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ABSTRACT
The standard model of cosmology, lambda cold dark matter (�CDM), is the simplest model that
matches the current observations, but it relies on two hypothetical components, to wit, dark
matter and dark energy. Future galaxy surveys and cosmic microwave background (CMB)
experiments will independently shed light on these components, but a joint analysis that
includes cross-correlations will be necessary to extract as much information as possible from
the observations. In this paper, we carry out a multiprobe analysis based on pseudo-spectra
and test it on publicly available data sets. We use CMB temperature anisotropies and CMB
lensing observations from Planck as well as the spectroscopic galaxy and quasar samples of
SDSS-III/BOSS, taking advantage of the large areas covered by these surveys. We build a
likelihood to simultaneously analyse the auto and cross spectra of CMB lensing and tracer
overdensity maps before running Markov chain Monte Carlo to assess the constraining power
of the combined analysis. We then add the CMB temperature anisotropies likelihood and obtain
constraints on cosmological parameters (H0, ωb, ωc, ln 1010As, ns, and zre) and galaxy biases.
We demonstrate that the joint analysis can additionally constrain the total mass of neutrinos
�mν as well as the dark energy equation of state w at once (for a total of eight cosmological
parameters), which is impossible with either of the data sets considered separately. Finally,
we discuss limitations of the analysis related to, e.g. the theoretical precision of the models,
particularly in the non-linear regime.

Key words: cosmic background radiation – cosmological parameters – dark energy – large-
scale structure of Universe.

1 IN T RO D U C T I O N

The large amount of cosmological data collected in the last few
decades has been shedding light on the content of the Universe.
Assuming general relativity (GR) and the cosmological principle,
the combination of different cosmological probes, such as type Ia
supernovae, primary anisotropies of the cosmic microwave back-
ground (CMB), and large-scale structure (LSS) information, among
others, indicates that the universe is almost flat, is dominated today
by a dark energy (DE) component driving the current accelerated

� E-mail: cdoux@apc.in2p3.fr

expansion phase of the Universe, and has some form of cold dark
matter in addition to baryons and radiation (Planck Collaboration
XIII 2016e). The flat lambda cold dark matter (�CDM) model
is currently the simplest model compatible with the data of these
combined probes.

We are reaching a precision era in cosmology and we may be
able, in the near future, to distinguish between various cosmologi-
cal models and achieve a better understanding of the fundamental
nature of the DE and DM components. Upcoming photometric and
spectroscopic galaxy surveys such as the Large Synoptic Survey
Telescope (LSST; LSST Science Collaborations and LSST Project
et al. 2009), Euclid (Refregier et al. 2010), the Wide Field Infrared
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Survey Telescope (WFIRST; Spergel et al. 2013), and the Dark En-
ergy Spectroscopic Instrument (DESI; Levi et al. 2013; Schlegel
et al. 2009) aim at shedding light on those questions by probing
the matter density field with ground-breaking precision. They will
provide the data necessary for a deeper investigation of �CDM and
its competitors, hopefully allowing us to distinguish them. Addi-
tionally, secondary anisotropies of the CMB due to gravitational
lensing, the thermal (tSZ) and kinetic (kSZ) Sunyaev-Z’eldovich
effects and the integrated Sachs–Wolfe (ISW) effect encode much
information about dark matter and dark energy (Peiris & Spergel
2000). Therefore, future CMB experiments, such as the Simons Ob-
servatory (Suzuki et al. 2016) and the Stage-IV CMB experiment
(CMB-S4; Abazajian et al. 2016), will provide valuable comple-
mentary observations.

While various observations from multiple telescopes will provide
exquisite and hopefully complementary data sets (Jain et al. 2015;
Rhodes et al. 2017), they will all observe the same sky, i.e. the same
underlying matter density field. Therefore, the observables they will
measure are potentially statistically correlated. In this context, the
cross-correlation between cosmological probes of different exper-
iments yields new information, that is less prone to biases since
different experiments are assumed to have uncorrelated noise and
independent systematic effects. This correlation needs to be taken
into account in the joint statistical analysis of multiple data sets
in order to properly extract as much information as possible from
it, without underestimating error bars on cosmological parameters
(Rhodes et al. 2015). If this makes the analysis more demanding,
the outcome is expected to provide stronger constraints on e.g. dark
energy, dark matter, the total mass of neutrinos (Pearson & Zahn
2014), or primordial non-gaussianities (Takeuchi, Ichiki & Matsub-
ara 2012).

Initially, some of the best-explored cross-correlation informa-
tion was that from CMB and galaxy surveys in order to measure
the ISW signal (Crittenden & Turok 1996; Boughn, Crittenden &
Turok 1998; Fosalba, Gaztañaga & Castander 2003; Cabré et al.
2006; Moura-Santos et al. 2016). But over the last decade, many
different cross-correlation signals have been detected, combining
various probes: the CMB anisotropies themselves, the CMB lens-
ing potential, galaxy clustering, cosmic shear from the observations
of galaxy weak lensing, etc. In particular, correlations of the gravi-
tational lensing of the CMB with positions of galaxies (Hirata et al.
2008; Ho et al. 2008; Bleem et al. 2012; Sherwin et al. 2012; Geach
et al. 2013; Allison et al. 2015; Bianchini et al. 2015; Fornengo et al.
2015; Baxter et al. 2016; Bianchini et al. 2016; Giannantonio et al.
2016; Harnois-Déraps et al. 2016) and lensing of galaxies (Hand
et al. 2015; Kirk et al. 2016) have been measured for various sur-
veys. These measurements can provide unbiased estimates of galaxy
biases, which encode the link between baryonic and dark matter, or
the shear multiplicative bias (Vallinotto 2012; Liu, Ortiz-Vazquez
& Hill 2016; Schaan et al. 2017). Finally, they have also been used
to detect new signals, e.g. the first detection of CMB lensing by
cross-correlation with the NRAO VLA sky survey (Smith, Zahn
& Dore 2007), the tSZ effect (Hajian et al. 2013; Hill & Spergel
2014), the kSZ effect (Hand et al. 2012; Schaan et al. 2016), and the
position-dependent Lyman-α power spectrum (Doux et al. 2016).

Since cross-correlation signals are reaching high signal-to-noise
ratio, joint analyses, i.e. multiprobe arnalyses that exploit cross-
correlations, are rapidly developing. In particular, joint analyses
based on real-space correlation functions or power spectra have
been used to test the consistency of cosmological constraints derived
from different observations and to cross-calibrate nuisance param-
eters. Joachimi & Bridle (2010) forecasted that the joint analysis

of galaxy weak lensing and galaxy density, including cosmic shear,
galaxy clustering, and the galaxy–galaxy lensing cross-correlation,
could, at once, self-calibrate intrinsic alignments and constrain pa-
rameters of the cosmological model (see Krause, Eifler & Blazek
(2016) as well. Since, several analyses were published that make use
of the correlation between galaxy lensing and either galaxy density
or CMB lensing on available data. Baxter et al. (2016) used SPT
and DES-SV lensing data together with tracers of the large-scale
structure and took advantage of the low systematic level of these an-
gular cross-correlations functions to infer cosmological constraints,
demonstrating their consistency across data sets. Kwan et al. (2017)
used the galaxy clustering and galaxy–galaxy lensing signals of the
DES-SV data to obtain robust constraints on σ 8 and 
m.

Singh, Mandelbaum & Brownstein (2017) combined the lensing
and clustering of SDSS galaxies with CMB lensing from Planck to
constrain clustering and shear biases and measure distance ratios,
found to be consistent with Planck predictions. Very recent studies
combined these three correlation functions in a single analysis: van
Uitert et al. (2017) with KiDS1 and GAMA2 galaxies, Joudaki et al.
(2017) with KiDS and BOSS galaxies (using the quadrupole of the
power spectrum as well), DES Collaboration (2017) with the first
year of DES data (forecasts were obtained in Park et al. 2016 and the
robustness of the likelihood analysis pipeline was tested in Krause
et al. (2017), and Miyatake et al. (2015); More et al. (2015) used the
overlapping area between CFHT and BOSS galaxies. Taking a step
further, Nicola, Refregier & Amara (2016, 2017) used, in a fully
joint analysis, information from CMB temperature, CMB lensing,
photometric surveys (both galaxy positions and lensing) and dis-
tance measurements from supernovae and direct H0 measurements.
Finally, Baxter et al. (2018) recently laid out the methodology for
a joint analysis of five DES and SPT+Planck data two-point auto-
and cross-correlation functions.

In this work, we aim at performing a joint analysis of Planck
CMB data with the spectroscopic LSS tracers of the Baryon Oscil-
lation Spectroscopic Survey (SDSS-III/BOSS; Dawson et al. 2013;
Reid et al. 2016; Pâris et al. 2017) based on power spectra, taking
advantage of the large overlap between these surveys and the large
redshift range of the BOSS samples, and developing an indepen-
dent pipeline that is able to incorporate observables with different
masks (thus maximizing signal-to-noise ratio). To this end, we build
a Gaussian joint likelihood of auto- and cross-pseudo power spectra
of large-scale structure probes – here, CMB lensing and the con-
trast densities of tracers – and implement it as part of the public
Numerical Cosmology3 library (NumCosmo; Dias Pinto Vitenti &
Penna-Lima 2014). In particular, we use the Planck 2015 lensing
map (Planck Collaboration XV 2016f) and the three spectroscopic
samples of BOSS – that is, LOWZ, CMASS, and the uniform quasar
sample (QSO). We then run several Markov chain Monte Carlo
(MCMC) analyses to extract constraints on cosmological param-
eters. We complete our analysis by adding the likelihood of the
auto power spectrum of CMB temperature anisotropies from Planck
(thus neglecting the small CMB-LSS direct correlations sourced by
the ISW effect; Planck Collaboration XI 2016d; Planck Collabo-
ration XIII 2016e), which allows us to perform a joint statistical
analysis of CMB and LSS probes. We demonstrate the performance

1The Kilo-Degree Survey, de Jong et al. (2013).
2Galaxies And Mass Assembly (Driver et al. 2009), a database of low-
redshift surveys spanning the electromagnetic spectrum from radio waves
to the ultraviolet domain.
3http://numcosmo.github.io
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of such an analysis to constrain the �CDM model at first, fitting the
six base parameters (H0, ωb, ωc, As, ns, and zre), and then extensions
of this base model, fitting the total mass of neutrinos, �mν , and the
DE equation of state, w = p/ρ, separately and then jointly. Finally,
we perform the joint analysis using two different cut-offs at small
scales in order to quantify their impact on cosmological constraints.

Note that our work follows an approach similar to that presented
in Nicola et al. (2016), which is also based on power spectra. How-
ever, our goals differ as we aim at constraining extensions of the
�CDM model, which we do using, in part, different data sets (we
use spectroscopic data from BOSS) and we propose a different for-
malism based on pseudo power spectra and a semi-analytical covari-
ance matrix evaluated at each set of cosmological parameters during
the MCMC analysis, rather than a fixed covariance matrix (either
simulation-based or computed analytically for a fiducial model). We
also provide a new, public implementation of multiprobe analysis
as part of the public NumCosmo library.

The paper outline is as follows. In Section 2, we develop the
theoretical formalism, considering the Limber formula, to compute
the pseudo angular power spectra of CMB lensing and galaxy over-
densities. In Section 3, we describe the data used in this work and
prepare the galaxy and quasar density maps. In Section 4, we de-
velop the estimators and construct the likelihood used in this work,
and then we perform the validation and null tests. In Section 5, we
detail the results of the statistical analyses and present constraints
on cosmological parameters as well as their potential limitations re-
lated to theoretical uncertainties (e.g. related to the non-linear power
spectrum), contamination of cross-spectra or data cuts. Finally, we
draw conclusions in Section 6.

2 TH E O R E T I C A L BAC K G RO U N D

2.1 Angular power spectra

The matter distribution of the Universe is traced by cosmological
probes such as galaxies, quasars (QSOs), and CMB lensing, among
others. Their projected random fields on the observed direction n̂
can be written as

A(n̂) =
∫ ∞

0
dz WA(z) δ(χ (z)n̂, z), (1)

where WA(z) is the kernel function of an observable A (kernels of the
probes used in this work are plotted in Fig. 1), δ = δρ/ρ is the matter
density contrast, ρ is the matter density, and χ (z) is the comoving
distance at redshift z. The fields A(n̂) and B(n̂), associated with
galaxy or QSO density contrast and CMB lensing, are assumed to be
statistically homogeneous and isotropic. Therefore the correlation
function

〈
A(n̂)B∗(n̂′)

〉
only depends on n̂ · n̂′ and can be expanded

as

〈
A(n̂)B∗(n̂′)

〉 =
∞∑

�=0

(2l + 1)

4π
P�(n̂ · n̂′)CAB

� , (2)

where P� are the Legendre polynomials, which defines the angular
power spectrum CAB

� .4

Using the inverse Fourier transform of the matter density field in
equation (1) and substituting it into equation (2), we obtain

CAB
� = ∫

dzWA(z)
∫

dz′WB (z′)

× ∫
dk 2

π
k2P (k, z, z′)j�(kχ (z))j�(kχ (z′)), (3)

4Expanding the fields in spherical harmonics, A(n̂) = ∑
�m A�mY�m(n̂), this

implies that 〈A�mB�′m′ 〉 = CAB
� δ��′δmm′ .

Figure 1. Kernel functions WA(z) of the observables used for cross-
correlation as defined in equations (6) and (8). For the LOWZ, CMASS,
and QSO samples, Wg(z) reflects the redshift distribution (multiplied by the
bias). The background colours correspond to the extent of the redshift dis-
tributions of the three samples. The CMB lensing kernel (multiplied by 10
on this plot for visibility) is very broad and peaks around z ≈ 2.

where P(k, z, z
′
) is the matter power spectrum and j� are the spherical

Bessel functions. In this work, we adopt the Limber approximation
(Limber 1953; LoVerde & Afshordi 2008) and assume that spatial
sections of the Universe are flat,5 thus equation (3) becomes

CAB
� =

∫ z∗

0
dz

H (z)

cχ2(z)
WA(z)WB (z)P

(
k = � + 1/2

χ (z)
, z

)
(4)

where c is the speed of light and H(z) is the Hubble parameter. This
approximation is valid when P(k, z, z

′
) varies slowly in comparison

with the Bessel functions. In particular, the CMB lensing spectra
are accurate for � > 10 (Lesgourgues & Tram 2014). The selection
functions of galaxies and quasars are wider than the largest scales
probed6 for the spectroscopic tracers used here. Therefore, we can
safely make use of this approximation to compute theoretical power
spectra, which are integrals of the matter power spectrum weighted
by the kernel functions corresponding to each observable. We detail
this in the following sections.

2.2 Cosmic microwave background gravitational lensing

The trajectories of the CMB photons are disturbed by the matter dis-
tribution such that, among other effects, the observed anisotropies of
the temperature field in a direction n̂ correspond to the unlensed field
deflected by α, i.e. T̃ (n̂) = T (n̂ + α) (Lewis & Challinor 2006).
Assuming the small-angle Born approximation, α comprises the
variations in the gravitational potential � along the line of sight
from today’s observer to the last scattering surface at redshift z∗,
i.e.

α = −2
∫ z∗

0
dz

c

H (z)

χ (z∗) − χ (z)

χ (z)χ (z∗)
∇n̂�(χ n̂, z). (5)

5It is worth noting that Limber approximation can also be applied for curved
space universe; see Lesgourgues & Tram (2014), for instance.
6For a given sample, the largest scale probed is χmax ∼ π /kmin with kmin

= (�min + 1/2)/χ (zeff), where χ (zeff) is the comoving distance at the mean
redshift of the sample and �min = 20, see Section 3. For LOWZ, CMASS,
and QSO, these scales are of order 110, 220, and 630 h−1 Mpc, while the
selection functions have widths of order 1080, 860, and 970 h−1 Mpc.
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The remapping of the CMB temperature anisotropies due to the
weak lensing effect is described at lowest order by the convergence
κCMB = − 1

2 ∇n̂α. Given that on small angular scales ∇2
n̂ � ∇2 (Jain,

Seljak & White 2000) and using the Poisson equation and equa-
tion (1), we obtain the CMB convergence kernel

WκCMB (z) = 3

2


mH 2
0

c

(1 + z)

H (z)
χ (z)

χ (z∗) − χ (z)

χ (z∗)
, (6)

where 
m and H0 are the present-day matter density and Hubble
constant, respectively.

2.3 Large-scale structure tracers

Similarly to the CMB lensing, the galaxy or quasar overdensity in
the direction n̂ is a function of δ(χ n̂, z), namely

g(n̂) =
∫ ∞

0
dz Wg(z)δ(χ n̂, z). (7)

The kernel Wg(z) is given by (Peiris & Spergel 2000; Bonvin &
Durrer 2011)

Wg(z) = b(z)
dn

dz
+ 3
m

2c

H 2
0

H (z)
(1 + z) χ (z) (5s − 2) g(z) (8)

where

g(z) =
∫ z∗

z

dz′
(

1 − χ (z)

χ (z′)

)
dn

dz′ . (9)

The function b(z) is the linear bias relating the galaxy overdensity to
the matter overdensity at large scales as δg(χ n̂, z) = b(z)δ(χ n̂, z),
and dn/dz is the normalized redshift distribution of the tracers,
which also contains the survey selection function. The second term
in equation (8) is due to the effects of gravitational lensing, with
two opposing contributions – the dilation of the apparent surveyed
volume and the magnification bias effect for flux-limited samples,7

where

s = d log N (< m)

dm

∣∣∣∣
m=mmax

. (10)

N(< m) denotes the cumulative count of objects with a magnitude
smaller than m and the derivative is estimated at the faint end of the
catalogue (Scranton et al. 2005; Hui, Gaztañaga & LoVerde 2007).
This term can be neglected when using LOWZ and CMASS samples,
but it is relevant for quasars (Chisari & Dvorkin 2013). Following
Scranton et al. (2005), we use sQSO = 0.2 throughout this analysis.

2.4 Pseudo spectra

Many galaxy and CMB surveys cover only a fraction of the sky
due to, for example, the limited field of view or galactic contamina-
tion, among others. In order to properly account for the partial sky
coverage in the calculation of the angular power spectra, we define
the mask function associated with the field A(n̂) as being WA(n̂)
with value 1 if the direction n̂ lies in the observed region, and 0
otherwise.

The cross-pseudo spectrum of observables A and B is thus defined
as the cross spectrum of the cut-sky fields Ã(n̂) = WA(n̂)A(n̂) and
B̃(n̂) = WB (n̂)B(n̂), and its expected value can be related to the

7Lensed galaxies may appear brighter than they are and pass the luminosity
threshold.

Figure 2. Mixing matrix of the CMB lensing auto power spectrum (see
the mask in Fig. 3a) relating the full-sky power spectrum C

κCMBκCMB
� to the

pseudo spectrum C̃
κCMBκCMB
� as in equation (11). The matrix elements are

strongly dominated by the diagonal terms and the coupling between modes is
given by off-diagonal elements. The other mixing matrices are qualitatively
very similar.

(true) full-sky cross spectrum in equation (3) by (Brown, Castro &
Taylor 2005)

〈C̃AB
� 〉 =

∑
�′

MAB
��′ CAB

�′ , (11)

where MAB
��′ is the mixing matrix that is given in terms of the Wigner-

3j symbols

MAB
��′ = 2� + 1

4π

∑
�′′

(2�′′ + 1)WAB
�′′

(
� �′ �′′

0 0 0

)2

. (12)

The cross spectra of the masks are

WAB
�′′ = 1

2�′′ + 1

∑
m

wA
�′′m(wB

�′′m)∗, (13)

where

wA
�m =

∫
dn̂WA(n̂)Y ∗

�m. (14)

The mixing matrix introduces a scaling factor equal to(
f A

skyf
B
sky

)1/2
, i.e. the geometric mean of the observed sky frac-

tions for the observables A and B, respectively, since the form of
the masked function is constant (Hivon et al. 2002). It also couples
the multipoles � and �

′
, which would be otherwise uncorrelated,

especially at large scales. It is computed analytically for each pair
of observables (see Fig. 2).

3 DATA

3.1 Planck data

Planck8 (Planck Collaboration I 2016a), the fourth satellite to survey
the CMB over the full sky, was launched on 2009 May 14. Its
scientific payload comprised two instruments: the Low Frequency

8http://sci.esa.int/planck/
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Instrument (Mandolesi et al. 2010), which observed for 4 y in bands
at 30, 44, and 70 GHz, and the High Frequency Instrument (Lamarre
et al. 2010), which observed for almost two-and-a-half years in
bands at 100, 143, 217, 353, 545, and 857 GHz.

In this work, we use Planck data for both the primordial CMB
temperature anisotropies (Planck Collaboration IX 2016b) and the
CMB lensing (Planck Collaboration XV 2016f). For temperature
anisotropies, we use the two Planck likelihood codes: Plik for the
high multipoles, � ≥ 30, and Commander for low multipoles, � <

30 (see Planck Collaboration XI 2016d for details on components
separation).

We also use the CMB lensing convergence map from the Planck
2015 data release (Planck Collaboration XV 2016f). The Planck
Collaboration provides the convergence map9 in the Healpix10

(Górski et al. 2005) format, with resolution parameter Nside =
2048, and the corresponding binary mask, with a sky fraction fsky =
0.67. Lensing potential maps were reconstructed from foreground-
cleaned temperature and polarization maps, obtained from the
SMICA code. These were used to form five quadratic estimators
φ̂T T , φ̂T E , φ̂EE , φ̂EB , and φ̂T B , combined into a minimum-variance
estimator (see Planck Collaboration XV 2016f, for specificities
about the Planck reconstruction). The Wiener-filtered convergence
map is shown in Fig. 3(a) with its mask.

The full-sky lensing power spectrum was evaluated by the Planck
Collaboration following the methods detailed in Appendix A of
Planck Collaboration (2016f), which we briefly describe now: first,
the pseudo power spectrum of the masked, reconstructed lensing
map (itself using optimized temperature map masks) is upweighted
by 1/fsky. Then, different contributions must be subtracted: the Gaus-
sian noise from the disconnected part of the 4-point function (the
N0 term), the non-Gaussian noise from the connected contribution
(the N1 term), and the subdominant contribution of shot-noise from
unresolved point sources (the PS term). Finally, a term (the MC
term) derived from the mismatch between input and output power
spectra derived from simulations corrects for errors in the normal-
ization, mask-related mode mixing, and computation of the N1 term.
Finally, the likelihood of the binned, full-sky power spectrum in-
cludes small, linear corrections to take into account the dependence
of the reconstructed lensing map and the N1 term on the fiducial
cosmological model.

Given our goal to jointly analyze CMB lensing with tracers of the
LSS, we cannot simply use the lensing likelihood code provided by
the Planck Legacy Archive. However, an estimate of the unbinned
(pseudo) lensing auto-power spectrum has not been released yet.
Therefore, considering that redoing the Planck analysis goes well
beyond the scope of this paper, we measured the lensing pseudo-
power spectrum from the released map and estimated the dominant
N0 and N1 noise terms from the simulated reconstructed maps (see
Section 4.1.1) and neglected the small MC term, the largely sub-
dominant PS term and fiducial model correction terms. Indeed, the
MC term partly corrects for differences between the full-sky and
pseudo-power spectra while we only rely on the pseudo spectrum,
and the corrections applied at the likelihood level are very small in
the multipole ranges used for cosmology. Therefore, while a sim-
plification, our method should provide reasonable results. Indeed,
in Section A, we compare cosmological constraints obtained from
CMB temperature and lensing using our pipeline and that provided

9The convergence map and mask files are publicly available at http://pla.es
ac.esa.int/pla/.
10http://healpix.jpl.nasa.gov/

by the Planck Collaboration and demonstrate that we retrieve un-
changed cosmological constraints, except for a 0.5σ shift in the As

− zre degeneracy, still below the statistical error. While the reader
should bear in mind this small difference, we consider this compar-
ison to justify our simplifications given the purposes of this work.

3.2 SDSS-III/BOSS data

The spectroscopic samples from the Baryon Oscillations Spectro-
scopic Survey (BOSS; Dawson et al. 2013) consist of two galaxy
catalogues named LOWZ and CMASS and one quasar catalogue,
a subset of which has a uniform selection function. They are ex-
tensively described in Reid et al. (2016) and we only summarize
relevant information in this section.

3.2.1 Luminous Red Galaxies: LOWZ & CMASS

lowz contains Luminous Red Galaxies (LRG) at low redshift (z
� 0.4), and it aims at a constant number density of about n̄ ∼ 3 ×
10−4 h3 Mpc−3 over the redshift range [0.1, 0.4]. This is done using
a redshift-dependent magnitude cut. In this work, we use the 12th
data release (DR12) and select galaxies in the range 0–0.4, which
contains 383 876 galaxies. The cmass sample contains galaxies at
higher redshifts 0.4 � z � 0.8 with a constant stellar mass in this
redshift range. The 12th data release contains 849 637 galaxies in
the redshift range 0.4–0.8 used in this work. The normalized redshift
distributions of the two samples are shown on Fig. 1 (multiplied by
their respective biases).

BOSS’s spectroscopic fibres are plugged into tiles of diameter
3◦ to observe predetermined targets. The combined footprints of all
tiles can be decomposed into non-overlapping sky sectors. Because
of the finite size of fibres, galaxies closer than 62 arcmin may
not be observed even after multiple observations of the same field.
The pipeline may also fail in determining the redshift of some
galaxies (especially the faintest ones). Therefore, for each sector i,
the completeness is defined as the ratio of observed galaxies with a
measured redshift to the number of targets lying in that same sector

Ci = Nobs,i

Ntarg,i
. (15)

The completeness maps are defined in the Mangle software11 for-
mat and are converted to Healpixmaps with resolution parameter
Nside = 2048. The mask functions of the galaxy samples are obtained
by assigning 1 to pixels where the completeness is above 75 per cent
and then removing small areas that were vetoed for bad photometry,
bright objects and stars and instrumental constraints, such as fibre
centerposts and fibre collisions.

In order to correct for completeness, each galaxy is thus assigned
a weight

wtot = wstarwseeing(wcp + wnoz − 1), (16)

where wstar and wseeing correct for non-cosmological fluctuation
in the target selection due to stellar density (only for the CMASS
sample) and atmospheric seeing, wcp corrects for fibre collisions
and wnoz corrects for redshift failures.

11See http://space.mit.edu/∼molly/mangle/.
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Cosmological constraints from CMB and LSS 5391

Figure 3. Planck CMB lensing convergence and BOSS galaxy and quasar overdensity maps in galactic coordinates. The auto and cross spectra of these maps
are used in this work. Grey areas correspond to the masked areas near the galactic plane. The lensing map has been Wiener-filtered and the overdensity maps
have been smoothed on one degree scale for visualisation purposes only.

3.2.2 Quasars

The selection function (over the sky) of the full quasar sample of
BOSS is not uniform due to the observing strategy, hence we shall
use the so-called CORE sample that contains QSOs with redshift z

≥ 2.15 that were uniformly selected by the XDQSO algorithm (Bovy
et al. 2011). There are 94 971 quasars in the CORE sample of DR12
within this redshift range. The completeness is computed using the
BOSSQSSOMASK software12 from Eftekharzadeh et al. (2015) and
is then combined with the veto mask to build the mask of the quasar
density map.

3.2.3 Building the maps

For the LOWZ and CMASS samples, we build Healpix maps with
resolution parameter Nside = 2048, where for each pixel p,

δp = Nw(p)

N
− 1. (17)

12See http://faraday.uwyo.edu/∼admyers/bossqsomask/.

Nw(p) = ∑
i ∈ pwi is the number of galaxies in pixel p counted with

their weights and N = 1
Npix

∑Npix
p=1 Nw(p) is the mean pixel count

(where the sum runs only on pixels in the observed area, i.e. where
the mask function is equal to 1).

For the quasars, there is no weight provided in the BOSS DR12
catalogue and the density map is computed as

δp = Np/Cs(p)

N
− 1, (18)

where Np denotes the number of QSOs lying in pixel p, Cs(p) is
the completeness of the sector s(p) where the pixel p lies and N

denotes the mean pixel count (up-weighted by completeness) in the
observed area.

The angular densities of the samples are n̄LOWZ = 150 ×
103 sr−1, n̄CMASS = 300 × 103 sr−1 and n̄QSO = 36 × 103 sr−1. The
maps of the estimated overdensity for the three samples are shown
in Figs 3(b), (c), and (d).

3.3 CMB lensing–large-scale structure correlations data

In this work, we will use, in addition to CMB temperature data,
auto and cross spectra of CMB lensing from Planck and spectro-
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scopic tracers from BOSS. More precisely, we will use the auto-
pseudo spectra of the CMB lensing map κCMB and of the density
contrast maps of the LOWZ and CMASS samples. We also use the
pseudo-cross-spectra of the CMB lensing map with the three LSS
tracers. The collection of these six spectra (shown in Fig. 4) will
henceforth be referred to as ‘CMB lensing-LSS correlations’, and
denoted ‘CMB lensing ⊗ BOSS tracers’ in the figures.

We do not use the auto spectrum of the QSO map because it
is completely shot-noise-dominated in multipole space. We do not
use the galaxy cross spectra because their redshift ranges do not
overlap and the cross spectra should therefore be zero in the Limber
approximation (which we check in the next section).

We use different multipole ranges for the different spectra and
describe here the cuts that were applied. At very large scales, the
Limber approximation breaks (LoVerde & Afshordi 2008), RSD be-
comes non-negligible (Padmanabhan et al. 2007) and observational
systematics become more difficult to handle (see Section 4.3). For
these reasons, we chose a minimum multipole of �min = 20 com-
mon to all spectra involving LSS tracers. At small scales, uncer-
tainties in the non-linear power spectrum severely constrain the
use of angular power spectra. We therefore considered two cut-offs
in Fourier space, using a fixed smallest scale kmax that translates
into a maximum multipole �max ≈ kmax/χ (zeff) where χ (zeff) is the
comoving distance to the mean redshift of the samples. We will
use a conservative cut-off at kmax = 0.1 Mpc−1 and a more opti-
mistic one at kmax = 0.15 Mpc−1. For LOWZ, CMASS, and QSO, we
find respectively �max = 120, 200, and 480 and �max = 180, 320,
and 720. At these scales, the updated halofit model reaches
close to percent-level precision, even for models including massive
neutrinos (Smith et al. 2003; Bird, Viel & Haehnelt 2012; Taka-
hashi et al. 2012). Moreover, the scale-independent bias approxi-
mation has been found to work reasonably well for scales down to
20 h−1 Mpc, with variations of less than 5 per cent (Cresswell &
Percival 2009; Rodrı́guez-Torres et al. 2016). We shall therefore,
for both cuts, be in the regime where these assumptions are safe.

The CMB lensing power spectrum was measured in the range �

= 8−2048 (Planck Collaboration XVII 2014), but due to potential
errors in modelling large-scale survey anisotropies and Gaussian
noise at small scales (the N0 disconnected component), we only
consider multipoles � = 40−400 and � = 20−500 for the con-
servative and optimistic cuts. The high-� cut is justified by the
facts that Planck, as of the 2015 results, has the best sensitivity
among CMB experiments at � < 500 and that it includes additional
signal-to-noise while discarding the range 500 < � < 700 where
the estimated power spectrum is significantly lower than expected
for the �CDM model. Uncertainties in the N1 term become more
important at � � 600 and we shall therefore also be in a safe regime
for both cuts considered here.

The six observed pseudo spectra are shown in Fig. 4, to-
gether with theoretical curves for our best-fitting biases (bLOWZ =
1.831 ± 0.048, bCMASS = 2.077 ± 0.029, and bQSO = 2.21 ± 0.44)
and with fixed cosmology.13 We report detections for the CMB
lensing-galaxy density cross-correlations of 4.7σ , 13.9σ , and 10.6σ

for LOWZ, CMASS, and QSO, respectively.

13Parameters’ values are fixed at the best-fitting cosmology for Planck
‘TT,TE,EE+lowP+lensing+ext’ (Planck Collaboration XIII 2016e) for the
flat �CDM model with a total mass of neutrinos �mν = 0.06 eV.

4 ME T H O D O L O G Y

This section describes the method to analyse the data. We choose
to use the pseudo-power spectrum formalism, which takes into ac-
count partial sky coverage by appropriately scaling the theoretical
full-sky power spectra and comparing them to the observed pseudo-
spectra. This forward-modelling method has the advantage that it
provides simple ways to obtain unbiased prediction, without the
need to reverse the effects of the mask on the observation, an oper-
ation that can be difficult and unstable given the complexity of the
masks. Moreover, it naturally deals with observables using differ-
ent masks, thus maximizing the signal-to-noise ratio of the Fourier
coefficients of cross-spectra. The drawback is that the covariance
matrix is impossible to compute analytically, even in the Gaussian
field approximation: instead, we must either estimate it with Monte
Carlo simulations, or, as we do here, use a semi-analytical approx-
imation. We perform several tests to validate this method and the
statistical pipeline used in the next section. Finally, we also perform
null tests searching for possible contamination of the power spectra
by effects due to the masks or the SDSS photometry.

4.1 Likelihood

4.1.1 Pseudo spectra estimator

Pseudo spherical harmonic coefficients Ã�m and B̃�m (for A, B ∈
{LOWZ,CMASS,QSO, κCMB}) of the four maps are estimated
with the map2alm function of Healpix, corrected for the
Healpix pixel window function and summed to give an estimator
of the pseudo spectra

ˆ̃CAB
� = 1

2� + 1

m=+�∑
m=−�

Ã�mB̃∗
�m. (19)

These pseudo spectra have a noise contribution and an expectation
value

〈 ˆ̃CAB
� 〉 =

∑
�′

MAB
��′ CAB

�′ + δABÑA
� (20)

where ÑA
� is the noise pseudo-spectrum of the measured field A(n̂),

which needs to be subtracted. It is assumed here that different
observables have uncorrelated noise, i.e. that noise cross spectra
are null (for both full-sky and pseudo).

In principle, noise pseudo spectra can be computed using the
mixing matrix and equation (11).

ÑA
� =

∑
�′

MAA
��′ NA

�′ . (21)

However, the sum over �
′

runs from 0 to infinity, so, in practice, it
has to be cut at some maximum multipole �max . But convergence
is not guaranteed, since noise spectra are increasing functions of �

(they are quasi-constant for galaxies and grow like ∼�2 for CMB
lensing). Therefore, we used instead simulated noise maps for CMB
lensing and a shuffling technique for spectroscopic tracers positions
(similar to that used in Nicola et al. 2016).

For CMB lensing, we used the 100 simulated lensing reconstruc-
tion maps provided by the Planck Legacy Archive.14 Given a known,
full-sky, input convergence map (to be masked) and a masked, re-
constructed convergence map, one can compute the difference of
the pseudo spectra in order to obtain an estimate of the noise pseudo

14See http://pla.esac.esa.int/pla/.
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Figure 4. Auto- and cross-pseudo spectra used in this paper for the joint cosmological analysis of CMB lensing and spectroscopic tracers. Observed spectra
are represented by the light grey points in the multipole range 20–500, and binned as red error bars (only for visualization). Theoretical curves are shown
in blue for the best fit from the joint analysis on �CDM with the optimistic cut (solid lines; see values in Table 1) and for best-fitting biases using a fixed
Planck 2015 cosmology (Planck Collaboration XIII 2016e) (dashed lines) on the full multipole range. Multipole ranges discarded in the cosmological analysis
are shaded in grey (light grey shows the conservative cut, dark grey the optimistic one). Pseudo spectra are multiplied by � to help visualize features of the
theoretical power spectra, especially the wiggling related to baryon acoustic oscillations (covariance matrices are modified accordingly).

power spectrum Ñκ
� , which is then averaged over realizations of the

simulation.
For the clustering of spectroscopic tracers, the full-sky shot noise

spectrum is constant, equal to N� = 1/n̄, where n̄ is the angular den-
sity of objects (weighted and expressed in steradian-1). However,
weights associated with each object in the galaxy spectroscopic
samples to compensate incompleteness slightly increase the noise
level (by up to 8 per cent).15 Therefore, we randomly reposition ob-
jects within the masks, keeping their weights. This operation breaks
the spatial, cosmological correlation and therefore the cosmologi-
cal contribution to the spectrum, leaving only Poisson noise with
appropriate weighting. Density maps are then built according to the
procedure described in Section 3.2.3 and their pseudo-spectra Ñ

g

�

are evaluated with Healpix. This process is repeated one thou-
sand times and the noise spectrum is averaged over realizations.
The high resolution of the density maps allows us to measure the
angular spectra at very large multipole values (up to � = 3Nside −
1 = 6143) where the cosmological signal becomes negligible with
respect to shot noise. We find excellent agreement of our noise es-
timator and the one measured on the real density map. Moreover,
we validate this process by fitting the measured spectra with a free

15This can be intuited by noting that observing two galaxies with weight 1
as more information that observing one galaxy with weight two. In Ho et al.
(2012), this was dealt with by adding an additive free term.

additive constant as in Ho et al. (2012), found to be consistent with
zero, within 1σ error bars.

Our estimator thus reads

ˆ̃CAB
� = 1

2� + 1

m=+�∑
m=−�

Ã�mB̃∗
�m − δAB

1

Nsim

Nsim∑
i=1

ˆ̃NA,i
� , (22)

where ˆ̃NA,i
� is the estimated pseudo-noise spectrum of simulation

number i. The pseudo spectra used in this work are shown in Fig. 4.

4.1.2 Covariance matrix and likelihood

The covariance matrix of the pseudo spectra used in this work
assumes that the density field is Gaussian for the scales exploited
in the analysis. It is computed using an extension of Efstathiou’s
symmetrization approximation (Efstathiou 2004) following Brown
et al. (2005) and is given by

Cov
(
C̃AB

� , C̃CD
�′

) =
√

DAD
� DAD

�′ DBC
� DBC

�′ XABCD
��′

+
√

DAC
� DAC

�′ DBD
� DBD

�′ YABCD
��′ (23)

with

DAB
� =

{
CAB

� if A �= B

CAA
� + NA

� if A = B
, (24)
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5394 C. Doux et al.

Figure 5. Full covariance matrix (normalized to unit diagonal) of the CMB
lensing-LSS correlations computed from equation (23) in symmetric loga-
rithmic scale. It is divided in blocks corresponding to the six angular spectra:
κ , L, C, and Q correspond to respectively κCMB, LOWZ, CMASS, and QSO.
Note the (small) numerical noise in the variance blocks of the cross power
spectra from the X/Y matrices. Only the upper part is displayed. The white
blocks in the upper parts correspond to non-correlated spectra.

where CAB
� and NA

� are the full-sky theoretical and noise spectra.
Xabcd

��′ and Yabcd
��′ are two matrices depending only on the masks

of observables A, B, C, D, determined to arbitrary precision by a
Monte Carlo (MC) simulation (see Section B for more details). The
covariance matrix (estimated for a fiducial cosmology) is shown in
Fig. 5.

A Gaussian likelihood is used for the stacked pseudo spectra
vector

L
(

C̃
obs
� |bg, �cosmo

)
= 1

(2π )n/2|Cov|1/2 e−χ2/2, (25)

where

χ2 =
(

C̃
obs − C̃

th
)T

[Cov]−1
(

C̃
obs − C̃

th
)
, (26)

C̃
obs

is the stacked vector of observed pseudo spectra (see Fig. 4)
and C̃

th
is the stacked vector of theoretical pseudo spectra computed

from the Limber approximation (see equation 4) and multiplied
by the mixing matrices. The covariance matrix Cov is that of the
stacked vector as defined in equation (23) and is shown in Fig. 5.

4.2 Validation

In this section, we perform validation tests for the pseudo spectrum
estimator, the covariance matrix, and the statistical pipeline. In order
to validate the pseudo spectrum estimator and the semi-analytical
expression of the covariance matrix given in equation (23), we
generate 1000 sets of four correlated full-sky maps with appro-
priate auto and cross spectra (for {LOWZ,CMASS,QSO, κCMB})
computed using equation (4), using the synfast function of
Healpy16 following a procedure similar to Bianchini et al. (2015)
and Nicola et al. (2016). These maps are then masked and their

16synfast generates independent identically distributed random normal
variables and makes linear combinations of these variables to generate Gaus-
sian distributed spherical Fourier coefficients a�m with appropriate covari-
ances.

Figure 6. Validation of the pseudo spectrum estimator: the upper plot shows
in solid line the theoretical pseudo spectra, computed using full-sky spec-
tra and mixing matrices as in equation (11). Boxes show the mean of the
simulated pseudo spectra and its spread for 1000 realizations, binned for
visualization. The lower plot shows the relative error. All spectra are con-
sistent with the theoretical expectations in the multipole range used for this
work.

pseudo spectra are compared to the analytical expected value from
equation (11), as shown in Fig. 6. In order to validate the covariance
matrix, a similar set of full-sky maps is then added realistic noise:
for each lensing convergence map, we add an uncorrelated Gaus-
sian noise with spectrum Nκ

� given by the approximate spectrum
delivered by the Planck Legacy Archive, which is precise enough
for the covariance validation. For each galaxy density map, we also
need to simulate Poisson sampling. To do so, we generate a map
where the value in pixel p is a Poisson random variable of mean λp,
i.e.

np ∼ Poisson
(
λp

)
with λp = N

(
1 + δp

)
, (27)

where δp is the simulated overdensity at pixel p and N is the mean
number of galaxies per pixel (different for the three samples). A
reconstructed density map is then built using equation (17), which
now incorporates Poisson shot-noise. These full-sky maps are then
masked and their pseudo spectra are evaluated. The empirical co-
variance of the sets of pseudo spectra is finally computed and com-
pared to the semi-analytical covariance we use throughout this anal-
ysis. The result in Fig. 7 shows good agreement and validates the
estimator and the simulation of the matrices X and Y (that were
computed using generic spectra; see Section B).

The statistical pipeline is validated by performing a Monte Carlo
analysis similar to the one performed in Penna-Lima, Makler &
Wuensche (2014). Specifically, we want to check if the estimated
parameters are unbiased. For that purpose, given the adopted fidu-
cial model, we use the likelihood as the probability distribution of
the pseudo spectra C̃AB

� to generate random samples (i.e. sets of

stacked vectors C̃
obs

). For each sample, we fit all parameters to be
tested, thus building a collection {θ i} of best-fitting values for these
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Figure 7. Validation of the covariance matrix. On the left-hand panel, the covariance matrix used in the analysis from equation (23), denoted CovX/Y; on
the middle panel, the empirical covariance matrix of 1000 simulated stacked pseudo spectra, denoted CovMC. Both have been normalized by the diagonal
elements of CovX/Y, therefore the diagonal is 1 by construction on the left-hand panel, and the fact that it is very close to 1 on the middle panel proves the
agreement between the two estimates. Off-diagonal elements are polluted on CovMC by numerical noise (which is one order of magnitude smaller than the
diagonal elements and would reduce with more simulations). On the right-hand panel, the absolute difference between the two estimates of the covariance
matrix (non-normalized) is shown, element-wise divided by the standard deviation of CovMC (obtained from bootstrapping the simulated pseudo spectra). Note
the different colour scale of the right-hand panel: the deviation is at most of order 1 σ , showing good agreement between our two estimates and validating
equation (23).

Figure 8. Statistical pipeline validation with Monte Carlo simulation: re-
alizations of the pseudo spectra are drawn from the likelihood L and best-
fitting parameters θ = (ωc, ln 1010As, bCMASS) are computed. The relative
error on the mean values of best-fitting parameters θn as a function of the
number of realizations n is shown here. The dotted lines show the 0.1 per cent
requirement for this test, reached after 4146 realizations. The variance (dis-
played by the coloured bands) decreases as 1/

√
n while the mean values

converge towards their input values, demonstrating the internal consistency
of the statistical pipeline. Note however the very small deviation on ωc,
within the error requirement, but in accordance with the fact that the maxi-
mum likelihood estimator is consistent only asymptotically unbiased.

parameters. At step n, the means θn = ∑n

i=1 θ i/n and standard de-
viations of the collection of best-fitting values are computed. The
largest relative error (LRE) over parameter means is computed and
we repeat the process, adding more samples, until the LRE has
reached a level of 0.1 per cent and check that the fiducial values
are within the error bars. For this test, we only use one sample
of galaxies with the redshift distribution of the CMASS sample and
generate samples of C̃

κCMB×κCMB
� , C̃

κCMB×δCMASS

� , and C̃
δCMASS×δCMASS

� .
Results of this test are plotted in Figs 8 and 9, showing respectively
the evolution of the mean values of the best-fitting parameters θn

as a function of the number of realizations n and the distribution of
the best-fitting parameters for those same realizations. They con-

Figure 9. Same test as Fig. 8, now showing the distribution of best-fitting
parameters for 4146 realizations. The ellipses show the 0.5σ , 1σ , 1.5σ , and
2σ contours and the blue lines show the input values of the parameters.

firm that the parameters’ estimators are unbiased at least at the
0.1 per cent level.

4.3 Null tests

We present in this section null tests that were performed to exclude
potential systematic errors related to the masks and selection of the
spectroscopic tracers.

In order to assess potential leakage of power in the cross spectra
due to the masking, we cross-correlate the 100 simulated recon-
structed lensing maps of the Planck Legacy Archive with the ob-
served density maps of the three galaxy samples, and then correlate
the observed lensing map with 100 simulated galaxy maps. This
procedure removes cosmological angular correlation, and what cor-
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Figure 10. Null test for residual correlation. The top panel shows the
mean cross-pseudo spectrum between simulated lensing maps and the real
galaxy/quasar density maps, the middle panel shows the mean cross-pseudo
spectrum between the real lensing map and simulated galaxy/quasar den-
sity maps, and the bottom panel shows the cross-pseudo spectra between the
tracers. The cross-correlations with simulated maps are consistent with zero,
showing no leakage of power from the masks, while the cross-correlation of
the tracers density show marginal correlation, at worst one order of magni-
tude lower than the autocorrelation signals.

relation remains will be linked to the masks themselves. We find
that all results are consistent with no correlation, excluding strong
contamination from masking. We also measure the cross spectra be-
tween the galaxy and quasars sample and find marginal correlations,
well below the auto-correlation signals.

Variable observational conditions during the SDSS photometric
survey could potentially result in non-uniform selection functions
of the galaxy and quasar samples, and introduce artificial power
in the auto spectra at large scales. In order to exclude dramatic
power leakage, we constructed maps of resolution Nside = 128 of
the seeing, sky flux, extinction (for the g, r, and i bands) and air mass
of the photometric observations that were used to select galaxies
and quasars in the spectroscopic catalogues,17 as well as a map
of the stellar density using the same cuts as in Ross et al. (2017).
We then verify that the cross power spectra with the density maps
(built in Section 3.2.3) are consistent with a null value. To do so,
we use the covariance matrix of the pseudo cross spectra given
in equation (23), taking advantage of the fact that the masks are

17To do so, we made use of the CasJob service of the SDSS SkyServer, at
http://skyserver.sdss.org/casjobs/.

Figure 11. Null test of photometric systematics contamination: normalised
large-scale cross spectra of photometry-related measurements with the den-
sity of LOWZ galaxies. They are statistically consistent with zero, with a
small anti-correlation with stellar density. For the seeing, sky flux and ex-
tinction, we repeated the measurement in the g, r and i bands and found
very similar results (only the g band measurement is shown for clarity). The
maps of these observables are shown on the right in equatorial coordinates
where the north and south galactic caps of the SDSS survey can be seen.
The χ2 statistics for these cross spectra are, respectively, 215, 192, 204, 216,
and 235 for 192 degrees of freedom (0 < � ≤ 192) for the systematics maps
shown on the right, excluding a large contamination.

Figure 12. Same as Fig. 11 for the CMASS galaxies. The χ2 statistics are,
respectively, 218, 178, 204, 194, and 251.

the same, such that the covariance matrix of reduced pseudo cross
spectra, defined as

ρ̃� ≡ C̃
syst×δg

�√
D̃

δg×δg

� D̃
syst×syst
�

, (28)

is approximated by

Cov (ρ̃�, ρ̃�) ≈ 1

f 2
sky(2�′ + 1)

M
gg

��′ (29)

where M
gg

��′ is the mixing matrix associated with the masks of the
LOWZ, CMASS, and QSO samples, and D̃� denotes the pseudo auto
power spectrum including noise. Here we have approximated the
ratio of full-sky to partial sky spectra as D̃AA

� ≈ f A
skyD

AA
� and have
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neglected the variance18 of
√

D̃
δg×δg

� in the denominator in equa-
tion (28) since it is measured at high signal-to-noise ratio (which,
because of cosmic variance, is a O(1/

√
�) approximation further

tamed by the square root). Figs 11–13 show the measured cross
power spectra C̃

syst×δg

� for multipoles 0 < � ≤ 192. χ2 statistics
are measured (values are given in the legends of the figures) and
consistent with no correlation,19 with no discernable trend across
multipoles. From these tests, we conclude that photometric system-
atics do not strongly correlate with the overdensity maps.

5 A NA LY SES AND RESULTS

5.1 Cosmological model

Our base model is the standard �CDM model with flat spatial
sections (hence 
k = 0) and a DE component with equation of state
w = −1. The base parameters are the present-day baryon and cold
dark matter densities, ωb ≡ 
bh2 and ωc ≡ 
ch2, respectively –
where 
i = ρ i/ρc is the ratio of the component’s energy density
to the critical energy density ρc–, the Hubble constant today H0 =
100 h km s−1 Mpc

−1
, the redshift of reionization zre, the logarithm of

the primordial curvature ζ dimensionless power spectrum ln 1010As

and its tilt ns such that

Pζ (k) = As

(
k

k0

)ns−1

, (30)

with the pivot scale k0 = 0.05 Mpc−1. We include massive neutri-
nos, parametrized by the effective number of neutrinos in the rel-
ativistic limit Neff = 3.046 (taking into account non-instantaneous
decoupling), an effective temperature Tν/Tγ = 0.716 11, where Tγ

is the photon temperature (slightly departing from (4/11)1/3 to take
into account neutrino heating from electron/positron annihilation;
see Lesgourgues et al. 2009), and using one massive neutrino of
mass mν = 0.06 eV and two massless neutrinos, consistent with
the Planck base �CDM model. The linear matter power spec-
trum Pm(k, z) and the CMB temperature power spectrum CT T

� are
computed using the Cosmic Linear Anisotropy Solving System
(CLASS) as a backend to NumCosmo. The non-linear matter power
spectrum is computed using a halofit prescription (Smith et al.
2003) implemented inNumCosmo, with parameters from Takahashi
et al. (2012), modified to take into account neutrinos as in CLASS.
Reionization is modelled in a CAMB-like fashion (Lewis, Challi-
nor & Lasenby 2000) and parametrized by the mid-point zre, fixed
width �zre = 0.5, and includes Helium reionization at a fixed red-
shift zHe

re = 3.5. Recombination is computed within CLASS and Big
Bang nucleosynthesis is computed with PArthENoPE20 (Pisanti
et al. 2008).

From the constraints that we will obtain in our analyses, we will
also estimate the total matter density parameter21 
m = 
b + 
c

+ 
ν , the optical depth to the last scattering surface τ and the
variance of the linear matter density fluctuations σ 2

8 in spheres of

18Note that we consider here the covariance over cosmological realizations
at fixed realization of the observational systematics.
19The stellar density shows significant anticorrelation with the quasar den-
sity, but only for the smallest multipoles that we discard. Above � > 20, it
is consistent with zero.
20http://parthenope.na.infn.it/
21The DE density parameter today is 
� ≈ 1 − 
m since we consider only
flat space sections (neglecting radiation).

Figure 13. Same as Fig. 11 for the quasar sample. The χ2 statistics are,
respectively, 207, 211, 227, 241, and 295.

radius R = 8 h−1 Mpc extrapolated to z = 0,

σ 2
8 =

∫
dk

k2

2π2
Pm(k, z = 0) |W (k, R)|2 , (31)

where the top-hat window function is W(k, R) = 3j1(kR)/kR and the
matter power spectrum is computed from linear theory.

5.2 Statistical analysis

In this section, we describe our Bayesian statistical analysis and
present constraints on cosmological parameters and BOSS spectro-
scopic tracers’ biases.

We first apply the MCMC approach using only CMB lensing-
LSS correlations data – the set of the six auto and cross spectra of
CMB lensing and BOSS galaxy and quasar overdensities, as shown
in Fig. 4 – and varying only a subset of cosmological parameters
in order to assess the constraining power of these. In particular, we
also consider different combinations of the auto and cross spectra to
measure the effects on the parameter constraints provided by these
probes. Then, we add CMB temperature information and obtain
constraints on the �CDM model and extensions including the total
mass of neutrinos �mν – that impacts small-scale structure forma-
tion – and the DE equation of state w – that impacts the expansion
in the low redshift Universe.

We perform MCMC analyses using an ensemble sampler22 with
many walkers (32–1000), moving their positions in the parameter
space as an ensemble via a stretch move scheme (Goodman & Weare
2010) implemented in NumCosmo. We monitored the convergence
of the chains using three numerical tools, namely the Multivariate
Potential Scale Reduction Factor (MPSRF; Gelman & Rubin 1992;
Brooks & Gelman 2012), the Heidelberger-Welch test (Heidelberger
& Welch 1981, 1983), and the Effective Sample Size (ESS); see
Section E for more details.

These diagnostics can fail in different situations. For this rea-
son, we also performed three different visual inspections for each
parameter:

(i) the parameter trace plot, i.e. the value of the parameter for a
given walker versus iteration time.

22Some authors refer to ensemble samplers as population Monte Carlo.
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(ii) the ensemble distribution trace plot, that is, the empirical en-
semble distribution given by the walkers’ positions versus iteration
time. This allows us to monitor the evolution of the ensemble mean
and variance.

(iii) the total mean versus the cumulative sum of the ensemble
means: if the chain has reached convergence, the difference (scaled
by the spectral density at null frequency) is distributed as a brownian
bridge, the L2 norm of which is used in the Schruben test.

For all MCMCs, we ran them until all the relative errors of the
means were smaller than 10−2; at this point, we applied all the tests
above, and if the chains failed some of them, we continued the run
until all tests were satisfied.

5.2.1 Constraints on σ 8 and 
m from CMB lensing–LSS
correlations only

Data from CMB lensing and spectroscopic tracers of matter alone
cannot efficiently constrain all cosmological parameters. However,
we want to highlight the cosmological information carried by these
probes. To do so, we perform several MCMC analyses considering a
subset of free cosmological parameters. These are only illustrative in
the sense that the posterior distribution of cosmological parameters
will be shrunk from fixing some others.

The theoretical spectra have different dependences on the cos-
mological parameters and galaxy/quasar biases. The most explicit
dependencies of the angular spectra C̃� are on the power spectrum
amplitude (As or σ 8), the matter density parameter 
m and the
galaxy/quasar biases (see the kernels in Section 2.1):

Cκκ
� ∝ 
2

mAs (32)

C
κδg

� ∝ 
mbgAs (33)

C
δgδg

� ∝ b2
gAs. (34)

This system is closed, i.e. in principle, comparing the various auto
and cross spectra should allow for a non-degenerate estimation of
the parameters.

Therefore, we run MCMCs freeing ωc, ln 1010As and
the galaxy/quasar biases, and fixing all other cosmologi-
cal parameters. Their fiducial values are from Planck 2015
‘TT,TE,EE+lowP+lensing+ext’ best fits (Planck Collaboration XIII
2016e). We assume flat prior distributions over wide ranges (larger
than the sampled ranges). In order to distinguish and quantify the
information contained in the various measured auto and cross spec-
tra, we try different combinations. That is, we run an MCMC
with the full data set (‘κκ+κδg+δgδg’), and then repeat without
the cross spectra (‘κκ+δgδg’), without the CMB lensing auto spec-
trum (‘κδg+δgδg’) and without the galaxy auto spectra (‘κκ+κδg’).
We run these chains with 100 walkers to ensure a good mixing.
Their MPSRFs are below 1.02 and the correlation lengths are of
order 20–40, varying amongst parameters.

The sampled posterior distributions of these parameters are
shown in Fig. 14 for the full data set and the three subsets aforemen-
tioned. We note that the ‘κδg+δgδg’ and ‘κκ+κδg’ subsets, domi-
nated by respectively galaxy clustering and CMB lensing infor-
mation, provide complementary information, since the correlations
between the parameters, except those in the (bLOWZ, bCMASS) plane,
present different alignments (see the blue and yellow confidence
regions in Fig. 14). Therefore, the constraints on the parameters are
greatly improved when combining both auto spectra, ‘κκ+δgδg’.
Apart from the constraints on bLOWZ, bCMASS, which are already

strongly determined by galaxy density auto spectra, the additional
information contained in the cross spectra narrows the distribution,
as can be observed in the (ln 1010As, ωc) plane by comparing the
confidence regions for ‘κκ+δgδg’ (in green) with ‘κκ+κδg+δgδg’
(in red). The addition of the cross spectra decreases the statistical
error by 10 per cent for ln 1010As and 20 per cent for ωc, and slightly
shifts the best fits (by less than 1σ ). This plane is translated into the
(σ 8, 
m) plane in Fig. 15, where the degeneracy breaking expected
from the joint analysis is highlighted.

5.2.2 Cosmological constraints from the joint analysis of Planck
and BOSS data

In this section, we carry out the analysis combining CMB temper-
ature and the joint likelihood of CMB lensing and galaxy/quasar
densities used in the previous section (that is all six power spectra
of Fig. 4) to derive cosmological constraints. First, we constrain
the 6-parameter �CDM model (with parameters ωb, ωc, H0, zre,
ln 1010As and ns) and compare constraints from the full joint analy-
sis (‘Planck TT + lensing ⊗ BOSS tracers’) with that derived from
CMB temperature anisotropies only (‘Planck TT’) or CMB temper-
ature and lensing (‘Planck TT + lensing’). For the joint analysis, we
will also consider two cuts as mentioned in Section 3.3.

Note that we neglect the correlation between CMB temperature
and the matter density at later times (either baryonic matter in
galaxies and quasars or dark matter weighted by CMB lensing), i.e.
we neglect the late ISW effect, as it is not yet detected with a strong
significance (Planck Collaboration XXI 2016g; Nicola et al. 2016),
and we discuss possible consequences in Section 5.3. In practice,
this means that we approximate the total likelihood by the product of
the CMB temperature and CMB lensing-LSS correlations likelihood
functions.

We use the Planck likelihood codes Plik and Commander
(Planck Collaboration XI 2016d), respectively, for high and low
multipoles of the temperature-only power spectrum CT T

� . The like-
lihood codes introduce 15 additional nuisance parameters related
to foreground and instrument models (ACIB

217 , ξ tSZ × CIB, AtSZ, APS
100,

APS
143, APS

143×217, APS
217, AkSZ, AdustT T

100 , AdustT T
143 , AdustT T

143×217, AdustT T
217 , c100,

c217 and ycal; see Planck Collaboration XI 2016d). We use the profile
likelihood to speed up our MCMC analyses, subfitting the nuisance
parameters for each set of cosmological parameters. We describe
this methodology in Section C, and also show that it does not affect
the results on cosmological parameters.

We use flat, large priors on all cosmological parameters and
tracer biases, common to all MCMC runs. The lower and upper
limits are given in Table 1, together with constraints derived from
the (optimistic) joint analysis.

5.2.2.1 Constraints on �CDM Fig. 16 shows the constraints on the
base �CDM model’s parameters for the three aforementioned data
combinations. When using CMB TT only, we find parameter con-
straints that are in perfect agreement with the Planck analysis.23 The
strong degeneracy observed between the power spectrum amplitude
As and the reionization redshift zre corresponds to the amplitude of
the power spectrum of CMB temperature anisotropies, which is pro-
portional to Ase−2τ where τ is the optical depth to the last scattering
surface, strongly dependent on reionization history. Adding CMB

23The detailed results of the Planck MCMC analyses are avail-
able here: https://wiki.cosmos.esa.int/planckpla2015/images/f/f7/Baseline
params table 2015 limit68.pdf.
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Figure 14. Posterior distribution on a selection of cosmological parameters (ωc and As) and tracer clustering biases from the ‘CMB lensing⊗LSS’ data set (see
Fig. 4). Other cosmological parameters (H0, ωb, ns, and zre) are fixed at Planck 2015 ‘TT,TE,EE+lowP+lensing+ext’ best-fitting values. The two-dimensional
projections show the 68 per cent and 95 per cent confidence levels. The (ln 1010As, ωc) plane illustrates the degeneracy breaking and the confidence region
shrinkage due to the addition of the cross spectra (compare the red and green contours). The integral of the histograms is normalized to unity, therefore in
the approximation of Gaussian distributions, the maxima of the histograms are inversely proportional to the standard deviation of the parameters, allowing to
directly read the improvement of the constraints. Note that the quasar bias is not fitted for the subset including only auto spectra (‘κκ + δgδg’).

lensing drives As and zre towards lower values along this degeneracy
with a shift of about 1σ for each parameter as evinced by the one-
and two-dimensional projection of the posterior distributions. Fi-
nally, adding information of LSS tracers (both the auto-correlations
and cross-correlations with CMB lensing) provides only slightly
smaller contours for these parameters and, therefore, they do not
significantly help in breaking this degeneracy. We find no signif-
icant improvement for τ or σ 8, although it is consistent with the

constraints from CMB lensing. In the (σ 8, 
m) plane (see Fig. 17),
we observe that early Universe data favors bigger values of σ 8 than
the late one, as repeatedly reported in the literature (Hildebrandt
et al. 2017; Planck Collaboration XXIV 2016i). Whether this is
indication of new physics or a systematics artefact is beyond the
scope of this work, but it might be an important issue in the future.

Nonetheless, there is an improvement of order 20 per cent on
the measurements of H0 and ωc for both the optimistic and con-
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Figure 15. Confidence regions for σ 8 and 
m corresponding to the distri-
butions sampled by the ensemble sampler MCMC algorithm for the CMB
lensing-LSS correlations data set only, with the other cosmological pa-
rameters fixed at Planck 2015 ‘TT,TE,EE+lowP+lensing+ext’, and various
subsets of the data set. The inner solid (outer dashed) contours give the
68 per cent (95 per cent) confidence levels. CMB lensing and galaxy densi-
ties show different degeneracies that are partially broken by combining the
observations. Coloured points are samples from the full data set chains that
show how σ 8, 
m, and galaxy biases are degenerated.

servative cuts, and the total volume in parameter space is notably
reduced. This can be quantified in the approximation of Gaussian
posteriors by computing a figure of merit FoM ≡ |Cov(�cosmo)|−1/2,
where Cov(�cosmo) is the empirical covariance matrix of cosmolog-
ical parameters. Relative to the CMB TT only posterior, adding
CMB lensing increases the FoM by a factor 2.0, and the full joint
analysis increases the FoM by a factor 2.9. We find a best-fit of
H0 = 68.8 km s−1, Mpc−1, slightly higher than CMB temperature
alone – albeit still lower than distance measurements from super-
novae (Riess et al. 2016) or time delays in strong lensing (Bonvin
et al. 2017) – and ωc = 0.117 ± 0.002 as the degeneracy between
As and ωc is broken by the lensing – LSS correlations (see Fig. 14).
This results in a constraint on the matter density parameter 
m =
0.296 ± 0.011. Additionally, we obtain strong constraints on the
biases of the galaxy samples, respectively

bLOWZ = 1.837 ± 0.033
bCMASS = 2.086 ± 0.032.

(35)

These 4 per cent constraints are in general agreement with previous
measurements using angular power spectra (Ho et al. 2012), which
have the advantage of being model-independent in the sense that es-
timating angular power spectra C̃� does not require any assumption
on cosmology since we don’t measure distances. Moreover, all the
cosmological parameters of the �CDM model are fitted alongside.
Note, however, that our modelling assumes a constant bias that can
be interpreted as a redshift- and scale-averaged bias, when other
analyses exploring the non-linear regime used a scale-dependent
bias (in the form of a Taylor expansion, e.g. in Gil-Marı́n et al.
2017) or simply more redshift bins. Interestingly, the analysis also
shows significant correlations between the biases and cosmological
parameters, in particular with ωc, H0, and As. If one considers biases
as effective parameters encoding structure formation and clustering
of galaxies, these correlations can shed light on the astrophysical
and cosmological processes governing the formation of such struc-
tures. Finally, we also obtain a broad constraint on the bias of the
uniform sample of quasars from the cross-correlation with CMB

lensing

bQSO = 2.20 ± 0.44. (36)

This value is in tension with other measurements (White et al.
2012; DiPompeo et al. 2015; Laurent et al. 2016, 2017) that found
a bias of order 3–4 (although they did assume a cosmology), but in
agreement with Alonso et al. (2017) that also uses the cross angular
power spectrum. We found no difference when fitting for this bias
when using data from only the northern or southern galactic caps,
excluding a possible strong asymmetry and contamination of higher
multipoles. We note a surprising trough in the C̃

κCMB×QSO
� cross

spectrum (see Fig. 4) around � ∼ 400 that we could not explain.
However, this bias directly depends on the amplitude of lensing that
may be underestimated (Planck Collaboration XVII 2014).

Finally, we observe that both cuts yield very similar results for
cosmological parameters, with little improvement from the opti-
mistic cut for the �CDM model (which can arise from small ten-
sions between data sets). The conservative cut yields lower cluster-
ing biases for LOWZ and CMASS galaxies, while remaining within
1σ of the optimistic cut (that includes more non-linear scales).

5.2.2.2 Constraints on the total mass of neutrinos �mν and the
dark energy equation of state tex200 w In the next set of MCMCs,
we additionally sample the total mass of neutrinos �mν (with one
massive and two massless neutrinos) or the DE equation of state
w (where w is constant over time) separately and compare the
performance of the joint analysis in these extended models.

In the first case, we find that the joint analysis yields
an upper bound on the total mass of neutrinos of
�mν < 0.28 eV [68 per cent] (< 0.39 eV [95 per cent]) with the
optimistic cut, dividing the higher bound by a factor of 2 with
respect to the constraint from CMB TT alone (see Fig. 18). We do
not detect a total neutrino mass significantly different from 0, but the
best fit we obtain around m ∼ 0.15 eV is in agreement with lower
bounds around 0.05 eV derived from neutrino oscillations (Olive
2014), and in agreement with cosmological upper bounds around
0.12 eV, e.g. that derived from the combination of CMB, either with
the Lyman-α forest power spectrum (Palanque-Delabrouille 2015)
or with BAO measurement (Vagnozzi et al. 2017). However, the
joint analysis with the conservative cut does not improve the up-
per bound when compared to the ‘Planck TT + lensing’ case. As
shown in Fig. 19, the galaxy auto power spectra are sensitive to the
total mass of neutrinos as they can probe relatively small scales at
low redshift, where massive neutrinos tend to smooth out density
fluctuations. Therefore, the improved constraint with the optimistic
cut is likely to be due to small scale contributions. Moreover, this
also means that the total mass of neutrinos should be positively cor-
related with galaxy biases, which is indeed observed in the lower
panels of Fig. 18. We also observe that adding LSS information
significantly improves the constraints on the other cosmological
parameters in this extended model, for both the conservative and
optimistic cuts. Because of the anticorrelation between H0 and the
total mass of neutrinos, the joint analysis favours a higher expan-
sion rate H0 = 67.6+1.3

−1.4 km s−1, Mpc−1 (optimistic case) than CMB
data alone. It also noticeably shifts the posterior distributions for
zre and As towards lower values, resulting in a lower value of the
reionization optical depth τ = 0.088 ± 0.020 (though still higher
than CMB polarization).

In the second case, we release w, the sum of the neutrino masses
being fixed to �mν = 0.06 eV. CMB temperature anisotropies are
only very weakly sensitive to DE and CMB lensing probes the Uni-
verse at redshift z ∼ 2 where matter is still dominating. Therefore
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Table 1. Cosmological constraints from the full joint analysis of CMB temperature, CMB lensing and BOSS spectroscopic tracers with the optimistic cut (see
Section 3.3). We test four different cosmological models and use the same flat priors in all cases. Constraints on the tracers’ biases are also given. The last
three rows give constraints on the derived parameters 
m, σ 8, and τ . This table gives the median and asymmetric 68% error bars.

Parameter [unit] �CDM �CDM + �mν wCDM wCDM + �mν Prior (flat)

H0 [km s−1, Mpc−1] 68.77+0.87
−0.85 67.6+1.3

−1.4 69.7+10.2
−6.3 65.6+6.7

−4.8 [50,100]

ωb

(
225.1+1.8

−1.9

)
× 10−4 (224.6 ± 1.8) × 10−4 (224.8 ± 1.9) × 10−4 (224.8 ± 1.9) × 10−4 [0.01,0.03]

ωc (116.7 ± 1.9) × 10−3 (117.2 ± 1.9) × 10−3 (117.0 ± 2.2) × 10−3
(

116.8+2.0
−2.1

)
× 10−3 [0.05,0.2]

ln 1010As 3.092+0.036
−0.034 3.104+0.038

−0.036 3.085+0.050
−0.049 3.119+0.047

−0.046 [2.5,3.5]

ns

(
976.2+5.0

−5.1

)
× 10−3

(
975.0+4.8

−5.2

)
× 10−3

(
975.3+5.8

−5.6

)
× 10−3

(
976.0+5.6

−5.5

)
× 10−3 [0.8,1.1]

zre 10.2+1.6
−1.7 10.8 ± 1.7 9.9+2.3

−2.6 11.5+2.0
−2.2 [0,20]

�mν [eV] – 0.16+0.12
−0.10 – 0.17 ± 0.11 [0,10]

w – – −1.04+0.21
−0.32 −0.93+0.16

−0.22 [ − 2, 0]

bLOWZ 1.837+0.034
−0.033 1.880+0.059

−0.051 1.826+0.100
−0.110 1.91+0.10

−0.11 [0,10]

bCMASS 2.086 ± 0.032 2.130+0.058
−0.050 2.083+0.059

−0.055 2.146+0.077
−0.072 [0,10]

bQSO 2.19+0.45
−0.44 2.24+0.46

−0.45 2.21+0.44
−0.43 2.24 ± 0.46 [0,10]


m 0.296 ± 0.011 0.309+0.018
−0.015 0.288+0.058

−0.068 0.327+0.054
−0.058 –

σ 8 0.822+0.011
−0.010 0.805+0.019

−0.023 0.830+0.082
−0.055 0.787+0.060

−0.046 –

τ 0.082+0.020
−0.019 0.088 ± 0.020 0.078+0.028

−0.027 0.096+0.026
−0.025 –

these probes do not contain much information on w. We observe
a strong anti-correlation between w and the Hubble parameter H0,
meaning that observations can be matched by a more slowly ex-
panding Universe with a more negative DE pressure. As a con-
sequence, CMB only posteriors hit the upper bound of the prior
set at H0 = 100 km s−1, Mpc−1, thus artificially shrinking cosmo-
logical constraints. Adding LSS information becomes necessary
and rewarding as it breaks the degeneracies of the constraints
on H0, ln 1010As, zre and w. Constraints from the joint analysis
(w = −1.04+0.21

−0.32) are consistent with a cosmological constant (w
= −1), while constraints from CMB favour a lower value of w. We
also note a strong correlation between the biases and w of 79 per cent
and 92 per cent for CMASS and LOWZ respectively.

In summary, in both cases, constraints from the joint analysis are
substantially better for almost all parameters because of its ability
to break degeneracies related to the chosen new parameters. This
result constitutes a forceful encouragement to perform this type of
analysis when data from the next generation of surveys becomes
available.

5.2.2.3 Constraints on w CDM + �mν Finally, in the last set
of MCMC analyses, we release both the total mass of neutrinos
�mν and the DE equation of state w and demonstrate that a joint
analysis of currently available data can constrain the 8-parameter
cosmological model wCDM + �mν , with free parameters H0, ωb,
ωc, ln 1010As, ns, zre, �mν and w. Similarly to the previous cases,
the results are presented on Fig. 20 for the full joint analysis and for
CMB data, allowing for comparison. As expected, CMB tempera-
ture data alone is found unable to constrain this model, and posterior
distributions hit the prior upper bound on H0. However, additional
information extracted by the joint analysis (partially) breaks the w

− H0 degeneracy, enabling for control of all eight cosmological
parameters, plus the biases, i.e. eleven parameters in total. For these
reasons and for readability of the figures, we only show the posterior
distribution from ‘Planck TT + lensing’ data and the joint analysis.

Both the conservative and optimistic cuts in the joint analysis
yield constraints in agreement with the current picture of the �CDM
model as well as those obtained in the previous sections, with a
value of w = −0.93+0.16

−0.22 consistent with a cosmological constant.

The conservative cut does not improve the upper bound on the total
neutrino mass, but it substantially improves constraints on H0 and w

in comparison to those derived from CMB data alone. With the opti-
mistic cut, we obtain a higher bound on the mass of the neutrinos of
�mν < 0.28 eV [68 per cent] (< 0.39 eV [95 per cent]) and a low
value of the Hubble constant of H0 = 65.6+6.7

−4.8 km s−1, Mpc−1, al-
beit with larger error bars with respect to the previous sections. The
correlation coefficient matrix reveals a strong correlation of galaxy
biases with H0, w and �mν (see Fig. 21) indicating that upcoming
surveys will require exquisite control of these biases to get tight
constraints on w and its possible time evolution.

Because of the degeneracy between H0, w and �mν , precision is
lost on 
m, even though the physical density ωm ≡ 
mh2 is well
constrained by CMB TT and CMB lensing even in this model (we
find ωm = 0.1411 ± 0.0023). In the (σ 8, 
m) plane (see Fig. 22),
we obtain constraints that are consistent from the joint analysis
over the models tested here, with increasing degeneracy. We mea-
sure σ 2.7

8 
m = 0.1709 ± 0.0068 from the joint analysis on the 8-
parameter wCDM + �mν model.

5.3 Limits and perspectives

In this section, we discuss assumptions that were made and technical
difficulties that we were able to pinpoint.

We neglected the correlation, generated by the ISW effect, be-
tween the CMB temperature map and the large-scale structure as
traced by CMB lensing or spectroscopic tracers. This correlation
originates in the net energy gain (loss) of photons crossing gravi-
tational potentials wells (hills) evolving, thanks to dark energy. In
principle, this would lead to underestimation of error bars on cos-
mological parameters. However, this correlation is weak and affects
only very large scales � � 40, and it has not been detected with a
strong statistical significance on SDSS galaxies: the signal-to-noise
ratios for the correlation with the LOWZ and CMASS samples re-
ported by the Planck Collaboration is of order 2.4, and that with
the lensing map (corresponding to a temperature bispectrum) is of
order 3.2 (Planck Collaboration XXI 2016g). Therefore, taking this
cross-correlation term into account would not dramatically change
our constraints.
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Figure 16. Constraints on the parameters of the base 6-parameter �CDM model and spectroscopic tracers biases. Confidence regions (68 per cent and
95 per cent levels) are shown, respectively, in blue, green, and red for CMB temperature only, CMB temperature combined with CMB lensing, and the joint
analysis of CMB temperature and the correlations of CMB lensing and LSS tracers. The constraints above the marginal posteriors are for this last data set.

One possible source of systematics in the galaxy-lensing cross-
correlations comes from the tSZ component separation that is re-
quired to produce the lensing map (Planck Collaboration IX 2016b;
Planck Collaboration X 2016c; Planck Collaboration XXII 2016h).
Free electrons in hot galaxy clusters imprint a specific local spectral
distortion on the CMB temperature map. These clusters must be
identified and removed before measuring the spatial distortion due
to gravitational lensing. If these clusters hold some of the galaxies in
the samples we use, this might lead to a systematic underestimation
of the lensing signal in the direction of these galaxies. However, the

SZ decrement from SDSS LRGs is small, as can be seen in table 2
of Hand et al. (2011). Moreover, the residual SZ signal primarily
increases the noise in the lensing map and is unlikely to produce
appreciable bias (see the systematics checks in Madhavacheril et al.
2015).

We now discuss theoretical uncertainties. The first one comes
from the Limber approximation (LoVerde & Afshordi 2008): it
fails at very large scales, the transition scale depending on the width
of the redshift bin considered (Campagne, Neveu & Plaszczynski
2017). In this work, we used very broad redshift bins and discarded
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Figure 17. Constraints on σ 8 and 
m for the 6-parameter base �CDM
model from the combination of CMB temperature and the correlations of
CMB lensing and spectroscopic tracers. The 1σ and 2σ contours are repre-
sented by the solid and dashed lines, respectively. The coloured points show
the degeneracy with H0 and are samples from the ‘CMB TT + CMB lensing
⊗ LSS’ chain.

low multipoles � < 20, so as to be in the safe regime of the approx-
imation. We also did not consider redshift space distortion (RSD)
for the same reasons, as they were shown to be negligible for � �
(Padmanabhan et al. 2007; Alonso et al. 2015) and rapidly decreas-
ing with the width of redshift bins (Saito 2016). To test that RSD
or other large-scale effects were not driving parameter constraints
inconsistently, we performed an MCMC analysis of CMB lensing-
galaxy correlations on a smaller multipole range (100 ≤ � < 400;
see Fig. 23) and found no significant deviation. However, future
surveys aiming at measuring extremely large scales (Alonso & Fer-
reira 2015) will require better modelling, especially for tomographic
studies with thin redshift bins.

In this paper, we used a Gaussian likelihood and a Gaussian
covariance, i.e. we did not incorporate higher order statistics of
the matter density field or the so-called super-sample variance due
to the finite size of the surveyed volume and inaccessible modes
therein (Schaan, Takada & Spergel 2014; Krause & Eifler 2017;
Schaan et al. 2017). At the current level of signal-to-noise ratio,
these simplifications are safe24 but they should be lifted in future
data analysis. One limitation of our method regarding the covari-
ance matrix is that the computation of the X and Y matrices, even if
it needs to be done only once, is numerically expensive since they
grow linearly with the multipole range but as n4/4 with the number
n of different masks, and the estimate remains noisy far from the
diagonal. However, this method has the advantage of naturally tak-
ing care of partial sky coverage, without the need of inverting the
mixing matrix to recover full-sky spectra, necessarily introducing
numerical noise in the data. Devising a method that takes care of
partial sky coverage while incorporating all relevant non-Gaussian
terms will be an important task for future surveys (Lacasa, Lima &
Aguena 2016).

24Super-sample variance, for instance, can introduce correlations between
multipoles of order 10 per cent at z = 0.1 and decreasing with redshift and
multipole number; see Lacasa & Rosenfeld (2016).

Figure 18. Cosmological constraints on two one-parameter extensions of
the base 6-parameter �CDM model used here. On the column labeled
�CDM + �mν , the total mass of the neutrinos �mν (expressed in eV) is
set free and sampled in addition to the six cosmological parameters and
the galaxy and quasar biases, w being fixed to −1. On the column labelled
wCDM, w is set free and the total mass of neutrinos is fixed at its fiducial
value of 0.06 eV. Only the two-dimensional distributions involving �mν or
w are shown, together with marginal posteriors for the other cosmological
parameters (rotated to match the leftmost vertical axes). Both columns use
the same intervals for comparison. The two upmost plots show the marginal
distributions obtained for �mν and w. Colours are the same as in Fig. 16:
blue is for CMB temperature alone, green is for CMB temperature and
lensing, and orange and red are for the joint analysis (conservative and
optimistic data cuts).

Finally, the non-linear power spectrum of the matter density
field suffers from theoretical uncertainties (Baldauf et al. 2016).
Throughout this analysis, we have used a version of the halofit
model that includes the effect of massive neutrinos and predicts the
matter power spectrum past the non-linear transition scale (around
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5404 C. Doux et al.

Figure 19. Theoretical pseudo spectra for different values of the total mass
of neutrinos �mν and w. On the left column, �mν varies from 0 eV (dark
purple) to 0.2 eV (light pink); on the right column, w varies from −1.2
(green) to −0.8 (blue). Data points from Fig. 4 are overlaid in light grey.

knl ∼ 0.1 h Mpc−1). So as to be agnostic, we considered two cuts at
small scales at 0.1 Mpc−1 and 0.15 Mpc−1. The halofit model
reaches percent agreement with simulations at these scales and
we have demonstrated that we recover consistent constraints for
both cuts, with small shifts of best-fitting values for all parameters,
though expectedly tighter in the optimistic case. The scientific gain
from near future surveys in terms of cosmological constraints will
depend on our ability to model these non-linearities. In particular,
the suppression of power due to massive neutrinos (Lesgourgues
& Pastor 2006) and the contribution of baryonic and feedback pro-
cesses (Leauthaud et al. 2017) at these scales will certainly be an
important theoretical issue for future surveys.

6 C O N C L U S I O N

Cosmological experiments carried out in the last few decades have
enabled the construction of the �CDM model. In this picture, cold
dark matter drives the formation of the large-scale structure of the
Universe and dark energy fuels the recent accelerated expansion.
The combination of independent observations, such as the map of
the anisotropies of the CMB, distances of type IA supernovae and
the measurement of the scale of the baryon acoustic oscillations,
have set constraints on the content of the Universe. However, the
analysis of currently available data cannot distinguish between var-
ious models of dark matter and dark energy. Going further and deci-
phering the nature of these components requires better constraints,
and thus, more information. To this end, deep galaxy surveys – such
as LSST, Euclid, and WFIRST – and CMB imagers – such as CMB-
S4 and the Simons Observatory – with wide sky coverage and high
resolution are currently under development. In the coming decade,
they will probe the matter density field with ground-breaking pre-
cision and significantly increase the amount of cosmological infor-
mation. Independent cosmological analyses have a strong potential
to reveal new science, but model comparison will rely on exhausting
the cosmological information held in the measurements of different
cosmic probes and all their cross-correlations. In other words, joint
analyses of these probes are required, thus explaining the recent
intense activity around this subject (see the Introduction section).

In this paper, we have presented a joint analysis of currently
available data combining CMB measurements – both temperature
anisotropies and gravitational lensing – from the Planck satellite
and LSS tracers from the SDSS-III/BOSS spectroscopic survey,
taking advantage of the large areas covered by these surveys and
their large overlap (a requirement for measuring cross-correlations
with a high signal-to-noise ratio). To this end, we developed a gen-
eral framework in NumCosmo to compute and analyse the auto
and cross-correlations between an arbitrary number of cosmologi-
cal probes, which is publicly available. In particular, we applied our
framework to analyse CMB lensing and galaxy clustering at once
by measuring all relevant auto and cross angular power spectra
(shown in Fig. 4). We validated the likelihood and pseudo-spectra
estimators in Sections 4.2 and 4.3. Note that our approach required
few simplifications on the CMB lensing auto power spectrum (as
explained in Section 3.1), but we demonstrate in Section A that
our pipeline yields unchanged cosmological constraints, except for
a small, yet non-negligible, 0.5σ shift in the As − zre degeneracy,
below the level of statistical errors nonetheless. In Section 5.2.1,
we showed how including cross-correlation information – already
present in the data – improves constraints on cosmological parame-
ters and decreases the statistical errors, for example, by 10 per cent
for ln 1010As and 20 per cent for ωc (when other parameters are
fixed). This highlights the fact that ignoring part of the cosmolog-
ical information (in this case, the cross-correlations) could lead to
inaccurate posterior distributions of the parameters.

Next, we included CMB temperature anisotropies information
by adding the likelihood of the CT T

� power spectrum (thus neglect-
ing the small ISW-induced CMB-LSS correlation as discussed in
Section 5.3) and carried out different MCMC analyses to constrain
the base, 6-parameter, flat �CDM model. Finally, we explored con-
straints on the total mass of neutrinos and the DE equation of state,
constraining four different cosmological models (see Figs 16, 18,
and 20). We compared the performance of the joint analysis (using
two different cuts) with analyses using only CMB data. As expected,
constraints from the joint analysis are stronger than those obtained
from CMB data only, in all cases. Because of the sensitivity of
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Cosmological constraints from CMB and LSS 5405

Figure 20. Constraints on the parameters of the wCDM + �mν model and tracer biases.

galaxy clustering and the CMB lensing-galaxy cross-correlations to
�mν and w, we were able to study extended models and constrain
up to eight cosmological parameters at once (i.e. H0, ωb, ωc, As, ns,
zre, �mν , and w), which is impossible with either of the data sets
considered separately.

As a result, we observe the (partial) breaking of several degenera-
cies and significantly better constraints for various parameters, al-
though this depends upon exactly which parameters are constrained
and which are assumed to be fixed. We thus obtained upper limits on
the total mass of neutrinos of 0.28 eV (68 per cent) as a result of its
impact on galaxy clustering at small scales, which is similar to lim-
its obtained with other comparable analyses. It is interesting to note
here that combining CMB and BAO distance measurements cur-
rently yields tighter constraints on the total neutrino mass because

BAO reconstruction includes more k-modes than power spectrum
measurements that exclude non-linear scales (Cuesta et al. 2016;
Vagnozzi et al. 2017). Better modelling of the power spectrum and
clustering biases at these scales is thus key to improve cosmolog-
ical constraints. In addition, galaxy clustering information within
the joint analysis enabled us to obtain constraints on the dark energy
equation of state w, found to be consistent with w = −1. We have
also identified strong correlations between clustering biases and
some cosmological parameters, in particular H0 and w. A downside
is that future surveys will have to measure and marginalize over
these biases with great precision in order to pin down the values of
these parameters and to constrain a possible time dependence of dark
energy. Interestingly, if we used a value of H0 = 72 km s−1, Mpc−1

consistent with distance measurements from type Ia supernovae,
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Figure 21. Correlation coefficient matrix of the wCDM + �mν model’s
parameters and biases from the joint analysis of CMB temperature and the
correlations of CMB lensing and large-scale structure (see the constraints
on Fig. 20). The upper triangle is colour encoded, red (respectively blue)
meaning complete correlation (anticorrelation) between parameters. The
lower triangle is given in percentage, written in red (blue) for positive
(negative) correlation.

Figure 22. Confidence regions for σ 8 and 
m from the joint analysis
(optimistic cut) for the 6-parameter �CDM model and its extensions to the
total mass of neutrinos �mν and the dark energy equation of state w (from
yellow to red). Constraints are compatible with each other across the tested
models, though with increasing degeneracy. The coloured points are samples
from the wCDM + �mν chain. The confidence region obtained from CMB
TT only for the �CDM model is shown in blue for comparison.

then our constraints would favour a value of the DE equation of
state of w ∼ −1.1, i.e. a phantom dark energy, which is disfavoured
by theoretical considerations.

The strength of the cosmological constraints derived here is nat-
urally limited by theoretical uncertainties in the non-linear regime
on the matter power spectrum and linear clustering biases, as dis-
cussed in Section 5.3. To address this issue, we have tested two
different cut-off scales and shown that it results in consistent cos-
mological constraints across all models tested, although small shifts
are expectedly observed. For instance, the higher bound on the total
mass of neutrinos decreases when including smaller scales that are
more strongly impacted by neutrinos. Additionally, we have dis-
cussed in Section 5.3 several other limitations, such as the impact

Figure 23. Comparison between the posterior distributions sampled by
MCMC analysis using the CMB lensing-LSS correlations data set for dif-
ferent multipole ranges: in orange, the constraints resulting from the full
multipole range (20 ≤ � < 500) used in the rest of this work, and in blue
those resulting from a smaller multipole range excluding small and large
scales (100 ≤ � < 400). The distribution is compatible, which means that
if there is a modelling issue either at large scales (e.g. due to the RSD)
or at small scales (e.g. due to uncertainties in the non-linear matter power
spectrum), it does not dramatically affect the constraints on cosmological
parameters.

of the ISW effect, potential contamination of cross power spectra
with CMB lensing by the SZ effect, and the impact of the Limber
approximation and redshift-space distorsions.

In this work, we followed an approach similar to that of Nicola
et al. (2016, 2017) that, however, used photometric data from the
SDSS and DES, combined with geometric probes. Our approach is
based on pseudo spectra with different masks for each observables
and therefore exploits the full observed area for each probe, thus
maximizing the signal-to-noise ratio of power spectra. We used a
semi-analytic, cosmology-dependent covariance matrix that is less
noisy than Monte Carlo estimates, but required the assumption that
the fields we measure are Gaussian distributed. A unified frame-
work that incorporates non-Gaussian terms in the covariance and
handles partial sky coverage remains to be derived. We focused on
spectroscopic observations of galaxies and quasars, insulating us
from uncertainties inherent to photometric redshifts. However, we
did not use galaxy weak lensing measurements (as was done in
Nicola et al. 2016), a powerful probe of dark energy that will be
measured by future deep surveys like LSST, Euclid, and WFIRST.
The trade-off between the precision of photometric redshifts and
the much larger number of galaxies combined to this additional
probe will certainly lead to even better results. Combining CMB
lensing, galaxy lensing, and galaxy clustering (both photometric
and spectroscopic) in a fully joint analysis is a promising avenue
for cosmological parameters estimation.

Finally, in this near-future scenario of large amounts of data
and joint analyses, we will be able to study different cosmological
models emerging from different theories of gravity, such as effective
field theories of dark energy (Gleyzes et al. 2016) or non-local
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gravity (Dirian et al. 2016), and hopefully start to distinguish and
rule out some models with strong statistical significance.
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Tréguer J., 2016, Phys. Rev. D, 94, 103506
Driver S. P. et al., 2009, Astron. Geophys., 50, 5.12
Efstathiou G., 2004, MNRAS, 349, 603
Eftekharzadeh S. et al., 2015, MNRAS, 453, 2779
Fornengo N., Perotto L., Regis M., Camera S., 2015, ApJ, 802, L1
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APPENDIX A : LENSING AU TO -POWER
SPECTRUM

Throughout this work, we have used the CMB lensing auto-power
spectrum from Planck based on the released reconstructed conver-
gence map, neglecting corrections that were applied in the Planck
cosmological analysis but that are not yet available in a user-friendly
format. Our method is based on pseudo spectra while the Planck
Collaboration used full-sky spectra, making it difficult to quantify
the impact of each correction. Therefore, we compare cosmological
constraints derived from CMB temperature and lensing, using either
the Planck lensing likelihood code or our code based onNumCosmo
using the conservative cut, 40 ≤ � < 400, and the optimistic cut,
20 ≤ � < 500, used throughout the rest of the analysis. We use
the ensemble MCMC sampler of NumCosmo and show constraints
on parameters of the base �CDM model in Fig. A1. We find com-

Figure A1. Comparison of the constraints derived with the Planck lens-
ing likelihood code and data with our approach and likelihood based on
NumCosmo.
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patible constraints for the two codes, with very close maximum
likelihood values, statistical uncertainties, and shifts with respect to
CMB TT alone, except for a 0.5 σ shift along the Ase−2τ degeneracy
with an impact on As and zre (and thus σ 8 and τ ). This demonstrates
that our likelihood code performs very well, but that reconstruction
corrections applied to the estimated lensing power spectrum have a
non-negligible effect, that is however smaller than statistical errors.
We conclude that our constraints on As and zre might be slightly
biased, though at a reasonable level that does not impact our main
conclusions.

APPENDIX B: X / Y MATRICES IN THE
C OVA R I A N C E

TheX andY matrices appearing in equation (23) have the following
analytical expressions (Brown et al. 2005),

XABCD
�1�2

= 1

(2�1 + 1)(2�2 + 1)
×

∑
m1m2

∑
�3m3

∑
�4m4

W A
�1�3m1m3

W
B

�2�3m2m3
W C

�2�4m2m4
W

D

�1�4m1m4

YABCD
�1�2

= 1

(2�1 + 1)(2�2 + 1)
×

∑
m1m2

∑
�3m3

∑
�4m4

W A
�1�3m1m3

W
C

�2�3m2m3
W B

�2�4m2m4
W

D

�1�4m1m4
,

(B1)

where W A
��′mm′ describes the convolution of the mask (W

A

��′mm′ is
its complex conjugate), i.e. if the field A(n̂) has full-sky spherical
harmonics coefficients A�m and pseudo-coefficients Ã�m then

Ã�m =
∑
�′m′

W A
��′mm′A�m. (B2)

These cannot be analytically computed and MC simulations are
therefore required. We take advantage of the fact that equation (23) is
exact if initial full-sky spectra do not depend on � and that they need
not have physically relevant values. The algorithm then proceeds as
follows. First, we generate sets of four correlated maps with generic
constant input auto and cross spectra, which we mask by the four
masks used in our analysis. We then compute the spectra of the
masked maps, thus building a collection of estimated pseudo spectra
{C̃AB,i

� }i where i represents the simulation index. The empirical
covariance of the set of pseudo spectra is finally computed. Knowing
the input spectra, an estimate of XABCD

��′ and YABCD
��′ can be obtained

using equation (23). In the case where A = B or C = D and only
in this case, the terms in the square roots in equation (23) are equal
and XABCD

��′ and YABCD
��′ cannot be distinguished, but for all the other

cases, it requires two sets of simulations to disentangle them.
We estimate the error on the empirical covariance matrices by

bootstrapping the pseudo spectra {C̃AB,i
� }i and require that the ratio

of the norms of the error matrix to that of the empirical covariance
matrix is smaller than 1 per cent, which in our analysis necessitated
more than 200 000 simulations.

In the case where A = B = C = D, these matrices reduce to
symmetrized mixing matrices

XAAAA
��′ = YAAAA

��′ = 1

2�′ + 1
MAA

��′ , (B3)

which allows for comparison and validation of the MC simulations
(see Fig. B1). We find percent-level agreement on the diagonal, with
a decreasing precision when moving further away from the diagonal
as numerical noise (at least four orders of magnitude smaller than
the diagonal elements) starts dominating.

Figure B1. Comparison between the analytically estimated (left-hand
panel) and simulation-estimated (middle panel) Xκκκκ

��′ matrices in loga-
rithmic scale. The absolute difference is shown on the right-hand panel. The
important features are well captured: the precision is better than 2 per cent
on the diagonal and degrades when getting further away from the diagonal.
The middle panel shows that the far off-diagonal terms are dominated by
numerical noise from our MC simulations, but are four orders of magnitudes
smaller than the diagonal terms that are the most important, making it safe
to use in the covariance matrix. The right-hand panel shows the absolute
difference.

APPENDI X C : PRO FI LE LI KELI HOOD

In order to accelerate our MCMC analyses, we choose to use
the profile likelihood instead of the marginal likelihood for the
nuisance parameters. The reason is that this procedure decreases
the dimension of the parameter space and requires less calls to
the Boltzmann code, resulting in an overall faster convergence
of the posterior distribution of the cosmological parameters. In
practice, it amounts to compute the maximum likelihood estima-
tor value of the nuisance parameters Â(θ ) for each set of cosmo-
logical parameters θ given the data (which is fast), and use this
value in the likelihood. The posterior distribution is then given by
Lprofile

(
θ
∣∣CT T

�

) ∝ L
(
CT T

�

∣∣θ , Â(θ)
)
, while the marginal likelihood

is Lmarginal

(
θ
∣∣CT T

�

) ∝ ∫
L
(
CT T

�

∣∣θ , A
)

dA. We demonstrate that it

Figure C1. Comparison between the marginal likelihood (dark blue) and
the profile likelihood (yellow). On the diagonal, the one-dimensional pro-
jections of the posterior distribution for each parameter are shown, with the
vertical lines corresponding to the mean value. For all the parameters, the
difference between the means of the two distributions is much smaller than
the statistical error. The standard deviations are also very close, with at worst
a 10 per cent decrease for for ns and ωb.
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doesn’t affect the results on the cosmological parameters by run-
ning two MCMCs using only the CMB temperature power spectrum
CT T

� , one performing the nuisance parameters subfitting procedure
and the other using the standard marginalization procedure. Fig. C1
shows the posterior distribution in these two cases. The mean value
of each parameter in both runs is shown in the one-dimensional
plots on the diagonal. In all cases, the variation of the mean is much
smaller than the statistical variance, and the standard deviation is
at worst decreased by 15 per cent in the profile likelihood (for ns

and ωb, two parameters that are poorly constrained by the other
observations), with almost no difference for the other parameters.
This indicates that we can use either likelihood indifferently. Since
the profile likelihood method is faster overall, and that we don’t
have other nuisance parameters, we used it for all simulations in
Section 5.2.2.

A P P E N D I X D : TH E NUMCOSMO L I B R A RY

In this section, we provide a short description of the Numerical
Cosmology library (NumCosmo, available on GitHub25; Dias Pinto
Vitenti & Penna-Lima 2014). Apart from the crude data (obser-
vational maps), for which we used some Healpix functions to
generate the observed pseudo-CAB

� values, as mentioned in Sec-
tion 3, all other pieces of the pipeline made use of NumCosmo. For
a complete description, we refer the reader to Vitenti, Penna-Lima
& Doux (2018).
NumCosmo contains a comprehensive set of tools to compute

cosmological observables and to perform statistical analysis. The
library is written in C, but since it uses the GObject framework,26

it is developed in an object-oriented fashion. Additionally, it has
automatic bindings for every language that supports GObject in-
trospection (e.g. Python, Ruby, or Perl).

Physical models are implemented via the abstract class Ncm-
Model. In particular, the �CDM and wCDM models, and all re-
spective relevant functions are implemented in NcHICosmoDE and
child classes (such as NcHICosmoDEXcdm), the primordial power
spectrum is implemented in NcHIPrim, the reionization model in
NcHIReion. Data objects deriving from the abstract class Ncm-
Data encapsulate the observations and implement likelihood func-
tions. A general object for statistical analysis NcmFit is then built
from the data and the model.

We first address the computation of the theoretical angular power
spectrum, CAB

� (see equations 2 and 3) and the likelihood function
equation (25):

(i) NcXCor: abstract class that comprises, among others, the
methods to compute the auto and cross power spectra CAA

� and
CAB

� .
(ii) NcXCorLimberKernel: abstract class of the type

NcmModelNcmModel,27 which defines the methods and general
properties that a kernel WA(z) must implement, for any observable
A. For instance, the computation of WA(z) at a given z and for a
set of cosmological parameters, and the number of multipoles to be
calculated.

25https://numcosmo.github.io/
26https://developer.gnome.org/gobject/stable/
27Being a NcmModel, each implementation of NcXCorLimberKernel
can define a respective set of parameters. For instance, the linear bias, b(z),
in equation (8).

(a) NcXCorLimberKernelCMBLensing: implements the
CMB lensing kernel, WκCMB (z) (equation 6).

(b) NcXCorLimberKernelGal: implements the galaxy ker-
nel, Wg(z) (equation 8).

(iii) NcPowSpecMNL: abstract class for the nonlinear matter
power spectrum. Here we use the halofit approach (Smith
et al. 2003; Takahashi et al. 2012), which we implemented in
the NcPowspecMNLHaloFit class. The linear matter power
spectrum is calculated using NcPowspecMLCBE, i.e. the Num-
Cosmo backend for the Cosmic Linear Anisotropy Solving System
(CLASS) (Lesgourgues & Tram 2011).

(iv) NcDataXCor: this object builds the likelihood given by
equation (25), and it derives from NcmDataGaussCov, i.e., the
object that describes Gaussian-distributed data with non-diagonal
covariance matrix.

Regarding the statistical analyses performed in this work, we
made use of the following NumCosmo tools:

(i) NcmFit: implements various interfaces with best-fitting :
implements various interfaces with best-fit best-fittingfinders28 and
the Nelder-Mead algorithm.

(ii) NcmFitMC: implements the Monte Carlo analysis described
in Section 4.2, using the same best-fitting , using the same best-fit
best-fittingfinder

(iii) NcmFitESMCMC: implements the Ensemble Sampler
Markov Chain Monte Carlo (Goodman & Weare 2010) analysis
used throughout Section 5 of this paper. It requires an initial sampler
NcmMSetTransKern and another sampler to move the walkers
NcmFitESMCMCWalker.

Finally, we used CMB temperature data from Planck:

(i) NcPlanckFICorTT: implements Planck foreground and
instrumental models for TT measurements.

(ii) NcDataPlanckLKL: implements the interface with Planck
’s’s likelihood codes Plik and Commander.

APPENDI X E: MCMC C ONVERGENCE TES TS

In this work, we checked the convergence of the MCMC chains
using three different methods, which we implemented closely fol-
lowing the R package CODA (Plummer et al. 2006). The first is the
Multivariate Potential Scale Reduction Factor (MPSRF; Gelman &
Rubin 1992; Brooks & Gelman 2012). This method requires multi-
ple chains, whose initial values must be overdispersed in compari-
son with the posterior, and quantifies the mixing of the walkers by
comparing the ensemble variance to the per-walker variance. Nev-
ertheless, we do not know a priori the posterior and, for this reason,
we may only guess what an overdispersed distribution would be.

The second method is the Heidelberger–Welch diagnostic test
(Heidelberger & Welch 1981, 1983), which consists in applying the
Schruben stationarity test (Schruben 1982) to subsets of a chain to
obtain one that satisfies the test for a given p-value. Since we are
using an ensemble sampler, we can apply this test to each individual
chain, or, more efficiently, to the ensemble mean of each parameter.
We applied the individual approach only when the Markov Chain
presents convergence problems.

In the third approach, we calculated the autocorrelation time as
proposed by Goodman & Weare (2010). However, in NumCosmo,

28http://ab-initio.mit.edu/nlopt
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instead of estimating the autocorrelation time directly from the au-
tocorrelations, we fit an Auto Regressive (AR) model as in CODA.
In the AR model fitting, we use the bias corrected Akaike Infor-
mation Criterion (AICc) (HURVICH & TSAI 1989) to choose the
best AR order to use for a given parameter in a chosen chain. This
provides a less noisy estimate of the autocorrelation time than the
direct inference from the autocorrelations (see Goodman & Weare
2010). The Effective Sample Size (ESS) is computed using that es-
timated autocorrelation time and provides an equivalent measure of

the effective number of independent points in each chain. Finally,
the variance of the sample mean of the parameters is given by the
empirical variance of the sampled values divided by the ESS.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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