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We chart a path toward solving for the nonlinear gravitational dynamics of cold dark matter by relying on
a semiclassical description using the propagator. The evolution of the propagator is given by a Schrödinger
equation, where the small parameter ℏ acts as a softening scale that regulates singularities at shell-crossing.
The leading-order propagator, called free propagator, is the semiclassical equivalent of the Zel’dovich
approximation, that describes inertial particle motion along straight trajectories. At next-to-leading order,
we solve for the propagator perturbatively and obtain, in the classical limit the displacement field from
second-order Lagrangian perturbation theory (LPT). The associated velocity naturally includes an
additional term that would be considered as third order in LPT. We show that this term is actually
needed to preserve the underlying Hamiltonian structure, and ignoring it could lead to the spurious
excitation of vorticity in certain implementations of second-order LPT. We show that for sufficiently small
ℏ the corresponding propagator solutions closely resemble LPT, with the additions that spurious vorticity is
avoided and the dynamics at shell-crossing is regularized. Our analytical results possess a symplectic
structure that allows us to advance numerical schemes for the large-scale structure. For times shortly after
shell-crossing, we explore the generation of vorticity, which in our method does not involve any explicit
multistream averaging, but instead arises naturally as a conserved topological charge.

DOI: 10.1103/PhysRevD.99.083524

I. INTRODUCTION

Analytical methods for the evolution of cold dark
matter (CDM), relevant for investigating the large-scale
structure of our Universe, are valuable for gaining theo-
retical understanding and efficiently parametrizing the
cosmology-dependence of observables. Furthermore, ana-
lytical methods can also assist in improving numerical
computations, for example by setting up initial conditions
for cosmological N-body simulations [1,2], or as input for
multi-timestepping algorithms that are used to generate fast
mock catalogues [3,4].
At sufficiently early times, the distribution for standard

cold dark matter is characterized by the (perfect) fluid
variables, a density and a single-valued velocity field.
These fields are the dynamical quantities in the Eulerian
description. In the corresponding perturbative framework,

Eulerian perturbation theory [5], one assumes a perturba-
tive smallness of the density and velocity from their
background values. As a consequence, Eulerian perturba-
tion theory struggles to capture large densities that naturally
arise from gravitational dynamics. Moreover, due to the
collisionless nature of dark matter, the infall induced by the
gravitational potential leads to the crossing of fluid trajec-
tories, which is often called “shell-crossing.” The instance
of shell-crossing leads to the formation of caustics with a
(formally) infinite density. Such nonanalytic behavior
prevents a smooth continuation into the regime beyond
shell-crossing, in which regions of multiple fluid streams
with distinct velocities arise.
Some problems associated with shell-crossing are alle-

viated in a phase-space description, where the dark matter
evolution corresponds to describing the embedding of an
initially flat, 3-dimensional thin sheet into 6-dimensional
phase-space, the “Lagrangian submanifold.” In this case,
the singular behavior of the density at shell-crossing does
not pose a problem per se, because it is merely induced by
projecting the folded phase-space sheet into 3-dimensional
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position space. A convenient way of describing the
embedding of the sheet in phase-space is to use
Lagrangian coordinates [6–11]. The central quantity is
the Lagrangian displacement field that encodes how fluid
elements are displaced as a function of time and initial
(Lagrangian) position. The corresponding perturbative
framework is usually called Lagrangian perturbation theory
(LPT), and, although a challenge, allows to investigate the
instance of shell-crossing by analytic means [12–17].
However, to update the gravitational potential that is
responsible for displacing the fluid elements, one still
requires, effectively, the Eulerian density. Since an irregular
density carries over to irregularities in the tidal or force field
[18], a theory that regularizes the dynamics at shell-
crossing and provides a smooth transition into the multi-
stream regime is highly desirable.
In this paper, we provide a novel method to evolve

CDM by relying on semiclassical dynamics using the
propagator—which we motivate in more detail in
Sec. II. Our primary motivation is to formulate an analytical
framework that allows to go beyond shell-crossing while
admitting perturbative solutions for the mildly nonlinear
dynamics. To realize this goal, we adopt a formalism that
respects key dynamical invariants, which additionally
offers interesting perspectives for advancing numerical
schemes for gravitational dynamics.
In essence, we introduce a suitable perturbative frame-

work for the propagator and show that, at the leading
order, our approach amounts to solving a “free-particle
Schrödinger equation,” with a solution that is closely related
to the classical Zel’dovich approximation (ZA) dynamics.
At the leading order, our approach constitutes a heuristic
derivation for a free-particle Schrödinger equation, which
has been introduced in Refs. [19,20]. At higher orders, our
approach includes gravitational effects beyond the ZA,
which are encoded in an effective potential. The resulting
evolution equation for the propagator is then a Schrödinger
equation that includes the said effective potential. Our
formalism naturally respects the underlying Hamiltonian
structure and allows us to determine the regularized fluid
variables in the classical limit. Additionally, our formalism
does not suffer from singularities at shell-crossing, thereby
allowing it to enter the multistream regime smoothly.
The outline of the paper is as follows. In Sec. II, we begin

by motivating our semiclassical description, which at the
leading order returns a free propagator that reduces to the
ZA in the classical limit. We then generalize the related
Schrödinger equation for the propagator to include an
effective potential. In Sec. III, we relate this effective
potential to the cosmological fluid equations and describe
standard perturbative solutions. In Sec. IV, we briefly
review LPT since it will be helpful to analyze the results
of the propagator method. Specifically, we utilize the so-
called Cauchy invariants, that in our case encode the
conservation of vanishing vorticity, as a diagnostic tool to

investigate the Hamiltonian structure of the propagator
method. In Sec. V, we show how the classical limits for
the propagator relate to the classical fluid variables. As a
demonstrative example, we perform those limits on the free
propagator, from which we reproduce the ZA. Furthermore,
we discuss how vorticity is generated by shell-crossing in
the semiclassical picture. In Sec. VI, we go to the next-to-
leading order in the propagator method and show that we
recover exactly the second-order Lagrangian displacement.
We show that the associated velocity receives a higher-order
correction term compared to LPT, restoring compatibility
with the Cauchy invariants thanks to the underlying sym-
plectic structure of our method. In Sec. VII, we present
concrete examples comparing numerical implementations of
our propagator method to LPT, and show qualitative results
for the density and vorticity after shell-crossing. We con-
clude in Sec. VIII, where we also provide an outlook on
potential applications of our method.

II. MOTIVATING A PROPAGATOR FOR
GRAVITATIONAL INTERACTIONS

Despite its simplicity, the classical Zel’dovich approxi-
mation (ZA) [7] reproduces the cosmic web remarkably
well. The ZA is based on a ballistic motion of fluid particles
with prescribed velocity. While the ZA is the exact solution
of the underlying fluid equations before shell-crossing
in one spatial dimension, it receives corrections due to
tidal gravitational fields in two and three dimensions.
Furthermore, after the intersection of particle trajectories
at shell-crossing, the ZA is doomed to fail, partially
because it does not take the time evolution of the gravi-
tational potential into account, which leads to nonzero
particle acceleration and secondary infall.
In the following, we develop another perspective for

the ZA, and outline how this model can be translated into
the language of transition probabilities—with the aim to
investigate novel avenues to surpass some of the short-
comings of the ZA. We shall make use of the dimensionless
temporal coordinate a ¼ aðtÞ, which is the cosmic scale
factor with evolution governed by the usual Friedmann
equations. For simplicity, we shall limit the analysis to a
CDM dominated universe, the so-called Einstein–de Sitter
(EdS) model. A generalization to the ΛCDM model, where
Λ is the cosmological constant, is however straightforward.

A. Free propagator from Zel’dovich approximation

In a Cartesian coordinate system which comoves with
the particles, the ZA amounts to particles moving along
straight lines with constant velocity. For fluid particles that
are initially (a ¼ 0) at position q, and at time a, at position
x, the classical action is

S0ðx; q; aÞ ¼
1

2
ðx − qÞ · x − q

a
; ð1Þ
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which, essentially, is the product of particle displacements
and their velocities. Following standard methods inspired
by Feynman [21] the classical action yields a transition
amplitude K0 for a particle from being at time 0 at position
q to being at time a at position x,

K0ðx; q; aÞ ¼ N exp

�
i
ℏ
S0ðx; q; aÞ

�
; ð2Þ

where N ¼ ð2πiℏaÞ−3=2 is a normalization coefficient
chosen such that the transition amplitude returns initially

the Dirac delta, K0ðx; q; a ¼ 0Þ ¼ δð3ÞD ðx − qÞ.
Now, as is well known in the context of quantum

mechanics, the transition amplitude K0 (and any other
transition amplitude too) propagates a wave function ψ0

from some initial to some final state,

ψ0ðx; aÞ ¼
Z

d3qK0ðx; q; aÞψ ðiniÞ
0 ðqÞ; ð3Þ

where ψ ðiniÞ
0 ðqÞ≡ ψ0ðq; a ¼ 0Þ. It is then elementary to

show that, the evolution of the transition amplitude K0 is
governed by a potential-free Schrödinger equation,

iℏ∂aK0 ¼ −
ℏ2

2
∇2
xK0 ð4aÞ

for a > 0 and, likewise,

iℏ∂aψ0 ¼ −
ℏ2

2
∇2
xψ0; ð4bÞ

which is a free Schrödinger equation for the ZA wave
function. This provides a heuristic derivation for the free
particle approximation, which was introduced as an ad hoc
approximation of gravitational dynamics in [19],1 and
compared to the linearized fluid dynamics in [20].
Even at the leading order, our approach goes beyond

the so-called adhesion model [23,24], which avoids shell-
crossing through the introduction of an artificial viscosity,
and has also been formulated in terms of propagators
[25–28]. In contrast to the adhesion approximation, our
semiclassical propagator method possesses a conserved
current that arises from the unitary evolution of the wave
function and allows us to propagate through shell-crossing
into the multistream regime.
The above equation is easily solved either by numerical

or analytical means (see the following sections for details).
As a demonstrative example, Fig. 1 shows the evolution
of the wave function ψ0 with the 1D initial data

ψ ðiniÞ
0 ðqÞ ¼ exp ð−iϕðiniÞ

v =ℏÞ, with ϕðiniÞ
v ¼ − cos q. The

graph uses the domain coloring technique to assign a
unique color to each point of the complex plane (cf. [29]),
so that the amplitude of ψ0 is mapped to the brightness and
the phase to the color hue for each point in the space-time
plane ðx; aÞ.
From Fig. 1 it becomes evident that, from the time

of shell-crossing asc onwards, interference patterns arise.
These patterns can be understood from a combined
perspective based on fluid dynamics and wave mechanics:
waves resemble fluid particles, and when individual fluid
trajectories cross, the waves create interference patterns.
The crossing of particle trajectories implies the transition
from single to multistream regime. In cosmological fluid
dynamics, this instance is often denoted with shell-crossing
with the appearance of infinite densities [30–32]. In the
wave-function approach, by contrast, infinite densities are
naturally regularized by a nonzero ℏ which acts as a
softening scale. The particular semiclassical diffraction
pattern emerging here from a classical caustic (called a
“fold” or “cusp”) is also known from wave optics, in
particular in the framework of catastrophe optics [33].
Furthermore, Fig. 1 displays the dispersion of the out-

ward propagating caustics, emanating around a ¼ asc and
x ¼ 0. This smearing effect is expected from the quantum

a-time
-

x-
sp

ac
e

a=aSC

0

FIG. 1. Time evolution of the wave function ψ0ðx; aÞ with 1D

initial data ψ ðiniÞ
0 ðqÞ ¼ expfði=ℏÞ cos qg, with ℏ ¼ 0.01, and

evolved using a grid of 1024 cells. Using domain coloring,
the figure shows both the amplitude of the wave function
(corresponding to the square root of the density) in terms of
the brightness as 0.5jψ j, as well as the phase in terms of the color
hue. Lines of constant color thus correspond to trajectories of
constant phase. For times a ≥ asc, an interference pattern arises as
a result of multistreaming.

1It appears that the work of [19] was inspired by the
Schrödinger-Poisson description of [22], however, as we explain
in the Appendix B, the two approaches are formally not
equivalent.
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dispersion relation, and leads to an uncertainty in the space
location and time of shell-crossing for ℏ > 0.
In Fig. 2 we show the density and velocity associated with

the free wave function (3), and compare the results against
the classical ZA. We make use of the same 1D initial data
and ℏ-values as before. From the time-evolution of the wave
function, written as ψ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ δ
p

expð−iϕv=ℏÞ, we extract
the normalized density 1þ δ, the velocity v ¼ −∇ϕv and
phase ϕv. Before shell-crossing (a ¼ asc=2), the wave
approach agrees well with the ZA, while at the time of
(classical) shell-crossing, when the density in the ZA
becomes infinite, the wave-density remains finite thanks
to the taming scale ℏ. After shell-crossing (a ¼ 2asc), the
ZA leads to the known overshooting in the multistream
regime—which is most clearly seen in the velocity plot—
while the wave approach leads to interference patterns. Since
the semiclassical method relies on a finite phase-space
resolution associated with the small parameter ℏ, the density
and velocity associated with the wave function should be
interpreted in a coarse-grained sense, which washes out
small-scale oscillations; see Sec. V for further details.

B. Propagators with an effective potential

Beyond the ZA, which is the exact solution of the
one-dimensional collapse problem before shell-crossing,

particles will not move along straight trajectories but
will be influenced by gravitational tidal effects. To transmit
such tidal interactions, an effective (gravitational) potential
should be included in the Hamiltonian operator. Con-
sequently, the associated propagator Kðx; q; aÞ and wave
function ψðx; aÞ satisfy respectively the following
Schrödinger equations (a > 0)

iℏ∂aK ¼ ĤK; iℏ∂aψ ¼ Ĥψ ; ð5Þ

with the Hamiltonian operator

Ĥ ≡ −
ℏ2

2
∇2
x þ Veffðx; aÞ; ð6Þ

where Veff can be considered as an external potential. An
explicit expression for the effective potential is given in
Eq. (8). We remark that while this formulation indeed can
capture both the effects from going beyond the ZA and
beyond shell-crossing, in the present paper we focus on the
dynamics before (and at) shell-crossing. For a discussion of
the relation of our semiclassical method to other quantum-
inspired formalisms relying on a Schrödinger equation we
refer to Appendix B.

FIG. 2. Time-evolution of the density (upper row panels), velocity (middle row) as well as the phase of the wave function (lower row)
for the plane-wave collapse, evolved using the free propagator (solid blue lines) with ℏ ¼ 0.02 on a grid of 1024 cells, and the
Zel’dovich approximation (dashed orange lines). Results are shown at three different times: well before shell-crossing at a ¼ asc=2, at
shell-crossing a ¼ asc, and well after shell-crossing at a ¼ 2asc. For the Zel’dovich case, we show after shell-crossing both the mean
velocity (dashed line), computed from the first moment of the distribution function, as well as the full phase-space curve (dotted line).
These two would be identical up to the instant of shell-crossing.
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C. Strategy for solving the propagator equation

The aim of this paper is to investigate perturbative
solutions for the Schrödinger equation (5). For this, we
discuss the following aspects of our propagator formalism
in the context of perturbative schemes.
(1) As an external potential for the Hamiltonian operator

Ĥ in Eq. (6), we employ an effective potential that is
determined by using standard perturbative tech-
niques for the classical fluid equations, see Sec. III.

(2) As a benchmark for our perturbative results, we will
use LPTand the Cauchy invariants as diagnostic tool
for detecting spurious effects in perturbative trunca-
tions, which we introduce in Sec. IV.

(3) We show how quantities constructed from the wave
function are related to the classical fluid variables,
by employing classical limits; see Sec. V.

(4) Finally, in Sec. VI, we provide a perturbative ex-
pansion for the propagator, solve the problem up to
the next-to-leading order (NLO), and determine the
associated fluid variables in the classical limit.

III. THE COSMOLOGICAL FLUID EQUATIONS
AND THE EFFECTIVE POTENTIAL

In this section, we relate the external potential in the
Schrödinger equation (5) to an effective potential within the
cosmological fluid equations. We show that, in the fluid
description, this effective potential is a combination of the
gravitational potential and a term due to the overall ex-
pansion of the Universe.
On sufficiently large scales and before shell-crossing, dark

matter can be treated as a perfect fluid described in terms of a
single-valued velocity and density. The corresponding equa-
tions are usually formulated in comoving coordinates
x ¼ r=a, where r is the physical space coordinate and a
the cosmic scale factor. For convenience, we decompose the
fluid density ρðx; aÞ into a background part ρ̄ðaÞ and a
density contrast δ, which are related to each other via
δ ¼ ðρ − ρ̄Þ=ρ̄. Furthermore, we make use of a peculiar
velocity v ¼ dx=da which is related to the total velocity via
U ¼ HrþHa2v, where H is the Hubble parameter. In the
present work, we restrict our analysis to a spatially flat
universe solely filled with cold dark matter, the so-called
Einstein–de Sitter (EdS) universe. A generalization to a
ΛCDM Universe (and beyond) is however straightforward.
For the case of a potential velocity v≡ −∇ϕv, the fluid

equations in an Eulerian coordinate system consist of the
Bernoulli, continuity and Poisson equation, which are (see
e.g., [13])

∂aϕv −
1

2
j∇ϕvj2 ¼ Veff ; ð7aÞ

∂aδ − ∇ · ½ð1þ δÞ∇ϕv� ¼ 0; ð7bÞ

∇2φg ¼
δ

a
; ð7cÞ

where φg is the gravitational potential, and we have defined
the effective potential

Veff ≡ 3

2a
ðφg − ϕvÞ; ð8Þ

which is a combined potential that encapsulates the effects
from the cosmological potential and the Hubble friction.
Formally linearizing the fluid variables around its back-

ground and evaluating the linearized fluid equations at
arbitrary early times a → 0, it is found that analytic
solutions at a ¼ 0 exist only provided one makes use of
the following boundary conditions

δðiniÞ ¼ 0; φðiniÞ
g ¼ ϕðiniÞ

v : ð9Þ

These boundary conditions select the growing-mode sol-
utions, and are in accordance with our requirement of a
potential velocity.
Equipped with these boundary conditions, it is straight-

forward to investigate the standard perturbation theory
(SPT) for the fluid equations (7). The following power
series Ansätze lead to simple recursion relations that
consistently solve the fluid equations order by order,

δðx; aÞ ¼
X∞
n¼1

δðnÞðxÞan; ϕvðx; aÞ ¼
X∞
n¼1

ϕðnÞ
v ðxÞan−1

Veffðx; aÞ ¼
X∞
n¼1

VðnÞ
eff ðxÞan−2: ð10Þ

All-order results for the density and velocity potential are
well known (see e.g., [5]), from which one can easily
construct all-order perturbative results for the effective
potential. Explicitly, at first order we have simply

Vð1Þ
eff ¼ 0, whereas at second order we find

Vð2Þ
eff ¼

3

7
∇−2

h�
∇2φðiniÞ

g

�
2
−
�
∇i∇jφ

ðiniÞ
g

�
2
i
; ð11Þ

with the inverse Laplacian ∇−2, and implied summation
over dummy indices. For calculational details, including

explicit all-order expressions for VðnÞ
eff , see Appendix A.

Observe that Vð2Þ
eff is exactly zero for 1D initial conditions,

in which case φðiniÞ
g only depends on one spatial coordinate.

In the Lagrangian-coordinates formulation, this is just the
statement that the ZA is exact only in 1D; see the following

section. Beyond 1D, Vð2Þ
eff is generally nonzero and con-

stitutes the most important tidal correction to the leading
order, and thus should be included for realistic modeling of
the gravitational instability.
Before shell-crossing, one can relate the fluid picture to

the Schrödinger equation, by using the Madelung polar
form for the wave function ψ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ δ
p

expð−iϕv=ℏÞ in
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Eq. (5). This way, one reproduces the fluid-type equa-
tions (7), with a Bernoulli equation (7a) that receives a new
term ∼ℏ2 [34,35]. Solving these fluid-type equations
perturbatively with the Ansätze (10) reveals that Veff agrees
up to second order with the one obtained from the pure
fluid approach, see Appendix A. Thus, up to second order
in perturbation theory, which is our focus here, the effective
potential can be identically obtained from either of the two
approaches.
Equipped with an expression for the effective potential

appearing in the Schrödinger equation (5), we have the
ingredients to perturbatively compute solutions for the
propagator and hence the wave function. Before proceeding
with the perturbative treatment of the propagator in Sec. VI,
let us provide a motivation based on Lagrangian perturba-
tion theory in Sec. IV and discuss how our semiclassical
formalism can be used to infer classical observables
in Sec. V.

IV. LAGRANGIAN PERTURBATION THEORY
AND CAUCHY INVARIANTS

Perturbative solutions to the fluid equations can also be
obtained in Lagrangian coordinates, and these solutions
are determined within the framework of Lagrangian per-
turbation theory (LPT). Utilizing a Lagrangian-coordinates
approach has several advantages over the Eulerian
approach. From the theory side, there exists a mathematical
proof of time-analyticity only for the Lagrangian-coordi-
nates approach. LPT is therefore a convergent perturbation
theory for the fluid equations and can solve them in the
single-stream regime to arbitrary high accuracy [12,13].
From the numerical side, N-body simulations of cosmic

structure formation naturally initialize and evolve particles
by employing coordinates that comove with the fluid. In a
combined effort to close the gap between theory and
numerics, a Lagrangian-coordinates approach appears thus
to be most suitable.
We denote by q the Lagrangian coordinates, and partial

derivatives with respect to the component qi on a given
function f as f;i (or by ∇L

i f). As before, summation over
repeated indices is implied. Let

q ↦ xðq; aÞ ¼ qþ ξðq; aÞ ð12Þ

be the Lagrangian map from initial (a ¼ 0) position q to
final Eulerian position x at time a, where ξðq; aÞ is the
Lagrangian displacement field. The map is defined in such
a way that its Lagrangian (convective) a-time derivative ∂L

a ,
henceforth denoted by an overdot, returns the Lagrangian
representation of the velocity, i.e.,

vðxðq; aÞ; aÞ ¼ ∂L
axðq; aÞ≡ _xðq; aÞ: ð13Þ

At initial time, the velocity is vðiniÞðqÞ ¼ vðxðq; 0Þ; 0Þ
which agrees with the initial Eulerian velocity. Until the

first shell-crossing, mass conservation ρ̄½1þ δðxÞ�d3x ¼
ρ̄d3q can be exactly integrated to give

δ ¼ 1=J − 1; ð14Þ

where J ¼ det xi;j is the determinant of the Jacobian matrix
xi;j. Momentum conservation for the Lagrangian map can
be conveniently written as (EdS)

ẍðq; aÞ þ 3

2a
_xðq; aÞ ¼ −

3

2a
∇xφgðxðq; aÞ; aÞ; ð15aÞ

which, after taking an Eulerian divergence and using the
above definitions, turns into a scalar equation for the
Lagrangian displacement field (see e.g., [15]).
The considered flow is potential in Eulerian coordinates,

which implies that the Eulerian curl of the Eulerian velocity
vanishes, i.e., ∇x × v ¼ 0. By employing the Lagrangian
map, the statement of zero vorticity translates in
Lagrangian coordinates to the so-called Cauchy invariants,
with components (i ¼ 1, 2, 3) [12,36]

εijkxl;j _xl;k ¼ 0; ð15bÞ

where εijk is the Levi-Civita symbol. See [37] for a simple
derivation of the Cauchy invariants which however holds
only for zero vorticity; see [38] where initial vorticity is
included. We note that in 1D, the Cauchy invariants are
trivially satisfied, since in 1D there is no vorticity.
Equations (15) constitute a closed set of Lagrangian

evolution equations, with all the dynamical information
being encoded in the displacement field ξ (from which
one can recover the density and velocity). To obtain
perturbative solutions, one then writes for the displacement
components

ξiðq; aÞ ¼
X∞
n¼1

ξðnÞi ðqÞan; ð16Þ

where the time-Taylor coefficients are given by simple all-
order recursion relations [12]. For example, the first
coefficients are

ξð1Þi ¼ −∇L
i φ

ðiniÞ
g ðqÞ≡ ξZAi ðq; aÞ=a; ð17aÞ

ξð2Þi ¼ −
3

7
∇−2

L ∇L
i μ2 ≡ ξ2LPTi ðq; aÞ=a2; ð17bÞ

with the kernel

μ2ðqÞ ¼
1

2

h�
∇2

Lφ
ðiniÞ
g

�
2
−
�
∇L

i ∇L
jφ

ðiniÞ
g

�
2
i
: ð18Þ

Observe the structural similarity of μ2 and ∇2Vð2Þ
eff

[Eq. (11)]. At second order, the only difference between
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these two expressions is their Lagrangian vs. Eulerian
coordinate dependences and derivatives.
The expressions ξZAi ðq; aÞ and ξ2LPTi ðq; aÞ are the well-

known Zel’dovich [7,10] and 2LPT [39,40] approxima-
tions, respectively. The ZA, which is exact in one
dimension, states that fluid elements move along straight
trajectories with a velocity set by the gradient of the initial

gravitational potential φðiniÞ
g . The 2LPT extension includes

gravitational tidal effects, thereby taking into account the
fact that gravity is nonlocal (beyond 1D).
Observe that both the Zel’dovich and 2LPT solutions

give a displacement that is a gradient field and hence
possesses a scalar potential. This property ceases to be true
beyond second order, where one needs to include trans-
verse modes, which is precisely the stage where one is
forced to evaluate the Cauchy invariants (15b).

A. Spurious vorticity in perturbation theory

While the Cauchy invariants are nonperturbative expres-
sions, in LPT they translate into perturbative relations.
At fixed order n in LPT, we define the corresponding
“truncated” Cauchy invariants by

C½n�i ≔ εijkðδlj þ ξ½n�l;jÞ_ξ½n�l;k; ð19Þ

where ξ½n�l ðq; aÞ ≔ P
n
i¼1 ξ

ðiÞ
l ðqÞai and similarly for _ξ½n�l .

Even for vanishing vorticity, Eqs. (19) are generically
nonzero, as a consequence of the said truncation.

Indeed, only at first order it is easily seen that C½1�i is still
zero, but at the next truncated order we have

C½2�i ¼ εijkðδlj þ ξZAl;j þ ξ2LPTl;j Þ½_ξZAl;k þ _ξ2LPTl;k �

¼ a2

2
εijkφg;ljV

ð2Þ
eff;lk þOða3Þ; ð20Þ

where for later convenience we have expressed the

Lagrangian kernel μ2ðqÞ in terms of Vð2Þ
eff ðqÞ. This shows

that the truncated Cauchy invariants are evidently nonzero
at Oða2Þ, and hence consistent with the Cauchy invariants
in a perturbative sense. However, those higher-order terms
can excite unwanted spurious vorticity effects that are
inconvenient when setting up initial conditions for N-body
simulations. Such unwanted spurious effects could be
artificially amplified when a 2LPT-scheme with insufficient
time-stepping is employed to generate fast mock simula-
tions. Furthermore, from theoretical grounds it is expected
that such spurious effects could be enhanced at late times.
Indeed, the convergence radius of LPT, which should set
the maximal step-size for such algorithms, depends on the
inverse of the norm of the velocity gradients [12,13]. As a
consequence, at late times, when velocity gradients become
large, the convergence radius will naturally shrink. If a
fixed time step is used in these algorithms that is larger than

the radius of convergence, then the error in the velocity will
grow as ∼a2. In the central panel of Fig. 6 we provide
numerical evidence of spurious vorticity generation by
using 2LPT.
In the subsequent Sec. V, we employ classical limits to

relate the propagators and wave functions introduced in
Sec. II to the Lagrangian fluid variables discussed here. As
we will demonstrate explicitly in Sec. VI, our propagator
formalism avoids leading-order spurious vorticity effects.
This is a consequence of the underlying Hamiltonian
structure of the Schrödinger equation (5), which ensures
the conservation of certain integral invariants associated
with vorticity, which we review next.

B. Invariants associated with vorticity

Even for an initially potential flow, in two or higher
dimensions, an effective vorticity will be generated beyond
shell-crossing. In classical collisionless dynamics, this
effective vorticity arises through an averaging of the density
weighted multistream velocities. The fact that vorticity can
only arise due to multistream averaging is owed to the
Helmholtz theorem for the conservation of vorticity flux
(which can be linked to the more global Poincaré invariant).
This theorem is closely related to the circulation theorem
which is usually attributed to Lord Kelvin. Using the
Cauchy invariants and Stoke’s theorem, we obtain the
(combined) Kelvin-Helmholtz theorem that states that [41]

Γ≡
I
CðaÞ

v · dx ¼
Z
SðiniÞ

ð∇L × vðiniÞÞ · dSðiniÞ ð21Þ

is an integral invariant, which is restricted to closed integral
curves CðaÞ in configuration space that follow the inviscid
flow. Those curves describe the boundary of a surface,
which initially is SðiniÞ and has a corresponding oriented
surface element dSðiniÞ. The right-hand side (RHS) of (21)
is evaluated at initial time, which highlights that the integral
invariant is a constant of motion. In the present case where
there is no initial vorticity, Γ ¼ 0.
The Cauchy invariants are essentially a local form of this

integral invariant. The conservation of those invariants
associated with vorticity, especially beyond shell-crossing,
can also be understood from a fluid perspective. For an
inviscid fluid that is at some earlier time in the single-
stream regime and irrotational, the evolution equation for
the displacement field is sourced by a gradient of the
gravitational potential, which thus implies that there is
no source of vorticity [see Eq. (15a)]. Now, after shell-
crossing, when transiting from a single-fluid to a multifluid
description, the evolution of each fluid stream is still
governed by the same fluidlike evolution equation, with
the only addition that the individual streams are now
coupled gravitationally to the other streams through a
common gravitational potential. However, crucially, the
evolution equation for a given fluid stream is still sourced
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by a gradient of a gravitational potential. Thus, even in the
multifluid regime, there is no source of vorticity, and each
fluid stream remains potential at all times. However, as
outlined above, there is generally an effective vorticity that
results from averaging over the multiple streams.

V. RELATING THE PROPAGATOR TO
FLUID OBSERVABLES

Since our goal is to use the propagator formalism to
obtain improved perturbative solutions for the fluid equa-
tions, we need a dictionary for relating the propagator and
wave function to the classical fluid variables. This is most
conveniently done by relying on a phase-space formulation
of quantum mechanics, which translates propagator sol-
utions for nonzero ℏ to observables and is also ideally
suited to determine the classical limits (ℏ → 0).
As we have introduced in Sec. II, the propagator evolves

the wave function from its initial to the final state

ψðx; aÞ ¼
Z

d3qKðx; q; aÞψ ðiniÞðqÞ; ð22Þ

with the initial condition ψðx; a ¼ 0Þ ¼ ψ ðiniÞðqÞ. We
will consider wave functions constructed from propagators
that satisfy the Schrödinger equation (5). To establish a
connection between the wave function (22) and the
classical fluid variables, we employ a method from quan-
tum mechanics for studying quantum corrections to
classical statistical mechanics—which is a closely related
problem. Following those ideas, we construct a phase-space
distribution function fðx; pÞ from the wave function ψðxÞ
using the Wigner function [42],2 which depends explicitly
on a phase-space coarse-graining scale ℏ,

fWðx;pÞ¼
Z

d3x0

ð2πÞ3exp
�
−ip ·x0

a3=2

�
ψ

	
xþℏ

2
x0


ψ̄

	
x−

ℏ
2
x0


;

ð23Þ

where both ψ and fW are functions of time a, and ψ̄
indicates the complex conjugated wave function. For
convenience we have absorbed the particle mass m in
the parameter ℏ, and have included the factor a−3=2 in front
of the momentum p. This factor stems from the fact that our
wave function is defined in terms of a peculiar velocity that

is related to the conjugate momentum via a3=2 in EdS; see
Appendix B for details.
The way the Wigner distribution fWðx; pÞ is constructed

guarantees that all phase-space information is encoded in
the wave function. It is built in such a way, that the
normalized density ϱ≡ 1þ δ and the mean peculiar
momentum j ¼ ð1þ δÞv are obtained as the first two
kinetic moments3

ϱðxÞ ¼
Z

d3pfWðx; pÞ ¼ jψ j2; ð24Þ

jðxÞ ¼
Z

d3p
p

a3=2
fWðx; pÞ ¼

iℏ
2
½ψ∇ψ̄ − ψ̄∇ψ �: ð25Þ

Note that the velocity can be written as a gradient of
the phase, vðxÞ ¼ −∇ϕvðxÞ, of the wave function ψ ¼ffiffiffiffiffiffiffiffiffiffiffi
1þ δ

p
expð−iϕv=ℏÞ, if and only if the amplitude and

phase are sufficiently smooth. Shell-crossing however
causes strongly oscillatory behavior, see Fig. 2, which also
generates vorticity as we shall discuss later in Secs. V B and
VII C. This vorticity can be nonetheless extracted from the
velocity field v ¼ j=ρ using the just introduced kinetic
moments.
While in principle we could work with explicit expres-

sions for density and momentum, the Wigner function
provides a concise and elegant way of simultaneously
encoding density and velocity information, which allows us
to infer the Lagrangian displacement and corresponding
velocity from its classical limit.

A. Fluid variables from the classical limit

Taking the classical limit ℏ → 0, after having obtained
the solutions for the Wigner distribution (23) for nonzero ℏ,
we obtain the phase-space distribution of a perfect fluid

lim
ℏ→0

fWðx; pÞ ¼ ϱðxÞδð3ÞD

	
p

a3=2
− vðxÞ



≔ fflðx; pÞ; ð26Þ

with a velocity vðxÞ that is single-valued before shell-
crossing. Note that the wave-function ψ itself depends
on ℏ, as illustrated by the split in amplitude and phase,
ψ ¼ ffiffiffi

ϱ
p

expð−iϕv=ℏÞ. Hence, the limit ℏ → 0 needs to be
taken with care and gives a nonzero peculiar velocity
despite the ℏ prefactor in Eq. (25). Using mass conservation
(14), we can formulate the distribution function of the
perfect fluid in Lagrangian coordinates

fflðx;pÞ¼
Z

d3qδð3ÞD ½x−q−ξðqÞ�δð3ÞD

�
p

a3=2
−vLðqÞ

�
; ð27Þ

2We note that the Wigner distribution function is technically
not a proper phase-space distribution when resolved on phase-
space scales smaller than ℏ, since it can be negative and thus is a
quasiprobability distribution that escapes the simple interpreta-
tion as a probability density. Hence, one should interpret Eq. (23)
in a coarse-grained sense avoiding violation of uncertainty
relations, which can be formalized by using the Husimi distri-
bution [43]. Since we will be interested in the classical limit, this
coarse-graining scale will ultimately become superfluous.

3Within the single particle probabilistic Copenhagen interpre-
tation of quantum mechanics, ρ is usually called the “probability
density” and j the (conserved) “probability flux.”
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where ξðqÞ is the Lagrangian displacement (12) and
vLðqÞ ¼ vðxðq; aÞ; aÞ is the Lagrangian representation of
the velocity evaluated at the Eulerian position xðq; aÞ.
Hence, by performing the classical limit of the Wigner
phase-space distribution (23) for a given wave function,
we can straightforwardly read off the corresponding
Lagrangian displacement and velocity.
Let us demonstrate the outlined technique for

obtaining the fluid variables, by using the free theory as
an instructive example. The corresponding wave function
ψ0 ¼

R
d3qK0ðx; q; aÞψ ðiniÞðqÞ, obtained from the free

theory propagator K0 from Eq. (2), reads

ψ0ðx;aÞ¼
Z

d3q

ð2πiℏaÞ32exp
�
iðx−qÞ2
2ℏa

−
i
ℏ
φðiniÞ
g ðqÞ

�
; ð28Þ

where the part exp½−iφðiniÞ
g ðqÞ=ℏ�≡ ψ ðiniÞðqÞ reflects the

initial condition for the wave function, in accordance with
the used boundary conditions (9). Plugging ψ0 into the
Wigner distribution (23), we have three integrals over x0, q
and q0. The latter two integrals can be simplified with a
change of variables, using center of mass qþ ¼ ðqþ q0Þ=2
and difference coordinates q− ¼ q − q0. We obtain

fW;0 ¼
Z

d3x0

ð2πÞ3
Z

d3qþd3q−
ð2πℏaÞ3 exp

�
ix0 ·

	
−p
a3=2

þ x − qþ
a


�

× exp
�
−i
ℏa

½q− · ðx − qþÞ þ aδφðqþ; q−Þ�
�
; ð29Þ

where we have defined

δφðqþ; q−Þ ¼ φðiniÞ
g

	
qþ þ q−

2



− φðiniÞ

g

	
qþ −

q−
2



: ð30Þ

Since we are considering the classical limit ℏ → 0, the
complex exponent in (29) will vary very quickly for large
q− and cancel out their contribution. Thus, in the classical
limit the most dominant term in the integrand will come
from terms for which q− are small, thereby justifying to
approximate δφ in a leading-order Taylor expansion around
small q−,

δφ ¼ q− · ∇φðiniÞ
g ðqþÞ þOðq3−Þ: ð31Þ

In Appendix C we show that this classical limit is closely
related to the so-called stationary phase approximation.
Returning to the integrand, performing the integrations over
x0 and q−, we then obtain

lim
ℏ→0

fW;0 ¼
Z

d3qδð3ÞD

h
x − qþ a∇φðiniÞ

g ðqÞ
i

× δð3ÞD

�
p

a3=2
þ ∇φðiniÞ

g ðqÞ
�
; ð32Þ

where we have renamed the integration variable according
to qþ → q for convenience. Comparing this to the fluid
distribution function in Lagrangian coordinates, Eq. (27),
we can read off the displacement and velocity

ξ0ðqÞ ¼ −a∇φðiniÞ
g ðqÞ; v0ðqÞ ¼ −∇φðiniÞ

g ðqÞ: ð33Þ

These solutions agree with those obtained from the ZA
[cf. Eq. (17a)], and thus, in the classical limit and to leading
order in perturbation theory, we reproduce results from
classical fluid dynamics. [See Eq. (46) for the classical limit
at second order of our propagator method.]
Equipped with a method to relate semiclassical propa-

gators and wave functions to fluid observables, we will
proceed to perturbatively solve the Schrödinger equations
for the propagator and translate our solutions to the
Lagrangian displacement and velocity field in Sec. VI.

B. The appearance of vorticity after shell-crossing

Under certain circumstances, the Kelvin-Helmholtz
invariant Γ, given in Eq. (21), also persists for quantum
and semiclassical systems. In particular, for sufficiently
smooth initial conditions and by using a Madelung trans-
formation, in Ref. [44] it has been shown that Γ is also an
invariant under evolution with a quantum Hamiltonian (i.e.,
under the Schrödinger equation), if one simply replaces v
with j=ρ and ensures that the integral contour goes only
through regions where the velocity is well defined in the
course of the evolution.
In quantum systems, vorticity is quantized [45,46]. Since

the wave function is always single-valued, quantized
vorticity can only arise from topological defects where
the phase factor, ϕv=ℏ, undergoes a localized phase jump of
integer multiples of 2π. Since Γ has to vanish for initially
irrotational systems, it is topologically required that vor-
tices can only be produced in pairs [47], called rotons, i.e.,

1

2πℏ

I
CðaÞ

∇ϕv · dx ¼ nþ − n− ¼ 0; n� ∈ N; ð34Þ

and thus, the sum of negative n− and positive nþ topo-
logical charges is conserved.
Later in Sec. VII we show that at times shortly after shell-

crossing, where vorticity is generated, we indeed observe
the appearance of such rotons.

VI. PERTURBATIVE TREATMENT
OF THE PROPAGATOR

In the following, we will use SPT results for Veff, as
discussed in Sec. III as an input to the propagator
equation (5) and solve it in a perturbative fashion. From
this perturbative solution, we will extract the Lagrangian
displacement and velocity using the method described
in Sec. V.
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Since we already know the solution in the absence of the
effective potential, we split the nonlinear propagator into
the free propagator and an exponential term

Kðq; x; aÞ ¼ K0ðq; x; aÞ exp
	
i
ℏ
Stidðq; x; aÞ



: ð35Þ

When combining the exponentials, one recognizes the total
action S ¼ S0 þ Stid as a sum of the free particle contri-
bution S0 from Eq. (1) and the tidal interaction terms
encoded in Stid. Plugging the Ansatz (35) for the total
propagator K into the evolution Eq. (5), and using Eq. (4a),
one obtains a differential equation for the interaction term
Stid ¼ Stidðq; x; aÞ

D̂aðq; xÞStid −
iℏ
2
∇2
xStid þ

ð∇xStidÞ2
2

¼ −Veff ; ð36Þ

where D̂aðq; xÞ≡ ∂a þ ð1=aÞ½x − q� · ∇x. The source term
is given in terms of a time-Taylor series for the effective

potential Veffðx; aÞ≡P∞
n¼2 V

ðnÞ
eff ðxÞan−2, and for the inter-

action part of the action one can impose a PT Ansatz

Stidðq; x; aÞ ¼
X∞
n¼1

Snðq; x; aÞ; ð37Þ

where Sn is ideally OðanÞ. In the following section, we
explicitly solve for the NLO part S1, which is the leading-
order contribution to Stid.

A. Next-to-leading order propagator

At next-to-leading order (NLO), the effective potential

Vð2Þ
eff ðxÞ is time-independent and given by Eq. (11). Hence,

the NLO contribution to Stid, called S1, is expected to be of
order a. Since the derivative operator, D̂a, decreases the
power of a by one, the other two terms on the left-hand side
of Eq. (36) are of higher order and do not contribute to S1.
The evolution equation (36) thus simplifies to

D̂aðq; xÞS1ðq; x; aÞ ¼ −Vð2Þ
eff ðxÞ: ð38Þ

The solution of this equation is given by

S1ðq; x; aÞ ¼ −
Z

a

0

da0Vð2Þ
eff

	
qþ a0

a
½x − q�




¼ −a
Z

1

0

dτVð2Þ
eff ðqþ τ½x − q�Þ; ð39Þ

which is an integral over the time-independent effective
potential along a straight line connecting the initial position
q and final position x. Since it is impractical to evaluate this
integral at every point, let us make further approximations.
Preferably, we want to preserve the symmetry between

initial and final positions x ↔ q when exchanging
a ↔ −a, which implies a time-reversible propagation.
To this end, we use a two-endpoint approximation

S1ðq; x; aÞ ¼ −
a
2

h
Vð2Þ
eff ðqÞ þ Vð2Þ

eff ðxÞ
i
; ð40Þ

in accordance with the employed PT Ansatz (37). This
approximation corresponds to a (numerical) kick-drift-kick

scheme with Oða3Þ accuracy, in which the potential Vð2Þ
eff is

evaluated at the initial position q, the particle propagated to
its final position x and then the potential evaluated there.4

Now, we can combine the solution S1 from Eq. (40) with
the free kernel K0 from Eq. (2) into the NLO kernel KNLO
from Eq. (35) and hence the NLO wave function using
Eq. (22) to get

ψ1ðx; aÞ ¼
Z

d3qKNLOðx; q;aÞψ ðiniÞðqÞ; ð41aÞ

with the NLO propagator

KNLOðx; q; aÞ ¼ ð2πiℏaÞ−3=2 exp
�
i
ℏ
gðx; q; aÞ

�
ð41bÞ

and

gðx; q; aÞ ¼ ðx − qÞ2
2a

−
a
2
½Vð2Þ

eff ðqÞ þ Vð2Þ
eff ðxÞ�; ð41cÞ

where Vð2Þ
eff is given by Eq. (11). The propagator has

the structure of a numerical kick-drift-kick scheme, which
will simplify the numerical implementation later on.
Equations (41) constitute one of the main technical results
of this paper. We note that alternatively to the above
derivation, one could also solve the Schrödinger equa-
tion (5) in operator notation, as shown in Appendix D.

B. Next-to-leading order observables
in the classical limit

To extract the Lagrangian displacement and velocity
from the NLO wave function, we proceed along the lines as
described in Sec. V. In analogy to the free wave function
(29), we get for fW;1 ¼ fW;1ðx; p; aÞ

4Instead of employing an approximation that amounts to a
kick-drift-kick scheme, we could have also used a midpoint
approximation that would correspond to a drift-kick-drift scheme,
where the particle is first propagated from q to the midpoint
ðqþ xÞ=2, the potential evaluated there, and then the particle is
propagated from the midpoint to the endpoint x. In the present
case, we prefer the kick-drift-kick procedure, because it updates
the effective potential only once.

UHLEMANN, RAMPF, GOSENCA, and HAHN PHYS. REV. D 99, 083524 (2019)

083524-10



fW;1 ¼
Z

d3x0

ð2πÞ3
Z

d3qþd3q−
ð2πℏaÞ3 exp

�
ix0 ·

	
−p
a3=2

þ x − qþ
a


�

× exp
�
−i
ℏa

½q− · ðx − qþÞ þ aδφðqþ; q−Þ�
�

× exp

�
−ia
2ℏ

½δV2ðqþ; q−Þ þ δV2ðx;ℏx0Þ�
�
; ð42Þ

where, in addition to δφ from Eq. (30), we have defined

δV2ðqþ; q−Þ ¼ Vð2Þ
eff

	
qþ þ q−

2



− Vð2Þ

eff

	
qþ −

q−
2



: ð43Þ

As argued before, in the classical limit, the dominant
contributions to the integral come from the terms (43)
for which q− is small. Thus we can write

δV2ðqþ; q−Þ ¼ q− · ∇Vð2Þ
eff ðqþÞ þOðq3−Þ: ð44Þ

Using this, the integrations over x0 and q− are easily
performed. After some straightforward calculations, we
obtain

lim
ℏ→0

fW;1 ¼
Z

d3qδð3ÞD ½x − q − ξNLOðq; aÞ�

× δð3ÞD

�
p

a3=2
− vL;NLOðq; aÞ

�
; ð45Þ

with the NLO displacement and (Lagrangian) velocity

ξNLOi ¼ −aφðiniÞ
g;i −

a2

2
Vð2Þ
eff;i; ð46aÞ

vL;NLOi ¼ −φðiniÞ
g;i − aVð2Þ

eff;i þ
a2

2
φðiniÞ
g;m Vð2Þ

eff;mi: ð46bÞ

To arrive at the final expression for the velocity, we

expanded Vð2Þ
eff;iðxÞ ≃ Vð2Þ

eff;iðqÞ − aφ;lðqÞVð2Þ
eff;ilðqÞ to the

leading order in the displacement, in accordance with
the expansion scheme employed for the classical limit.
Evidently, the NLO displacement (46a) agrees with its
classical counterpart [Eq. (17)]. The NLO velocity, by
contrast, differs from the second-order velocity in LPT

which is vL;LPTi ≃ −φðiniÞ
g;i − aVð2Þ

eff;i, since the NLO velocity
includes an additional term that within the LPT expansion
would be considered as higher order.
We now prove that this additional term in the NLO

velocity is crucial for maintaining the Hamiltonian struc-
ture of the system, and thereby not to excite spurious
vorticity. We do this by using the Cauchy invariants as a
diagnostic tool which we have introduced in Eq. (19). For
this we need the Lagrangian map and its time derivative
from our NLO formalism, which are easily obtained from
the above results; they read respectively

xNLOl;j ¼ δlj − aφðiniÞ
g;lj −

a2

2
Vð2Þ
eff;lj; ð47aÞ

_xNLOl;k ¼ −φðiniÞ
g;lk − aVð2Þ

eff;lk þ
a2

2
ðφðiniÞ

g;m Vð2Þ
eff;lmÞ;k: ð47bÞ

Plugging these expressions into the Cauchy invariants
formula, we obtain

CNLOi ¼ εijkxNLOl;j _xNLOl;k ¼ 0þOða3Þ; ð48Þ

and hence there is no vorticity generated at order a2, in
contrast to the 2LPT case, see Eq. (20). For a numerical
analysis related to vorticity, see Sec. VII C.
In summary, we have thus established a direct corre-

spondence between our semiclassical propagator method
and classical fluid mechanics. In particular, the NLO
displacement field coincides exactly with its LPT counter-
part up to second order, whereas the NLO velocity receives
naturally an additional term that is missing in LPT at this
fixed perturbation order. However, as we claim, this addi-
tional term is crucial to respect the underlying Hamiltonian
structure; as outlined in Sec. IVA, ignoring this term could
lead to the artificial generation of vorticity.

VII. RESULTS BEYOND 1D COLLAPSE

In the field of cosmological fluid dynamics, it is known
that the effective gravitational potential, here dubbed Veff ,
is exactly zero if the initial conditions depend only on one
space variable. As a consequence, in 1D, the Zel’dovich
solution becomes exact in the single-stream regime.
Deviating from 1D, we have generically Veff ≠ 0, and,
as a result, the ZA performs rather poorly as gravitational
tidal effects become non-negligible. In particular, this
reflects in inaccurate predictions of the ZA for the shell-
crossing time that worsen successively when deviating
more and more from the 1D collapse [15–17]. Very similar
performance issues are expected for the propagator method.
Specifically, the free propagator (2) is only accurate in the
absence of tidal forces. Based on such considerations, we
have determined the NLO propagator (41b) in the presence
of a nonzero effective potential by using perturbation
theory.
In the following, we present numerical implementations

for quasi-one-dimensional (Sec. VII A), as well as two-
dimensional collapse problems (Sec. VII B), both with an
appropriate choice of tailored initial conditions (ICs). In
both cases, we provide a quantitative comparison between
the ZA and 2LPT predictions versus the results from the
free and NLO propagators. Numerical results for cosmo-
logical ICs will be investigated in a forthcoming paper.
Beyond 1D, the phenomenology of the flow is much

richer and symmetry principles of the dynamics, such as the
conservation of vorticity flux, become manifest. Therefore,
in Sec. VII C, we will analyze essential features of the
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vortical flow, which arise after shell-crossing and reflect the
conservation of certain invariants.

A. Quasi-one-dimensional collapse

For ICs that go beyond 1D, higher-order effects for both
the classical and propagator formalism become nonvanish-
ing. As outlined above, this is due to the fact that for
departures from 1D the effective potential Veff is generally
nonzero. For an initial potential that is (perturbatively)
close to 1D, the bulk part stemming from Veff is captured
accurately by 2LPT and the NLO propagator. This is so,
since the perturbation series converges very fast for such
so-called quasi-1D ICs [15,17]. For quasi-1D ICs, we thus
expect that the NLO propagator should deliver a very
accurate description of the collapse. To test the perfor-
mance of the NLO propagator compared to 2LPT, we
investigate quasi-1D ICs for the initial wave function

ψ ðiniÞðqÞ ¼ exp ð−iϕðiniÞ
v ðqÞ=ℏÞ, with the initial velocity

potential

ϕðiniÞ
v ðq1; q2Þ ¼ sin q1 þ ϵ sin q2; ð49Þ

where we have chosen ϵ ¼ 1=4. We show the resulting
density profiles shortly before shell-crossing in Fig. 3. In
the propagator case, we first evaluate the effective potential
at initial position in real space, propagate the particles
in Fourier space, and then reevaluate the potential at the
final real-space position. As mentioned above, this routine
corresponds to a symplectic kick-drift-kick scheme (see
also Appendix D). To obtain the realization for the
propagator, we have used a 5122 mesh to evaluate the
solution with ℏ ¼ 3 × 10−2, while in the classical cases, we
have used 2562 particles and evaluate the density field
using the tessellation method of [48] on a 5122 grid. We
also show the relative differences between the predictions
from LPT and the propagator method in the lower panels.
Examining first the density profile along the main collapse
direction x, one sees that all methods agree reasonably well
with one another. This is expected since the perturbation
along the perturbatively small second dimension is not
large so that the evolution is still close to being one-
dimensional, for which the free and ZA solutions are good
approximations. The relative differences between free and
ZA are at the accuracy level of our numerical experiments
here at ∼10−4, except at the location of future shell-
crossing, where quantum corrections lead to a very local-
ized large deviation at ≲10−1 which is a direct result of
the reduction of the peak density due to finite ℏ. The
differences between NLO and 2LPT, by contrast, are much
more prominent, especially along the direction of the
density ridge (right panel in Fig. 3). For both classical
and propagator methods, the peak densities at leading order
and next-to-leading order are significantly different. Apart
from these differences at x ¼ −π=2, the error in lower

density regions is in fact mainly due to the linear inter-
polation used in the sheet reconstruction from the
tessellation.

B. 2D collapse—the density field

For reasons explained above, it is expected that the
impact of Veff becomes more prominent when departing

FIG. 3. Density profiles for quasi-one-dimensional collapse
from the potential in Eq. (49) shortly before shell-crossing. The
top figure shows the profiles in the orthogonal direction through
the point of highest density on the ridge, while the lower figure
shows the density profiles along the ridge where shell-crossing
will happen shortly later. We show the profiles for the classical
results (dashed lines) and our propagator formalism (solid lines).
In the lower panels we show the relative differences between the
propagator and LPT densities (blue line: free/ZA; purple line:
NLO/2LPT). The bottom figure demonstrates that the peak
density along the (soon) shell-crossing ridge is regularized in
the propagator formalism due to the finite ℏ. We have verified that
mass conservation is satisfied to very high precision for all
realizations.
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greatly from 1D initial conditions. To demonstrate this we
use in the present section the 2D initial potential

ϕðiniÞ
v ðq1; q2Þ ¼ −2 cos ðq1 þ cos q2Þ; ð50Þ

which represents a (strongly) phased plane wave (cf. [49]).
In Fig. 4, we show the resulting two-dimensional density
field for the four approaches at a ¼ 1, i.e., well after shell-
crossing. For the Lagrangian perturbation theory results, we
have used 10242 fluid particles that have been evolved
under the ZA or 2LPT in a single time step. In order to
compute the multistream density field accurately, we have
projected the tessellated dark matter sheet using the
technique of [50] onto a uniform mesh of 10242. For the
propagator method, we have evolved the free and NLO
propagator directly on a 10242 grid with ℏ ¼ 5 × 10−3.
Overall the results show excellent agreement between the
ZA and the free propagator, as well as between 2LPT and
NLO in terms of global shape of the caustics in the various
multistream regions. Naturally, after shell-crossing, the
propagator solutions show rapid oscillations that encode
the multistream behavior. This is related to the appearance
of higher-dimensional caustics that translate into more
complex diffraction patterns than in the one-dimensional
case (cf. [33]). When interpreted in a coarse-grained sense,
the rapid oscillations disappear from the physical density
and velocity, but encode the properties beyond the perfect
pressureless fluid, in particular the vorticity that is induced
by shell-crossing.

C. 2D collapse—the vorticity

As a final aspect of this paper, we investigate how
vorticity arises in the classical and semiclassical picture,
respectively. For our propagator method, we determine the
vorticity w≡ ∇ × v in Fourier space by first obtaining an

expression for the velocity v ¼ j=ð1þ δÞ, where the RHS is
evaluated by using Eqs. (24)–(25). We thus calculate

ω ¼ F−1
�
−ik × F

�
j

1þ δ

��
; ð51Þ

where Ff·g is a fast Fourier transform (FFT). Since the
vortices are pointlike, the inverse FFT produces heavy
ringing, so that we have to additionally filter the vorticity
fields. In order to avoid convolving transversal and longi-
tudinal velocity components, we multiply with a Gaussian
filter exp ½−k2=k2s �, where ks is a filter scale, directly in
Fourier space when also taking the cross product with k.
For the LPT prediction of vorticity generation, by contrast,
we use the method of [48] to explicitly carry out the
multistream average.
In Fig. 5, we show the wave function using domain

coloring in the left panel, along with the semiclassical
vorticity for two different smoothing scales ks (1=4 and
1=16 of the Nyquist wave number) in the two middle
panels. When using the smaller smoothing scale (second
panel from left), one can clearly see that the vortices are
indeed pointlike objects in two dimensions, which have a
positive (red) or negative (blue) sign, and are concentrated
around the caustics. In comparison with the full wave
function (leftmost panel), one sees that the vortices are
always associated with dark regions, where the amplitude
of the wave function vanishes. As discussed in Sec. V B,
vorticity is conserved and has thus to be pair-produced with
opposite topological charge. These neighboring positive
and negative vortices are clearly visible in Fig. 5. For the
larger softening (third panel from left), it becomes obvious
that, when averaging over multiple such quantum vortices,
one obtains a large-scale limit which is very similar to the
vorticity pattern obtained for the ZA (rightmost panel). The
agreement of the properties of the two-dimensional flow

FIG. 4. Comparison of the density for the 2D phased wave problem with initial data given by Eq. (50), for Zel’dovich, the free
propagator, 2LPT, and the NLO propagator (from left to right). Results are shown well after shell-crossing for a box with q1,
q2 ∈ ½−π; πÞ. We have used 10242 particles to reconstruct the density on a grid of resolution 10242 for the LPT figures, while the free
and NLO propagators use ℏ ¼ 5 × 10−3 and are evaluated on a mesh of 10242.
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between classical and quantum dynamics after filtering has
been discussed in detail for the cosmological Schrödinger
equation by [51].
Remarkably, the propagator method allows us to

explicitly predict the generation of vorticity without requir-
ing a numerical solution of the Schrödinger equation.
Furthermore, the propagator method does not require
multistream averaging. This should be contrasted to the
classical (multi)fluid picture, where multistream averaging
is mandatory [48] and computationally involved, even for
simple cases like the ZA [52].
Finally, in Fig. 6, we display the vorticity at times shortly

after the first shell-crossing for the smoothing scale
ks ¼ kNy=8. For reasons of comparison we have also
performed an N-body simulation (leftmost panel) which
has been initialized at aini ¼ 1=30. In all panels the gen-
eration of vorticity through multistreaming is visible by the
appearance of “vorticity islands,” while 2LPT predicts the
spurious generation of vorticity in single-stream regions

(see Sec. IVA for a related discussion). We also note that the
white lines in the 2LPT panel indicate where the spurious
vorticity changes sign. Our NLO results, by contrast, are free
of spurious vorticity; see e.g., Eq. (48) for the provided
theoretical argument.

VIII. CONCLUSIONS

A. Summary. We have introduced a novel semiclassical
method for evolving CDM that, for nonzero ℏ, is free from
any singular behavior near the crossing of particle trajec-
tories (shell-crossing). The key quantity of our method is
the propagator, which fulfils a Schrödinger equation and
encodes the transition amplitude of the wave function for
the particle trajectories. This propagator can be determined
by using perturbation theory. In a suitable coordinate
system, the leading-order propagator dictates a ballistic
motion of the particles with prescribed velocity, which
amounts to the classical Zel’dovich approximation.

FIG. 5. The wave function ψ (left panel, shown using domain coloring), as well as the vorticity ω ¼ ∇ × ðj=½1þ δ�Þ (other panels) for
the phased wave problem; initial data is provided by Eq. (50). The second and third panels from the left show the vorticity obtained using
the free propagator, filtered with a Gaussian filter in Fourier space on scales of 1=8 and 1=64 the Nyquist wave number to highlight
both the large-scale transversal modes and the topological defects from which they arise. The rightmost panel shows the corresponding
vorticity using the Zel’dovich approximation with a smoothing to facilitate comparison to the large-scale free propagator case shown
next to it. Time and initial conditions are identical to Fig. 4, but in order to highlight the role of ℏ, it has been increased to ℏ ¼ 0.05. The
color scale for vorticity has been adjusted to highlight best the various features in each panel.

FIG. 6. The norm of the vorticity ω ¼ ∇ × ðj=½1þ δ�Þ for the phased wave problem [Eq. (50)], shortly after the first shell-crossing
(in the regions appearing as “islands” of vorticity generation). The panels display, from left to right, results from an N-body simulation,
ZA, 2LPT, free theory and NLO. All results, except 2LPT, have in common a vanishing vorticity in single-stream regions (as it should),
while 2LPT clearly exhibits spurious vorticity generation.
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To incorporate gravitational interactions in the propa-
gator, we have motivated the inclusion of an effective
potential in the Schrödinger equation, which is also
present in the cosmological fluid equations [Eq. (8)].
Using standard perturbative techniques for the effective
potential as an input for the Schrödinger equation, we
have solved the associated propagator equation at next to
leading order (NLO). The NLO solution for the propa-
gator delivers the associated wave function, Eq. (41), from
which the NLO density and velocity are easily obtained
[Eqs. (24)–(25)].
By performing the classical limit, we have shown that

our NLO result returns a displacement field (46a) and a
corresponding density that are in agreement with the ones
from Lagrangian perturbation theory (LPT) up to second
order. The associated NLO velocity (46b) receives naturally
an additional term Oða2Þ, that in LPTwould be considered
as third order, but is actually important to preserve the
underlying Hamiltonian structure of the system and to
avoid a spurious excitation of vorticity in certain imple-
mentations of second-order LPT (see Sec. IVA).
We compared our NLO results from the propagator

method against LPT for two types of initial conditions,
and find overall good quantitative agreement, see
Figs. 3–4. The propagator method regularizes classical
caustics, which leaves subtle imprints while preserving an
overall good agreement in their global shapes and
positions. Furthermore, based on our analytical solutions
for the propagator, we have demonstrated that our method
is free of spurious vorticity generation (Fig. 6), as well
as is capable to predict the generation of vorticity after
shell-crossing (Fig. 5). Although the latter vorticity
indeed arises solely through multistream dynamics, in
our propagator method no explicit multistream averaging
is required (see Sec. VII C for a related discussion). In our
formalism, vorticity manifests by the pair creation of
topological defects, usually called rotons, along classical
caustics.
B. Outlook. For simplicity, in the present work we have

applied our propagator method to two-dimensional col-
lapse problems only, however all provided tools are ready
to use for full 3D calculations. Surely, the phenomenology
for cosmological ICs will be much richer than explored for
the present case studies, and therefore will be investigated
in a forthcoming paper. Another interesting avenue would
be to include higher-order corrections in the propagator.
For this one requires the external potential to third order,
which we discuss in Appendix A. Finally, our propagator
method already shed some light on the highly complicated
regime shortly after shell-crossing (including the gener-
ation of vorticity, velocity dispersion, etc.). For compu-
tations well beyond shell-crossing, however, the effective
potential should be updated in order to grasp the full-
fledged multistream regime, which is required to approach
virialization.
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APPENDIX A: EFFECTIVE POTENTIAL FROM
STANDARD PERTURBATION THEORY

Here we will show how the standard recursion
relations from SPT can be used to determine the effective
potential (8), appearing in the Bernoulli equation (7a), in an
a-time expansion (10). For notational simplicity, we use

the following shorthand notations φðiniÞ
g → φðiniÞ for the

initial gravitational potential, and ϕv → ϕ for the velocity
potential.
The recursion relations for the perturbative expansion of

the density contrast δ and velocity potential ϕ from Eq. (10)
give the following first two terms [5]

ϕð1Þ ¼ φðiniÞ; ðA1Þ

δð1Þ ¼ ∇2φðiniÞ; ðA2Þ

ϕð2Þ ¼∇−2
�
3

7
φðiniÞ
;ll φðiniÞ

;mmþφðiniÞ
;llmφ

ðiniÞ
;m þ4

7
φðiniÞ
;lm φðiniÞ

;lm

�
; ðA3Þ

δð2Þ ¼ 5

7
φðiniÞ
;ll φðiniÞ

;mm þ φðiniÞ
;llmφ

ðiniÞ
;m þ 2

7
φðiniÞ
;lm φðiniÞ

;lm ; ðA4Þ

where the derivatives and dependences are with respect to

Eulerian coordinates. To get an expression for VðnÞ
eff , we

simply plug ϕðnÞ into the perturbed Bernoulli equation (7a),
which can be written as
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VðnÞ
eff ¼ ∂aϕ

ðnÞ −∇−2
X

s1þs2¼n

1

2
ðϕðs1Þ

;l ϕðs2Þ
;l Þ;mm: ðA5Þ

The first three solutions are

Vð1Þ
eff ¼ 0; ðA6Þ

Vð2Þ
eff ¼

3

7
∇−2

h
φðiniÞ
;ll φðiniÞ

;mm − φðiniÞ
;lm φðiniÞ

;lm

i
; ðA7Þ

Vð3Þ
eff ¼

1

3
∇−2

h
φðiniÞ
;ll ð∇−2δð2Þ þ ϕð2ÞÞ;mm

− φðiniÞ
;lm ð∇−2δð2Þ þ ϕð2ÞÞ;lm

i

þ 1

9
∇−2

h
φðiniÞ
;llmV

ð2Þ
eff;m − φðiniÞ

;m Vð2Þ
eff;llm

i
: ðA8Þ

Note that Veff in the expansion (10) is only time-
independent up to second order, while the third-order term

is proportional to a-time aVð3Þ
eff .

As mentioned earlier, before shell-crossing, one can
transform the Schrödinger equation (5) into a fluidlike
system using a polar form for the wave function ψ ¼ffiffiffiffiffiffiffiffiffiffiffi
1þ δ

p
expð−iϕ=ℏÞ [34]. One obtains a system equivalent

to (7), but with an extra term in the Bernoulli equation (7a)
that adds to the effective potential

Veff → Veff;ψ ¼ Veff þ
ℏ2

2

∇2
ffiffiffiffiffiffiffiffiffiffiffi
1þ δ

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ δ

p : ðA9Þ

Note that, if one perturbatively solves the corresponding
wave-mechanical fluid equations, in analogy to SPT for the
fluid equations, one obtains identical solutions up to second
order. The reason is that the leading order correction term in
(A9) is proportional to∇2δ ∝ a and hence only enters in the
effective potential at third order, where it modifies (A8) to

Vð3Þ
eff;ψ ¼ Vð3Þ

eff þ
ℏ2

12
ð∇2Þ2φðiniÞ: ðA10Þ

APPENDIX B: RELATION BETWEEN THE
PROPAGATOR FORMALISM AND

SCHRÖDINGER-POISSON

While the Schrödinger equation (5) used here might look
similar to the Schrödinger method [22,53] for approximat-
ing classical dynamics through the quantum-classical
correspondence, they are physically distinct and rely on
different assumptions, as we show now. The cosmological
Schrödinger-Poisson equation in the formulation of
Widrow and Kaiser [22] reads

iℏ∂tψ̃ ¼ −
ℏ2

2a2
∇2
xψ̃ þ Vψ̃ ; ∇2

xV ¼ 3

2

jψ̃ j2 − 1

a
; ðB1Þ

where for simplicity we have absorbed the mass in ℏ and set
4πGρ̄0 ¼ 3=2. To distinguish the wave function in the
different formulations, we attach a tilde to the wave
function in the Widrow and Kaiser formulation. The
Schrödinger-Poisson equation can be regarded as an
approximate treatment of the phase-space dynamics
described by the Vlasov-Poisson equation [53,54]. When
solved numerically, it provides a field-based method that
complements particle-based N-body simulations and
whose accuracy is controlled by the phase-space resolution
ℏ [51,55,56]. Additionally, the Schrödinger-Poisson equa-
tion is a physical model for scalar field (or wavelike) dark
matter such as ultralight axions, where it has attracted
considerable attention [57–62] recently.
Evidently, the physical time Schrödinger equation (B1)

does contain a gravitational potential V, but not a difference
of a gravitational and velocity potential as our effective
potential Veff . This is related to the fact that the associated
wave function encodes the conjugate momentum.
Employing the Madelung split, we can write the wave
function as ψ̃ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ δ
p

expð−iϕ̃p=ℏÞ, where the phase ϕ̃p

is the potential of the conjugate momentum. Since the
conjugate momentum is defined as p=m ¼ a2dx=dt, which
is related to our peculiar velocity v ¼ dx=da via p=m ¼
va2da=dt ¼ a3=2v in an EdS universe, the conjugate
momentum potential is related to our peculiar velocity
potential as ϕ̃p ¼ a3=2ϕv. Substituting this relation in the
wave function one has ψ̃ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ δ
p

expð−ia3=2ϕv=ℏÞ.
Similarly as done before, we can convert the Schrödinger

equation for ψ̃ into fluid-type equations. Separating real
and imaginary parts of Eq. (B1), leads to the fluid equations
in physical time (see Eqs. (14) in [53]). Those fluid
equations can be rewritten in a-time to obtain a fluidlike
system (7) with a modified effective potential that sources
the Bernoulli equation (7a) for ϕv ¼ a−3=2ϕ̃p according to

Veff → Veff;ψ̃ ¼ Veff þ
ℏ2

2a3
∇2

ffiffiffiffiffiffiffiffiffiffiffi
1þ δ

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ δ

p ; ðB2Þ

which carries an extra a−3 dependence in the ℏ2-dependent
“quantum” term in the effective potential, as compared to
our expression (A9). Using the peculiar velocity potential,
we obtain an effective potential in an a-time Schrödinger
equation for ψ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ δ
p

expð−iϕv=ℏÞ, but since the
quantum potential term has a different time-dependence,
it cannot be absorbed in the Laplacian, as was the case for
our Schrödinger equation (5). One can view the difference
in the fluid equations, or the effective potential, as a
time-dependent phase-space coarse-graining scale ℏ (or a
time-dependent mass). This property of a time-dependent
coarse-graining persists in the full-fledged multistream
regime, where the evolution is governed by the Vlasov-
Poisson equations, see [54].
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APPENDIX C: STATIONARY-PHASE
APPROXIMATION

The stationary phase approximation (SPA) [63] can be
used to estimate integrals of the following type

IðλÞ ¼ ð2πλÞ−3
2

Z
d3qhðqÞ exp

�
i
λ
gðqÞ

�
: ðC1Þ

In the present context of the paper, evaluating such integrals
in the vicinity of λ → 0 is relevant when performing the
classical limit.
For λ → 0, the SPA states that the dominant contribution

from the above integral comes from

lim
λ→0

IðλÞ¼
X
qc

hðqcÞexp½ iλgðqcÞ�
jdetðHijÞj1=2

exp

	
iπ
4
signðHijÞ



; ðC2Þ

where one sums over all critical points qc for which the
first-order Taylor coefficient ∂gðqÞ=∂qijq¼qc vanishes and
Hij ¼ ∂2gðqÞ=ð∂qi∂qjÞjq¼qc is the Hessian. The signature
of the Hessian, which is the difference between the number
of negative and positive eigenvalues, determines the pre-
factor in the last exponential of (C2). Note that this is just a
Wick rotated version of the formula for the method of
steepest descent, or so-called saddle-point approximation.

1. Application to free theory observables

Let us apply the SPA to the free wave function (28). This
wave function has the form (C1) with the constants λ ¼ aℏ,
hψ0 ¼ expð−3iπ=4Þ and the exponential

g0ðx; qÞ ¼
ðx − qÞ2

2
− aφðqÞ: ðC3Þ

Considering the classical limit ℏ → 0, we obtain the
condition for a point of stationary phase

∇qg0ðx; qcÞ¼! 0 ⇒ qc ¼ xþ a∇φðqcÞ; ðC4Þ

which implicitly determines the critical point qc. Before
shell-crossing, for every x there exists only one such critical
point qc. To perform the integral over q in (28), we expand
g0ðx; qÞ in a Taylor series up to quadratic order around
the critical point qc

g0ðqÞ ≃
1

2
ða∇φðqcÞÞ2 − aφðqcÞ

þ 1

2
½δij − aφ;ijðqcÞ�ðqi − qc;iÞðqj − qc;jÞ: ðC5Þ

Then, one can shift the integration q → q̃ ¼ q − qc and
perform the following Gaussian integral

Z
d3q̃

ð2πiℏaÞ32 exp
�

i
2ℏa

½δij − aφ;ijðqcÞ�q̃iq̃j
�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½δij − aφ;ijðqcÞ�

p : ðC6Þ

The corresponding wave function is

ψSPA
0 ðxÞ ¼ exp ½ iℏ ð12 ða∇φðqcÞÞ2 − aφðqcÞÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det½δij − aφ;ijðqcÞ�
p ; ðC7Þ

where qc ¼ qcðxÞ according to the stationary phase con-
dition (C2). From this, we can easily compute the density
according to the definition (24), which reads

δ0ðxÞ þ 1 ¼ jψ0ðxÞj2 ¼
1

det½δij − aφ;ijðqcÞ�

¼
Z

d3qδð3ÞD ½x − qþ a∇φðqÞ�; ðC8Þ

from which one evidently recovers the Zel’dovich dis-
placement field (33). By exactly the same arguments,
the SPA for the NLO wave function delivers the 2LPT
displacement field.
To derive the velocity, one needs a SPA for the spatial

gradient of the wave function. In this case one has the
prefactor h∇ψ0 ¼ iðx − qÞ expð−3iπ=4Þ=ðaℏÞ, which is
evaluated using the stationary phase condition (C2) to
obtain

∇ψSPA
0 ðxÞ¼−i∇φðqcÞ

ℏ

exp
�
i
ℏ

h
½a∇φðqcÞ�2

2
−aφðqcÞ

i�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½δij−aφ;ijðqcÞ�

p : ðC9Þ

From this expression, we can now compute the velocity
according to Eq. (25) to get

v0ðxÞ ¼
iℏ
2

½ψ0∇ψ̄0 − ψ̄0∇ψ0�ðxÞ
1þ δ0ðxÞ

¼ −∇φðqcÞ; ðC10Þ

which agrees with the previous result from Eq. (33) for the
velocity in Lagrangian coordinates.

APPENDIX D: PERTURBATIVE PROPAGATOR
IN OPERATOR NOTATION

A particularly concise perturbative expansion can be
obtained from an operator expansion. To solve the
Schrödinger equation (5) in operator notation, we write
the Hamiltonian operator (6) at leading order, where it is
time-independent

Ĥð2Þ ¼ −
ℏ2

2
∇2
x þ Vð2Þ

eff ðxÞ≕ T̂ þ V̂: ðD1Þ
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For simplicity, we denote the operators associated to kinetic
and potential energy as T̂ and V̂, respectively. Since neither
of those operators have explicit time dependence, the
Schrödinger equation (5) can be integrated

ψðx; aÞ ¼ exp

�
−
i
ℏ
aðT̂ þ V̂Þ

�
ψ ðiniÞðxÞ: ðD2Þ

The Baker-Campbell-Hausdorff formula (or the equivalent
reverse Zassenhaus formula) allows to express exponentials
of sums of operators as products of exponentials according
to

eϵðT̂þV̂Þ ¼ eϵT̂eϵV̂ exp

	
−
ϵ2

2
½T̂; V̂� þOðϵ3Þ



; ðD3Þ

where ϵ ¼ −ia=ℏ, and higher-order terms come from
nested commutators which are denoted with ½·; ·�. Using
a threefold decomposition of the Hamiltonian Ĥ in VTV ≔
V̂=2þ T̂ þ V̂=2 allows to both arrive at a time-symmetric
formula and cancel all even-order correction terms (and
thus the leading order is proportional to ϵ2 ∼ a2)

exp ðϵðT̂ þ V̂Þ þOðϵ3ÞÞ ¼ eϵV̂=2eϵT̂eϵV̂=2: ðD4Þ

This provides another motivation for the VTV approxima-
tion of (40), which leads to the NLO propagator (41b).
The approach outlined above is of course equivalent
also to the usual operator-split approach followed by sym-
plectic schemes when numerically integrating classical
Hamiltonian systems, cf. [64].
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