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Anisotropic Mullins stress softening of a deformed silicone holey plate

M. Rebouah, G. Machado, G. Chagnon∗, D. Favier

Université de Grenoble/CNRS, Laboratoire 3SR, Cedex 9, 38041 Grenoble, France.

Abstract

Rubber like materials parts are designed using finite element code in which more and more precise
and robust constitutive equations are implemented. In general, constitutive equations developed
in literature to represent the anisotropy induced by the Mullins effect present analytical forms that
are not adapted to finite element implementation. The present paper deals with the development
of a constitutive equation that represents the anisotropy of the Mullins effect using only strain
invariants. The efficiency of the modeling is first compared to classical homogeneous experimental
tests on a filled silicone rubber. Second, the model is tested on a complex structure. In this aim,
a silicone holey plate is molded and tested in tension, its local strain fields are evaluated by means
of digital image correlation. The experimental results are compared to the simulations from the
constitutive equation implemented in a finite element code. Global measurements (i.e. force and
displacement) and local strain fields are successfully compared to experimental measurements to
validate the model.
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1. Introduction

Both natural and synthetic elastomers are widely used in industrial design. Numerical simula-
tions are often used to develop new parts. These simulations are fundamental in the optimization
process of parts design. One of the main difficulties of the engineers is the choice of an adapted
constitutive equation able to represent the behavior of the rubber like materials. The choice is
often oriented towards an hyperelastic constitutive equation requiring an energy density. Finite
element codes present a large choice of strain energy densities forms, even if the Mooney (1940)
constitutive equation stays one of the most used.

However rubber like materials present a lot of other phenomena than pure hyperelasticity to
take into account in their behavior, as for example: the Mullins effect, the hysteretis and time
dependent behavior. The Mullins effect can be very important as the mechanical behavior of the
material can totally change after a first loading. For some rubber parts, it is very important to take
into account the Mullins effect, but very few constitutive equations are implemented in industrial
finite element codes. Eventhough, many researchers have developed isotropic constitutive equations
for the Mullins effect and proposed a finite element implementation (see for example Cantournet
et al. (2009); Chagnon et al. (2006); Gracia et al. (2009); Guo et al. (2006)).
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Another important point is that, many new experimental data are proposed in the literature
to emphasize that the Mullins effect is strongly anisotropic (Muhr et al., 1999; Park and Hamed,
2000; Pawelski, 2001; Besdo and Ihlemann, 2003; Laraba-Abbes et al., 2003; Diani et al., 2006a;
Hanson et al., 2005; Itskov et al., 2006; Machado et al., 2012b; Dorfmann and Pancheri, 2012).
Different constitutive equations have been proposed but they are not adapted to finite element
implementation. The only formulation implemented in a finite element code was proposed by
Göktepe and Miehe (2005) who extended the approach of Miehe et al. (2004). This model presents
good results, but its formulation makes difficult its numerical use into finite element codes, as it
needs complex algorithm implementation and also some linearizations (see for example Miehe and
Keck (2000); Kaliske (2000)). A formulation written with strain invariants permits to avoid such
technics and ensure a better convergence. Some constitutive equations has been developed for
living tissues (Peña et al., 2009; Bose and Dorfmann, 2009; Kroon and Holzapfel, 2008) but they
are limited to materials presenting two reinforced directions. In this way, in this paper, a new
anisotropic model based on strain invariant formulation, is proposed and implemented in a finite
element code.

Recently, Machado et al. (2010, 2012b) developed a large database for a filled silicone rubber
including on one hand cyclic classical experimental tests and on the other hand uniaxial tests
realized after different uniaxial and biaxial tension tests. This database is, here, used to build a new
constitutive equation easily implementable in finite element codes. In Section 2, the constitutive
equation is detailled and the ability of the model to describe recent experimental data is discussed.
In Section 3, the subject of the numerical implementation of the model is treated. In Section 4,
the ability of the model to describe complex structures is tackled by means of a specific test on a
rectangular plate containing five holes. The global and local estimations of the model are compared
to experimental measures. Finally, Section 5 contains some concluding remarks of the modeling.

2. Anisotropic modeling of the Mullins effect

2.1. General formulation in strain invariants

Different anisotropic approaches to model Mullins effect were proposed in literature, but none of
them was only expressed in term of strain invariants. Shariff (2006) and Itskov et al. (2010) took
into account three principal damage directions to reproduce a special behavior in the direction
orthogonal to loading. In a more general way, the spatial repartition of Bazant and Oh (1986)
was used by many authors to create an anisotropic model. Diani et al. (2006b) and Dargazany
and Itskov (2009) generalized the network evolution proposed by Marckmann et al. (2002) to
an anisotropic approach by taking into account the maximum elongation in each spatial direction.
Later Merckel et al. (2011, 2012) introduced a new framework and proposed a softening anisotropic
criterion adapted to complex loading states.

The stress softening phenomenon has been often associated to the presence of fillers in the
rubber, but Harwood et al. (1965) showed that stress softening can also occur in unfilled rubber,
even if it is reduced compared to filled rubber. For silicone rubbers, Meunier et al. (2008) observed
no Mullins effect for an unfilled one, whereas Machado et al. (2010, 2012b) observed stress softening
for a filled one. As a consequence, it can be considered that fillers in silicone rubbers are mainly
responsible of the Mullins effect. Thus, as proposed by Govindjee and Simo (1992) the strain
energy density W is additively decomposed into two parts: one that represents the energy density
of the chains linked to other chains Wcc and an other part that represents the energy density of the
chains linked to filler Wcf , the total strain energy density is W = Wcc+Wcf . It is considered that
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only (Wcf ) can evolve with the Mullins effect. As a consequence Wcc is represented by a classical
hyperelastic isotropic energy density and Wcf must be represented by an anisotropic strain energy
that can evolve with the deformation history of the material. The ideal representation would be to
propose a full integration of all spatial directions as proposed by Wu and Van der Giessen (1993) in
hyperleasticity, but it is not adapted to finite element implementation. A spatial discretization is
needed. Forty-two initial spatial directions, noted A(i), are introduced, these directions are those
proposed by Bazant and Oh (1986). Therefore, the strain energy density is written as:

W = Wcc(I1, I2) +
n∑

i=1

ω(i)F (i)W(i)
cf (I

(i)
4 ) (1)

where I1, I2 are the first and second strain invariants of the right Cauchy-Green strain tensor C.

The strain in each direction is defined by means of I
(i)
4 = A(i).CA(i). ω(i) represents the weight

of each direction and F (i) is the Mullins effect evolution function. The initial direction A(i) are
transformed in a(i) by a(i) = FA(i), where F is the deformation gradient.

Classicaly, in an isotropic approach, the evolution function F (i) would be written through the
strain energy density, but Chagnon et al. (2004) showed that the first invariant can also be used.
In an anisotropic approach, the elongation in each direction is used Diani et al. (2006b), knowing
that the elongation is the square root of the invariant I4. According to the conclusions of Machado
et al. (2012b), it is chosen to describe the stress-softening function according to I1 and I4

(i). For
each direction (i), an evolution function which depends on three terms F1, F2, F3 is proposed:

F = 1−F1(I1
max − I1)F2

(
I4

max(i) − I4
(i)
)
F3

(
I4

max(i)

I4
max

)
(2)

Where I1
max and I4

max(i) represent the maximum values taken during the material history by
I1 and I4

(i) respectively. I4
max = maxi(I4

(i)) is the maximum dilatation in space and time. As
proposed by Zuñiga and Beatty (2002), a function that is constant during first loading and that
evolves with the maximum and current deformations is imposed for the evolution function.

2.2. A particular form for evolution function

A Mooney (1940) constitutive equation is chosen for (Wcc), and a Kaliske (2000) quadratic

equation K(I
(i)
4 −1)2 is chosen for W(

cf i). A first particular form is proposed for the stress-softening
function, considering that a minimum of parameters should be introduced:

F (i) = 1− η

√
I1max − I1
I1max − 3

(
I
(i)
4max − I

(i)
4

I
(i)
4max − 1

)(
I
(i)
4max

I4max

)4

(3)

In this way, the evolution function depends only on one parameter: η. The large experimental
database proposed by Machado et al. (2010, 2012b) on a filled silicone rubber is used to fit the
model. These experimental results are decomposed into three parts: first the classical uniaxial
tension, planar tension and biaxial tests realized by means of a bulge test (Machado et al., 2012a),
second the complex tensile tests with change of directions after the first loading; and third biaxial
tensile tests followed by uniaxial tensile tests. The three hyperelastic parameters C1, C2 and
K(i) are obtained by fitting the different first loading curves. The followings values are obtained:
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C1 = 0.05MPa, C2 = 0.03MPa and ∀i K(i) = 0.10MPa. The last parameter is fitted to represent
every second loading curves: η = 4.

The simulations of the cyclic uniaxial tensile, pure shear and equibiaxial tensile tests are pre-
sented in Fig. 1. It appears that the model describes well the stress softening for all these tests.
The model predicts well uniaxial and pure shear tests whereas equibiaxial first loading curve is
underestimated. This phenomenon is expected since first loading depends only on the hyperelastic
equation. As explained by Marckmann and Verron (2006), it is difficult to fit all the different tests
with the same energy density.

Figure 1: Comparison of the model (solid lines) with experimental data (dotted lines) from Machado et al. (2010)
(a) cyclic uniaxial tensile test, (b) cyclic pure shear test (c) cyclic equibiaxial test.

The proposed model is now compared with the experimental data of the two complex pre-
conditioning methods. First, Fig. 2, presents the results for tensile tests with a change of loading
direction between the first and second loadings. The results from the model do not superimpose
exactly experimental data, but all trends are quite well described for the different directions.
Second, the model predictions are compared with biaxial pre-stretching tests results. The biaxial
loading is characterized by the biaxiality ratio defined as µ = ln(λmin)/ln(λmax) (where λmin and
λmax are the minimum and maximum in-plane principal elongation). Tests with different biaxiality
ratios were used for the simulation. The comparison of the second loading curves is presented in
Fig. 3. It appears that the stress softening is slightly overestimated but the return point on the
first loading curve is very well described.

3. Finite element implementation

Considering the model proposed in the last section, the strain energy density depends on the

first, second and forty-two fourth invariants, i.e., W = W(I1, I2, I
(i)
4 ). As the numerical imple-
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Figure 2: Comparison of the model with uniaxial pre-stretching experimental data (dotted lines) from Machado et al.
(2012b). (a) Second tensile test oriented at 90◦ (b) Second tensile test oriented at 45◦ (e) Second tensile test oriented
at 30◦ (f) Second tensile test oriented at 0◦

Figure 3: Comparison of the model (solid lines) with biaxial pre-stretching experimental data (dotted lines). Curve
a presents simulation of the model for the second load after an equibiaxial test; curve g presents simulation of the
model for the second load after a biaxial test of biaxiality rate µ = 0.7; curve h presents simulation of the model for
the second load after a biaxial test of biaxiality rate µ = 0.5
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mentation needs a quasi-incompressible formulation (Federico et al., 2008; Holzapfel et al., 2000;
Holzapfel and Gasser, 2001; Ogden, 2003, 1997; Sun W, 2005), the equation must be rewritten in
terms of incompressible invariants as follows:

W = W̄(Ī1, Ī2, Ī4
(i)
) + U(J) (4)

with J2 = I3 = det(C) is the volume variation, and Ī1 = I
−1/3
3 I1, Ī2 = I

−2/3
3 I2, Ī4

(i)
= I

−1/3
3 I

(i)
4

are the incompressible invariants. The problem of the implementation of anisotropic hyperelastic
energy densities has ever been tackled in literature, see for example (Peña et al., 2009; Bose and
Dorfmann, 2009; Kroon and Holzapfel, 2008). After the decomposition given in Eq. 4, the second
Piola-Kirchhoff stress tensor S is obtained by the strain energy derivation, as

S = S̄+ Svol = 2

{
∂W̄
∂Ī1

∂Ī1
∂C

+
∂W̄
∂Ī2

∂Ī2
∂C

+

n∑
i=1

∂W̄
∂Ī4

(i)

∂Ī4
(i)

∂C

}
+ J

∂U
∂J

C−1 (5)

Where S̄ and Svol are respectively the isochoric and volumetric parts of the second Piola-Kirchhoff
stress tensor S. The lagrangian deviatoric tangent modulus, is finally given by

C̄ L
= 4

{
∂

∂C

(
W̄,1

∂Ī1
∂C

)
+

∂

∂C

(
W̄,2

∂Ī2
∂C

)
+

n∑
i=1

∂

∂C

(
W̄,

(i)
4

∂Ī4
(i)

∂C

)}
(6a)

(6b)

Where W̄,k notes ∂W̄
∂Īk

. The eulerian deviatoric modulus is deduced by means of the push–forward

operation Φ∗as C̄ e
= 1

JΦ∗(C̄
L
). Finally the stress and the tangent modulus are given by the

first and second derivates of the strain energy function with respect to the first, second and fourth
invariants. The general form of C̄ L

and C L
vol are presented in Kaliske (2000). For the present

model, the particular forms of the derivatives of the energy are expressed as:

W̄,
(i)
4 = 2k w(i)F (i) (Ī

(i)
4 − 1) (7)

W̄,
(i)
44 = 2k w(i)

{
∂F (i)

∂Ī
(i)
4

(Ī
(i)
4 − 1) + F (i)

}
(8)

W̄,
(i)
14 = 2k w(i) ∂F (i)

∂Ī1
(Ī

(i)
4 − 1) (9)

with the following conditions

if Ī1max = I1
∂F (i)

∂Ī1
= 0

elseif
∂F (i)

∂Ī1
= η 1

2

(
Ī1max − Ī1
Ī1max − 3

)− 1
2
(

1

Ī1max − 3

)(
Ī
(i)
4max − Ī

(i)
4

Ī
(i)
4max − 1

)(
Ī
(i)
4max

Ī4max

)4 (10)

if Ī
(i)
4max = Ī

(i)
4

∂F (i)

∂Ī
(i)
4

= 0

elseif
∂F (i)

∂Ī
(i)
4

= η

√
Ī1max − Ī1
Ī1max − 3

(
1

Ī
(i)
4max − 1

)(
Ī
(i)
4max

Ī4max

)4 (11)

Finally, the model is implemented via a UMAT in the Finite Element code Abaqus and simulations
can be realized.
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4. Validation of the model on a structure calculus

4.1. Presentation of an experimental holey plate tension test

In order to test the ability of the model to simulate adequately a complex structure, an exper-
imental test was designed. A RTV-3428 silicone rectangular plate sample with 2mm in thickness
was molded using the same protocol presented in Machado et al. (2010). After molding, five holes
were generated. The final dimensions of the holey plate are described in Fig. 4(a). The plate was
put into a tensile device which allows to record the force undergone by the plate. The force mea-
sure is synchronised with a Stereo Digital Image Correlation (SDIC) system. The SDIC technique
allows the determination of three dimensional surface displacements and strain fields of the plate
(Machado et al., 2012a). Thus, under the incompressibility assumption, in each point of the plate,
strain tensor is evaluated.
The aim of this paper is to observe the Mullins effect, so a cyclic tensile test is designed. The strain
field of the plate is studied for a macroscopic engineering strain of 50% after different maximal
engineering strain: 50 %, 100% and 150%. It is chosen to study particularly three paths in the

100mm

20mm20mm

20mm
path1

path3

path2

path1

10mm

x

y

10mm10mm

70mm

Figure 4: (a) Silicone plate sample containing five holes and paths of interest, (b) Biaxiality ratio along the three
paths

holey plates, they are represented in Fig. 4(a). These paths were chosen in order to obtain very
different deformation states, i.e., different values of biaxiality ratio µ: that allows to highlight the
reliability of the proposed model. Fig. 4(b) presents the evolution of the biaxiality ratio at the
same level of macroscopic deformation i.e. 50% for the three paths.

4.2. Comparaison with model predictions

Finite element simulations of the experiments were performed with the model in plane stress
hypothesis with linear elements. The objective of this section is to compare the experimental
and numerical results for an engineering strain of 50%. The following notations are used in this
part, 1CEF

50 and 1Cexp
50 represent the first load for the numerical model and experimental results,

respectively. In the same way, 2CEF
100 , 2C

exp
100 , and 2CEF

150 , 2C
exp
150 represent the deformation at 50%

after a first load of 100% and 150%, respectively.
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4.2.1. Global behavior of the plate

The global displacement and the force undergone by the plate for the experimental and numer-
ical tests are compared in Fig 5. It appears that the first and second loadings are very close. A
small difference appears for the first loading but, it should be due to the underestimation of biaxial
loading by the model. This small difference is only due to the hyperelastic constitutive equation
and not to the stress softening function.

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

F 
(N

)

Displacement along y (mm)

 1CEF

 2CEF
100

 2CEF
150

 1Cexp

 2Cexp
100

 2Cexp
150

Figure 5: Comparison of global force response between the proposed model and the experimental holey plate.

4.2.2. Contours of the plate and strain fields measurements

Fig 6 presents the maximal principal logarithmic strain field obtained for the plate by finite
element simulation and experimental measurement for 2C100 configurations. Considering the strain
field distribution along the plate surface, it appears that the FE simulation represents quite well
the experimental data. This is also valid for 1C and 2C150 configurations but these results are
not presented in the paper. The contours of the plate are compared for 1C50, 2C100 and 2C150
configuration and the results are presented in Fig 7 for a deformation of 50%. The experimental
tests are the gray picture and the FE simulations the contour lines in red. It is possible to observe
that experimental results and numerical simulations are almost superposed.

4.2.3. Observation of specific paths

To focus on the local behavior of the plate, the maximal principal logarithmic strain along the
different paths defined in Fig. 4 is presented in Fig. 8. A comparaison between the experimental
and numerical tests is presented. According to the Fig. 8(a) the maximal principal logarithmic
strain is greater for the second loadings than for the first loadings, but Fig. 8(b) and (c) show
that the maximal principal logarithmic strain is more important for the first loadings that for the
second loadings. This difference is explained by the local state of deformation reached along each
path. The maximal deformation is reached along the path 1 so the stress-softening too. Since the
stress-softening is maximal along the path1 it generates more important deformation for the along
this same path seconds loadings . Along the paths 2 and 3 the stress-softening is smaller that along
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(a) (b)

Figure 6: Maximal strain logaritmic fields of the silicone plate for the first loading : (a) numerical results and (b)
experimental results.

(b)

Figure 7: Comparison of the contours of the plate for 1C50 (a), 2C100 (b) and 2C150 (c) at 50% of deformation. Gray
pictures represent exprimental data and red lines numerical data.
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the path1 so the deformations generated along these paths decrease for the second loadings since
the global deformation of the holey is still the same as the first loading.
Fig. 8 also shows that the results are quite similar even if there is not a perfect spatial superposition
between experimental and FE simulations. This difference can be also explained by the out-of-
plane deformation, induced by the geometry of the plate, during the experimental test. Indeed
for the experimental tests an out-of-plane displacement, close to the holes of the silicone plate,
was observed. This out-of-plane displacement does not occur in numerical simulation since it is
defined in plane stress. Thus, the superposition of the results is better along the path 2 (Fig. 8(b))
than along the paths 1 and 3 (cf. Fig. 8(a) and (c)) since the out-of-plane displacement observed
is minimal near the hole of the path2 and maximal near the holes of paths 1 and 3.
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Figure 8: Maximal principal deformation for a global strain of 50% along the path1 (a), the path2(b) and the path3
(c).

5. Conclusion

A new model was presented to take into account the anisotropy induced by stress softening
during deformation of a rubber like material. The proposed form depends both of global maximal
equivalent strain deformation and directinal maximal strains. The model was written using only
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strain invariants which permits to have a formulation well adapted to finite element implementation.
Details about tangent modulus calculation were given in the paper.

The ability of the proposed model to simulate experimental data was tested first on classical
tests (uniaxial, planar and equibiaxial tension) and second on tests where the loading directions
were changing between first and second loadings. The analysis of a holey plate was realized by
means of digital image correlation which allows to validate the global force-displacement response
and local deformation of the plate following three different paths (with diffrent type of local strain).
Finally, all the results highligt the good efficiency of the anisotropic stress-softening function which
depends on only one parameter. This model can be used in finite element softwares. It allows to
take account very particular loading paths.
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