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HYPERKÄHLER MANIFOLDS FROM

THE TITS-FREUDENTHAL MAGIC SQUARE

ATANAS ILIEV, LAURENT MANIVEL

Abstract. We suggest a way to associate to each Lie algebra of type G2, D4, F4,
E6, E7, E8 a family of polarized hyperkähler fourfolds, constructed as parametrizing
certain families of cycles of hyperplane sections of certain homogeneous or quasi-
homogeneous varieties. These cycles are modeled on the Legendrian varieties stud-
ied by Freudenthal in his geometric approach to the celebrated Tits-Freudenthal
magic square of Lie algebras.

1. Introduction

Hyperkähler manifolds, also called irreducible compact holomorphic symplectic
varieties, are a notoriously mysterious and challenging class of varieties. A very
frustrating question is to decide whether there could exist many examples besides de-
formations of Hilbert schemes Hilbn(S) of points on a K3 surface S, and the closely
related generalized Kummer varieties. Even the general deformation of Hilbn(S) is
not known. If we had a polarization and consider deformations of polarized holo-
morphic symplectic varieties, the general deformation has only been described in a
restricted number of cases, each exhibiting some very special and interesting geome-
try.

In this paper, we stress an unexpected relation between the exceptional groups and
certain families of polarized holomorphic symplectic varieties. Briefly, this goes as
follows. To each simple complex Lie algebra one can associate a particular projective
homogeneous variety Xad, which we call the adjoint variety, whose automorphism
group is the adjoint form of the Lie group. The adjoint variety is covered by a family of
special subvarieties C that we call Legendrian cycles. Then our key observation is that
for each exceptional group, there exists a projective variety X of the same dimension
asXad, and covered by the same type of special subvarieties, i.e. by Legendrian cycles.
Moreover there is a suitable cycle space P for these Legendrian cycles plus certain
of their degenerations. And the crucial observation is that for a generic hyperplane
section XH of X the subspace PH of P parametrizing the Legendrian cycles C which
are contained in XH is a hyperkähler fourfold.

This has to be taken with a grain of salt. Indeed when we start from F4, the result-
ing variety PH is only a blow-up of a hyperkähler fourfold at nine points. Moreover
these fourfolds are essentially the same as those that are obtained from E6. Starting
from E7, the related geometry becomes much more complicate, and in the cases E7

and E8 we had not been able to achieve the expected construction that should follow
the above line of the argument. Nevertheless, we believe that its existence also in
these two cases remains an interesting challenge.
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The following table summarizes the hyperkähler geometries we have encountered.

G2 Fano variety of lines on a cubic fourfold [1]
D4 Hilbert square of determinantal quartic surfaces

F4, E6 Zero-locus of a 3-form in 10 variables [5]
E7, E8 ??

Structutre of the paper.
In Section 2 are collected some facts about the exceptional series of Lie groups,

the Tits-Freudenthal magic square and the associated geometries, which are related
to our study.
Section 3 provides details on the construction we have just sketched.
Section 4 treats the case of D4, for which triality plays an interesting role.
Section 5 discusses the case of F4, for which we construct a suitable cycle space for

the Legendrian cycle spaces and their degenerations.
In Section 6 we construct the associated hyperkähler fourfold and we show, fol-

lowing a suggestion of Kuznetsov, that it is isomorphic to the fourfold obtained form
E6.

Acknowledgements. We thank A. Kuznetsov, D. Orlov, K. O’Grady, G. Kaputska
and M. Kaputska for their useful hints and comments.
This work has been carried out in the framework of the Labex Archimede (ANR-11-

LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the
“Investissements d’Avenir” French Government programme managed by the French
National Research Agency, and the Seoul National University grant 0450-20130016.

2. The exceptional series and the magic square

Let G be a simple complex Lie group, and let g denote its Lie algebra. The action
of G on Pg has a unique closed orbit, which we call the adjoint variety. It is the
projectivization of the minimal non trivial nilpotent orbit in g, and the Kostant-
Kirillov-Souriau symplectic structure on this nilpotent orbit descends to a contact
structure on the adjoint variety.
Choose a point x of the adjoint variety X , and denote by P the stabilizer of x in G.

Then P is a parabolic subgroup of G, and there is an induced isomorphism X ≃ G/P .
The isotropy representation of P on TxX has a unique invariant hyperplane V (the
contact hyperplane), which is (except in type A) an irreducible representation of a
given Levi factor of the parabolic group P . Recall that a Levi factor is a reductive
subgroup of P , such that the projection to P/P u, the quotient of P by its unipotent
radical, is an isomorphism; it is uniquely defined up to conjugation.
Let us denote by H the semisimple part of the chosen Levi factor. Geometrically,

the set C of projective lines in Pg contained in X and passing through x is acted on
transitively by H ; its linear span in TxX is the contact hyperplane V .
The reduction of X ⊂ Pg to C ⊂ PV is a general process which has been studied

in detail in [13]–[15]. One of the important aspects of this study is the observation
that this reduction process provides a geometric transition between the lines of the
Tits-Freudenthal magic square, recently enlarged to a rectangle by Deligne and Gross.
Starting from the adjoint varieties of the simple Lie algebras in the Deligne’s extended
exceptional series, one gets the following list of groups and varieties:
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G G2 SO8 F4 E6 E7 E8

h∨

G 4 6 9 12 18 30
a −2

3
0 1 2 4 8

H SL2 SL3
2 Sp6 SL6 Spin12 E7

C v3P
1 (P1)3 IG(3, 6) G(3, 6) S12 Fr

We include in this table the dual Coxeter number h∨

G, and the closely related
parameter a = h∨

G/3 − 2. The dual Coxeter number is essentially the parameter
used by Deligne in [6]. The parameter a makes more visible the connection with
the Tits-Freudenthal magic square, where the Lie algebras of type F4, E6, E7, E8

are constructed from the pairs (A,O), with A = R,C,H,O a normed algebra of
real dimension a = 1, 2, 4, 8 – see [13] and the references therein. In particular
the existence of the exceptional series appears as a byproduct of the existence of
the Cayley (or rather Cayley-Salmon) algebra of octonions. In our study we will
meet again the name of Cayley, in an seemingly completely independent, but in fact
implicitly connected context: the subgroups H from the series Sp6, SL6, Spin12, E7

reappear on the third line of the magic square, where they can be reconstructed from
the pairs (A,H).

A variant of the original Tits-Freudenthal construction, called the triality construc-
tion, shows that it is natural to include SO8 in the exceptional series with parameter
a = 0, see [13] and [6, 8]. From this perspective, the group Spin8 and the triality are
at the origin of the exceptional series. Finally, G2 is deduced from SO8 (or rather
by Spin8) by a triple folding, and the denominator of the corresponding parameter
a = −2/3 can be thought of as a reminiscence of this folding. The dimensions of
X and V as above, and of C from the above table, are connected by the following
dimension formulas:

dimC = 3a+ 3, dimV = 6a+ 8 = dimX − 1.

The fact that the cone Ĉ over C has half the dimension of V is not a coincidence.
There exists an H-invariant symplectic structure on V with respect to which Ĉ is
Lagrangian [14]; and C, which by itself is a Fano manifold of index 2a+ 2, is said to
be Legendrian, see [15], [2] for a systematic study of Legendrian varieties.

3. Legendrian cycles and symplectic manifolds

We suggest a procedure that allows to construct families of holomorphic symplectic
manifolds, starting from an adjoint variety Xad of the exceptional series.

First step. Replace Xad by a rational variety X of the same dimension 6a + 9,
covered by cycles of type C. This is actually a peculiar step of the construction.

The variety X is again rational and Fano of index 3a+ 4, different from the index
of Xad, which by itself is 3a+5; cf. the tables in §2 of [4] or in [16] for the invariants
for the adjoint varieties of the classical Lie groups. We will denote by L the (very
ample) line bundle on X such that −KX = (3a+ 4)L.

Second step. Find a good parameter space P for cycles of type C in X and their
degenerations, which we call Legendrian cycles in X . In particular P must be smooth
and endowed with a family of cycles C ⊂ P ×X .
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G G2 SO8 F4 E6 E7 E8

X P5 (P3)3 IG(3, 9) G(3, 10) OG(6, 15) ??
P G(2, 6) G(2, 4)3 BlG(6, 9) G(6, 10) BlG(12, 15) ??

Note that although P is close to be homogeneous, it is not always acted on tran-
sitively by the automorphism group of X . Two non transitive actions appear for
G = F4 and E7, where Bl means that some blowing-up is required. Moreover in the
first of these two cases, the automorphism group of XLeg is the odd symplectic group
Sp(9), which is not semisimple or even reductive. This will be a source of additional
technical complications.
The dimension of P is given by the simple formula

dimP = 6a+ 12.

Third step. Let XH = X ∩ H be a general hyperplane section of X , defined by a
general element h ∈ H0(X,L). In particular XH is smooth of dimension 6a + 8. We
will check that the Hodge cohomology group H3a+5,3a+3(XH) has dimension one, i.e.

H3a+5,3a+3(XH) = CΩ

for some closed non-exact (3a + 5, 3a + 3)-form Ω on XH . Moreover Hp,q(XH) = 0
for p + q = 6a + 8 and q < 3a + 3. In other words, the middle dimensional Hodge
structure of XH is of K3 type.

Fourth step. Consider the space PH ⊂ P of Legendrian cycles C that are contained
in H . The parameter space P will be constructed in such a way that E = p∗q

∗L will
be a rank 6a+8 vector bundle on P with H0(P,E) ∼= H0(X,L). In particular, h will
define a section hE of E with zero-locus PH = Z(hE), which turns out to be smooth
and of dimension four.

Fifth step. Consider the restriction of the family of Legendrian cycles C ⊂ PH×CH ,
with its two projections pH and qH . The Abel-Jacobi map

pH∗q
∗

H : H3a+5,3a+3(XH) −→ H2,0(PH)

maps Ω to a holomorphic two-form ω on PH which is generically non-degenerate.

Sixth step. Find, if necessary, a suitable modification ZH of PH with trivial canonical
bundle, and conclude that ZH is hyperkähler.

Comments. For a = −2/3, 0, 2 the sixth and last step is not necessary: we get directly
a hyperkähler structure on PH , and no birational modification is needed. Moreover in
these cases P appears to be homogeneous. In particular the cycles in X isomorphic
to C form a complete family, and there is no need to take degenerations into account.
The hyperkähler vaieties from the case a = 2 have already been discovered by

Debarre and Voisin in [5], where they prove that the result of virtually the same
construction is a locally complete family of polarized hyperkähler fourfolds, which
are deformations of Hilbert squares of K3 surfaces.
In fact, the case a = −2/3 is even more classical: it is nothing else than the

hyperkähler structure on the Fano variety of lines of a cubic fourfold discovered by
Beauville and Donagi in [1].
From our perspective, the special structures of these two very classical varieties

have their hidden origin respectively in the exceptional groups E6 and G2.
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From the triality perspective, the case a = 0 is the most important. It could
have been discovered much earlier, being defined by a very simple and natural vector
bundle on a product of three four-dimensional quadrics. It turns out that this con-
struction does not yield a locally complete family of projective hyperkähler manifolds.
In fact the symplectic varieties that we obtain are Hilbert squares of determinantal
quartic surfaces in P3.

The case a = 1 will be the object of section 5. As already mentioned, a new feature
here is the necessity to take into account degenerations of our Legendrian cycles C.
The cycle space P will be defined as a blow-up of a Grassmannian. As explained in
the fourth step above, it is endowed with a vector bundle, but the zero-locus of its
general section is not a hyperkähler manifold. In fact it contains 9 special copies of P3,
and it is only after contracting these that we finally obtain a hyperkähler manifold.
Alternatively, one can consider, directly on the Grassmannian, the zero-locus of a
sheaf which is not locally free.

In the case a = 4 there is an additional complication: we would expect X to be
Fano of index 10, but it is only of index 5. The reason for this discrepancy is that
our Legendrian cycles C in X are copies of OG+(6, 12) inside OG(6, 15); and the
Plücker polarization on OG(6, 15), which is certainly primitive, becomes divisible by
two when restricted to OG+(6, 12), a phenomenon which is directly related to the
existence of the Spin representations. So one should modify the construction and ask
that the cycle family C be endowed with a line bundle L such that L2 = p∗O(1), and
E = q∗L be a vector bundle of rank 32 (given at the generic point of P by a half-spin
representation of Spin12). This is something we have not managed yet.

The case a = 8 is the most mysterious, and in this final case we have no suggestion
for eventual constructions of X and P , which should follow the conjectured Steps
1-6, as stated above.

An intermediate case, first noticed by Deligne as a complement to the exceptional
series is that of a = 6. Algebraically, one can complete the magic square with the help
of the intermediate algebra of sextonions, which is normed for a degenerate quadratic
form. Geometrically, we know that the geometries associated with the Freudenthal
square can still be constructed from the sextonions, but they yield singular varieties.
Therefore it is plausible that our construction may be used for a search of new singular
hyperkähler varieties of dimension 4. If this is indeed the case, the next question will
obviously be that of the existence of symplectic resolutions of these fourfolds.

4. Determinantal quartics and triality

In this and the next sections we keep the notation from Section 3, and start with the
case a = 0. The Legendrian cycle corresponding to this case is C = P1×P1×P1 ⊂ P7,
see e.g. Table I on p. 89 of [2]. Its dual or tangent variety is the quartic hypersurface
whose equation is Cayley’s famous 2× 2× 2 hyperdeterminant [10].

The adjoint variety of D4 is the orthogonal Grassmannian OG(2, 8), which has
dimension 9 = 6a + 9 and index 5 = 3a + 5, see §2 in [4]. As already discussed in
Section 3, we replace the 9-dimensional adjoint variety of D4, which is the orthogonal
grassmannian Xad = OG(2, 8), by X = P3 × P3 × P3. This variety is covered by
copies of C parametrized by P = G(2, 4) × G(2, 4) × G(2, 4), a triple product of 4-
dimensional quadrics. To be more specific we will introduce four-dimensional vector
spaces V1, V2, V3 and let X = PV1 × PV2 × PV3. X is evidently a Fano manifold of
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dimension 9 = 6a+ 9 and index 4 = 3a+ 4: the anticanonical divisor −KX = 4L for
L = OX(1, 1, 1).
The parameter space for the Legendrian cycles C ⊂ X is P = G(2, V1)×G(2, V2)×

G(2, V3), and P has dimension 6a+ 12 = 12.
We denote by Ti and Qi the rank two tautological bundles and quotient bundles on

the Grassmannians G(2, Vi), i = 1, 2, 3. The vector bundle E on P of rank 6a+8 = 8
is E = T ∗

1 ⊗ T ∗

2 ⊗ T ∗

3 .
Consider a general element of

H0(X,L) = H0(P,E) = V ∗

1 ⊗ V ∗

2 ⊗ V ∗

3 ,

considered either as a section h of L, whose zero-locus is a hyperplane section XH of
X , or as a section hE of E, whose zero locus in P is a four-dimensional subvariety
PH . Note that since det(E) = O(4, 4, 4), the canonical bundle of PH is trivial.

Theorem 1. PH is an irreducible holomorphic symplectic manifold.

One way to show this is to break the symmetry of h ∈ V ∗

1 ⊗V ∗

2 ⊗ V ∗

3 , and consider
it as a morphism h3 : V3 −→ V ∗

1 ⊗ V ∗

2 – or equivalently, a four dimensional space of
sections of O(1, 1) on P(V1)×P(V2). Generically, such a linear system defines a K3
surface S3 ⊂ P(V1)×P(V2), parametrizing pairs of lines (ℓ1, ℓ2) such that h vanishes
on ℓ1 ⊗ ℓ2 ⊗ V3.
In particular ℓ1 belongs to the projection of S3 to P(V1) if and only if the image of

ℓ1 by h1 : V1 −→ V ∗

2 ⊗ V ∗

3 ≃ Hom(V2, V
∗

3 ) is generated by a non injective morphism.
For h general the rank drops by two only in codimension four, hence nowhere since
we are on P3. There the projection of S3 to P(V1) is in fact an isomorphism to a
determinantal quartic surface.
Note also that Hom(V2, V

∗

3 ) ≃ Hom(V3, V
∗

2 ), and that this isomorphism preserves
the rank. This implies that if h vanishes on ℓ1 ⊗ ℓ2 ⊗ V3, then there exists a line ℓ3
such that h vanishes on ℓ1⊗V2⊗ℓ3. Moreover, this line is unique if h is general. As a
consequence, all the three surfaces S1, S2, S3 are isomorphic to the same K3 surface S,
of which we get three in general different representations as a determinantal quartic
surface:

Q1 ⊂ P(V1), Q2 ⊂ P(V2), Q3 ⊂ P(V3).

It is remarkable that this has already been known to Arthur Cayley (see [3] and
[9] for more historical information about this classical construction). Cayley has also
observed that the correspondence ℓ1 ⊗ ℓ2 ⊗ V3 7→ ℓ1 ⊗ V2 ⊗ ℓ3 can be iterated, and
that the iteration

ℓ1 ⊗ ℓ2 ⊗ V3 7→ ℓ1 ⊗ V2 ⊗ ℓ3 7→ V1 ⊗ ℓ′2 ⊗ ℓ3 7→ ℓ′1 ⊗ ℓ′2 ⊗ V3

defines a non-trivial automorphism of S. By its construction this automorphism is a
byproduct of the triality for SO(8), and so one can call it the triality automorphism.

Theorem 1 will be a consequence of the following more precise statement.

Proposition 1. PH is isomorphic to Hilb2(S).

Proof. A point of PH is a triple (T1, T2, T3) in G(2, V1)×G(2, V2)×G(2, V3) such that
h vanishes on T1 ⊗ T2 ⊗ T3. This implies that the composition

V3 −→ V ∗

1 ⊗ V ∗

2 −→ T ∗

1 ⊗ T ∗

2
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has rank at most two, and in fact is equal to two, since for h general it drops to rank
one in codimension nine, hence nowhere on the 8-fold G(2, V1)×G(2, V4). The result-
ing pencil of sections of O(1, 1) on P(T1) × P(T2) cuts out a degree two subscheme
of S3 ⊂ P(V1)×P(V2), which yields a morphism

δ : PH −→ Hilb2(S3) = Hilb2(S).

Conversely, a generic point z in Hilb2(S3) is represented by two distinct pairs of
lines (ℓ1, ℓ2) and (ℓ′1, ℓ

′

2) such that h vanishes on both ℓ1 ⊗ ℓ2 ⊗ V3 and ℓ′1 ⊗ ℓ′2 ⊗ V3.
Generically the lines ℓ1 and ℓ′1 are distinct and span a plane T1, while ℓ2 and ℓ′2
span a plane T2. The morphism T1 ⊗ T2 −→ V ∗

3 induced by h has rank at most two
since it vanishes on ℓ1 ⊗ ℓ2 and ℓ′1 ⊗ ℓ′2, and its image is a two-dimensional space of
linear forms on V3, defining a plane T3. This associates to a generic z in Hilb2(S3)
a triple (T1, T2, T3) in G(2, V1) × G(2, V2) × G(2, V3), which belongs to PH . Then it
is straightforward to check that this triple is mapped to z by δ. Therefore δ must
be a birational morphism. But since PH and Hilb2(S3) both have trivial canonical
bundles, the birationality δ should be an isomorphism. �

The fundamental class of PH in P = G(2, V1)×G(2, V2)×G(2, V3), as a zero-locus
of a section hE of E = T ∗

1 ⊗ T ∗

2 ⊗ T ∗

3 , is c8(T
∗

1 ⊗ T ∗

2 ⊗ T ∗

3 ). The projection of PH to
G(2, V1)×G(2, V2) is an isomorphism with the second degeneracy locus of the induced
morphism V3 −→ T ∗

1 ⊗ T ∗

2 . By the Thom-Porteous formula, the fundamental class
of this degeneracy locus is c2,2(T

∗

1 ⊗ T ∗

2 ), from where by a standard computation one
obtains that the degree of PH with respect to the polarization O(1, 1, 0) is 432.

Finally the projection to G(2, V1) is finite of degree 6, since a generic fiber can be
identified with the set of pairs of points inside the intersection of the quartic surface
Q1 ⊂ P(V1) with a generic line. Therefore the polarization O(1, 0, 0) has degree 12.
It has been shown by Ferretti that PH with this polarization can be deformed to a
double EPW sextic, see [7].

5. The isotropic Grassmannian and its Hilbert scheme

In this and the next section we discuss the case a = 1, related to the exceptional
group F4. The adoint variety Xad for the group F4 has dimension 6a + 9 = 15 and
index 3a + 5 = 8, cf. the tables in §2 of [4]. Following the procedure from Section
3, we will replace Xad by X = IGω(3, 9), the isotropic Grassmannian defined by a
2-form ω of maximal rank on V9. This is a Fano variety of the same dimension 15,
and of index 7. The non semi-simple group Sp(ω) ≃ Sp9 acts with two orbits on X :
3-planes that contain or do not contain the one-dimensional kernel K of ω.

Following Step 2 in Section 3, the 15-fold X is covered by copies of 6-dimensional
Legendre cycles IG(3, 6) (see Table I on p. 89 of [2]: the case F4, where the Lagrangian
Grassmannian IG(3, 6) of isotropic 3-spaces for a non-degenerate 2-form on V6

∼= C6

is denoted by GL(3, 6)), and these Legendre cycles are parametrized by an open
subset of P ∗ = G(6, V9). Indeed to any V6 ⊂ V9 one can associate the variety
X ∩G(3, V6) ⊂ G(3, V9). This is a copy of IG(3, 6) when the restriction of ω to V6 is
a non-degenerate 2-form.

However the restrictions of the general 2-form ω on V9 to some particular subspaces
V6 ⊂ V9 can be degenerate, which imposes to reconsider the family P ∗ and to replace
it with a family P (a birational modification of P ∗) which will cover the requirements
of Step 2 and the next steps from Section 3.
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Lemma 1. The action of Sp(ω) on P ∗ = G(6, V9) has three orbits Oi, i = 0, 1, 2,
defined by the condition that the restriction of ω to the 6-space V6 ∈ P ∗ has rank

6− 2i. The closed orbit O2 has codimension 6 and is isomorphic to IG(3, 8).

Proof. For the general 2-form ω on V9, the corresponding skew-symmetric map ω :
V9 → V ∗

9 has rank 8. If K ⊂ V9 is the 1-dimensional kernel of this map, one can
define the 2-form ω in terms of a non degenerate 2-form ω′ on an eight-dimensional
space V8 identified with the image of the map ω, and a projection p : V9 → V8 from
the kernel K of the map ω. Consider some V6 ⊂ V9, and let 2j be the rank of the
restriction of ω to V6. If j = 0, then p(V6) ⊂ V8 is isotropic of dimension at least
five, a contradiction. If j = 1, then p(V6) contains isotropic hyperplanes, which can
have dimension at most four, so p(V6) has dimension 5, which means that V6 ⊃ K.
Moreover by projection, we conclude that O2 can be identified with the subvariety
of G(5, V8) defined by the condition that the rank of the restriction of ω′ is minimal.
This is the minimal orbit of Sp(8) inside G(5, V8) ≃ G(3, V8), that is the isotropic
Grassmannian IG(3, 8). �

Notation. We denote by
p : P → P ∗

the blowup of P ∗ = G(6, V9) along the closed orbit O2, by E = p−1(O2) ⊂ P the
exceptional divisor of p, and by ι : E → P the embedding of E in P .

The variety P is endowed with a natural vector bundle F of rank fourteen, which
we describe below.

Since p : P −E → P ∗ −O2 = O0 ∪O1 is an isomorphism, over P −E it is enough
to define the fibers of F for the 6-spaces V = V6 ∈ O0 ∪ O1.
Denote by T the rank 6 tautological bundle on P ∗ = G(6, V9) with fiber TV over

V = V6 identified with the 6-space V ⊂ V9. For V ∈ O0 the restriction ωV of ω
to V = TV has rank 6, and by the representation theory of Sp(6) the span of the
isotropic grassmannian IG(3, TV ) ∼= IG(3, 6) for ωV is the projectivization of the
14-dimensional vector space FV which fits in the exact sequence

0 −→ FV −→ ∧3TV
ωT−→ TV −→ 0,

where ωT denotes the contraction with the 2-form ω. On the orbit O1, although the
restriction of ω to T drops rank, the map ωT remains surjective and the kernel space
FV = Ker(ωT ) still has dimension 14.
For V = V6 ∈ O2, the restriction ωV of ω to V = TV has rank two, and the image

of ωT : ∧2TV → TV = V coincides with the 4-dimensional kernel T4 ⊂ V = TV of the
skew-symmetric map ωV : V → V ∗. In particular, for V ∈ O2 ⊂ P ∗ the rank of the
kernel FV of ωT jumps, and so the kernel sheaf of ωT does not define a vector bundle
on P ∗ = G(6, V9).

Next, we shall see that after performing a blow-up P → P ∗ along the closed orbit
O2 ⊂ P ∗, the vector bundle F on P ∗−O2 can be completed to a vector bundle on the
projective manifold P , especially on the exceptional divisor E of the blow-up. Due
to the natural isomorphism P − E ∼= P ∗ − O2 induced by the blow-up, we will keep
the notation F also for the vector bundle on P .
The normal vector bundle to O2 in P ∗ is easily seen to be isomorphic with ∧2T∨

4 .
Therefore a point of the exceptional divisor of the blow-up, E ≃ P (NO2/P ∗), is nothing
else than a hyperplane Λ ⊂ ∧2T4. Now it is straightforward to check that for any such
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hyperplane one has T4 ∧Λ = ∧3T4. In particular T ∧Λ is of dimension 14 inside ∧3T
(if T2 is any complement of T4 in T , then T ∧Λ is the direct sum of T2 ∧Λ ≃ T2 ⊗Λ
of dimension 2× 5 = 10, and of T4 ∧ Λ = ∧3T4 of dimension 4).

Define the fiber of F over the point Λ of E as FΛ := T ∧ Λ. On the exceptional
divisor there is also a bundle p∗T4, and we denote by G the quotient p∗(T/T4) which
has rank two and is self-dual. The above argument yields the following:

Proposition 2. F is a rank fourteen sub-bundle of p∗ ∧3 T on P .

There is an exact sequence

0 −→ F −→ p∗ ∧3 T
p∗ωT

−→ p∗T −→ ι∗G −→ 0.

Let h denote the pull-back to P of the hyperplane class on P ∗, and e the class of
the exceptional divisor E.

Corollary 1. c1(F ) = −9h + 2e.

Corollary 2. The dual bundle F∨ is globally generated and H0(F∨) ≃ ∧3V ∨

9 /ω∧V ∨

9 .

Although we will not really need this, it is of worth to mention also the following
statement, in accordance with our general approach.

Proposition 3. The projectivization of any fiber of F cuts X = IGω(3, 9) along

a generically reduced, 6-dimensional irreducible subvariety. As a consequence, P
parametrizes a family of subvarieties of X made of Legendrian cycles and degenera-

tions of these.

6. Hyperplane sections

Next, we follow Steps 3–6 from Section 3 for the case a = 1.
A hyperplane section of XH = X ∩H of X = IGω(3, 9) is defined by a 3-form Ω on

V9, considered up to ω ∧ V9. In this section we study the family of Legendrian cycles
IG(3, 6), and their degenerations, that are contained in H . We denote by PH ⊂ P
the corresponding subvariety. The restrictions of the divisor classes h and e from P
to PH will be denoted by hH and eH .

Proposition 4. The general 3-form Ω defines a general section Ω̃ of F∨, and the

zero-locus of Ω̃ is PH . As a consequence, PH is smooth of dimension 4 and its

canonical class is 3eH .

This suggests to study more carefully the intersection of PH with the exceptional
divisor E. Our main technical result is the following:

Proposition 5. The intersection PH ∩ E is the disjoint union of nine copies of P3.

Proof. Recall that a point z of E is given by a 6-plane T on which ω has rank two,
and a hyperplane Λ ⊂ ∧2T4, where T4 ⊂ T is the kernel of the restriction of ω. Let
λ4 ⊂ ∧2T∨

4 be a linear form defining Λ. Choose any lift of λ to ∧2T∨. The orthogonal
of FΛ in ∧3T∨ is, independently of the latter choice,

F⊥

Λ = ∧2T⊥

4 ∧ T∨ + λ ∧ T⊥

4 ⊂ ∧3T∨.

Next, we choose a basis e1, . . . , e9 of V9 adapted to the situation. We will suppose
that T = 〈e1, . . . , e6〉 and T4 = 〈e1, . . . , e4〉, so that T⊥

4 = 〈e∗5, e
∗

6〉 ⊂ T ∗ (for simplicity
we use the same notation for linear forms on V9 and their restrictions to T ). We can
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suppose that the restriction of ω to T is e∗5 ∧ e∗6, and then (after changing the basis
if necessary), that

ω = e∗5 ∧ e∗6 + e∗4 ∧ e∗7 + e∗3 ∧ e∗8 + e∗2 ∧ e∗9.

Clearly, in this basis the 1-dimensional kernel K of ω is spanned by e1. The
condition that z belongs to PH means that the restriction of Ω to T belongs to F⊥

Λ ,
so that we can write Ω as

Ω = e∗5 ∧ e∗6 ∧ u∗ + λ ∧ v∗ + Ω∗

7 ∧ e∗7 + Ω∗

8 ∧ e∗8 + Ω∗

9 ∧ e∗9,

for some 2-forms Ω∗

7,Ω
∗

8,Ω
∗

9, and some linear forms u∗ and v∗. Moreover v∗ is in T⊥

4 ,
hence it is a linear combination of e∗5 and e∗6, and we can suppose that v∗ = e∗6. As a
conclusion, one is able to write the 2-form ω and the 3-form Ω as

ω = e∗5 ∧ e∗6 + e∗4 ∧ e∗7 + e∗3 ∧ e∗8 + e∗2 ∧ e∗9,

Ω = Ω∗

6 ∧ e∗6 + Ω∗

7 ∧ e∗7 + Ω∗

8 ∧ e∗8 + Ω∗

9 ∧ e∗9,

for some 2-forms Ω∗

6,Ω
∗

7,Ω
∗

8,Ω
∗

9. More intrinsically, if the 4-spaceW = 〈e∗6, e
∗

7, e
∗

8, e
∗

9〉 ⊂
V ∗

9 is the span of e∗6, ..., e
∗

9, then ω ∈ V ∗

9 ∧W and Ω ∈ ∧2V ∗

9 ∧ W . Note that if the
5-space R ∈ G(5, V9) is the orthogonal to W , this means exactly that ω and Ω both
vanish identically on R.

Lemma 2. For a generic pair (ω,Ω) of a 2-form ω and a 3-form Ω on the 9-

dimensional space V9 there exist exactly nine 5-dimensional subspaces R1, ..., R9 of

V9 such that both ω and Ω vanish identically on Rj, j = 1, ..., 9.

Proof. Denote by U the rank-five tautological vector bundle on the Grassmannian
G(5, V9). The forms ω and Ω define general sections of the vector bundles ∧2U∗

and ∧3U∗ respectively, and the common zero locus of these two sections is the set of
5-spaces R ⊂ V9 on which both ω and Ω vanish.
Since the two vector bundles ∧2U∗ and ∧3U∗ on the 20-dimensional Grassmannian

G(5, V9) are both globally generated and of rank 10, then the zero loci of their generic
sections ω and Ω intersect in a finite number

N = c10(∧
2U∗)c10(∧

3U∗).

of points Rj ∈ G(5, V9), j = 1, ..., N . It is a standard fact that c10(∧
2U∗) is the

Schubert class σ4321 defined by the staircase partition. Since this Schubert class is
self-dual, N is the coefficient of σ4321 in c10(∧

3U∗), expressed in terms of Schubert
classes. A computation with Sage finally yields N = 9. �

Let R1, . . . , R9 ∈ G(5, V9) be as above, interpreted as 5-spaces in V9. For each i,
the set of 6-spaces in V9 containing Ri is a 3-dimensional projective space πi linearly
embedded in P ∗ = G(6, V9). Moreover all these π∗

i are contained in the orbit O2 since
(as elements of the zero-locus of ω) the 5-spaces Ri ⊂ V9 are isotropic with respect
to ω, see Section 5. If p : P → P ∗ = G(6, V9) is the blowup of O2 as in Section 5,
and PH ⊂ P is the family of Legendrian cycles in XH as above (cf. also with Step 4
in Section 3), then by the preceding:

p(PH ∩ E) ⊂ π∗

1 ∪ · · · ∪ π∗

9.

We claim that each πi can be lifted to a 3-space πi in E, and that

PH ∩ E = π1 ∪ · · · ∪ π9.



HYPERKÄHLER MANIFOLDS FROM THE TITS-FREUDENTHAL MAGIC SQUARE 11

Indeed, once we have written the 3-form Ω as

Ω = Ω∗

6 ∧ e∗6 + Ω∗

7 ∧ e∗7 + Ω∗

8 ∧ e∗8 + Ω∗

9 ∧ e∗9

in the adapted basis e1, ..., e9 as in the beginning of this section, with corresponding
5-space, say R1 = 〈e1, ..., e5〉, and its orthogonal W1 = 〈e∗6, e

∗

7, e
∗

8, e
∗

9〉, we get a well-
defined map

Ω̄ : V9/R1 −→ ∧2R∨

1 ,

which is injective for the general pair (ω,Ω). The map Ω̄ associates to any 6-space T
containing R1 a line in ∧2R∨

1 , which by restriction is mapped to a line in ∧2T⊥

4 . This
defines the lifting of π∗

1 to π1 ⊂ p−1(π1) ⊂ E. �

Theorem 2. The nine divisors π1, . . . , π9 in PH can be contracted. The resulting

variety ZH is a smooth irreducible hyperkähler fourfold.

Proof. First observe that the lift πi of π
∗

i to E being linear, the restriction of OE(1)
to πi coincides with the pull-back of OP ∗(1), and also with Oπi

(1). This implies that
the canonical class of π̃i is −4eπi

, and since the canonical class of PH is 3eH we get
that the normal bundle of πi in PH is Oπi

(−1). Therefore the divisor πi ⊂ PH can
be contracted to a smooth point for any i = 1, ..., 9. Let

f : PH → ZH

be the composition of the 9 contractions, where by ZH we have denoted the image
variety ZH = f(PH). By the preceding, ZH is a smooth projective variety of dimen-
sion 4 = dim(PH). By the formulas for blowups, the canonical classes of PH and ZH

are connected by the formula

3eH = KPH
= f ∗KZH

+ 3(π1 + · · ·+ π9) = f ∗KZH
+ 3eH .

Therefore f ∗KZH
is trivial, which implies that the canonical class KZH

by itself is
trivial, and as we will see below ZH is in fact a holomorphic symplectic fourfold.

In order to see the last, consider a 10-dimensional space V10 containing our V9

as a hyperplane, and choose a vector v0 ∈ V10 − V9. There is an induced dual
decomposition V ∗

10 = V ∗

9 ⊕Cv∗0, where v
∗

0 is the linear form evaluating to zero on V9 and
to one on v0. Correspondingly, at the level of three-forms we get the decomposition
∧3V ∗

10 = ∧3V ∗

9 ⊕ ∧2V ∗

9 ∧ v∗0. In particular, our 2-form ω and 3-form Ω on V9 define a
3-form Ω0 = Ω+ω ∧ v∗0 on V10. By [5], the subvariety PH0

⊂ G(6, V10) parametrizing
6-planes on which Ω0 vanishes identically, is a holomorphic symplectic fourfold. The
following statement will conclude the proof of the Theorem.

Proposition 6. ZH is isomorphic to PH0
.

Proof. The projection of P(V10) to P(V9) from 〈v0〉 induces a rational map

π : G(6, V10) −→ G(6, V9).

This rational map is defined outside the locus G0 of 6-dimensional subspaces of V10

containing v0, which is a copy of G(5, V9) and has codimension 4 in G(6, V10).
Given a 6-dimensional subspace T ⊂ V9, a subspace T0 ⊂ V10 such that π(T0) = T

can be described as the space of vectors x+ u(x)v0, x ∈ T for some linear form u on
T . Moreover, the fact that Ω0 vanishes identically on T0 is equivalent to the vanishing
of Ω + u ∧ ω on T . This implies that π maps PH0

birationally to PH . We denote the
restriction of π by πH : PH0

−→ PH .
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The rational map π can be resolved by just blowing-up G0 ≃ G(5, V9). Note that
Ω0 vanishes on T0 = Cv0 ⊕ U if and only if Ω and ω both vanish on R. So the
(schematic) intersection of G0 with PH can be identified with the set of nine points
R1, . . . , R9 in G(5, V9) defined in Lemma 2. We can resolve πH by blowing up these
nine points, which yields a birational morphism π̃H : P̃H0

−→ PH . Moreover the nine
components of the exceptional divisor are then mapped linearly, hence isomorphically,
to π1, . . . , π9. In particular the birational morphism π̃H preserves the canonical class,
so it must be an isomorphism. It only remains to contract the nine 3-spaces on both
sides to get an induced isomorphism π̄H : PH0

−→ ZH . �
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