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A new method is proposed, that establishes a one to one correspondance between the whole set of static
axially symmetric vacuum general relativity solutions and a specific class of stationary axially symmetric
scalar-Einstein (Rab ¼ ∂aφ∂bφ) solutions for any mass and angular momentum. The method explicitly
takes advantage of the Kerr metric Ricci flatness. This also results in a class of stationary axially symmetric
vacuum, ie Kerrlike, Brans-Dicke solutions. A particular solution, that is asymptotically flat, is more
closely considered. It converges to Kerr for a vanishing scalar charge, but fails to converge to the Fisher-
Janis-Newman-Winicour solution for a vanishing “rotation parameter.” This solution exhibits a set of
singular points, with a naked subset having a ringlike structure.
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I. INTRODUCTION

Obtaining exact solutions of a relativistic gravity theory
is far from being an easy task, due to the highly nonlinear
character of the involved field equations. The most known
solutions are Schwarzschild, Kerr, and Friedmann-
Lemaitre-Robertson-Walker (FLRW), that solve the gen-
eral relativity (GR) field equation in vacuum for the two
first ones. These three solutions (or family of solutions for
FLRW) are of obvious usefulness in the astronomical
framework. Some other exact GR solutions are known,
that are also very useful for astronomical purposes [1,2,3].
On the other hand, an incredibly huge number of solutions,
the usefulness of which is not obvious a priori, have been
obtained so far [4]. However, despite the nonimmediate
relevance of a solution, its usefulness should not be
underestimated. Indeed, any solution may reveal some
unexpected property of the considered theory. It may also
happen that a solution only later turns out to be of genuine
astronomical relevance: the emergence of the black hole
(BH) concept from the Schwarzschild solution is probably
the most obvious exemple.
Since many attempts to quantify gravity, and/or to unify

gravity with other interactions, return a classical gravita-
tional sector having not a GR, but a scalar-tensor (ST)
structure [5,6,7], Brans-Dicke (BD) and ST gravity theories
are considered as valuable alternatives to GR, despite the
fact that the latter successfully passes solar system tests up
to now [8]. (Let us also point out that many ST theories are
driven to mimic the GR behavior as a consequence of the
cosmic expansion [9,10].) Thence the interest in ST
theories, and specifically in BD, that just involves a

constant parameter ω instead of an arbitrary function
ωðΦÞ. In this context, looking for exact BD/ST solutions
is particularly appropriate to point out relevant qualitative
features with respect to GR. For instance, the spherical
Brans class I solution [11,12] generically exhibits a naked
singularity (NakS) or wormhole structure [13] (see also
[14] for pioneering works on the detailed significance of
the Class I, II, III and IV Brans solutions), such features
being absent from the Schwarzschild GR solution. Besides,
it has been recently shown that a particle orbiting a large ω
Brans class I solution results in an observed (by a far
observer) unbound orbital frequency, depending on how
much the solution is scalarized [15]. One may then suspect
striking qualitative differences in extreme mass ratio
binaries BD/ST gravitational radiation, with respect to
GR, since GR orbital frequencies cannot exceed the
innermost circular orbital value. Nevertheless, let us remind
that under some conditions (mainly regularity, asymptotical
flatness and finite area horizon), vacuum and stationary
BH-like solutions are the same in BD/ST as in GR [16,17].
It is known from long that any vacuum BD solution is

associated to a massless scalar filled GR solution, by the
means of a conformal transformation [18]. Thence seeking
vacuum BD solutions can be reformulated as a scalar-GR
problem. From the Hawking’s theorem [16], it is clear that
any stationary axisymmetric (SAS) vacuum BD solution,
but differing from Kerr, should exhibit a NakS structure,
unless exhibiting some other peculiar feature that allow it to
evade the theorem (like being not asymptotically flat).
A method has been proposed by [19], that allows us to

generate a BD vacuum SAS solution from a GR vacuum
SAS seed one, provided one is able to solve a given
nonlinear PDE system. A class of electrovacuum BD
solutions has been obtained by [20], that generalizes the*Bertrand.Chauvineau@oca.eu
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Majumdar-Papapetrou GR solution. The same authors later
proposed a method that allows us to generate SAS vacuum
BD solutions from SAS vacuum GR ones (and also from
static axisymmetric vacuum BD ones) [21], but the sol-
utions then obtained are generally not asymptotically flat.
The SAS, but only one coordinate dependent, case has been
solved by [22]. The case of ST SAS solutions has been
considered by [23], and explicit solutions are given in a few
case of very specific ST (not BD) theories. Along the same
lines as [19], it is claimed in [24] that any SAS vacuum BD
solution can be obtained by nonlinearly combining any
SAS vacuum GR solution and any vacuum solution of the
Weyl class. A Kerr-type BD solution has been obtained in
[25], that was built in such a way that it reduces to the Kerr
solution in the ω → ∞ limit. Inspired by [20] and [22]
works, a BD BH-like solution is proposed by [26], but this
solution is not asymptotically flat. Motivated by particle
collisions near a Kerr-like BD BH, another nonasymptoti-
cally flat solution is obtained in [27], that is also derived
using the [20] method. Starting from an unusual formu-
lation of the Lewis metric, a two parameters extension of
the method initiated in [21] allowed [28] to derive a BD
version of the Ernst equation. The method is applied to
some examples, but here again, the obtained spacetimes are
generally not asymptotically flat. The matter filled case has
been considered by [29] in self interacting [i.e., with a
potential VðΦÞ] BD, but only static axisymmetric space-
times were considered. Very recently, a way to generate
new solutions starting from known ones has been proposed
by [30]. The technique makes use of a BD symmetry in the
traceless case (gabTab ¼ 0).
It is worth reminding that a scalar-metric was proposed

by [31] as an SAS vacuum BD solution. A conformally
related version is given in [32]. This metric, or its [32] form,
has been used in several papers to characterize physics in a
NakS (versus BH) field [32,33,34,35], and also to suggest
rotating antiscalar solutions as alternatives to Kerr BHs
[36]. However, the [31] scalar-metric is actually not a
vacuum BD solution, as it is explicitly shown in [37] (and
also mentioned in [27]). The reason is that the authors of
[31] applied, without justification, to a BD spherical
vacuum solution (the Brans Class I) the Newman-Janis
(NJ) algorithm [38]. (It was shown in [38] that this
algorithm is an unexpected way to recover Kerr from
Schwarzschild). Let us stress that, even in the GR frame-
work, determining the ability of the NJ algorithm (or some
equivalent reformulations) to generate new solutions from a
seed one is not an easy task [39]. The NJ algorithm, as well
as some modified versions, nevertheless received continu-
ous interest, not only as a way to suggest new (generally
nonperfect fluid filled) solutions, but also in the context of
other theories, like supergravity. See for instance [40] for a
recent review. Related to the NJ finding [38], let us also

mention that another (but fully justified) way to derive Kerr
from Schwarzschild was obtained in [41].
In this paper, a new method, that establishes a one to one

correspondence between static axially symmetric vacuum
GR solutions and SAS massless scalar GR solutions having
a metric with some prior form, is established. This prior
form is inspired from the metric found in [27], referred to as
the SB solution in the following. It is defined as a
modification of the Kerr metric, with given ðm; aÞ param-
eters, by inserting two unknown metric functions in a
suitable manner. These functions are then demanded to be
such that the scalar-Einstein field equations are satisfied.
Thence, it uses Kerr as a seed in some sense, but in a way
that differs from the generating techniques previously
reviewed. The definition of some well-suited ðα; βÞ coor-
dinates then allows us to establish the correspondence. Let
us stress that, unlike the NJ algorithm, the method is
completely justified since it involves the resolution of the
relevant field equations. The SB solution is recovered as a
special case, and other explicit solutions are built, one of
them being asymptotically flat. The application of this new
method, but using an a priori non-Kerr SAS, or SAS like,
metric as a seed, is also briefly discussed. This allows us to
spot the specific features of Kerr that result in the
established correspondence with vacuum static GR
solutions.

A. Outline of the paper

The prior form of the metric and the related index
notations are defined in Sec. II. The first half of the Einstein
equations is considered in II A. The Klein-Gordon (KG)
equation is used in II B, that suggests the definition of the
ðαðr; θÞ; βðr; θÞÞ coordinates. In II C, the second half of the
Einstein equations is considered. The correspondence with
the general static axisymmetric vacuum GR case is made
explicit in II D. A particular asymptotically flat solution is
then considered in Sec. III. The links with the BD theory is
discussed in Sec. IV. In Sec. V, one reconsiders the method
but starting from any SAS-like metric as a seed. The
Sec. VI is dedicated to a brief conclusion.

II. THE CONSIDERED SET OF
AXISYMMETRIC METRICS

We consider in this paper metrics having the form

gpq ¼ eAkpq ð1aÞ

guv ¼ eBkuv ð1bÞ

where kab is the Kerr metric of mass m and of angular
momentum per unit mass a
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0
BBB@

k00 k03 0 0

k03 k33 0 0

0 0 k11 0

0 0 0 k22

1
CCCA ¼

0
BBB@

−V −wð1 − VÞ 0 0

−wð1 − VÞ 2w2 − w2V þ Σsin2θ 0 0

0 0 Σ
Δ 0

0 0 0 Σ

1
CCCA ð2Þ

in Boyer-Lindquist coordinates, and where A and B are
ðr; θÞ dependent functions. One has introduced the usual
quantities

wðθÞ ¼ asin2θ

Σðr; θÞ ¼ r2 þ a2cos2θ

ΔðrÞ ¼ r2 − 2mrþ a2

Vðr; θÞ ¼ 1 −
2mr
Σ

: ð3Þ

Besides the usual index convention ðx0; x1; x2; x3Þ ¼
ðt; r; θ;ϕÞ, let us also make the convention

ðp; q; r; sÞ indexes ∈ f0; 3g
ðu; v; w; x; y; zÞ indexes ∈ f1; 2g

while the ða; b; c; d; eÞ indexes take the four spacetime
values. The ordering in (2) makes explicit the block
diagonal structure of Kerr’s metric. The metric (1a)–(1b)
is also block diagonal, each block being “conformally”
related to the Kerr corresponding one, but with different
“conformal” factors. The requirement (1a)–(1b) implicitly
means imposing two prior relations between the four metric
functions describing the general form of an SASmetric (see
for instance Eq. (1) of [42]).
The metric (1a)–(1b) is required to solve the scalar-

Einstein equation

Rab ¼ ∂aφ∂bφ ð4Þ
where φ is an ðr; θÞ dependent scalar field. The special case
A ¼ B ¼ 0 solves (4) for φ ¼ 0, since the Kerr metric (2) is
Ricci flat.
The SB solution [27] corresponds to A ¼ 0 and eB ¼

ðΔ sin2 θÞσ , where σ is an integration constant. Of course it
should be recovered as a special solution of (4) with the
corresponding scalar, that reads φSB ¼ ffiffi

σ
2

p
ln ðΔ sin2 θÞ.

This will be checked later.
From the ðr; θÞ dependence of the considered scalar-

metric, one has ∂pðA; B;φÞ ¼ 0. The nonzero connexion
components then read

Γp
qu ¼ Kp

qu þ 1

2
δpq∂uA ð5aÞ

Γu
pq ¼ eA−B

�
Ku

pq −
1

2
kuxkpq∂xA

�
ð5bÞ

Γu
vw ¼ Ku

vw þ γuvw ð5cÞ

where the Kc
ab quantities are the Kerr connexion

components

Kp
qu ¼ 1

2
kpr∂ukqr ð6aÞ

Ku
pq ¼ −

1

2
kux∂xkpq ð6bÞ

Ku
vw ¼ 1

2
kuxð∂vkxw þ ∂wkxv − ∂xkvwÞ ð6cÞ

with

γuvw ¼ 1

2
ðδuv∂wBþ δuw∂vB − kvwkux∂xBÞ: ð7Þ

For convenience, let us introduce the following notation

ðc; sÞ ¼ ðcos θ; sin θÞ: ð8Þ

A. The (pq) Einstein equation components

From (4), one has Rpq ¼ 0, that writes

1ffiffiffiffiffiffi−gp ∂wð
ffiffiffiffiffiffi
−g

p
Γw
pqÞ − Γd

pcΓc
qd ¼ 0: ð9Þ

Using (5a), (5b), but also RpqðkabÞ ¼ 0 (Kerr’s metric
being Ricci flat) and ∂xkpq ¼ Kr

xqkpr þ Kr
xpkqr (from the

Ricci identity on Kerr’s metric), (9) yields an equation that
involves A only

2Kw
pq∂wA−kpq

�
kwx∂wA∂xAþ

1ffiffiffiffiffiffi
−k

p ∂wð
ffiffiffiffiffiffi
−k

p
kwx∂xAÞ

�
¼0:

ð10Þ

Eliminating the bracket term thanks to the contraction by
kpq, one obtains (since kpqkpq ¼ 2)

ð2Kw
pq − kpqkrsKw

rsÞ∂wA ¼ 0: ð11Þ

Using the Kerr metric (2) and the connexion components
(5b), (11) yields

kwx∂x

�
kpqffiffiffiffi
Δ

p jsj

�
∂wA ¼ 0: ð12Þ
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This equation has to be satisfied by both k00, k03 and k33.
Writing out the two equations for k00 and k03, one obtains
two homogeneous equations on ∂1A and ∂2A. One then
shows that having a nontrivial solution requires a ¼ 0.
Thence, A is necessarily constant for a ≠ 0. One can then
set A ¼ 0 by redefining B and the ds2 units.
The fact that gpq ¼ kpq has two straightforward conse-

quences: (1) the equatorial (θ ¼ π=2) circular orbits and
their linear planar stability (both do not involve g11) are
obtained solving the same equations as the Kerr’s case, and
(2) the horizon and ergosphere are the “same” as Kerr’s

rh ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
ð13Þ

reðθÞ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2c2

p
: ð14Þ

To be precise, let us point out that these claims just
concern the functions that describe these orbits and surfaces
in terms of θ and of the ðm; aÞ parameters. Indeed, the
metric components guv enter their geometric and relative
properties. For instance, the geometric radial distance
between two circular orbits having circumferences C and
C0 depends on g11.
Since A ¼ 0, the metric (1a)–(1b) achieves the form

ds2¼ k00dt2þ2k03dtdϕþk33dϕ2þeBðk11dr2þk22dθ2Þ:
ð15Þ

B. The Klein-Gordon equation

To pursue the integration, it would be sufficient to solve
the ðuvÞ components of (4), since the KG equation is a
direct consequence of (4). It is nevertheless useful to write
out the KG equation

∂að
ffiffiffiffiffiffi
−g

p
gab∂bφÞ ¼ 0: ð16Þ

Using (15), it reads

∂1ðsΔ∂1φÞ þ ∂2ðs∂2φÞ ¼ 0: ð17Þ

This form suggests defining the alternative radial
coordinate

ρ≡ ln

�
r −mþ ffiffiffiffi

Δ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
�

ð18Þ

that yields

∂ρ ¼
ffiffiffiffi
Δ

p ∂1 ð19aÞ

r −m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
cosh ρ ð19bÞ

Δ ¼ ðm2 − a2Þ sinh2 ρ: ð19cÞ

This allows rewriting (17) in the form

∂ρðsS∂ρφÞ þ ∂2ðsS∂2φÞ ¼ 0: ð20Þ

For convenience, one has introduced the following notation

ðC; SÞ ¼ ðcosh ρ; sinh ρÞ: ð21Þ

This form returns two obvious solutions

φSB ¼ Λ ln ðSsÞ ð22aÞ

φ2 ¼ ΛCc ð22bÞ

where Λ is any constant, and φSB the scalar entering the SB
solution [27]. The form of these two solutions suggests
defining new ðα; βÞ coordinates by

ðα; βÞ ¼ ðSs; CcÞ: ð23Þ

In terms of the initial Boyer-Lindquist coordinates, these
coordinates read

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mrþ a2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p sin θ ð24aÞ

β ¼ r −mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p cos θ ð24bÞ

and behave as ðr sin θ; r cos θÞ for r → ∞, up to the
ðm2 − a2Þ−1=2 factor. From (23) and the trigonometric
identities c2 þ s2 ¼ 1 and C2 − S2 ¼ 1, one obtains the
following relations

ðS2 þ s2Þ∂αðC; SÞ ¼ CsðS; CÞ
ðS2 þ s2Þ∂αðc; sÞ ¼ Scð−s; cÞ
ðS2 þ s2Þ∂βðC; SÞ ¼ ScðS; CÞ
ðS2 þ s2Þ∂βðc; sÞ ¼ Csðs;−cÞ ð25Þ

that turn out to be useful in the calculations to do. The
derivation operators transform as

∂ρ ¼ Cs∂α þ Sc∂β

∂2 ¼ Sc∂α − Cs∂β: ð26Þ

Reinserting in (20) returns, after a lengthy calculation, and
using (25), the KG equation in the nice form

∂αðα∂αφÞ þ α∂β∂βφ ¼ 0: ð27Þ

This form points out two other obvious solutions, besides
(22a) and (22b)
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φ3 ¼ Λβ ln α ð28aÞ

φN ¼ Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p : ð28bÞ

The solution (28a) is nothing but the product of (22a) and
(22b), that turns out to be a solution too. The solution (28b)
results from the fact that (27) is the classical Laplacian
equation written in cylindrical coordinates, in the case of an
axisymmetric potential. For this reason, we will refer to
(28b) as being the Newtonian scalar.
It may be worth spotting that if φ solves (27), so do its

successive derivatives with respect to β. (Remark that
φSB ¼ ∂βφ3.) Along these lines, new solutions can also
be obtained by integration with respect to β. For instance

φ5 ¼ Λ ln
�
β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

q �
ð29aÞ

φ6 ¼ Λ
h
β ln

�
β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

q �
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

q i
ð29bÞ

also solve (27), and are related to φN by φN ¼
∂βφ5 ¼ ∂β∂βφ6.
See the Appendix A for a quicker demonstration of (27),

using the ðα; βÞ coordinates.

C. The (uv) Einstein equation components

From (4), one has Ruv ¼ ∂uφ∂vφ, that writes

1ffiffiffiffiffiffi−gp ∂wð
ffiffiffiffiffiffi
−g

p
Γw
uvÞ − ∂u∂v ln

ffiffiffiffiffiffi
−g

p
− Γq

upΓp
vq − Γy

uxΓx
vy

¼ ∂uφ∂vφ: ð30Þ
Using (5a), (5c) and (7), with A ¼ 0, but also RuvðkabÞ ¼ 0
(Kerr’s metric is Ricci flat) and ∂ykuv ¼ Kx

yukvx þ Kx
yvkux

(from the Ricci identity on Kerr’s metric), (30) yields

Kp
vp∂uBþKp

up∂vB−
1ffiffiffiffiffiffi
−k

p kuv∂wð
ffiffiffiffiffiffi
−k

p
kwz∂zBÞ¼2∂uφ∂vφ:

ð31Þ

Making explicit the (11), (12) and (22) components yields,
using the ρ radial coordinate and (19a)

Cs∂ρB − Ss∂ρ∂ρB − S∂2ðs∂2BÞ ¼ 2Ssð∂ρφÞ2
ð32aÞ

Sc∂ρBþ Cs∂2B ¼ 2Ss∂ρφ∂2φ

ð32bÞ
2Sc∂2B − S∂2ðs∂2BÞ − Ss∂ρ∂ρB − Cs∂ρB ¼ 2Ssð∂2φÞ2:

ð32cÞ
Let us now rewrite these equations in ðα; βÞ coordinates.
Combining the equation (32b), and the difference of (32a)
and (32c), returns

∂αB ¼ α½ð∂αφÞ2 − ð∂βφÞ2� ð33aÞ

∂βB ¼ 2α∂αφ∂βφ: ð33bÞ

It appears that the integrability condition of (33a) and (33b)
is ensured by the KG equation (27). An ðuvÞ equation
remains to be written, that can be built from the sum of
(32a) and (32c). It turns out that this equation is solved
thanks to (27).
See the Appendix A for a quicker demonstration of these

results, using the ðα; βÞ coordinates from the start.

D. Generating solutions

From the previous sections, a ðφ; BÞ solution can be
obtained by (1) solving first the KG equation (27), and then
(2) integrating the system (33a)–(33b). There is then a
direct correspondence with the issue of seeking a static
axisymmetric solution of vacuum GR. Indeed, such a
metric can be written [2]

ds2 ¼ −e2Udt2 þ e−2U½e2γðdρ2 þ dz2Þ þ ρ2dϕ2� ð34Þ
where the metric functionsUðρ; zÞ and γðρ; zÞ have to solve

∂ρðρ∂ρUÞ þ ρ∂z∂zU ¼ 0 ð35aÞ

∂ργ ¼ ρ½ð∂ρUÞ2 − ð∂zUÞ2� ð35bÞ

∂zγ ¼ 2ρ∂ρU∂zU: ð35cÞ

Thence, any ðUðρ; zÞ; γðρ; zÞÞ solution of (35a)–(35c)
immediately results in a ðφðα; βÞ; Bðα; βÞÞ solution of
the problem considered in this paper, by just making the
changes ðρ; zÞ → ðα; βÞ and ðU; γÞ → ðφ; BÞ. There is then
a one to one correspondence between these two problems.
Let us stress that the ðα; βÞ definition depends on the Kerr’s
mass and angular momentum, in such a way that the
correspondence works for any ðm; aÞ parameters. Note that
while both problems are GR issues, the former corresponds
to a static field in a vacuum spacetime, while the later to a
rotating field in a massless scalar filled spacetime.
Considering the four first solutions of the KG equation

obtained in II B, one obtains

φSB ¼ Λ ln α ⇒ BSB ¼ Λ2 ln α ð36aÞ

φ2 ¼ Λβ ⇒ B2 ¼ −Λ2
α2

2
ð36bÞ

φ3 ¼ Λβ ln α

⇒ B3 ¼ Λ2
�
β2 ln α −

1

4
α2½1 − 2 ln αþ 2ðln αÞ2�

�
ð36cÞ

φN ¼ Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p ⇒ BN ¼ −
Λ2α2

2ðα2 þ β2Þ2 ð36dÞ

NEW METHOD TO GENERATE EXACT SCALAR-TENSOR … PHYS. REV. D 100, 024051 (2019)
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The ðφSB; BSBÞ solution is the SB solution [27]. It is clear
from (24a)–(24b) and (15) that the SB, the ðφ2; B2Þ and the
ðφ3; B3Þ solutions are not asymptotically flat, a point
that makes their astrophysical usefulness debatable. On
the other hand, the (so named in the following) scalar-
Newtonian solution ðφN; BNÞ is asymptotically flat.
From the previously pointed out correspondence, the SB

solution is associated to the Minkowski spacetime (in some
non-Cartesian coordinates), while the scalar-Newtonian
one is associated to the Curzon-Chazy spacetime [2].
It is worth also having a look on the fifth solution of the

KG equation obtained in II B. Integrating for B5 yields

B5 ¼ 2Λ2 ln

�
1þ βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 þ β2
p

�
ð37Þ

i.e., in terms of ðr; θÞ coordinates, using (23)

eB5 ¼
�
1þ ðr −mÞcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − 2mrþ a2 þ ðm2 − a2Þc2
p

�
2Λ2

ð38Þ

This, with (15), suggests that the spacetime is not asymp-
totically flat. From the previous correspondence, the
ðφ5; B5Þ solution is associated to the Gautreau-Hoffman
spacetime [2].
The ðφ6; B6Þ solution is obviously not asymptotically

flat. Indeed, (4) shows that it is even not Ricci flat at
infinity, since ∂αφ6 ¼ −Λαðβ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p
Þ−1 and ∂βφ6 ¼

φ5 ¼ Λ ln ðβ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p
Þ do not vanish at infinity.

III. THE SCALAR-NEWTONIAN SOLUTION

Since it is asymptotically flat, let us have a closer look on
the scalar-Newtonian solution. Its metric (36d) explicitly
reads

ds2N ¼ k00dt2 þ 2k03dtdϕþ k33dϕ2

þ exp

�
−

Λ2ðm2 − a2Þðr2 − 2mrþ a2Þs2
2½r2 − 2mrþ a2 þ ðm2 − a2Þc2�2

�

× ðk11dr2 þ k22dθ2Þ: ð39Þ

The g00 and g03 metric tensor components being identical to
Kerr, the m and a constants have the same ADM mass and
angular momentum meanings. As already mentioned, the
Kerr horizon (13) and ergosphere (14) surfaces are recov-
ered, since they just depend on the gpq metric components,
which are the same as Kerr.
The scalar associated to (39) reads, in terms of ðr; θÞ

coordinates

φN ¼ Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mrþ a2 þ ðm2 − a2Þc2

p : ð40Þ

The explicit θ dependence of φN shows that the (39)–(40)
solution is not the BD-Kerr solution obtained in [19]
(equations (24)–(26) of [19]).

A. Singularities

One knows that the Kerr metric is singularity free outside
its (external) horizon (13), and that the horizon itself is a
regular surface. However, from the Hawking theorem [16],
this should not be true for the spacetime (39) since ∂φN ≠ 0
while (1) it is asymptotically flat and, (2) its horizon surface
is finite. Indeed, the scalar curvature reads, from (4)

R ¼ guv∂uφN∂vφN ð41Þ

which, from (36d), yields

R ¼ 16Λ2

Σ
C2S2 þ c2s2

ðS2 þ c2Þ2 exp

�
Λ2S2s2

2ðS2 þ c2Þ2
�
: ð42Þ

One sees that (42) diverges whatever the way S2 þ c2 → 0,
i.e., the way ðc; SÞ → ð0; 0Þ (and only in this case for
r ≥ rh). The points having θ ¼ π=2 and ρ ¼ 0 are then
NakS points. Thence, the horizon is not regular every-
where, since its equator θ ¼ π=2, and the equator only
(considering points having r ≥ rh), is scalar curvature
singular.
However, the fact that the scalar curvature does not

diverge on the points having ðr ≥ rh; θÞ ≠ ðrh; π=2Þ is not
sufficient to prove that none of these points is singular.
A quantity that is often regarded as a reliable singularity
indicator is the Kretschmann scalar

K̂ ≡ RabcdRabcd ð43Þ

where Rabcd is the Riemann-Christoffel curvature tensor.
From (5a)–(5c), one finds that

Rpqrs ¼ e−BQpqrs

Rpquv ¼ Qpquv

Rpuqv ¼ Qpuqv þ qpuqv

Ruvwx ¼ eBðQuvwx þ quvwxÞ
Rpqru ¼ Rpuvw ¼ 0 ð44Þ

where Qabcd is the Kerr’s metric Riemann-Christoffel
curvature tensor, and

qpuqv ¼ kprKr
qwγ

w
uv

quvwx ¼ kuyð∂wγ
y
vx − ∂xγ

y
vw þ Kz

vxγ
y
wz þ Ky

wzγzvx − Kz
vwγ

y
xz

− Ky
xzγzvw þ γywzγzvx − γyxzγzvwÞ: ð45Þ

If B ¼ 0, which implies γuvw ¼ 0 from (7), K̂ is finite
since the Kerr’s metric is regular in the considered region.
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Any divergence of K̂ can then only appear from the γzvw and
∂γzvw, i.e., from the ∂BN and ∂∂BN , quantities entering the
qabcd terms in (44). It is then easy to see from (36d) that a
divergence of K̂ can only occur at points where c ¼ S ¼ 0.
The set of Kretschmann singularity points is then included
in the singular scalar curvature points set. This strongly
suggests that the horizon is regular at points not belonging
to the equatorial NakS ring ðr; θÞ ¼ ðrh; π=2Þ.1
Let us stress that it was recently found by [43] that the

(not asymptotically flat) SB solution, i.e., (36), also
exhibits such a ringlike NakS structure.

1. A bit more on the scalar curvature singularities

From (18), the calculations performed so far are a priori
only relevant in the regions r ≥ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
and

r ≤ m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
, in which the quantity

ffiffiffiffi
Δ

p
entering

(18) is well defined. However, sense can be given to these
calculations, and to the related findings, by analytic
continuation in the spacetime region located inside the
external and internal horizons r ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
, where

Δ is negative.2 It then results that the points satisfying the
condition S2 þ c2 ¼ 0, i.e., C2 ¼ s2, or, from (19b)

rsingðθÞ ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
sin θ ð46Þ

in terms of ðr; θÞ coordinates, are also scalar curvature
singular points. They define a close 2-surface in the
constant t subspaces, that fully belongs to the region
between the horizons, apart from the θ ¼ π=2 points that
are located on the equators of the two horizons. Thence,
apart from the ðr; θÞ ¼ ðmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
; π=2Þ events pre-

viously discussed, all these singular points are hidden to
any external observers, and then do not affect their
behaviors.
Accordingly, we will only consider the (external) ring-

like NakS part of the (46) singular set in the following.

B. The a= 0 subcase (static case)

Let us now specify the scalar-Newtonian solution (36d)
to the a ¼ 0 case. The vacuum Kerr’s solution returns the
(vacuum) spherical Schwarzschild solution for a ¼ 0. In
the nonvacuum, but massless scalar filled, case, a spherical
solution is known, often named the JNW metric, referring
to the Janis-Newman-Winicour 1968 paper [44]. It is
worthwhile to point out that this solution was in fact

discovered earlier by Fisher in his 1948 paper [45], but
using an areal radial coordinate. It seems then fair to use the
FJNW acronym when referring to this solution, and so
will I do in this paper. The FJNW solution includes
Schwarzschild as a limit (non scalarized) case. It is then
natural to suspect the existence of a massless scalar filled
GR solution, that would depend on a “rotation parameter”
a, and that would return (1) the Kerr spacetime for a
vanishing scalar, and (2) the FJNW solution for a ¼ 0.
The solution (36d), or (39)–(40), indeed returns the Kerr

spacetime for a vanishing scalar, i.e., for Λ ¼ 0. On the
other hand, making a ¼ 0 in (39) does not return the FJNW
solution, but

ds2 ¼ −
�
1 −

2m
r

�
dt2 þ exp

�
−

Λ2m2ðr2 − 2mrÞs2
2ðr2 − 2mrþm2c2Þ2

�

×

��
1 −

2m
r

�
−1
dr2 þ r2dθ2

�
þ r2s2dϕ2: ð47Þ

This static but non spherical solution is known from long,
see Eqs. (17)–(18) of Penney’s paper [46]. From (40), the
scalar field reads

φ ¼ mΛffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mrþm2c2

p : ð48Þ

The metric (47) has a horizon, that reads

r ¼ 2m ð49Þ

and whose equator’s points θ ¼ π=2, and only these
(r ¼ 2m) points, are singular, as it can be directly checked
from the ðS2 þ c2Þ expression entering (42), that reads for
a ¼ 0

S2 þ c2 ¼
�
r
m
− 1

�
2

− s2: ð50Þ

(Other, but hidden to external observers, singular points can
also be defined from S2 þ c2 ¼ 0, along the lines of the
subsection III A 1.) This agrees with the fact that the metric,
while static since g03 ¼ 0, is not spherical, because of the
presence of the (θ dependent) exponential in front of the
bracket in (47). Incidentally, this also shows that (47)
cannot be FJNW in disguise. The ring character of the
NakS, stuck on the horizon, is obviously a property
inherited from the a ≠ 0 general case.
The fact that the FJNW metric does not appear as a

subcase of (47) means that (39) cannot be interpreted as a
“rotating version of FJNW.” It also strongly suggests the
existence of asymptotically flat Kerr like solutions of (4),
that do not fulfill (1a)–(1b). Indeed, recovering FJNW as a
rotationless limit case, with its properties ([15]), is incom-
patible with the A ¼ 0 conclusion obtained in II A.

1Extending to the r < rh region, one sees on (42) that Σ ¼ 0 is
a scalar curvature singularity of the considered spacetime (it is a
singularity, but not a scalar curvature one, in Kerr’s spacetime).
The spacetime has then two ring singularities: one is naked, the
second being hidden (the latter being the counterpart of the usual
Kerr’s, in some sense).

2Let us keep in mind that r is a timelike coordinate in this
region, since grr ¼ Σ=Δ is negative then.
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C. Orbits in the equatorial plane
of the static solution

As already mentioned, the presence of the scalar field
affects neither the existence condition of equatorial circular
orbits nor their linear stability (using the radial coordinate
defined by the form of the metric (15)). The situation is
very similar to the case of a scalarized version of the
γ-metric reported in [47]. However, this does not mean that
the physics is unaffected by the scalar, even in the
equatorial plane. The aim of this subsection is to illustrate
this point. For convenience, we specify to the static case,
that makes all the calculations easily tractable.
In the θ ¼ π=2 plane, the metric (47) simplifies into

ds2 ¼ −
�
1 −

2m
r

�
dt2

þ exp

�
−

Λ2m2

2ðr2 − 2mrÞ
��

1 −
2m
r

�
−1
dr2

þ r2dϕ2: ð51Þ
One has already pointed out that the exponential term in g11
impacts the distance between close circular orbits. The
effect is mostly important near the r ¼ 2m NakS, where the
distance between two close orbits of radii r and rþ dr goes
to zero, because of the vanishing of the exponential factor.
Related to this, the (coordinate) time needed for a photon to
radially propagate from r ¼ 2m to an external observer at
coordinate robs, that reads

Δtðfrom r ¼ 2m to r ¼ robsÞ

¼
Z

robs

2m

rdr
r − 2m

exp

�
−

Λ2m2

4ðr2 − 2mrÞ
�
; ð52Þ

converges for Λ ≠ 0, unlike what happens in the
Schwarzschild case. On the other hand, the convergence
does not occur for a radial polar photon (θ ¼ 0 or π), since
the argument of the exponential term in (47) cancels then.
More generally, the convergence does not occur for any
photon crossing the Penney’s r ¼ 2m sphere at any non-
equatorial point, since then c ≠ 0, so that the exponential
goes to 1 when r → 2m. However, let us also spot that
despite the convergence of (52), the far observed behavior
of a clock at rest close to the Penney’s sphere is frozen, even
in the equatorial plane, since g00ðr ¼ 2mÞ ¼ 0 for any θ,
the π=2 case included. The consequence is that in the
equatorial plane, while circular close to the NakS (non-
geodesic) motions are frozen (the areal NakS circum-
ference being 4πm), radial infallings are not.
Let us point out that the same observations, i.e.,

(1) (coordinate) time convergence for a radial photon
propagating from any NakS point, but (2) frozen rest clock
behavior near any NakS point, also occurs in the FJNW
spherical metric [44,45]. This is obvious from the isotropic
form of this metric [15]

ds2 ¼ −
�
r − k
rþ k

�
2λ

dt2

þ
�
rþ k
r

�
4
�
r − k
rþ k

�
2−2λ

ðdr2 þ r2dΩ2Þ ð53Þ

where λ ∈ �0; 1½ (λ ¼ 1 corresponding to the GR
Schwarzschild metric).3 At least for these two metrics,
the time convergence for a photon reaching the horizon
only concerns orbits approaching points belonging to the
NakS location.

IV. BRANS-DICKE VACUUM SOLUTIONS

It is well-known [48] that in a four-dimensional space-
time, the conformal transformation

gab ¼ Φḡab ð54Þ

yields, for any constant ω (supposed to be > −3=2)
Z �

ΦR̄−
ω

Φ
ð∂̄ΦÞ2

� ffiffiffiffiffiffi
−ḡ

p
d4x¼

Z �
R−

1

2
ð∂φÞ2

� ffiffiffiffiffiffi
−g

p
d4x

ð55Þ

where Φ is any positive scalar function and

φ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

p
lnΦ: ð56Þ

This means that the vacuum BD action of the BD
gravitational field ðΦ; ḡabÞ identifies with the GR action,
with gravitational field gab, but filled by the (matter source)
massless scalar φ. Thence, any solution of (4) is confor-
mally associated to a vacuum BD solution [18]. This (ω)
BD solution reads

Φ ¼ exp

�
φffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωþ 3
p

�
ð57aÞ

ḡab ¼ exp

�
−

φffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

p
�
gab: ð57bÞ

It is then possible to built a vacuum SAS BD solution from
any vacuum static axisymmetric GR solution, using first the
correspondance reported in II D. Let us mention that the
Kerrlike BD solution built this way from the scalar-
Newtonian solution (36d), or (39)–(40), is also asymptoti-
cally flat, since φN vanishes in far regions.

3Let us point out that in the FJNW case, the fact that close to
the NakS rest clocks are frozen does not mean that circular
motions are frozen, since the NakS circumference is zero, in such
a way that an infinite local orbital frequency comes into play.
Indeed, close to NakS circular geodesics (that exist for λ < 1=2)
return a divergent far observed frequency [15].
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Experiments constrain BD/ST theories to satisfy ω0 >
4.105, whereω0 is the BD parameter, or the present value of
ωðΦÞ in the ST case [8]. In such circumstances, vacuum
BD gravity, and also to some extent ST gravity, is
asymptotically equivalent to massless scalar filled GR
[15,28,49]. In other words, the solutions obtained solving
(27) and (33a)–(33b) can directly serve as vacuum BD/ST
solutions in the large ω case, without having to explicitly
consider the conformal correspondence (57a)–(57b).
Linked to this, let us remind the reader that for any scalar
function φ chosen “independently on ω,” (57a) yields

Φ ¼ 1þ φffiffiffiffiffiffi
2ω

p þO

�
1

ω

�
: ð58Þ

Despite that Φ goes to a constant value, the ω
Φ2 ∂aΦ∂bΦ

term entering the full BD equation does then not vanish in
the large ω limit, but results in a ∂aφ∂bφ contribution. This
is coherent with the fact that a vacuum BD solution does
not reduce to a GR vacuum solution (that would have been
Kerr in the SAS case) in the “ω → ∞ limit” [49].
Let us remark that while the massive geodesics are not

the same in the scalar-Einstein and in the corresponding BD
solutions, they are asymptotically identical in the ω → ∞
limit, since the conformal factor is constant in this limit.

V. THE METHOD BEYOND KERR AS A SEED

In this section, one discusses to which extent the method
displayed in Sec. II could be generalized to other contexts,
using another SAS, or SAS like, metric than Kerr as a seed.
Incidently, this spots why the Kerr metric’s properties result
in the efficiency of the method in looking for scalar-
Einstein solutions.
Let us then consider any four-dimensional metric ηab

having the form

ðηabÞ ¼
� ðηpqÞ 0

0 ðηuvÞ

�
with ∂pηab ¼ 0 ð59Þ

where themeaningof the ða; b;…Þ, ðp; q;…Þ, and ðu; v;…Þ
indexes are the same as in Sec. II. Themetric is Lorentzian, in
such a way that detðηabÞ ¼ detðηpqÞ detðηuvÞ < 0, but it is
not decided which part4 [i.e., detðηpqÞ or detðηuvÞ] is
<0. Since ηuvðxwÞdxudxv can be considered as a two-
dimensional metric by itself, it is not restrictive to impose
that the ηuv part of ηab is conformally flat. Thence, let us use
coordinates such that

ηuv ¼ eFmuv ð60Þ

where F depends on the ðxuÞ coordinates, and muv is
diagonal with jm11j ¼ jm22j ¼ 1. It could be worth
remarking that the conformal form (60) is preserved by
some well-suited redefinition of the coordinates (see
Appendix B).
Let us consider another metric, related to ηab by

gpq ¼ eAηpq ð61aÞ

guv ¼ eBηuv ¼ eBþFmuv ð61bÞ

where

∂pA ¼ ∂pB ¼ 0: ð62Þ

A lengthy but straightforward calculation results in the
following relations between the Ricci components of the
two metrics

eB−ARpqðgÞ¼RpqðηÞ−
1

2
e−Fmux½ð∂uηpqÞ∂xAþηpqð∂u∂xAþ∂uA∂xAþð∂u ln

ffiffiffiffiffi
jη̄j

p
Þ∂xAÞ� ð63Þ

2RuvðgÞ ¼ 2RuvðηÞþ ð∂v ln
ffiffiffiffiffi
jη̄j

p
Þ∂uBþð∂u ln

ffiffiffiffiffi
jη̄j

p
Þ∂vB−muvmwx½ð∂w ln

ffiffiffiffiffi
jη̄j

p
Þ∂xBþ ∂w∂xB�

þ ∂vðBþF− ln
ffiffiffiffiffi
jη̄j

p
Þ∂uAþ ∂uðBþF− ln

ffiffiffiffiffi
jη̄j

p
Þ∂vA−muvmwx∂wðBþFÞ∂xA− ∂uA∂vA− 2∂u∂vA ð64Þ

where RabðhÞ denotes the Ricci curvature tensor components of the metric hab, and where η̄ ¼ detðηpqÞ. Let us remark that
from (63), one obtains5

eB−A
�
RpqðgÞ −

1

2
grsRrsðgÞgpq

�
¼ RpqðηÞ −

1

2
ηrsRrsðηÞηpq −

1

2
e−F

ffiffiffiffiffi
jη̄j

p
mux∂u

�
ηpqffiffiffiffiffijη̄jp

�
∂xA: ð65Þ

4Only in the detðηuvÞ > 0 case can the metric be interpreted as describing an SAS spacetime.
5Let us spot that, for any metric hab having the form (59), RpqðhÞ − 1

2
hrsRrsðhÞhpq is not the ðpqÞ component of the Einstein tensor,

since hrsRrsðhÞ is not the hab scalar curvature RðhÞ ¼ habRabðhÞ ¼ hrs Rrs ðhÞ þ huvRuv ðhÞ; but just part of it.
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The (65) relation enlightens the origin of the A ¼ 0
conclusion derived in II A from (12): it results from
(1) the Kerr Ricci flatness, and (2) the fact that the ðpqÞ
Ricci components of the scalar-Einstein metric are null
because of the SAS symmetry and of the very specific
source term entering (4).
Specifying to metrics (61a)–(61b) having A ¼ 0,

(63)–(64) reduce to

eBRpqðgÞ ¼ RpqðηÞ
2RuvðgÞ ¼ 2RuvðηÞ þQuv ð66Þ

where

Quv ≡ ð∂v ln
ffiffiffiffiffi
jη̄j

p
Þ∂uBþ ð∂u ln

ffiffiffiffiffi
jη̄j

p
Þ∂vB

−muvmwx½ð∂w ln
ffiffiffiffiffi
jη̄j

p
Þ∂xBþ ∂w∂xB�: ð67Þ

Here another specificity of the Kerr metric came into play
in the case focused in Sec. II: namely, the fact that

ffiffiffiffiffi
jk̄j

p
is

precisely the product sinh ρ sin θ (up to a constant factor),
in the ðρ; θÞ coordinates defined by (18). Thence, the
transform (B1a), which preserves the (60) form (see
Appendix B), results in

ffiffiffiffiffijη̄jp
∝ α in the new coordinates.

Thanks to this, the quantities (67) achieve the form
(mαα ¼ mββ ¼ 1 for the Kerr metric)

Qαα ¼
1

α
∂αB − ∂α∂αB − ∂β∂βB ð68aÞ

Qββ ¼ −
1

α
∂αB − ∂α∂αB − ∂β∂βB ð68bÞ

Qαβ ¼
1

α
∂βB ð68cÞ

that enter the equations (33a), (33b), (A6a) and (A6b).

VI. CONCLUSION AND OUTLOOK

One has established a new nontrivial one to one
correspondence that allows us to build new SAS massless
scalar-GR solutions, of any mass and angular momentum,
from any static axisymmetric vacuum GR solution. While
this in turn also results in a way to obtain new SAS vacuum
BD solutions, one has pointed out that the so obtained
massless scalar-GR solutions can also directly serve as
(large ω) vacuum BD/ST solutions for practical purposes.
It was claimed in [25] that a Kerr-like BD solution

should: (1) only depend on the three ðm; a;ωÞ parameters,
(2) go to Kerr spacetime in the ω → ∞ limit, and (3) return
Schwarzschild’s spacetime for a ¼ 0. From the results
obtained in this paper, it seems that the truth is by far
more complex. The solutions explicitly presented in this
paper can be interpreted as limit of BD solutions for
ω → ∞, but they differ from Kerr spacetime. The particular

case (47) of the scalar-Newtonian solution has a ¼ 0 but
differs from Schwarzschild. The fact that the (39) solution,
for instance, depends on a parameter Λ, besides ðm; aÞ,
shows that the (ω)BD solution built from it using
(57a)–(57b) results in a family of Kerr-like solutions that
depends on more than the three ðm; a;ωÞ parameters.
Let us mention that a lot of authors explicitly or

implicitly still suppose that (2) is true (see for instance
[26] or [27]). Such a presupposition results in a drastic
impoverishment of the (large ω) ST potential predictions.
Among these the drastically different behavior of far
observed orbital frequencies in the spherical case with
respect to GR [15]. It would be of interest to know whether
such a different from GR behavior could also occur in the
rotating case. This requires exploring more general SAS
solutions of (4) with gpq ≠ kpq, which means ruling out the
restrictive hypothesis (1a)–(1b).
The possibility to extend the method using seed metrics

that differ from Kerr has also been discussed. This
incidently points out the specificities of the Kerr metric
that make the method particularly efficient when choosing
this metric as a seed. Nonetheless, this issue certainly
deserves further investigations.
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APPENDIX A: CALCULATIONS USING
THE (α;β) COORDINATES

Using (18) and (23), one obtains, in the ðx̃aÞ≡ðt;α;β;ϕÞ
coordinates

ds2¼ g̃abdx̃adx̃b

¼ k00dt2þ2k03dtdϕþk33dϕ2þGðdα2þdβ2Þ ðA1Þ

where

G ¼ ΣeB

S2 þ s2
: ðA2Þ

From (23) and the trigonometric identities, one could
explicitly obtain ðc; s; C; SÞ in terms of ðα; βÞ, but this is
not neededhere. Indeed, since

ffiffiffiffiffiffi
−g̃

p ¼Gs
ffiffiffiffi
Δ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−a2

p
αG,

the d’Alembertian operator reads
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□φ ¼ 1ffiffiffiffiffiffi
−g̃

p ½∂αð
ffiffiffiffiffiffi
−g̃

p
gαα∂αφÞ þ ∂βð

ffiffiffiffiffiffi
−g̃

p
gββ∂βφÞ�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
ffiffiffiffiffiffi
−g̃

p ½∂αðα∂αφÞ þ α∂β∂βφ� ðA3Þ

from which one directly obtains (27).
Writing now (A1) in the form

ds2 ¼ k00dt2 þ 2k03dtdϕþ k33dϕ2 þHeBðdα2 þ dβ2Þ
ðA4Þ

(the B ¼ 0 version of which being Kerr in ðx̃aÞ coordi-
nates), the Γ̃��� connexion components achieve a form like
(5a)–(5c) with A ¼ 0, but with ðα; βÞ instead of ðr; θÞ.
Thence, (31) is replaced by

K̃p
vp∂uBþ K̃p

up∂vB −
1

αHeB
kuv½∂αðα∂αBÞ þ α∂β∂βB�

¼ 2∂uφ∂vφ ðA5Þ

with K̃p
up ¼ ∂u ln α. Writing out the ðuvÞ ¼ ðαβÞ compo-

nent directly returns (33b). The ðuvÞ ¼ ðααÞ and ðuvÞ ¼
ðββÞ components read

∂αB − α∂α∂αB − α∂β∂βB ¼ 2αð∂αφÞ2 ðA6aÞ

∂αBþ α∂α∂αBþ α∂β∂βB ¼ −2αð∂βφÞ2: ðA6bÞ

Summing (A6a) and (A6b) returns (33a). Inserting ∂B from
(33a)–(33b), the remaining equation, for instance (A6b), is
satisfied thanks to (27).

APPENDIX B: COORDINATES’ CHANGE
THAT PRESERVE THE FLATNESS

CONFORMAL FORM

The form (60) is preserved through some specific
transformations of the coordinates, modulo a redefinition
of F. Indeed, the three transformations (x and y being here
the two u-like coordinates, not indexes)

�
α

β

�
¼

�
sin x sinh y

cos x cosh y

�
ðB1aÞ

�
α

β

�
¼

�
sin x sin y

cos x cos y

�
ðB1bÞ

�
α

β

�
¼

�
sinh x sinh y

cosh x cosh y

�
ðB1cÞ

result in, respectively

dα2 þ dβ2 ¼ ðsinh2 yþ sin2 xÞðdx2 þ dy2Þ ðB2aÞ

−dα2 þ dβ2 ¼ ðsin2 y − sin2 xÞð−dx2 þ dy2Þ ðB2bÞ

−dα2 þ dβ2 ¼ ðsinh2 y − sinh2 xÞð−dx2 þ dy2Þ: ðB2cÞ

In the case considered in subsection II B, (B1a) corre-
sponds to the coordinates change (23), where ðx; yÞ
correspond to the ðρ; θÞ coordinates. The form (A1) of
the metric then results from (B2a).
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