Marie Rebouah 
  
Guilherme Machado 
  
Grégory Chagnon 
email: gregory.chagnon@grenoble-inp.fr
  
Denis Favier 
  
Anisotropic Mullins stress softening of a deformed silicone holey plate

Keywords: Mullins effect, stress-softening, finite element implementation, constitutive equation

   

Introduction

Both natural and synthetic elastomers are widely used in industrial design. Numerical simulations are often used to develop new parts. These simulations are fundamental in the optimization process of parts design. One of the main difficulties of the engineers is the choice of an adapted constitutive equation able to represent the behavior of the rubber like materials. The choice is often oriented towards an hyperelastic constitutive equation requiring an energy density. Finite element codes present a large choice of strain energy densities forms, even if the [START_REF] Mooney | A theory of large elastic deformation[END_REF] constitutive equation stays one of the most used.

However rubber like materials present a lot of other phenomena than pure hyperelasticity to take into account in their behavior, as for example: the Mullins effect, the hysteretis and time dependent behavior. The Mullins effect can be very important as the mechanical behavior of the material can totally change after a first loading. For some rubber parts, it is very important to take into account the Mullins effect, but very few constitutive equations are implemented in industrial finite element codes. Eventhough, many researchers have developed isotropic constitutive equations for the Mullins effect and proposed a finite element implementation (see for example [START_REF] Cantournet | Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model[END_REF]; [START_REF] Chagnon | Development of new constitutive equations for mullins effect in rubber using the network alteration theory[END_REF]; [START_REF] Gracia | A comparison between pseudo-elastic and damage models for modelling the Mullins effect in industrial rubber components[END_REF]; [START_REF] Guo | A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus[END_REF]).

Another important point is that, many new experimental data are proposed in the literature to emphasize that the Mullins effect is strongly anisotropic [START_REF] Muhr | Experimental determination of model for liquid silicone rubber: Hyperelasticity and Mullins effect[END_REF][START_REF] Park | Anisotropy in gum and black filled SBR and NR vulcanizates due to large deformation[END_REF][START_REF] Pawelski | Softening behavior of elastomeric media after loading in changing directions. Constitutive models for rubber[END_REF][START_REF] Besdo | Properties of rubber like materials under large deformations explained by self-organizing linkage patterns[END_REF][START_REF] Laraba-Abbes | A new Taylor-made methodology for the mechanical behavior analysisof rubber like materials: II. Application of the hyperelastic behavior characterization of a carbon-black filled natural rubber vulcanizate[END_REF]Diani et al., 2006a;[START_REF] Hanson | Stress softening experiments in silica-filled polydimethylsiloxane provide insight into a mechanism for the Mullins effect[END_REF][START_REF] Itskov | Experimental observation of the deformation induced anisotropy of the Mullins effect in rubber[END_REF][START_REF] Machado | Induced anisotropy by the mullins effect in filled silicone rubber[END_REF][START_REF] Dorfmann | A constitutive model for the Mullins effect with changes in material symmetry[END_REF]. Different constitutive equations have been proposed but they are not adapted to finite element implementation. The only formulation implemented in a finite element code was proposed by [START_REF] Göktepe | A micro-macro approach to rubber-like materials. Part III: The micro-sphere model of anisotropic Mullins-type damage[END_REF] who extended the approach of [START_REF] Miehe | A micro-macro approach to rubber-like materials -part i: the nonaffine-micro-sphere model of rubber elasticity[END_REF]. This model presents good results, but its formulation makes difficult its numerical use into finite element codes, as it needs complex algorithm implementation and also some linearizations (see for example [START_REF] Miehe | Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. experiments, modelling and algorithmicimplementation[END_REF]; [START_REF] Kaliske | A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains[END_REF]). A formulation written with strain invariants permits to avoid such technics and ensure a better convergence. Some constitutive equations has been developed for living tissues [START_REF] Peña | On the Mullins effect and hysteresis of fibered biological materials: A comparison between continuous and discontinuous damage models[END_REF][START_REF] Bose | Computational aspects of a pseudo-elastic constitutive model for muscle properties in a soft-bodied arthropod[END_REF][START_REF] Kroon | A new constitutive model for multilayered collagenous tissues[END_REF] but they are limited to materials presenting two reinforced directions. In this way, in this paper, a new anisotropic model based on strain invariant formulation, is proposed and implemented in a finite element code.

Recently, [START_REF] Machado | Analysis of the isotropic models of the Mullins effect based on filled silicone rubber experimental results[END_REF][START_REF] Machado | Induced anisotropy by the mullins effect in filled silicone rubber[END_REF]) developed a large database for a filled silicone rubber including on one hand cyclic classical experimental tests and on the other hand uniaxial tests realized after different uniaxial and biaxial tension tests. This database is, here, used to build a new constitutive equation easily implementable in finite element codes. In Section 2, the constitutive equation is detailled and the ability of the model to describe recent experimental data is discussed. In Section 3, the subject of the numerical implementation of the model is treated. In Section 4, the ability of the model to describe complex structures is tackled by means of a specific test on a rectangular plate containing five holes. The global and local estimations of the model are compared to experimental measures. Finally, Section 5 contains some concluding remarks of the modeling.

Anisotropic modeling of the Mullins effect

General formulation in strain invariants

Different anisotropic approaches to model Mullins effect were proposed in literature, but none of them was only expressed in term of strain invariants. [START_REF] Shariff | An anisotropic model of the Mullins effect[END_REF] and [START_REF] Itskov | A thermodynamically consistent phenomenological model of the anisotropic Mullins effect[END_REF] took into account three principal damage directions to reproduce a special behavior in the direction orthogonal to loading. In a more general way, the spatial repartition of [START_REF] Bazant | Efficient numerical integration on the surface of a sphere[END_REF] was used by many authors to create an anisotropic model. [START_REF] Diani | Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material[END_REF] and [START_REF] Dargazany | A network evolution model for the anisotropic Mullins effect in carbon black filled rubbers[END_REF] generalized the network evolution proposed by [START_REF] Marckmann | A theory of network alteration for the Mullins effect[END_REF] to an anisotropic approach by taking into account the maximum elongation in each spatial direction. Later [START_REF] Merckel | A simple framework for full-network hyperelasticity and anisotropic damage[END_REF][START_REF] Merckel | A Mullins softening criterion for general loading conditions[END_REF] introduced a new framework and proposed a softening anisotropic criterion adapted to complex loading states.

The stress softening phenomenon has been often associated to the presence of fillers in the rubber, but [START_REF] Harwood | Stress softening in natural rubber vulcanizates. Part 2. stress softeningeffects in pure gum and filler loaded rubbers[END_REF] showed that stress softening can also occur in unfilled rubber, even if it is reduced compared to filled rubber. For silicone rubbers, [START_REF] Meunier | Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber[END_REF] observed no Mullins effect for an unfilled one, whereas [START_REF] Machado | Analysis of the isotropic models of the Mullins effect based on filled silicone rubber experimental results[END_REF][START_REF] Machado | Induced anisotropy by the mullins effect in filled silicone rubber[END_REF] observed stress softening for a filled one. As a consequence, it can be considered that fillers in silicone rubbers are mainly responsible of the Mullins effect. Thus, as proposed by [START_REF] Govindjee | Mullins' effect and the strain amplitude dependence of the storage modulus[END_REF] the strain energy density W is additively decomposed into two parts: one that represents the energy density of the chains linked to other chains W cc and an other part that represents the energy density of the chains linked to filler W cf , the total strain energy density is W = W cc + W cf . It is considered that only (W cf ) can evolve with the Mullins effect. As a consequence W cc is represented by a classical hyperelastic isotropic energy density and W cf must be represented by an anisotropic strain energy that can evolve with the deformation history of the material. The ideal representation would be to propose a full integration of all spatial directions as proposed by [START_REF] Wu | On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers[END_REF] in hyperleasticity, but it is not adapted to finite element implementation. A spatial discretization is needed. Forty-two initial spatial directions, noted A (i) , are introduced, these directions are those proposed by [START_REF] Bazant | Efficient numerical integration on the surface of a sphere[END_REF]. Therefore, the strain energy density is written as:

W = W cc (I 1 , I 2 ) + n ∑ i=1 ω (i) F (i) W (i) cf (I (i) 4 ) (1) 
where I 1 , I 2 are the first and second strain invariants of the right Cauchy-Green strain tensor C. The strain in each direction is defined by means of i) .CA (i) . ω (i) represents the weight of each direction and F (i) is the Mullins effect evolution function. The initial direction A (i) are transformed in a (i) by a (i) = FA (i) , where F is the deformation gradient.

I (i) 4 = A (
Classicaly, in an isotropic approach, the evolution function F (i) would be written through the strain energy density, but [START_REF] Chagnon | On the relevance of continuum damage mechanics as applied to the Mullins effect: theory, experiments and numerical implementation[END_REF] showed that the first invariant can also be used. In an anisotropic approach, the elongation in each direction is used [START_REF] Diani | Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material[END_REF], knowing that the elongation is the square root of the invariant I 4 . According to the conclusions of [START_REF] Machado | Induced anisotropy by the mullins effect in filled silicone rubber[END_REF], it is chosen to describe the stress-softening function according to I 1 and I 4 (i) . For each direction (i), an evolution function which depends on three terms F 1 , F 2 , F 3 is proposed:

F = 1 -F 1 (I 1 max -I 1 )F 2 ( I 4 max(i) -I 4 (i) ) F 3 ( I 4 max(i) I 4 max ) (2) 
Where I 1 max and I 4 max(i) represent the maximum values taken during the material history by I 1 and I 4 (i) respectively. I 4 max = max i (I 4 (i) ) is the maximum dilatation in space and time. As proposed by [START_REF] Zuñiga | A new phenomenological model for stress-softening in elastomers[END_REF], a function that is constant during first loading and that evolves with the maximum and current deformations is imposed for the evolution function.

A particular form for evolution function

A [START_REF] Mooney | A theory of large elastic deformation[END_REF] constitutive equation is chosen for (W cc ), and a [START_REF] Kaliske | A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains[END_REF] quadratic equation K(I

(i) 4 -1) 2 is chosen for W ( cf i).
A first particular form is proposed for the stress-softening function, considering that a minimum of parameters should be introduced:

F (i) = 1 -η √ I 1max -I 1 I 1max -3 ( I (i) 4 max -I (i) 4 I (i) 4 max -1 ) ( I (i) 4 max I 4 max ) 4
(3)

In this way, the evolution function depends only on one parameter: η. The large experimental database proposed by [START_REF] Machado | Analysis of the isotropic models of the Mullins effect based on filled silicone rubber experimental results[END_REF][START_REF] Machado | Induced anisotropy by the mullins effect in filled silicone rubber[END_REF]) on a filled silicone rubber is used to fit the model. These experimental results are decomposed into three parts: first the classical uniaxial tension, planar tension and biaxial tests realized by means of a bulge test (Machado et al., 2012a), second the complex tensile tests with change of directions after the first loading; and third biaxial tensile tests followed by uniaxial tensile tests. The three hyperelastic parameters C 1 , C 2 and K (i) are obtained by fitting the different first loading curves. The followings values are obtained:

C 1 = 0.05MPa, C 2 = 0.03MPa and ∀i K (i) = 0.10MPa. The last parameter is fitted to represent every second loading curves: η = 4. The simulations of the cyclic uniaxial tensile, pure shear and equibiaxial tensile tests are presented in Fig. 1. It appears that the model describes well the stress softening for all these tests. The model predicts well uniaxial and pure shear tests whereas equibiaxial first loading curve is underestimated. This phenomenon is expected since first loading depends only on the hyperelastic equation. As explained by [START_REF] Marckmann | Comparison of hyperelastic models for rubber-like materials[END_REF], it is difficult to fit all the different tests with the same energy density. The proposed model is now compared with the experimental data of the two complex preconditioning methods. First, Fig. 2, presents the results for tensile tests with a change of loading direction between the first and second loadings. The results from the model do not superimpose exactly experimental data, but all trends are quite well described for the different directions. Second, the model predictions are compared with biaxial pre-stretching tests results. The biaxial loading is characterized by the biaxiality ratio defined as µ = ln(λ min )/ln(λ max ) (where λ min and λ max are the minimum and maximum in-plane principal elongation). Tests with different biaxiality ratios were used for the simulation. The comparison of the second loading curves is presented in Fig. 3. It appears that the stress softening is slightly overestimated but the return point on the first loading curve is very well described.

Finite element implementation

Considering the model proposed in the last section, the strain energy density depends on the first, second and forty-two fourth invariants, i.e., W = W(I 1 , I 2 , I (i) 4 ). As the numerical imple- Curve a presents simulation of the model for the second load after an equibiaxial test; curve g presents simulation of the model for the second load after a biaxial test of biaxiality rate µ = 0.7; curve h presents simulation of the model for the second load after a biaxial test of biaxiality rate µ = 0.5 mentation needs a quasi-incompressible formulation [START_REF] Federico | An energetic approach to the analysis of anisotropic hyperelastic materials[END_REF][START_REF] Holzapfel | A new constitutive framework for arterial wall mechanics and a comparative study of material models[END_REF][START_REF] Holzapfel | A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications[END_REF][START_REF] Ogden | Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue[END_REF][START_REF] Ogden | Non-linear Elastic Deformations[END_REF][START_REF] Sun | Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues[END_REF], the equation must be rewritten in terms of incompressible invariants as follows:

W = W( Ī1 , Ī2 , Ī4 (i) ) + U(J) (4)
with J 2 = I 3 = det(C) is the volume variation, and Ī1 = I

-1/3 3 I 1 , Ī2 = I -2/3 3 I 2 , Ī4 (i) = I -1/3 3 I (i) 4
are the incompressible invariants. The problem of the implementation of anisotropic hyperelastic energy densities has ever been tackled in literature, see for example [START_REF] Peña | On the Mullins effect and hysteresis of fibered biological materials: A comparison between continuous and discontinuous damage models[END_REF][START_REF] Bose | Computational aspects of a pseudo-elastic constitutive model for muscle properties in a soft-bodied arthropod[END_REF][START_REF] Kroon | A new constitutive model for multilayered collagenous tissues[END_REF]. After the decomposition given in Eq. 4, the second Piola-Kirchhoff stress tensor S is obtained by the strain energy derivation, as

S = S + S vol = 2 { ∂ W ∂ Ī1 ∂ Ī1 ∂C + ∂ W ∂ Ī2 ∂ Ī2 ∂C + n ∑ i=1 ∂ W ∂ Ī4 (i) ∂ Ī4 (i) ∂C } + J ∂U ∂J C -1 (5)
Where S and S vol are respectively the isochoric and volumetric parts of the second Piola-Kirchhoff stress tensor S. The lagrangian deviatoric tangent modulus, is finally given by

C L = 4 { ∂ ∂C ( W, 1 ∂ Ī1 ∂C ) + ∂ ∂C ( W, 2 ∂ Ī2 ∂C ) + n ∑ i=1 ∂ ∂C ( W, (i) 4 ∂ Ī4 (i) ∂C )} (6a) (6b) Where W, k notes ∂ W ∂ Īk
. The eulerian deviatoric modulus is deduced by means of the push-forward operation Φ * as C e = 1 J Φ * ( C L ). Finally the stress and the tangent modulus are given by the first and second derivates of the strain energy function with respect to the first, second and fourth invariants. The general form of C L and C L vol are presented in [START_REF] Kaliske | A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains[END_REF]. For the present model, the particular forms of the derivatives of the energy are expressed as: W,

(i) 4 = 2k w (i) F (i) ( Ī(i) 4 -1) (7) W, (i) 44 = 2k w (i) { ∂F (i) ∂ Ī(i) 4 ( Ī(i) 4 -1) + F (i) } (8) W, (i) 14 = 2k w (i) ∂F (i) ∂ Ī1 ( Ī(i) 4 -1) (9)
with the following conditions

if Ī1max = I 1 ∂F (i) ∂ Ī1 = 0 elseif ∂F (i) ∂ Ī1 = η 1 2 ( Ī1max -Ī1 Ī1max -3 ) -1 2 ( 1 Ī1max -3 ) ( Ī(i) 4 max - Ī(i) 4 Ī(i) 4 max -1 ) ( Ī(i) 4 max Ī4 max ) 4 (10) if Ī(i) 4 max = Ī(i) 4 ∂F (i) ∂ Ī(i) 4 = 0 elseif ∂F (i) ∂ Ī(i) 4 = η √ Ī1max -Ī1 Ī1max -3 ( 1 Ī(i) 4 max -1 ) ( Ī(i) 4 max Ī4 max ) 4 (11)
Finally, the model is implemented via a UMAT in the Finite Element code Abaqus and simulations can be realized.

Validation of the model on a structure calculus

Presentation of an experimental holey plate tension test

In order to test the ability of the model to simulate adequately a complex structure, an experimental test was designed. A RTV-3428 silicone rectangular plate sample with 2mm in thickness was molded using the same protocol presented in [START_REF] Machado | Analysis of the isotropic models of the Mullins effect based on filled silicone rubber experimental results[END_REF]. After molding, five holes were generated. The final dimensions of the holey plate are described in Fig. 4(a). The plate was put into a tensile device which allows to record the force undergone by the plate. The force measure is synchronised with a Stereo Digital Image Correlation (SDIC) system. The SDIC technique allows the determination of three dimensional surface displacements and strain fields of the plate (Machado et al., 2012a). Thus, under the incompressibility assumption, in each point of the plate, strain tensor is evaluated. The aim of this paper is to observe the Mullins effect, so a cyclic tensile test is designed. The strain field of the plate is studied for a macroscopic engineering strain of 50% after different maximal engineering strain: 50 %, 100% and 150%. It is chosen to study particularly three paths in the 

Comparaison with model predictions

Finite element simulations of the experiments were performed with the model in plane stress hypothesis with linear elements. The objective of this section is to compare the experimental and numerical results for an engineering strain of 50%. The following notations are used in this part, 1C EF 50 and 1C exp 50 represent the first load for the numerical model and experimental results, respectively. In the same way, 2C EF 100 , 2C exp 100 , and 2C EF 150 , 2C exp 150 represent the deformation at 50% after a first load of 100% and 150%, respectively.

Global behavior of the plate

The global displacement and the force undergone by the plate for the experimental and numerical tests are compared in Fig 5 . It appears that the first and second loadings are very close. A small difference appears for the first loading but, it should be due to the underestimation of biaxial loading by the model. This small difference is only due to the hyperelastic constitutive equation and not to the stress softening function. 

Contours of the plate and strain fields measurements

Fig 6 presents the maximal principal logarithmic strain field obtained for the plate by finite element simulation and experimental measurement for 2C 100 configurations. Considering the strain field distribution along the plate surface, it appears that the FE simulation represents quite well the experimental data. This is also valid for 1C and 2C 150 configurations but these results are not presented in the paper. The contours of the plate are compared for 1C 50 , 2C 100 and 2C 150 configuration and the results are presented in Fig 7 for a deformation of 50%. The experimental tests are the gray picture and the FE simulations the contour lines in red. It is possible to observe that experimental results and numerical simulations are almost superposed.

Observation of specific paths

To focus on the local behavior of the plate, the maximal principal logarithmic strain along the different paths defined in Fig. 4 is presented in Fig. 8. A comparaison between the experimental and numerical tests is presented. According to the Fig. 8(a) the maximal principal logarithmic strain is greater for the second loadings than for the first loadings, but Fig. 8(b) and (c) show that the maximal principal logarithmic strain is more important for the first loadings that for the second loadings. This difference is explained by the local state of deformation reached along each path. The maximal deformation is reached along the path 1 so the stress-softening too. Since the stress-softening is maximal along the path1 it generates more important deformation for the along this same path seconds loadings . Along the paths 2 and 3 the stress-softening is smaller that along 8 the path1 so the deformations generated along these paths decrease for the second loadings since the global deformation of the holey is still the same as the first loading. Fig. 8 also shows that the results are quite similar even if there is not a perfect spatial superposition between experimental and FE simulations. This difference can be also explained by the out-ofplane deformation, induced by the geometry of the plate, during the experimental test. Indeed for the experimental tests an out-of-plane displacement, close to the holes of the silicone plate, was observed. This out-of-plane displacement does not occur in numerical simulation since it is defined in plane stress. Thus, the superposition of the results is better along the path 2 (Fig. 8(b)) than along the paths 1 and 3 (cf. Fig. 8(a) and (c)) since the out-of-plane displacement observed is minimal near the hole of the path2 and maximal near the holes of paths 1 and 3. 

Conclusion

A new model was presented to take into account the anisotropy induced by stress softening during deformation of a rubber like material. The proposed form depends both of global maximal equivalent strain deformation and directinal maximal strains. The model was written using only strain invariants which permits to have a formulation well adapted to finite element implementation. Details about tangent modulus calculation were given in the paper.

The ability of the proposed model to simulate experimental data was tested first on classical tests (uniaxial, planar and equibiaxial tension) and second on tests where the loading directions were changing between first and second loadings. The analysis of a holey plate was realized by means of digital image correlation which allows to validate the global force-displacement response and local deformation of the plate following three different paths (with diffrent type of local strain). Finally, all the results highligt the good efficiency of the anisotropic stress-softening function which depends on only one parameter. This model can be used in finite element softwares. It allows to take account very particular loading paths.
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 1 Figure 1: Comparison of the model (solid lines) with experimental data (dotted lines) from Machado et al. (2010) (a) cyclic uniaxial tensile test, (b) cyclic pure shear test (c) cyclic equibiaxial test.
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 2 Figure 2: Comparison of the model with uniaxial pre-stretching experimental data (dotted lines) from Machado et al. (2012b). (a) Second tensile test oriented at 90 • (b) Second tensile test oriented at 45 • (e) Second tensile test oriented at 30 • (f) Second tensile test oriented at 0 •

Figure 3 :

 3 Figure3: Comparison of the model (solid lines) with biaxial pre-stretching experimental data (dotted lines). Curve a presents simulation of the model for the second load after an equibiaxial test; curve g presents simulation of the model for the second load after a biaxial test of biaxiality rate µ = 0.7; curve h presents simulation of the model for the second load after a biaxial test of biaxiality rate µ = 0.5
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 4 Figure 4: (a) Silicone plate sample containing five holes and paths of interest, (b) Biaxiality ratio along the three paths
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 5 Figure 5: Comparison of global force response between the proposed model and the experimental holey plate.
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 67 Figure 6: Maximal strain logaritmic fields of the silicone plate for the first loading : (a) numerical results and (b) experimental results.
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 8 Figure 8: Maximal principal deformation for a global strain of 50% along the path1 (a), the path2(b) and the path3 (c).