate z . In the case of 

functionally-graded thick hollow cylinders, the temperature solution involves Bessel functions of order 

 2 mnn  [42]. 

Notice that in another context, namely turbulent diffusion in the atmospheric boundary layer, the 

corresponding advection-diffusion equation takes the same form as the heat equation, where conductivity is 

replaced by the eddy diffusivity and heat capacity is replaced by the wind velocity (both parameters depend 

on the height above the ground surface). Linear and power-law functions were considered a long time ago to 

represent the height-dependency of these parameters [43]-[48]. It appears that in the simple configuration of 

a point load at the bottom of a semi-infinite layer, the downwind response (in the space domain, not in the 

LF domain) is expressible in a simple way with power and exponential functions.  

When  z21  is expressed as a linear combination of trigonometric functions of z  or exponential 

functions of z  (with otherwise constant diffusivity), where 
  is a constant parameter, the temperature 

solution in the time domain is obtained by multiplying the classical solution for a homogeneous material 

with constant diffusivity 
0

a , respectively, by    taz
0

221 exp  , or by    taz
0

221 exp    [20]. 

Exponential profiles in z  for  z  and in z
c

  for  zc  have been considered in [32], [39]. The 

temperature solution involves Kelvin functions of order  
c

   ; they reduce to exponential and 

algebraic functions when ...2,1,0,21  jj , [32] in particular when 
c

 3  [32], [39]. When 
c

 =0 

we obtain Bessel functions of order 1 [32]-[34], [49], [50]. On the other side, temperature is found in terms 

of the hypergeometric function when a constant term is added to the exponential profile of conductivity, 

whereas VHC remains constant [13]. The case of arbitrary values of the constants 
  and 

c
  has been 

solved in the time domain by the separation-of-variables method and the variable substitution method for all 

three geometries (plate, cylinder and sphere) [51]. 

Transforming the independent variable z  into another variable   that integrates a specific aspect of the 

heterogeneous character of the material may offer additional possibilities in the quest for solvable profiles. A 

first example involves the square root of the diffusion time (SRDT), which is defined according to: 

 


z

duua 21  (1) 

This is an essential ingredient of the Liouville transformation, which will be discussed in more detail next in 

the paper. Exponential functions of the SRDT   constitute solvable profiles for effusivity, as was shown in 

[52], [53]. The inferred temperature solution is expressed in terms of exponential functions in  . 

Another example involves the integrated thermal resistance, which is defined according to: 

 


z

duu1  (2) 

The power functions of   are solvable profiles for effusivity [54]. The general solution for temperature is a 

combination of Bessel functions. It reduces to elementary functions when the power m  is of the form 

 122  jjm , Zk . 

Notice that once the general solution for a particular solvable profile has been obtained, it is easy to calculate 

the quadrupole matrix corresponding to a graded layer showing this profile. A quadrupole matrix (also called 

“analytical transfer matrix”) provides a linear relation between the temperature/flux vectors  t
  on both 

sides of a layer [30], [55]. When multiple layers are joined together, the quadrupole matrix obtained by 

multiplying the individual matrices then relates the  t
  vectors on both sides of the multilayer slab. 

Finally, expressing the boundary conditions applied to the outer surfaces of the multilayer provides closure 
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to the problem. The quadrupole method can also be used in the presence of internal heat sources, either 

localized or distributed, in which case different strategies have been proposed to obtain stable solutions [56].  

The quadrupole matrices for linear and exponential profiles of conductivity (with otherwise constant heat 

capacity) were described in Ref. [33]. A stacking of quadrupoles related to linear profiles has been 

considered in Ref. [38] for modeling the photothermal response of a piecewise linear depth profile of 

conductivity. A higher-order representation is thereby achieved, as compared with the classical piecewise 

constant depth profile approach. The interest of the latter is in its simplicity; it nevertheless requires 

subdividing the slab under study into a large number of layers (and then calculating a respectively large 

number of quadrupoles) if the profile aimed to be modeled presents rapid variations (see, e.g., [11], [57]). 

The same accuracy, however with fewer quadrupoles, would be obtained by considering linear-profile 

quadrupoles. Quadrupoles of even higher order could be considered; this paper fits into this perspective. 

A recently described method allows infinite sequences of solvable profiles to be built together with the 

temperature solutions in the LF space [58]. The first operation is a Liouville transformation, which allows the 

heat equation to be transformed into a stationary Schrödinger equation, where the potential  V  depends only 

on  b , i.e., the effusivity profile vs. the SRDT   defined in Eq. (1). A constant potential  V  then gives 

rise to a set of solutions that were called “fundamental solutions”. They are related to three classes of 

effusivity profiles, defined in such a way that  21b , or its inverse, is a linear function of  , or a 

combination of trigonometric or hyperbolic functions of an argument proportional to the SRDT  . 

Successive Darboux transformations were then applied to both the (transformed) temperature equation and 

the effusivity equation (PROFIDT method - Property and Field Darboux Transformation). They provide 

simultaneously new solvable profiles of effusivity and the corresponding temperature solutions. Applying 

the PROFIDT method recursively progressively provides more sophisticated effusivity profiles, with a 

chance of coming close to a pre-determined profile and, hence, being able to solve the thermal problem for 

that specific profile with an arbitrarily small approximation error. In addition, the use of the “fundamental 

solutions” as seed solutions for starting the PROFIDT sequence offers the advantage that all subsequent 

solutions are exclusively based on elementary functions. A class of monotonic profiles that are particularly 

suitable to model semi-infinite layers, the so-called  ̂tanh 1
-type profiles, has been described in [58] and 

[59]. The  ̂sech -type profiles are, in turn, highly flexible profiles depending on four adjustable parameters; 

they constitute the building blocks of what has been dubbed the “solvable splines” [58]. Their quadrupole 

formulation was described in Ref. [60]. They allow computing the thermal response of a multilayer made of 

graded layers, where the effusivity profile may be continuous up to the first or second derivative at each 

interface. Importantly, these analytical tools, in particular the PROFIDT approach, can be applied to wave 

equations as well. Their application to the Maxwell equations, in particular to modeling lightwave propagation in 

dielectrics with a graded refractive index, was described in Refs. [61], [62] and [63]. 

The “fundamental solutions” were briefly described in Ref. [58]. Although the related effusivity profiles do not 

present the same flexibility as that of the  ̂sech -type profiles, they are interesting for the reason that their 

shape (essentially concave or convex) can sometimes be quite acceptable for the considered task. In addition, 

the associated computation tools (namely the quadrupole matrix) are slightly simpler, as will be shown in 

this paper. The purpose of the present paper is to build upon the previous study and analyze in more detail 

the specific features of the “fundamental” effusivity profiles. In Section 2, we recall the method used to build 

solvable profiles in the Liouville space, together with their computational environment. Section 3 is devoted 

to linear profiles of  21b  
and  21b . Section 4 is devoted to hyperbolic and trigonometric profiles. In all 

cases, practical illustrations are provided in connection with a configuration of scientific and industrial 

interest, namely the system consisting of a substrate and a functionally graded coating such as those 

encountered in ceramic thermal barrier coatings. Section 5 is a discussion about other potential applications 

and a conclusion. 
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2. Solving the heat equation in the Liouville space 

2.1. Two differential equations and their transformations  

Consider a medium with temperature gradients in a single direction, say z  (one-dimensional heat diffusion). In 

this direction, the thermal properties of the medium show continuous variations. The profile of thermal 

conductivity is  z  and the profile of volumetric heat capacity (VHC) is  zc . Therefrom are defined the 

profile of diffusivity:      zczza   and the profile of effusivity:      zczzb  . An exemplary 

situation is described in Fig. 1, where a layer of such material is used as a coating laid over a homogeneous 

substrate. In the Laplace or Fourier space, the heat equation for temperature (namely the heat equation in its 

classical form) is expressed as: 

    









dz

d
z

dz

d
zpcT


:  (3) 

Therein, for ease, p  represents either the Laplace variable (for the purpose of analyzing the transient regime) 

or the Fourier variable i  (for the purpose of analyzing the periodic regime), where   is the angular 

frequency f2  of the considered modulation (in that case, the  tiexp  time-harmonic evolution is 

implicitly assumed throughout this paper).  pz,  is the Laplace or Fourier transform of the temperature 

 tzT , ; in Eq. (3) and in all other equations the independent variables will be generally omitted. This 

equation is denoted with the symbol T , as will be done for any result derived therefrom. 

 
 

Fig. 1. Model of a continuously heterogeneous coating laid over a homogeneous substrate. The graded layer 

extends from 0z  to the depth 
1

zz  . In the SRDT space (Square Root of Diffusion Time) it extends from 

0  to 
1
  . A typical photothermal application is represented on the left, where a modulated or pulsed 

heat input is provided to the front surface of the coating, while an infrared sensor has been measuring the 

temperature variations of the front surface. This paper will present the results for different effusivity profiles 

in the coating. 

 

A similar equation can be obtained for the heat-flux density and we will use, accordingly, the symbol   (

 pz,  is the Laplace or Fourier transform of the heat-flux density  tz, ): 

    









dz

d

zcdz

d

z
p







11
:  (4) 

Next, a Liouville transformation is applied, which first implies a change of the independent (space) variable 

z , where   is defined by: 

 


z

z

duua

0

21  (5) 
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  corresponds to the square root of the diffusion time (SRDT) along the segment  zz ,
0

, where 
0

z  is chosen 

arbitrarily (for ease, the origin of the z-scale is set at the left edge of the graded layer and 
0

z  is set to 0; in 

this way, the origin of the  -scale is also set at the left edge of the graded layer, - see Fig. 1). 

The two heat equations in Eq. (3) and Eq. (4) become, in the new SRDT  -scale: 

 

 




 



11:

:

bpb

bpbT
 

(6) 

(7) 

where, and from now on, a prime denotes a derivation with respect to  .  

The Liouville transformation also implies a change of the dependent variable  , or respectively  , by 

multiplying it by the function  s , which is alternatively defined by: 

 

   







 

casethein21

casethein21
;21




T
bs  (8) 

 

A positive exponent refers to the T -form equation, whereas a negative exponent refers to the  -form 

equation (this convention will apply throughout this paper, whenever a double-sign exponent is present). Due 

to this double representation with respect to effusivity, ,  s  will be called a metaproperty. 

Depending on the form of heat equation, the variable change is as follows: 

         
         


21

21

,,:,,:

,,:,,:








bpppp

bppppT
 

(9) 

(10) 

In each case, this leads to the same differential equation, which is a second-order equation in the so-called 

Liouville normal form: 

    
 
 



s

s
VpV


 ;  (11) 

This also amounts to be a stationary Schrödinger equation with potential  V . Notice that the 

“Schrödinger” name is given to Eq. (11) just because of a formal similarity. However, no square-integrability 

condition applies to the (pseudo) wave-function   as in quantum mechanics. In addition, in the present 

context, solutions are sought for arbitrary values of the complex parameter p ; there is no quest for 

eigenvalues or bound states as in quantum mechanics. 

 

2.2. Preeminence of effusivity variations in the description of the thermal field  

A first observation, as already mentioned in [58], is that the Liouville transformation offers the advantage of 

reducing the number of influential thermal profiles from two to one, namely from conductivity and VHC, in 

Eq. (3)-(4), to solely effusivity in Eq. (6)-(7). Furthermore, notice that the Fourier law is expressed in the  -

space as: Tb  , which means that conductivity has been “replaced” by effusivity (the same applies, of 

course, in the Laplace-Fourier space:   b ). This is simply a consequence of the fact that the 

temperature gradient is now expressed in the  -scale, not in the z -scale. Hence, any boundary condition 

involving the conduction heat flux will be expressed in the  -space with effusivity and no other thermal 

property. Finally, stretching the (depth) z -scale into the (SRDT)  -scale has allowed the conductivity and 

heat capacity profiles to be merged into a unique influential profile, namely the effusivity  b . This 

underlines the unique role played by effusivity in the dynamic development of the temperature field. A direct 

consequence is that when comparing the response of two materials to a same heat load (i.e., same boundary 

condition type and same  -distribution of heat sources), the corresponding temperature distributions are 

different if and only if the effusivity profiles are themselves different. If the diffusivity z -profiles are 

different while the effusivity profiles  b  remain the same, this simply implies a spatial stretching of one 

temperature field relative to the other (note that diffusivity is actually embedded in the   variable). 
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Remember that this analysis is valid for one-dimensional heat transfer only; otherwise, the influence of the 

heterogeneous properties is more intricate. 

2.3. General solution and quadrupole method 

Basically, the problem comes down to finding mathematical functions  s  ensuring the integrability of the 

Schrödinger equation in Eq. (11). These will be called solvable  s -profiles. Those leading to solutions 

expressible in closed form and involving only elementary functions will, of course, be preferred. 

The general solution to Eq. (11) will then be expressed as a linear combination (LC) of two linearly 

independent solutions (LIS),  pK ,  and  pP , , which will be written as: 

 
 
 








pP

pK
p

,

,
,




  (12) 

Generally speaking, the two multiplicative constants affecting  pK ,  and  pP ,  can be obtained by 

expressing the thermal boundary conditions prevailing at the boundaries of the considered graded layer in 

terms of the field function  p,  and its derivative. Nevertheless, and especially in the presence of a 

multilayer, a very convenient way to calculate the temperature or the heat flux at one of the external or 

internal boundaries is to apply the quadrupole method [55], [56].  

Quadrupoles T
M  and 

M  are related, respectively, to profiles of T -form or of  -form. How to 

build them, knowing two LIS solutions  pK ,  and  pP ,  associated with the effusivity profile under 

study, has been outlined in Ref. [58]. This methodology has been recalled in Appendix A. Practical 

applications will be described later in relation to the class of solvable effusivity profiles that are the subject 

of this paper. 

2.4. Liouville inverse transformation 

When it is necessary to go from the  -space back into the z -space, which constitutes the inverse Liouville 

transformation, a kind of indeterminacy appears. This indeterminacy should, however, be considered as a 

benefit. In essence, any solvable effusivity profile in the Liouville space,  b , can be associated with an 

infinite number of effusivity profiles in the depth space,  zb , as becomes evident when inverting Eq. (5). 

This equation involves the diffusivity distribution, which implies that the result will depend on what is 

considered for it or, equivalently, as will be seen in the following, on what is considered for the distribution 

of any of the two remaining parameters: conductivity or VHC. Accordingly, the related temperature solution 

 p,  can be associated with a plurality of solutions in the z -space:  pz, . The same thing happens for 

the heat flux (how to obtain  p,  and  p,  from  p,  is fully described in Eq. (A-1)).  

Nevertheless, one should be aware that it is only a matter of distributing differently the effusivity and 

temperature values, respectively  b  and  p, , by local stretching or compression along the spatial 

scale. In any case, supplementary information is needed to perform the scale change z . The relationship 

between the two scales is basically the one expressed in Eq. (5). If preferred, two additional equivalent 

expressions can be considered by replacing  za 21
 by    zbzc  or    zzb  . Hence, from any profile 

 za ,  zc  or  z , a profile  zb  can be obtained that corresponds to the profile  b  initially obtained in 

the Liouville space; it is simply a case of selecting among the three expressions below the one that 

corresponds to the information input: 

    

   

     

     

































z

z

z

duuubz

duubucz

duuaz

zbzb

0

1

0

1

0

21

or

or;







  (13) 
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Note that, for the second and third choices, the effusivity profile  zb  that we are seeking also appears in the 

integrand. The definition of  zb  is then recursive, which would require iterations for its evaluation. 

Another approach consists in capitalizing on the inverse of Eq. (5), which is given below through three 

equivalent expressions: 

           
 




0

1

0

1

0

21 duubuduucubduuazz  (14) 

Hence, given a profile  a ,  c  or   , one can obtain, after computing the corresponding quadrature, an 

explicit relationship between the two scales, namely through the function  z . Thereafter, the joint 

expressions of  z  and  b  provide a parametric definition (i.e., through  ) of the effusivity profile in the 

z –scale. However, one could fear that the formal procedure described in Eq. (14) may be of limited use, 

since in most situations the profiles  a ,  c  or    are out of reach. Hopefully, important exceptions 

exist, namely when one or the other of these three parameters is known to be constant (actually, the case of 

constant diffusivity is trivial, since then the z –scale and the  –scale are simply proportional). Moreover, 

Eq. (14) can be replaced by a more general expression: 

           
 qduubucuduuazz qqq ;

0

211

0

21



  (15) 

Then, if    zcz qq 1  happens to be constant for a particular value of the constant parameter q  (the cases 

0q , 21q  and 1q  correspond, respectively, to constant VHC, constant diffusivity and constant 

conductivity), the integral in Eq. (15) amounts to calculating the primitive of  qb 21
: 

      1

00

1

0

211

00 ;   
qqqqqqq ccstzczduzbcz 



 (16) 

For some of the solvable profiles that will be presented later, this quadrature can be expressed analytically, at 

least for some particular values of the parameter q . 

2.5. Present scope: solutions stemming from a constant potential  V  

Simple solutions to Eq. (11) can be obtained by choosing a constant potential:   cstV   . Depending on 

whether this constant is 0, strictly negative or strictly positive, this leads to a function  s  of either linear, 

trigonometric or hyperbolic type. The corresponding solvable effusivity profiles are obtained, according to 

Eq. (8), as the square of the aforementioned functions, or of their reciprocal. These profiles and the 

corresponding field solutions were briefly outlined in Ref. [58]. They generalize, for arbitrary diffusivity 

profiles, the solutions presented in Ref. [20]for constant diffusivity only. Furthermore, the solutions are 

doubled as a result of exploring the  -form equation in addition to the classical T -form equation. Their 

counterparts for the wave equation have also been briefly outlined in Ref. [61]; they generalize those 

presented in Refs. [64] and [65] by considering arbitrary incidence and polarization, not only normal 

incidence.   

The solutions stemming from a constant potential have been presented in [58] and [61] as “fundamental 

solutions”, which were then used as seed solutions for the PROFIDT method (PROperty and FIeld Darboux 

Transformation). Our objective here is to go deeper into the analysis of these fundamental solutions, which, 

despite a remarkable simplicity, show a great interest for modeling graded layers, in particular coatings. We 

will provide the necessary tools for an easy implementation, in particular the quadrupole formulations, both 

for T -form and  -form profiles.  

 

3. Fundamental solutions obtained from a constant potential 

We will distinguish the three cases:   0V ,   0 V  and   0 V . Most of the discussion will 

deal with graded layers of finite thickness. At the two positions 0  and 
1
   of the graded layer, the 

effusivity is assumed to reach, respectively, the values 
0

b  and 
1

b  (see Fig. 1). 



 
 

12 

 

3.1. Nil potential,   0V ; linear profiles for the metaproperty  s  

3.1.1. Effusivity profiles in the Liouville-space 

The solutions for  s  are the linear functions of the SRDT  . The corresponding effusivity profiles are 

defined by: 

   
 
  

















 






1
21

D

B
bs  (17) 

Let us recall that the plus sign in the exponent refers to the T -form solution and the minus sign refers to 

the  -form solution. Due to the positivity constraint on the result of the linear combination in Eq. (17) 

(since  s  represents either the square root of effusivity or its reciprocal), if these profiles are to be used on 

the semi-infinite interval   ,0 , they should be restricted to     2
 

DB
AAb  with 0

B
A  and 

0
D

A . T -form profiles are then unbounded at  , whereas  -form profiles present a vanishing 

effusivity. 

Let us now focus on finite-thickness layers. Taking into account the boundary values of effusivity, 
0

b  on the 

left, and 
1

b  on the right, the profiles are expressed as follows (by selecting the positive exponents for the 

T -form profiles, and the negative exponents for the  -form profiles): 

 
2

1

21

1

1

21

0
1



































 bbb  (18) 

A few profiles of  s , normalized by the left value 
0

s , have been plotted in Fig. 2. The ratio  2
01

ss  has 

been given four values between 1.25 and 4 and their reciprocal. The particular case where the metaproperty 

vanishes on the right, i.e., 0
1
s , has also been added (lower curve). The corresponding profiles of  b  

have been plotted in Fig. 3 for both the T -form and  -form cases, which means that, respectively,   b

=  2s  and   b =  2s . Normalization by the left-edge value 
0

b  has been introduced. For any value of 

01
bb  except 0, we thus obtain a set of two solvable profiles, one of T -form and one of  -form (see 

each pair of black and red curves in Fig. 3). These partner profiles differ more and more from each other as 

the ratio 
01

bb  becomes progressively larger or smaller than 1. 

In the limiting case where effusivity vanishes at one boundary, namely 
1

b =0, only the T -form solution is 

retained and the profile expression is:    2
10

1   bb  (bottom black dashed curve). The  -form 

profiles in Fig. 3 (red curves) have a limiting curve for 
01

bb , which has been drawn in red dashed 

line. The (normalized) profile expression is simply the reciprocal of the previous one, namely 

    2

10
1


  bb . These two solutions are mathematical asymptotical limits intended to model situations 

where the product of conductivity and VHC decreases to very low values (as could be observed with a 

strong-porosity gradient), or conversely increases to very high values (as for example in a composite material 

with an increasing density of metallic particles, up to percolation). 
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Fig. 2. Linear profiles of the metaproperty     21
  bs . The  s  function is normalized by the value 

0
s  

taken at the left boundary, i.e., at 0 . It has been plotted as a function of the Liouville variable   (square 

root of the diffusion time - SRDT), which has been normalized by the value corresponding to the layer 

thickness, 
1
 . From bottom to top, the right-to-left ratio  2

01
ss  takes the values 0, 0.25, 1/3, 0.5, 0.8, 1.25, 

2, 3, 4.  

 

  
Fig. 3. Fundamental effusivity profiles  b  corresponding to the linear profiles in Fig 2 of the metaproperty 

    21
  bs . Effusivity is normalized by the value 

0
b  taken at the left boundary. It has been plotted in 

function of the normalized SRDT, i.e., 
1
 . From bottom to top, the right-to-left effusivity ratio 

01
bb  

takes the values 0, 0.25, 1/3, 0.5, 0.8, 1.25, 2, 3, 4. Except for 
1

b =0, there are two solutions: one of T -form 

(in black) and one of  -form (in red). For 
1

b =0, there is only one solution of T -form (in dashed-black). 

The top dashed-red curve is a  -form profile corresponding to the asymptotic case 
01

bb . 
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3.1.2. Thermal-property profiles in the z-space 

 

Each curve in Fig. 3 is subject to an arbitrary multiplicity in the physical-depth space (see the discussion on 

the Liouville inverse transformation in § 2.4). In particular, if we assume that    zcz qq 1  is constant for 

some value of the exponent q , it can be shown that the effusivity profiles  zb  and all other properties  z , 

 zc  and  za  are expressed in the physical-depth space in the same generic form:  

 
r

rr

z

z

z

z
z

























1

1

1

1

1

0
1  (19) 

where   stands for cb ,,  or a , and the expression of the exponent r  differs depending on the considered 

thermal parameter (which appears thereafter as a subscript of r ): 

 
 

 qm
mqrmqr

mqrmr

ac

b
2121;

214;4

14;2




 
 (20) 

In addition, the right-to-left ratio of each of the three remaining properties is obtained from 
01

bb , according 

to: 

         qqq
bbaabbccbb

212

0101

2

0101

12

0101
;;


  (21) 

Three important subcases are described thereafter. First a constant VHC ( 0q ): 

:T

    
    
    


















34

1

43

11

43

0

34

1

43

11

43

0

32

1

23

11

23

0

1

1

1

zzazzaza

zzzzz

zzbzzbzb

            :

    
    
    


















4

1

41

11

41

0

4

1

41

11

41

0

2

1

21

11

21

0

1

1

1

zzazzaza

zzzzz

zzbzzbzb

  (22) 

then, a constant diffusivity ( 21q ): 

:T

    
    
    


















2

1

21

11

21

0

2

1

21

11

21

0

2

1

21

11

21

0

1

1

1

zzczzczc

zzzzz

zzbzzbzb

            :

    
    
    
























2

1

21

11

21

0

2

1

21

11

21

0

2

1

21

11

21

0

1

1

1

zzczzczc

zzzzz

zzbzzbzb

  (23) 

and finally a constant conductivity ( 1q ): 

:T

    
    
    






















4

1

41

11

41

0

4

1

41

11

41

0

2

1

21

11

21

0

1

1

1

zzczzczc

zzazzaza

zzbzzbzb

           :

    
    
    






















34

1

43

11

43

0

34

1

43

11

43

0

32

1

23

11

23

0

1

1

1

zzczzczc

zzazzaza

zzbzzbzb

 (24) 

As an illustration, let us perform an inverse Liouville transformation on the two profiles  b  in Fig. 3 that 

correspond to the particular case 
01

bb =3 (the one of T -form, in black, and the one of  -form, in red). 

Different values have been given to the exponent q  between -1 and +2, in steps of 0.25. A double series of 

sets of four profiles  zb ,  z ,  zc  and  za  are thus obtained in the physical-depth space, as reported in 

Figs. 4 to 7. 

Notice that the illustration given in Figs. 4 to 7 is rather formal; as a matter of fact, the graded parameters 

 z ,  zc  and  za  present fairly large variations for the most extreme values of the exponent q . In any 

case, let us recall that in Figs. 4 to 7, all four-profile sets in the z -space of a given form, T  or  , (i.e., 

all profiles of the same color), are associated with a single temperature field  p,  (for a given set of 

boundary conditions), since they originate from the same effusivity profile  b . 

Interestingly enough, two effusivity profiles  zb  of T -form and of  -form obtained with exponents 
T

q  

and q , such that 21 qq
T

 perfectly overlap in the z -space (see Fig. 4). 
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Fig. 4. Fundamental profiles of effusivity in the z -space, i.e.,  zb , as obtained after an inverse Liouville 

transformation. All profiles of T -form (in black) originate from the profile  b  in Fig. 3 with 
01

bb =3 

and T -form. The same applies for the  -form profiles in red. The arrows indicate a growing value of the 

exponent q , from -1 to +2 in steps of 0.25 (see Eqs. (15)-(16) and Eqs. (19)-(21)). A profile of T -form 

and a profile of  -form overlap when the former 
T

q  value is 0.5 higher than the latter value 
q  (the red 

and black curves are then dashed). Profiles obtained with q =0.5 (constant diffusivity) are drawn with a bold 

line (they have the same shape as in the   -space; see Fig. 3). 

 
Fig. 5. Same as in Fig. 4 for the thermal conductivity. The arrow indicates a growing value of the exponent 

q , for the T -form profiles (in black) and the  -form profiles (in red). 
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Fig. 6. Same as in Fig. 5 for the volumetric heat capacity (VHC). 

 
Fig. 7. Same as in Fig. 5 for the diffusivity. 

 

3.1.3. Quadrupoles associated with the linear profiles  

The generic field function is obtained as a LC of the hyperbolic sine and cosine functions of the argument 

p : 

 
 
 

  
  

  
  

 
 
























































p

p

S

C

pS

C

pP

pK
p

sinh

cosh
;

,

,
,

0

0

0

0

 (25) 

It is then easy to calculate the five terms in Eq. (A-5) that intervene in the quadrupole expression: 

   
   















1

sinh;sinh

cosh;cosh

11

11





ppJppI

pHpG

 (26) 

where 
1
  represents the square root of the total diffusion time through the graded layer, i.e., according to Eq. 

(5):  


1

0

21

1

z

duua . Following the procedure described in Eq. (A-4), we obtain the four entries of the 

quadrupole T
M , as presented thereafter in a non-dimensional form: 
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knowing that for a T -form profile, the substitution 
21

1,01,0


bs  should be made. To obtain the quadrupole 

matrix 


M  related to a  -form profile, the substitution 
21

1,01,0


bs  should be made, and then the 

permutation rule described in Eq. (A-6) should be applied. In Eq. (27), the symbol   denotes a matrix 

product, whereas   denotes a term by term product (i.e., line by line). 

When 1
01
 ssx , both T -form and  -form profiles merge into a constant profile (

01
bb  ) and it is 

easy to check that the previous relationship becomes: 
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 (28) 

which effectively corresponds to the quadrupole expression of a layer with constant effusivity 
0

b  and SRDT 

1
 . If diffusivity is also a constant, i.e.,   aza  , then we have 

21

11



 az  and we retrieve the classical 

quadrupole expression of a homogeneous layer [55]. 

 

3.1.4. Temperature computations 

The results that will be presented first are aimed at simulating the radiometric photothermal response of a 

graded coating of “linear” type when laid over a very thick and homogeneous substrate. The front face of the 

coating, where effusivity takes the value 
0

b , is subjected to a heat source of power density  p  (in the 

Laplace-Fourier space). The rear face of the coating, where the effusivity reaches the value 
1

b , is backed by a 

semi-infinite homogeneous layer having the same effusivity 
1

b . When the free surface of the coating is 

submitted to linear heat losses with coefficient h  (boundary condition of the third type), the temperature 

response at this free surface is given by (see, for example, Refs. [55], [56] and [66], and references therein): 

 BAZhDCZ

BAZ






0
  (29) 

 

where A, B, C, D are the quadrupole entries of the coating (Eq. (27)) and Z  is the thermal impedance of the 

substrate; i.e.,   1

1



 pbZ . The following examples will, however, be restricted to the adiabatic case; i.e., 

h =0. The first results correspond to the periodic case (modulated heat source of power-density magnitude P  

- not to be confused with the independent solution in Eq. (12) - and angular frequency  ; the spectral 

variable p  appearing in Eq. (29) should then be set to i ). 

The results regarding the amplitude and phase of the surface temperature have been plotted in Fig. 8 and Fig. 

9 for four values of the ratio 
01

bb : 1/3, 2/3, 3/2 and 3, and for both T -form and  -form profiles. The 

frequency f  has been normalized by 2

1

 , knowing that 2

1
  represents the diffusion time through each 

considered coating. The amplitude has been normalized by 
01

bP . 
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Fig. 8. Magnitude of the temperature periodic response at the free surface of a selection of eight “linear”-

type graded coatings and four homogeneous coatings over a semi-infinite substrate with 
01

bb =1/3, 2/3, 3/2 

and 3 (adiabatic bi-layers). The responses of the T -form profiles are in black; those of the  -form 

profiles are in red (for a better discrimination, see Fig. 10 below). The curves in blue correspond to 

homogeneous coatings of effusivity 
0

b  laid over a substrate of effusivity 
1

b  [67] 

  
Fig. 9. Same as in Fig 8 for the phase of the temperature response.  

 

For comparison, we also plotted (in blue) the classical response of a coating with constant effusivity 
0

b  [67]. 

To compute the response of the uniform coatings, the quadrupole entries A, B, C, D expressed in Eq. (28) 

simply have to be substituted into Eq. (29). In the latter case of a homogeneous coating, the effusivity 

presents a jump from 
0

b  to 
1

b  right at the interface. In the graded coating systems presented in this paper, the 

effusivity profile is continuous (albeit non-smooth) at the interface.  



 
 

19 

 

 
Fig. 10. Same as in Fig 8 for the inverse contrast of the amplitude with respect to a semi-infinite material 

with constant effusivity 
0

b . This observable can be interpreted as a (frequency-dependent) “apparent 

effusivity” normalized by 
0

b . 

 

In Fig. 8, at low and high frequency, the temperature amplitude evolves asymptotically with the frequency as 
21f . On the other side, the temperature amplitude of a homogeneous semi-infinite layer of effusivity 

0
b  is 

 fbPref  2
00

 . If we calculate the inverse contrast 00
 ref

, we obtain another way of presenting the 

temperature amplitude, which is deprived of the 21f  trend and which magnifies the differences between the 

coating responses (see Fig. 10). This is a frequency-dependent function whose asymptotic limits are 1 for 

f  and 
01

bb  for a vanishing frequency. It can be interpreted as a normalized apparent effusivity, i.e., 

 
0

bfb
app  with  

0
bfb

fapp
 


 and  
10

bfb
fapp 


. This is the frequency-domain counterpart of the 

apparent effusivity initially defined in the time domain [68], and which will be discussed further on. This 

empirical observable has a potential for in-depth effusivity scanning. In other words, it provides a simple, yet 

quite crude, identification of the in-depth variations of effusivity. As a matter of fact, by sweeping from 

high-frequency to low-frequency values, progressively deeper values of the effusivity profile can be 

revealed. Of course, this approach is very approximate. This is confirmed through the homogeneous coating 

cases (blue curves). As a matter of fact, the effusivity jump at the interface between the coating and the 

substrate is not reflected in the curves of the apparent effusivity. The transition is much smoother. Moreover, 

even slight undulations are noticed when the normalized frequency is in the range 0.1-1. Similar undulations 

are also observed in the phase plot (Fig. 9) and they are classically interpreted as the result of “interferences” 

of the so-called “thermal wave”. It should also be noted that the (normalized) apparent effusivity comes 

close to the value representative of the substrate, namely 
01

bb , only for very low values of the normalized 

frequency (less than 10
-2

, or even 10
-3

, depending on the acceptance criterion). 

When considering the coatings with a graded effusivity now, on the whole, the evolution with frequency of 

the amplitude response and the phase response is smoother, which is nothing unexpected (compare the black 

and red curves on the one hand and the corresponding blue curves on the other hand). On the other side, the 

previously mentioned undulations are now absent from the amplitude (and apparent-effusivity) curves as 

well as from the phase curves. Furthermore, when starting from high frequency values and moving 

downwards, the departure from the behavior of a material with constant effusivity 
0

b  is observed earlier with 

a graded coating, which, again, is quite natural, since effusivity starts changing immediately below the free 

surface.  

The T -form and  -form profiles present different responses. They compare differently, whether 
01

bb  

is larger or smaller than one. In the former case, i.e., for an increasing effusivity profile, the effusivity moves 
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faster from 
0

b  for a T -form profile than it does for a  -form profile (see Fig. 3). In the latter case, i.e., 

for a decreasing effusivity profile, it is the contrary. This explains why, for 
01

bb >1 and when the frequency 

is decreasing, the resulting curves (phase or apparent effusivity) of a T -form coating change faster than 

with a  -form profile. When 
01

bb <1, the opposite is observed. 

Remarkable symmetry has been observed in the amplitude and phase responses for homogenous coatings 

when comparing systems with ratios 
01

bb  that are the inverse of each other [67]. This means that the blue 

curves in the phase plot in Fig. 9 are symmetric with respect to the reference line at 45°. Similarly, the blue 

curves in the amplitude plot in Fig. 8 are (vertically) symmetric with respect to the reference line 2

1
1  , 

which makes the apparent-effusivity curves in Fig. 10 symmetric with respect to the reference line 

  1
0
bfbapp ; i.e., they are the reciprocal of each other. The same symmetry can be observed for the graded 

coatings, provided that the T -form and  -form profiles are exchanged when moving from a 
01

bb  

value to its reciprocal.  

To obtain the transient response of a bi-layer system when it is submitted to a Dirac pulse of energy density 

Q , one simply needs to perform an inverse Laplace transform of Eq. (29) with   Qp  . In all likelihood, 

an analytical expression is beyond reach; we must therefore resort to a numerical approach, as for example 

the De Hoog method [72]. 

The adiabatic response of a homogeneous semi-infinite slab is tbQ 
0 . When dividing it by the transient 

response of one of the considered bi-layers we obtain a time-dependent temperature contrast, which 

corresponds to (another) normalized apparent effusivity, i.e.,  
0

btb
app  with  

00
btb

tapp 


 and 

 
1

btb
tapp 


 [6], [66], [68], [69], [70], [71]. This temperature (relative) contrast has been plotted in Fig. 

11 for the eight graded and four step-profile coating systems considered in Figs. 8-10. Let us now compare 

the “frequency-version” of the apparent effusivity in Fig. 10 and the “time-version” in Fig. 11. 

 
Fig. 11. Same as in Fig 10, in the time domain, when comparing the responses of the coating/substrate 

systems to a Dirac pulse. The temperature contrast is obtained by dividing the transient temperature of the 

surface of a material having a constant effusivity 
0

b  by the transient temperature of each considered bilayer. 

This observable can be interpreted as a (time-dependent) “apparent effusivity” normalized by 
0

b . 

 

Broadly speaking, the comments on the results obtained in the frequency domain can be directly transposed 

in the time domain after reversing the frequency scale. There are, nevertheless, some important differences. 

The first point to notice is that the undulations in the blue curves related to the homogeneous coatings in Fig. 

10 are absent in Fig. 11. Thus, in the time domain, it appears that a monotonically increasing/decreasing 
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effusivity profile gives rise to a similarly monotonically increasing/decreasing evolution of the apparent 

effusivity, which is obviously a good point. The second difference lies in the fact that the apparent-effusivity 

transition between 
0

b  and 
1

b  is far steeper in the time log-scale than in the frequency log-scale. This is 

particularly noticeable for the homogeneous-coating systems (blue curves). All of this means that the time 

response seems to provide a “clearer” and more faithful tomographic image of the subsurface effusivity 

profile than the frequency response does. Of course, this statement refers to the raw signals, which does not 

preclude that, after implementing ad hoc inversion strategies, the results are necessarily improved in both 

cases. Nevertheless, between modulated and pulsed experimental methodologies, it would be quite tempting 

to choose the latter, since it produces, from the outset, a signal of higher intrinsic quality regarding the 

potential for depth profiling. 

Let us now consider the two limiting cases drawn with dashed lines in Fig. 3, namely 0
1
b  ( T -form) 

and 
1

b  (  -form). These graded layers should be considered on their own. The first one has a 

permanently null flux on its rear face, i.e. at 
1

zz   (it will be assumed that the temperature derivative is 

bounded at this location), whereas the second one has a permanently null temperature. For that reason, the 

classical configuration with a homogeneous layer that will be compared with the limiting case 0
1
b  is 

obtained by imposing an adiabatic condition ( 0
1
 ) at the rear side of the homogeneous layer (condition of 

the second kind). Reciprocally, for the limiting case 
1

b , a condition of the first kind with 0
1
T  will be 

applied. 

The expression for the temperature in Eq. (29) is simplified as follows for the two graded layers: 

 
0;

1coth
11
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
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





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0
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;
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b
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p
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
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In both cases, we can recognize the temperature of a homogeneous semi-infinite material of effusivity 
0

b  

multiplied by a corrective term in brackets. One can notice that, in the adiabatic case ( h =0), the corrective 

terms in Eq. (30) and Eq. (31) are the inverse of each other. 

The front face temperature of a homogeneous layer with 0
1
  at the rear side is simply 

   pbp
010

coth   . When 0
1
T  at the rear side, it becomes    pbp

010
tanh   . 

In Fig. 12 to 13, the amplitude and phase of the periodic response of the former graded and homogeneous 

slabs have been plotted.  

The (frequency–dependent) apparent effusivity, as defined from the inverse amplitude contrast, is plotted in 

Fig. 14. The same as is obtained in the time domain when replacing the modulated heat source by a pulse 

source can be seen in Fig. 15. 
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Fig. 12. Magnitude of the temperature periodic response at the front surface of a series of single layers. 

Dashed black line: “linear” graded layer with 0
1
b  ( T -form profile in Fig. 3 of same type and color). 

Dashed red line: “linear” graded layer with 
1

b  (  -form profilein Fig. 3 of same type and color). Blue 

lines: homogenous layers of effusivity 
0

b  with  either 0
1
T  (BC of the 1

st
 kind) or 0

1
  (BC of the 2

nd
 

kind) at the back face. 

 
Fig. 13. Same as in Fig. 12 for the phase. 

 

The results for the homogeneous slabs are well known and do not need any comment. Regarding the 

“linear”-type layers, a general remark is that, on the whole, the departure from the homogeneous, semi-

infinite case and the entry into the “deep” asymptotic behavior is observed sooner, which means at a higher 

value of the decreasing frequency, or a smaller value of the increasing time. In addition, all observables 

(amplitude, phase and both apparent effusivities) are monotonically increasing or decreasing. The asymptotic 

limits for the phase are the same as those for the corresponding homogeneous slabs. 
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Fig. 14. Same as in Fig. 12 for the amplitude inverse contrast with respect to a semi-infinite material with 

constant effusivity 
0

b .  

 
Fig. 15. Same as in Fig 14 in the time domain when comparing the responses obtained with a Dirac pulse. 

 

3.2. Positive or negative potential,   0 V ; hyperbolic and trigonometric profiles for  s  

3.2.1. Effusivity profiles in the Liouville-space 

Let us introduce 
c

 , which is defined by  1
c , where   represents the positive or negative value 

chosen for the constant potential  V ; 
2

c
  represents a characteristic diffusion-time of the graded profile. 

When 0 , the solutions for the metaproperty  s  are LCs of the exponential functions of 
c
  and 

c
  or, equivalently, LCs of the hyperbolic cosine and hyperbolic sine functions of 

c
 . When 0 , 

the solutions are LCs of the cosine and sine functions of 
c

 . The corresponding effusivity profiles are 

thus obtained from: 
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These profiles encompass those presented in Ref. [20], which were restricted to constant diffusivity. They 

also encompass the exponential profiles    
c

bb   exp
0

 presented in Refs. [52] and [53]. 

Due to the positivity constraint on the result of any linear combination in Eq. (32), the second option ( 0 ) 

can be applied only over a finite interval,  
1

,0   , whereas the first option could be applied over a finite or 

semi-infinite interval. In the latter case, the only T -form profiles that are bounded are of the type 

   
c

bb  2exp
0

 , whereas those of  -form are of the type  

       2
expexp




cDcB
AAb   with 

D
A >0, and 

21

0


 bAA

DB . 

We will next focus on the modeling of layers of finite-thickness with the profiles described in Eq. (32). 

Taking into account that these profiles reach 
0

b  and 
1

b , respectively, at the left edge ( 0 ) and right edge (

1
  ) of the graded layer, they can also be expressed as follows: 
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0;sinhsinh
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1221
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cc

cc
ffbfbb  (33) 

 

There is one degree of freedom left, namely the free parameter 
c

 , to adjust the shape of each profile. A 

possible objective is to reach a specific slope at the left boundary. This opens up many more opportunities, as 

compared to the linear profiles discussed in § 3.1. Consider again the case where effusivity triples from the 

left side to the right side: 
01

bb =3. Figure 16 shows a series of profiles of hyperbolic type, of either T -

form or  -form, and with varying left-edge slope. The same for trigonometric type profiles is shown in 

Fig. 17. In both cases, the set of T -form profiles and the set of  -form profiles are limited by the 

corresponding “linear”-type profiles that share the same 
01

bb  value (refer to the two profiles with 
01

bb = 3 

in Fig. 3; their normalized derivative 
001

bb  is 1.464 for the T -form profile and 0.845 for the  -form 

profile). In Fig. 16, the set of T -form profiles extends from the corresponding “linear” limiting case 

downward and the set of  -form profiles extends from the corresponding “linear” limiting case upward. 

This makes the two sets present a recovery region for 
001

bb  [0.845,1.464]. However, a T -form profile 

and a  -form profile sharing the same value of the left derivative in this interval are different. In Fig. 17, 

the directions are reversed, creating an “empty” region between the two sets. This means that no profile of 

trigonometric type can be found in this intermediate region.  

So, when the left-derivative target is greater than that of the T -form curve of “linear-type” (here: 1.464), 

or smaller than that of the  -form curve of “linear-type” (here: 0.845), two distinct solutions can always 

be found: one of hyperbolic type and  -form, resp. T -form (Fig. 16), and one of trigonometric type and 

T -form, resp.  -form (Fig. 17) in the second case. If the left-derivative target is between these limiting 

values, there are, again, two solutions but of hyperbolic-type only (one of T -form and one of  -form; 

see the recovery region in Fig. 16). In summary, given two end values 
0

b , 
1

b , and one value of the left-end 

derivative, 
0

b , there is always a possibility of choosing between two profiles in the joint class of 

trigonometric and hyperbolic profiles, of T -form and  -form.  

 



 
 

25 

 

  
Fig. 16. Fundamental effusivity profiles of the hyperbolic-type. Same variables and normalizations as in Fig. 

3. Profiles of T -form are in black, those of  -form are in red. The right-to-left effusivity ratio 
01

bb  is 

3. For T -form profiles, the (normalized) effusivity slope at the left edge takes on decreasing values starting 

from 1.464 in steps of 0.2. For  -form profiles, it takes on increasing values starting from 0.845. These 

values correspond to the slope values of the limiting “linear”-type profiles (see Fig. 3). 

 

Fig. 17. Same as in Fig. 16 for the fundamental effusivity profiles of trigonometric-type. For T -form 

profiles, the (normalized) effusivity slope at the left edge takes on increasing values starting from 1.464 in 

steps of 0.2. For  -form profiles, it takes on decreasing values starting from 0.845. 

 

Previous illustrations have taken into account non-vanishing values of effusivity at the boundaries. The case 

in which effusivity is (asymptotically) null at one boundary, say 0
1
b , is also of interest. As was observed 

with the “linear”-type profile, only the T -form profiles are then of practical interest. The hyperbolic and 

trigonometric solutions are illustrated in Fig. 18. The hyperbolic profiles all decrease monotonically, while 

the trigonometric profiles may also present other forms, such as, for example, with a rising portion first and 

then a falling portion.  



 
 

26 

 

  
Fig. 18. Fundamental effusivity profiles of the “hyperbolic” type (in orange) and of the “trigonometric” type 

(in green) satisfying the boundary condition 
1

b =0. All are of T -form. They extend on either side of a 

common limiting profile illustrated by a dashed black line, which corresponds to the “linear” type profile in 

Fig. 3 of the same line type. The (normalized) effusivity slope at the left edge takes on values from -2 to -6 

(“hyperbolic” type) and from -2 to +3 (“trigonometric” type) in steps of 0.5. 

 

3.2.2. Effusivity profiles in the z-space 

Performing the inverse Liouville transformation is more involved than in the linear case. However, at least 

when VHC is constant ( 0q ), or heat conductivity is constant ( 1q ), closed-form analytical expressions 

describing the relationship between z  and   can be found. First, the two coefficients 
DB

AA ,  in Eq. (32) 

need to be evaluated from the edge values 
10

, ss  of the metaproperty     21
  bs , namely: 
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Next, we can take advantage of the fact that, for 0q  and 1q , the integral in Eq. (16) amounts to 

calculating the primitive of either  2s  or  2s , which proves to be tractable [58], [61]: 
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The choice between the primitives  g  or  l  for the z -scale determination depends on whether VHC is 

constant, i.e.,  
0

czc  , or conductivity is constant, i.e.,  
0
 z , and on whether the profile is of T -form 

or  -form. The selection rules are summarized thereafter: 
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In addition, it is possible to eliminate the functions  B  and  D  in Eq. (36) by taking advantage of the 

fact that       1sgn 22   DB . This leads to an explicit expression of the effusivity profile as a function of 

the physical depth z : 
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The right-hand side is a polynomial of degree two of the normalized depth 
1

zz . Remember, however, that 

Eq. (38) concerns the cases requiring the calculation of the primitive  l . Hence, with reference to the rules 

provided in Eq. (37), the positive exponent in Eq. (38) applies to T -form profiles with constant 

conductivity, whereas the negative exponent applies to  -form profiles with constant VHC. Depending on 

the form, the family of trigonometric and hyperbolic profiles (in terms of the metaproperty  s ) takes on, in 

z -space, the form of a polynomial of degree 2 describing  zb1  or  zb . This is a transposition in the 

thermal context of results obtained in electromagnetics in the modeling of a light wave at normal incidence 

in a material with a graded refractive index [64], [65], and later extended to the case of arbitrary incidence 

[61]. 

 

 

Figures 19 and 20 correspond to the profiles in Fig. 17 when represented in the physical-depth scale. To 

move from the SRDT-scale to the physical-depth scale it has been assumed that   cstzc   in Fig. 19 and that 

  cstz   in Fig. 20. The appropriate equations among Eq. (35)-(37), or possibly Eq. (38), have been 

considered to draw these plots. 

When VHC is assumed constant, since from Eq. (14),      dcbdz 1 , it is clear that moving from  b  to 

 zb  induces a horizontal stretching/compression of the profile in those areas where effusivity is the 

highest/lowest (compare Figs. 17 and 19). Conversely, when conductivity is assumed to be constant, since 

from Eq. (14),      dbdz 1 , moving from  b  to  zb  induces the opposite (compare Figs. 17 and 

20).  

The same has been performed with the hyperbolic–type profiles from Fig. 16 (not reproduced here due to 

lack of space). Naturally, the same stretching/compression effects have been observed with these profiles. 

 

For hypotheses regarding a , c  or    other than being constant, to establish a relationship between the  -

scale and the z -scale would probably require the numerical computation of a quadrature. The quadrature in 

question is that in Eq. (16), if    zcz qq 1  happens to be constant, or one among those in Eq. (13), if one of 

the following profiles is known:  za ,  zc  or  z . 

In any case, Figs. 16 to 20 show that implementing the family of trigonometric and hyperbolic profiles quite 

substantially enriches the possibilities, as compared to the simple “linear”-type profiles. In essence, one 

additional free parameter is made available to play with the concavity of the profile and possibly introduce a 

change of sign to the concavity.  
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Fig. 19. Trigonometric-type profiles from Fig. 17 expressed here in terms of the normalized geometrical 

depth 
1

zz . To perform the inverse Liouville transformation in Eq. (15), the volumetric heat capacity has 

been assumed to be constant. 

 

 

 

 
Fig. 20. Same as in Fig. 19 when assuming that the thermal conductivity is constant. 

 

3.2.3. Quadrupole related to hyperbolic and trigonometric profiles 

Regarding the field function  p, , the only difference with the linear case, is that p  is now replaced by 

p : 

 
 
 

  
  

  
  

 
 




































































p

p

S

C

S

C

pP

pK
p

sinh

cosh
;

,

,
,  (39) 

The entries of the corresponding quadrupole are obtained after some algebra: 
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From the profile definition, it is easy to obtain the expressions of the normalized logarithmic derivatives at 

the layer boundaries, 
0

  and 
1

 , which appear in Eq. (40) : 
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Again, to obtain the quadrupole matrix 
T

M  related to a T -form profile, one simply has to make the 

substitution 
21

1,01,0


bs  in Eqs. (40) and (41), whereas for the quadrupole matrix 


M  related to a  -

form profile, one should first make the substitution 
21

1,01,0


bs  and then apply the permutation rule 

described in Eq. (A-6). 

3.2.4. Temperature computations 

The temperature has been computed to simulate the same modulated photothermal experiment as that 

considered with the “linear”-type coatings in § 3.1.4. For that purpose, the quadrupole entries defined in Eq. 

(40) have been substituted in the temperature expression in Eq. (29). 

The following illustrations refer again to the case where effusivity triples from the free surface of the coating 

down to the interface with the substrate: 3
01
bb .  

The results obtained with the hyperbolic-type profiles drawn in Fig. 16 are plotted in Figs. 21-22. The results 

obtained with the trigonometric-type profiles drawn in Fig. 17 are plotted in Figs. 23-24. The amplitude 

response 0
  has been reported only through the inverse contrast 00

 ref
 (Figs. 22 and 24), which, as has 

already been explained above, represents the normalized apparent effusivity (in the frequency domain). 

 

 
Fig. 21. Thermal periodic response (phase of the surface temperature) of coating/substrate bilayers with 

coatings of hyperbolic-type. The corresponding profiles are represented in Fig. 16 (with the same colors). 

The arrows indicate an increasing slope of the effusivity profile at the free surface ( z =  =0). 
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Let us recall that the temperature amplitude evolves with a frequency according to the general rule: effusivity 

at a small/large depth is anti-correlated with the amplitude at a high/low frequency. However, this effect is 

progressively dampened with depth. In addition, local features in the effusivity profile are sensed over a 

frequency range that widens (in a logarithmic scale) as the depth increases. As a consequence, the shallow 

effusivity features are more clearly revealed in the apparent effusivity curve than the deeper features (see 

Fig. 22 and Fig. 24). Clear evidence is obtained when considering the overshoot that some of the effusivity 

profiles present, as compared to the final level 
01

bb =3. This is observed for the highest red profiles in Fig. 

16 and the highest black profiles in Fig. 17. Such an overshoot is, however, not seen in the related curves of 

the apparent effusivity in Figs. 22 and 24: the apparent effusivity does not exceed the asymptotic level of 3 

when the frequency is decreasing. This poor restitution of the actual in-depth evolution of effusivity explains 

the difficulty encountered in achieving a thermal inversion of deep features with great precision. 

 

 
Fig. 22. Same as in Fig. 21 for the amplitude inverse contrast (i.e., the apparent effusivity in the frequency 

domain). 

 
Fig. 23. Thermal periodic response (phase) of coating/substrate bilayers with coatings of trigonometric-type. 

The corresponding profiles are represented in Fig. 17 (with the same colors). The arrow indicates an 

increasing slope of the effusivity profile at the free surface. 
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Fig. 24. Same as in Fig. 23 for the amplitude inverse contrast (i.e. the apparent effusivity in the frequency 

domain). 

 

Let us now analyze the thermal response of hyperbolic and trigonometric profiles in the two limiting cases 

0
1
b  ( T -form), and 

1
b  (  -form). The expression in Eq. (29) reduces to: 
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The expressions in Eq. (42) and Eq. (43) encompass the “linear” case, which was described respectively in 

Eq. (30) and Eq. (31). As a matter of fact, in the linear case we have 0  and 1
0

 . 

The following two figures concern only the first case, 0
1
b  ( T -form). The phase of the periodic 

response is shown in Fig. 25, while the inverse contrast in amplitude is shown in Fig. 26. 

 
Fig. 25. Phase of the modulated temperature response of the graded layers represented in Fig. 18 (same 

colors). 
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Fig. 26. Same as in Fig. 25 for the amplitude inverse contrast (i.e., the apparent effusivity in the frequency 

domain). 

 

As compared to the response of the “linear”-type graded layer, the variations of effusivity introduced through 

the hyperbolic or trigonometric character of the new profiles induce significant changes in phase and 

amplitude in a frequency range of the order of  10,1.02

1
f , especially around 12

1
f . 

These examples complete the description of the possibilities offered by the hyperbolic and trigonometric 

types of effusivity profiles.  

4. Discussion and conclusion 

 

An in-depth analysis was carried out on three classes of effusivity profiles expressed in the Liouville space 

(i.e., versus the square root of the integrated diffusion time  ), the so-called “linear”, “trigonometric” and 

“hyperbolic” profiles. These mathematical functions actually describe the metaproperty  s , which 

represents either the square root of effusivity ( T -form profiles) or its inverse (  -form profiles). They 

have in common that they lead to very simple analytical solutions for the dynamic temperature in the 

Laplace or Fourier domain. Furthermore, the quadrupole of a planar slab whose effusivity shows either type 

of these profiles has been provided. These quadrupoles are probably the simplest ones related to graded 

materials. Therein, the classical hyperbolic functions of p  needed to model homogeneous slabs are 

complemented by rational functions of p  of degree 2 at most for the numerator, and degree 1 at most for 

the denominator (in the hyperbolic and trigonometric cases p  is replaced by p ). The important 

result is that the temperature and flux expressions involve no special functions, contrarily to the vast majority 

of graded-profile solutions found in the literature. 

Each solvable profile  b  yields a multiplicity of thermal-property representations in the physical-depth 

space, as was shown for all three classes. This perfectly highlights the leverage effect of the Liouville 

transformation in finding solvable profiles. The related inverse Liouville transformation z  is fueled by 

independent information on the distribution of one from among the other thermal properties, or a 

combination thereof, which boosts the number of solvable profiles. 

Single layers with “linear”, “trigonometric” or “hyperbolic” effusivity profiles have been considered to 

model the photothermal response (either modulated or pulsed) of graded coatings deposited on a 

homogeneous substrate. Numerous parametric plots describing the phase of the front surface temperature vs. 

frequency, its amplitude and the so-called apparent effusivity  have been provided (the apparent effusivity 

has also been provided vs. time as a description of the transient response to a pulse heating). The chosen 

presentation with non-dimensional parameters is intended to easily translate the results into a wide range of 
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applications. The extension to other combinations of parameters is left to the reader, which is a very easy 

task, because of the simple expressions of the quadrupoles. 

These quadrupoles could then be assembled to model a stacking of graded layers, each of them having its 

own SRDT. Let us now compare different versions of 1D multilayer quadrupole models. All provide the 

exact thermal response at any external surface and any interface, both in the periodic or transient regime. In 

the classical piece-wise constant effusivity model [30], [55], effusivity is discontinuous; the model will be 

considered of level 0. It introduces one adjustable parameter (namely the assigned effusivity value) for each 

of the N considered layers. A model made of “linear”-type layers will be considered of level 1 since the 

effusivity profile can be made continuous at the interfaces. A system where M “linear”-type layers are 

stitched so that there is no discontinuity at the nodes would introduce M+1 parameters, namely the effusivity 

at the nodes. Let us recall that the linearity is with respect to the metaproperty  s , which means either 

 21b  or  21b . This choice is open for each layer, which gives 2
M

 possibilities. Of course, for the same 

quality of fit with respect to a given real profile (as measured, for example, through least-squares), it will be 

possible to select a number of graded layers M much smaller than N. Then, a model made of “hyperbolic”-

type or “trigonometric”-type layers will be considered of level 2 since not only the effusivity profile can be 

made continuous at the interfaces, but there is one additional free parameter to adjust the slope at one or the 

other edge of each layer. A stacking of K “hyperbolic”-type or “trigonometric”-type layers with a continuous 

effusivity is thus described with 2K+1 parameters (with again 2
K
 possibilities regarding the T -form or 

-form choice). The additional intrinsic parameters will allow playing on the curvature of each individual 

profile. Again, this will open up the possibility of reducing the number of layers, without compromising the 

accuracy of the fit. This reduction should be placed in balance with the increased number of parameters 

needed to define each layer in the selection of the best compromise, which is certainly situation-dependent. 

In any case, the simplicity of the quadrupoles of the “hyperbolic”-type or “trigonometric”-type layers 

contributes to relaxing the compromise.  

Yet, one degree of freedom is lacking to adjust independently both end-slopes in each layer. Such flexibility 

is actually reached with the so-called  ̂sech -type profiles which are based on four adjustable parameters 

[58]. However, their quadrupole (see Ref. [60]) is somewhat more complicated (although it is still based on 

elementary functions only) than those described in the present paper. 

In the end, the new analytical tools exposed here would allow approaching the thermal response of a real 

(graded) material with less quadrupoles than with the classical level-0 method. The performance regarding 

flexibility is not as high as with more sophisticated profiles like the  ̂sech -type profiles, but the 

computational cost is lower. One should still stress that the parameter 
c

  in the “hyperbolic”-type or 

“trigonometric”-type profiles is a non-linear parameter. Whatever the additional constraint on the profile 

shape (e.g. left or right derivative), the determination of the value of 
c

  requires using a non-linear solver. 

This is not the case for the “linear”-type profiles for which both parameters are simply linear. This aspect 

should be taken into consideration when choosing between level-1 and level-2 models (notice that 

quadrupoles of different levels could be mixed in a multilayer). 

The applications of the analytical tools presented here concern the modeling of thermal behavior in-service 

or the off-line characterization of a wide variety of materials in which the thermal properties show a 

gradation that is essentially one-dimensional. This concerns typically functionally graded materials (FGM) 

with graded coatings (e.g. ceramic thermal barrier coatings for turbine blades, aerospace structures or fusion 

reactors, ceramic/metal FGMs) or materials with a shallow transformation (e.g. case-hardened steel). Other 

examples are fiber-reinforced composites where the concentration of fibers changes with depth (e.g. 

injection-molded thermoplastics or thermosets with short metallic of carbon fibers). An example from the 

environment realm is the thermal modeling of soils where the graded structure is of geologic origin or it is 

induced by differences in water concentration.  

The described method deals with the 1D heat equation. Extensions to 2D or 3D problems can be considered 

in the context of the application of the well-known method of separation of variables. This means that the 

case of anisotropic plates could be considered, i.e. with conductivity in the z direction  z
z

 , conductivity in 

the x direction  x
x

  and conductivity in the y direction  y
y

 . Some indications have already been given in 

[58] for the 2D case (the extension to 3D would be straightforward). It was shown that after a separation of 



 
 

34 

 

variables, and provided that volumetric heat capacity is constant, the heat equation in the Liouville space is 

reduced to the same form as in the 1D case. The problem is then formally solved. Nevertheless, one should 

be aware that the global solution then expresses through a series (or two imbedded series, in 3D) involving 

the eigenfunctions relative to the transverse direction x (or x and y in 3D).  

The solvable profiles discussed in this paper, and more precisely the corresponding functions describing the 

metaproperty  s , have already found applications in areas other than thermal diffusion. As a matter of fact, 

graded layers with a linear, trigonometric or hyperbolic evolution of the function  s  have been considered 

for the electromagnetic-wave problem in [61], [64] and [65]. Let us recall that the admittance and refractive 

index profiles (in a normalized form) can be described with the same functions that have been used here for 

effusivity (see, e.g., Fig. 3 and Figs. 16-17). The counterparts of the T -form and  -form profiles have 

been called the E -form and H -form profiles ( E  for “electric” and H  for “magnetic”). A quite 

remarkable result is that the reflectance spectra of the two forms of profiles are exactly the same (provided 

that the electromagnetic admittance is continuous at both edges of the graded coating) [61]. Conversely, with 

regard to heat diffusion, it is impossible for two distinct T -form and  -form profiles to give the same 

(thermal) response at any frequency.  

Other fields of application for the solvable profiles discussed in this paper can be found among those cited in 

[58]: (i) mass diffusion (2
nd

 Fick’s law) in structures presenting a variable diffusion coefficient, (ii) 1
st
 and 

2
nd

 Stokes problems in fluids with variable viscosity, (iii) advection-diffusion related to pollutant dispersion 

in a turbulent atmosphere where the wind speed and the eddy diffusivity depend on the height above the 

ground surface, and (iv) tapered RC transmission lines. In addition to these, we can mention: (i) the Graetz 

problem with an arbitrary profile of the fluid velocity in the boundary layer, and (ii) thin fins with either 

variable conductivity or variable thickness and possibly a variable heat coefficient. 

The application of the present tools to these problems will present varying degrees of difficulty. 

Nevertheless, note that the seemingly exotic case of a graded layer presenting a vanishing effusivity at one 

boundary (see Fig. 3, 12-15, 18, 25-26) may be well suited to model advection-diffusion in laminar or 

turbulent boundary layers, since the parameter that corresponds to effusivity in thermal diffusion actually 

vanishes in the vicinity of the solid surface. The transposition to the previous problems of the tools presented 

in this paper is now underway, as well as their implementation to solve related inversion problems. 

 

 

APPENDIX 

 

A set of useful relations between the effusivity profiles of  b  and the metaproperty  s  on one side and 

between the thermal fields  p, ,  p,  and  p,  on the other side, for either T -form profiles or 

 -form profiles is first recalled [58]:  
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where W  is the Wronskian:    sssW , . 

The quadrupole (or transfer) matrix M  of a layer extending from 
0

zz   to 
1

zz   (i.e., from 
0
   to 

1
   

in the Liouville space; in the sequel, the indexes 0 and 1 mean that the variable under study is  evaluated, 

respectively, at 
0

  and at 
1
 ) relates the input temperature/heat flux vector, i.e.,   t

00
 , to the output 

vector, i.e.,   t

11
 , as follows (see, e.g., [58]): 
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The calculation of the quadrupole 
T

M  follows the classical procedure described, for instance, in [33], [55], 

and [56]. Hence, a synthetic expression for 
T

M  is given by: 
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After some algebra, the four entries of the matrix are expressed as follows: 

   
  

























10010101010

100111

sHsIsJssIssHssGss

ssIsIsGs

DC

BA
T

M  (A-4) 

The terms G , H , I , J ,   involve the values taken at the two layer edges by the independent functions 

 pK ,  and  pP ,  and by their derivatives: 
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In Eq. (A-4), the boundary values of the metaproperty  s , namely 
0

s , 1
s , 0

s , 1
s  are obtained from the 

boundary values of the effusivity, 
0

b , 
1

b , 
0

b  and 
1

b  according to: 
21

1,01,0


 bs  and  21

1,01,01,0
2bbs  . 

The quadrupole matrix 


M  deserves a special treatment as described in [58] and [60]. It is obtained by first 

calculating the four entries A, B, C, D defined in Eq. (A-4), by substituting into the boundary values 
0

s , 1
s , 

0
s , 1

s  those obtained from the boundary specifications 
0

b , 
1

b , 
0

b  and 
1

b  when considering the specific 

-form profile. This means that 
21

1,01,0


 bs  and  23

1,01,01,0
2bbs  . The final step is to perform the pseudo-

permutation: 
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