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Abstract

Linear mixed models are especially useful when observations are grouped. In a high dimensional
setting however, selecting the fixed effect coefficients in these models is madatory as classical
tools are not performing well. By considering the random effects as missing values in the linear
mixed model framework, a `1-penalization on the fixed effects coefficients of the resulting log-
likelihood is proposed. The optimization problem is solved via a multicycle Expectation Condi-
tional Maximisation (ECM) algorithm which allows for the number of parameters p to be larger
than the total number of observations n and does not require the inversion of the sample n x n
covariance matrix. The proposed algorithm can be combined with any variable selection method
developed for linear models. A variant of the proposed approach replaces the `1-penalization
with a multiple testing procedure for the variable selection aspect and is shown to greatly im-
prove the False Discovery Rate. Both methods are implemented in the MMS R-package, and are
shown to give very satisfying results in a high-dimensional simulated setting.

Keywords: linear mixed model, lmmLasso, multiple hypothesis testing, high-dimension

1. Introduction

The more extensive use of new technologies such as high-thoughput DNA/RNA chips or
RNA sequencing in biology generates an increasing number of highly dimensional data sets
where the number of parameters p is much greater than the number of observations n. Conse-
quently, the high dimensional framework generally means that the problem of parameters esti-
mation cannot be solved. In order to address this curse of dimensionality, various constraints
have been proposed in linear models. Most of them aim for a parsimonious model where many
parameters are set to zero (sparse constraints), or use of a well-conditioned variance matrix on
the observations. Many studies have addressed the problem of variable selection by using a lin-
ear model of the form Y = Xβ + ε, where X is an n × p matrix containing the observations and
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ε is a n-vector of i.i.d random and usually Gaussian variables. One of the oldest methods is the
Akaike Information Criterion (AIC), which is a penalization of the log-likelihood by a function
of the number of parameters included in the model. More recently, the simple and powerful
Lasso (Least Absolute Shrinkage and Selection Operator) method [26] revolutionized the field.
The Lasso works by applying a `1-penalization on the least squares estimate which shrinks some
coefficients to exactly zero. Various extensions exist for the Lasso, for example group Lasso [27],
adaptive Lasso [14] and a more stable version known as Bo-Lasso [2]. However, penalizing the
likelihood is not the only way to perform variable selection.

Indeed, statistical testing can also be used to determine the relevance of each parameter as in
the False Discovery Rate [3, 6], or as in a more recent procedure that appears to provide better
results in terms of variable selection [22].

In all the previously described methods, observations are considered to be independent and
identically distributed. These methods are therefore no longer appropriate when structured in-
formation, such as family relationships or common environmental effects, becomes available. In
a linear mixed model, the observations are assumed to be clustered. The variance-covariance
matrix V of the observations is therefore no longer diagonal but, in some cases, it is block diag-
onal. In the literature, most reports of linear mixed models relate to the estimation of variance
components, using either maximum likelihood estimation (ML) [12, 11], or restricted maximum
likelihood estimation (REML) which accounts for the loss in degrees of freedom due to fitting
fixed effects [19, 10, 13, 8]. However, both methods assume that each fixed effect and each
random effect is relevant. This assumption might be wrong and result in falsely estimated pa-
rameters. This might be especially the case in high-dimensional analysis. Contrary to linear
models, the problem of selecting the fixed effect coefficients in a linear mixed model framework
has rarely been addressed in a high dimensional setting.

Both Bondell et al. [5] and Ibrahim et al. [15] used penalized likelihoods to perform selection
of both fixed and random effects. Bondell et al. [5] introduced a constrained EM algorithm to
solve the optimization problem, which becomes computationally complex in a high-dimensional
context (it should be noted that their simulation studies were only designed for a low dimensional
setting). Moreover, the methods of both Bondell et al. [5] and Ibrahim et al. [15] rely on Cholesky
decompositions and, as pointed out by [18], these decompositions are dependent on the order in
which the random effects appear and are not permutation invariant [20]. In the present paper, we
primarily focus on analyzing data sets with only a few random effects and we therefore do not
address the selection of both fixed and random effects.

Schelldorfer et al. [24] have studied the selection of fixed effects in a high dimensional set-
ting. Their paper introduced an algorithm based on `1-penalization of the maximum likelihood
estimator in order to select the relevant fixed effect coefficients. As highlighted in their paper,
their algorithm relies on the possibly time-consuming process of inverting the variance matrix of
the observations V.

The objective of this paper is two-fold. The first is to provide a more efficient way to se-
lect fixed effects in a linear mixed model. We consider the random effects as missing data, as
previously described in Bondell et al. [5] and Foulley [7], and we introduce a `1-penalization
on the log-likelihood of the complete data. A similar approach is studied in [9] in the frame-
work of Generalized Linear Mixed Models. We propose a multicycle Expectation Conditional
Maximization algorithm (ECM) with convergence properties [7, 16, 17] to solve the optimiza-
tion problem and provide theoretical results when the variances of the observations are known.
The second objective is to increase the performance of variable selection. Due to its step de-
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sign, the ECM algorithm can be combined with any variable selection method built for linear
models. We propose to use a multiple testing procedure introduced in Rohart [22] instead of
the `1-penalization of the maximum likelihood estimator. We show that this procedure exhibits
a higher percentage of recovery of the exact set of variables, a lower false discovery rate and a
better estimation of β, which induces a reduced mean squared error. As the selection of of fixed
effects in a high-dimensional linear mixed model framework has been rarely addressed before,
we will mainly compare our results to those of Schelldorfer et al. [24].

The proposed approach is then applied to a real data set from a project in which hundreds of
pigs were studied, the aim being to shed light on the relationships between some of the pheno-
types of interest and metabolomic data [23]. Linear mixed models are appropriate in this case
because observations are in fact repeated data collected in different environments (groups of an-
imals reared together in the same conditions). Some individuals were also genetically related,
introducing a family effect. The data set consisted of 506 individuals from 3 breeds, 8 envi-
ronments and 157 families, metabolomic data contained p = 375 variables, and the phenotype
investigated was the Daily Feed Intake (DFI).

This paper is organized as follows. We first introduce the linear mixed model and its objective
function to solve. We then describe the multicycle ECM algorithm used to solve the optimization
problem. In Section 3, the algorithm described in Section 2 is extended to be used with any
variable selection method developed for linear models. We asses the performance of the approach
on a simulation study and demonstrate that the combination of this new algorithm with a multiple
testing procedure for variable selection greatly improves the False Discovery Rate (Section 4).
Finally, in Section 5, we illustrate the proposed approach on the metabolomic pigs data set.

2. Selection with `1-penalization

Let us introduce some notation that will be used throughout the paper. Var(a) denotes the
variance-covariance matrix of the vector a. For all a > 0, let Ia be the identity matrix of Ra.
For A ∈ Rn×p, denote I a subset of {1, . . . , n} and J a subset of {1, . . . , p}. Let AI,J A.,J and AI,.

denote submatrices of A respectively composed of elements of A with rows in I and columns
in J, columns in J and all rows, and rows in I and all columns. Moreover, for all a > 0, b > 0,
denote 0a to be the vector of size a in which all coordinates are 0 and 0a×b to be the zero matrix
of size a × b. Let us denote |A| the determinant of the matrix A.

2.1. Setting-up the linear mixed model

We consider the linear mixed model in which observations are grouped and we assume that
only a small subset of fixed effect coefficients are nonzero. The aim of this study is to recover
this subset using the algorithm presented in the next section of the paper. In the present section
we describe the linear mixed model and our objective function.

Assuming that there are q random effects, let N be the total number of groups and n the total
number of observations with n =

∑N
i=1 ni, where ni is the number of observations within group i.

We denote Nq = qN.
The linear mixed model can be written as

y = Xβ +

q∑
k=1

Zkuk + ε, (1)
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where

• y is the set of observed data of length n,

• β is an unknown vector of Rp; β = (β1, . . . , βp),

• X is the n × p matrix of fixed effects; X = (X1, . . . , Xp),

• For k = 1, . . . , q, uk = (u1
k , . . . , u

N
k )′ is a N-vector of i.i.d. coordinates for random effect

k. Furthermore, for i = 1, . . . ,N, the vectors (ui
1, u

i
2, . . . , u

i
q) are i.i.d. Gaussian Nq(0,Ψ)

where Ψ = (Ψi, j)1≤i, j≤q is the matrix defined by: Ψi, j =

cov(u1
i , u

1
j ) if i , j

var(u1
i ) if i = j

.

• For k = 1, . . . , q, Zk is a n×N incidence matrix (each row of Zk contains only one nonzero
coefficient),

• ε = (ε1, . . . , εn)′ is a Gaussian vector with i.i.d. components ε ∼ Nn(0, σ2
e In), where σe

is an unknown positive quantity. We denote by R the variance-covariance matrix of ε,
R = σ2

e In.

An example of matrices Zk for n = 6 and two random effects is provided below.

Let Z1 =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


and Z2 =



x1 0 0
x2 0 0
0 x3 0
0 x4 0
0 0 x5
0 0 x6


.

Note that Z2 is the incidence matrix of the interaction of the variable x = (x1, . . . , x6) and the
grouping factor.

We denote u = (u′1, . . . ,u
′
q)′ and Z the concatenation of (Z1, . . . , Zq). Setting G = Ψ ⊗ IN ,

where ⊗ is the Kronecker product, we have that u ∼ NNq (0,G).
One can remark that with these notations, Model (1) can also be written as: y = Xβ+ Zu + ε.

In the following, we assume that ε and u are independent. Thus Var(u, ε) =

(
G 0
0 R

)
.

We consider the matrices X and {Zk}1,...,q to be fixed design. Note that our model (1) and the
one in [24] are identical.

Let us denote by J the set of the indices of the relevant fixed effects of Model (1); J = { j, β j ,
0}. The aim of this paper is to estimate J, β, G and R. Throughout the paper, the number of fixed
effects p can be greater than the total number of observations n. However, we focus on the case
where only a few fixed-effects are relevant since this paper was motivated by such a case on a
real data set, see Section 5. We assume Nq + |J| < n.

2.2. `1-penalization of the complete log-likelihood
In the following, we consider the fixed effects coefficients β and the variance matrix G as

parameters and {uk}k∈{1,...,q} as missing data. We denote Φ = (β,G, σ2
e).

The log-likelihood of the complete data x = (y,u) is

L(Φ; x) = L0(β, σ2
e ; x) + L1(G; u), (2)
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where

−2L0(β, σ2
e ; x) = n log(2π) + n log(σ2

e) +

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣y − Xβ −

q∑
k=1

Zkuk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

/σ2
e , (3a)

−2L1(G; u) = Nq log(2π) + log(|G|) + u′G−1u. (3b)

Note that, (2) results from p(x|Φ) = p(y|β,u, σ2
e)p(u|G); (3a) from ε|σ2

e ∼ Nn(0, σ2
e In) and

(3b) from u|G ∼ NNq (0,G).
Since we allow for a number of fixed-effects p greater than the total number of observations

n, the usual maximum likelihood (ML) or restricted maximum likelihood (REML) approaches
do not apply. Because we assumed that β is sparse (many coefficients are assumed to be zero)
and because we want to recover this sparsity, we add a `1-penalization on β to the log-likelihood
of the complete data (2). Indeed `1-penalization is known to induce sparsity in the solution, as in
the Lasso method [26] or the lmmLasso method [24]. Thus we consider the following objective
function to be minimized:

g(Φ; x) = −2L(Φ; x) + λ|β|1, (4)

where λ is a positive regularization parameter and |β|1 =
∑p

j=1 |β j|. It should be noted that the
function g could have been obtained in a Bayesian setting by considering a Laplace prior on β.
It is interesting to note that finding a minimum of the objective function (4) is a non-linear, non-
differentiable and non-convex problem. More importantly, a striking fact (especially noticeable
in (3b)) is that the function g is not lower-bounded. Indeed, L(Φ; x) tends to infinity when |G|
tends towards 0, i.e. when a random effect should not have been included in the model. This
is a well-known problem of degeneracy of the likelihood, especially studied in the Gaussian
mixture model [4]. Alternatively, instead of treating the random effects as missing values, in
linear mixed models some authors focus on the log-likelihood of the marginal model in which
the random effects are integrated in the matrix of variance of the observations Y. This is the case
in Schelldorfer et al. [24]:

y = Xβ + ε, where ε ∼ N(0,V).

Note that V = ZGZ′ + R. The degeneracy of the likelihood can also appear in the marginal
model when the determinant of V tends towards zero. This phenomenon is likely to occur in a
high dimensional context when the model includes too many fixed-effects, that is to say when
insufficient regularization is applied by the lmmLasso penalty [24] or by λ in (4).

In the next section, a multicycle ECM algorithm is used to solve the minimization of (4) and
select fixed-effects.

2.3. A multicycle ECM algorithm

The multicycle ECM algorithm [17, 7, 16] used to solve the minimization problem of (4)
contains four steps: two E steps interlaced with two M steps.
Recall thatΦ = (β,G, σ2

e) is the vector of the parameters to estimate and that u = (u′1, . . . ,u
′
k)′ is

a vector of missing values. The multicyle ECM algorithm is an iterative algorithm. Details can
be found in Appendix A. Only a sketch is given below.

Iterations are indexed by t ∈ N and Θ[t] denotes the estimation of parameter Θ at iteration t.
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Let Eu|y,Φ=Φ[t] denote the conditional expectation under the distribution of u given the vector
of observations y and the current estimation of the set of parameters Φ at iteration t.

Let us define Q and decompose it as:

Q(Φ;Φ[t]) = Eu|y,Φ=Φ[t] [g(Φ; x)] = Q0(β, σ2
e ;Φ[t]) + Q1(G;Φ[t]),

where:

Q0(β, σ2
e ;Φ[t]) = n log(2π) + n log(σ2[t]

e ) + Eu|y,Φ=Φ[t] (ε′ε)/σ2[t]
e + λ|β[t]|1

and Q1 does not depend on β nor σ2
e :

Q1(G;Φ[t]) = Nq log(2π) + log(|G[t]|) + Eu|y,Φ=Φ[t] (u′G−1[t]u).

2.3.1. First E-step
As designated by Henderson [12], u[t+1/2] = E

(
u|y,Φ = Φ[t]

)
is the BLUP (Best Linear

Unbiased Prediction) of u for the vector of parameters Φ equal to Φ[t]:

u[t+1/2] = (Z′Z + σ2[t]
e G−1[t])−1Z′

(
y − Xβ[t]

)
.

2.3.2. M-Step for β
This step minimizes Q0(β,G, σ2

e ;Φ[t]) with respect to β:

β[t+1] = Argmin
β

(
1

σ2[t]
e

∣∣∣∣∣∣∣∣(y − Zu[t+1/2]
)
− Xβ

∣∣∣∣∣∣∣∣2 + λ |β|1

)
.

Note that this can be viewed as a Lasso estimator on β with the vector of “observed” data(
y − Zu[t+1/2]

)
and the penalty λσ2[t]

e .

2.3.3. Second E-Step
A second E-step is performed with the update of the vector of missing values u:

u[t+1] = (Z′Z + σ2[t]
e G−1[t])−1Z′

(
y − Xβ[t+1]

)
.

2.3.4. M-step for (G, σ2
e)

Variance matrices G and R are updated based on the minimization of Q1 and Q0, respectively.
Let us recall that G = Ψ ⊗ IN . Thanks to a lemma reported in [1], the minimization of Q1 with
respect to Ψ gives:

Ψ
[t+1]
i, j =

1
N

[
u[t+1]

i
′
u[t+1]

j + tr(Ti, j)σ2[t]
e

]
,

with Ti, j the (i, j) element of T =
(
Z′Z + σ2

eG−1
)−1

, and u[t+1]
j the N-vector associated to the

random effect j in u[t+1].

The minimization of Q0 with respect to σ2
e leads to:

σ2[t+1]
e =

1
n

[∣∣∣∣∣∣y − Xβ[t+1] − Zu[t+1]
∣∣∣∣∣∣2 + σ2[t]

e

(
Nq − σ

2[t]
e tr

(
TG−1[t]

))]
.
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In summary, the algorithm can be detailed as follows:

Algorithm 2.1 (Lasso+). Initialization
Initialize the set of parameters Φ[0] = (β[0],G[0], σ2[0]

e ).
Define Z as the concatenation of Z1, . . . , Zq and u = (u′1, . . . ,u

′
q)′.

Until convergence

1. E-step: u[t+1/2] = (Z′Z + σ2[t]
e G−1[t])−1Z′

(
y − Xβ[t]

)
2. M-step: β[t+1] = Argmin

β

(∣∣∣∣∣∣∣∣(y − Zu[t+1/2]
)
− Xβ

∣∣∣∣∣∣∣∣2 + λσ2[t]
e |β|1

)
3. E-step: u[t+1] = (Z′Z + σ2[t]

e G−1[t])−1Z′
(
y − Xβ[t+1]

)
4. M-step:

(a) Ψ[t+1]
i, j =

1
N

[
u[t+1]

i
′
u[t+1]

j + tr(Ti, j)σ
2[t]
e

]
and G[t+1] = Ψ[t+1] ⊗ IN

(b) σ2[t+1]
e =

1
n

[∣∣∣∣∣∣y − Xβ[t+1] − Zu[t+1]
∣∣∣∣∣∣2 + σ2[t]

e

(
Nq − σ

2[t]
e tr

(
TG−1[t]

))]
end

Convergence of Algorithm 2.1 is ensured as it is a multicycle ECM algorithm [17].
Three stopping criteria are used to stop the convergence process of the algorithm: a first criterion
based on ||β[t+1] − β[t]||2, a second based on ||u[t+1]

k − u[t]
k ||

2 for each random effect uk and lastly
a criterion based on ||L(Φ[t+1], x) − L(Φ[t], x)||2 where L(Φ, x) is the log-likelihood defined by
(2). Convergence occurs when all criteria are fulfilled. We implemented an additional fourth
condition that limited the number of iterations. We choose to initialize the Algorithm 2.1 using
the following conditions: G[0] is the block diagonal matrix of σ2[0]

1 IN , . . . , σ
2[0]
q IN where for all

1 ≤ k ≤ q, σ2[0]
k = 0.4

q σ2[−1]
e , σ2[0]

e = 0.6 σ2[−1]
e , and (σ2[−1]

e ,β[0]) is estimated from a linear
estimation (without the random effects) of the Lasso with the given penalty λ. In Section 4.4, the
impact of initializing the algorithm is investigated on simulated data.

Because the estimation of the set of parameters Φ is biased [28], one last step can be added
to address this problem once both Algorithm 2.1 has converged and the penalization parameter
λ has been tuned. Indeed, it is better to use Algorithm 2.1 to estimate the support of β and then
estimate the parameter Φ using a classic mixed model estimation based on the model:

y = XβĴ +
∑

1≤k≤q

Zkuk + ε,

where Ĵ is the estimated set of indices of the relevant fixed effects. Such a final reestimation step
in a Lasso-type approach for variable selection in Generalized Linear Mixed Models has also
been considered in [9].

Proposition 2.2. When the variance components σ2
e and G are known, minimization of the ob-

jective function (4) is equivalent to the minimization of Q(β) = (y − Xβ)′V−1(y − Xβ) + λ|β|1,
which is the objective function described in [24] with known variances.

In [24], the authors provided theoretical results regarding the consistency of their method.
Based on Proposition 2.2, these results apply to our method in the case of known variances.
The assumptions of Proposition 2.2 are strong, but there exists practical situations in genetics
(for example with well known traits) where the variance components can be considered known.
Proof of Proposition 2.2 is provided in Appendix A.
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2.4. Tuning parameter

The solution depends on the regularization parameter λ, included in Algorithm 2.1, that con-
trols shrinkage. This parameter has to be tuned. To that end, we choose to use the Bayesian
Information Criterion (BIC) [25]:

λBIC = Argmin
λ
{log |Vλ| + (y − Xβ̂λ)′V−1

λ (y − Xβ̂λ) + dλ. log(n)},

where Vλ = ZĜZ′ + σ̂2
e In and Ĝ, σ̂2

e , β̂λ are obtained from the minimization of the objective
function g defined by (4). Moreover, dλ is the sum of the number of non-zero variance-covariance
parameters and the number of non-zero fixed effects coefficients included in the model selected
with the regularization parameter λ.

Other methods could have been used to tune λ such as AIC or cross-validation. We opted for
BIC rather than cross-validation mainly because of the gain in computational time.

In the next section, we propose a generalization of Algorithm 2.1 for use with any variable
selection method developed for linear models.

3. Generalizations of the selection procedure

3.1. Generalizing the algorithm

Algorithm 2.1 provides good results, as demonstrated in the simulation study in Section
4. Nevertheless, because the aim of the second step of the algorithm is to select the relevant
coefficients of β in a linear model, the Lasso method can be replaced by any variable selection
method built for linear models. If the variable selection method optimizes a criterion, such as the
adaptive Lasso [29] or the elastic net [30], the resulting algorithm is a multicycle ECM algorithm
and the convergence property still holds. However, the convergence property does not hold for
methods that do not optimize a criterion.

Algorithm 2.1 can be reshaped for a generalized algorithm as follows:

Algorithm 3.1. Initialization
Initialize the set of parameters Φ[0] = (β[0],G[0], σ2[0]

e ).
Define Z as the concatenation of Z1, . . . , Zq and u = (u′1, . . . ,u

′
q)′.

Until convergence

1. u[t+1/2] = (Z′Z + σ2[t]
e G−1[t])−1Z′

(
y − Xβ[t]

)
2. Variable selection and estimation of β in the linear model y − Zu[t+1/2] = Xβ + ε[t], where
ε[t] ∼ N(0, σ2[t]

e In).
3. u[t+1] = (Z′Z + σ2[t]

e G−1[t])−1Z′
(
y − Xβ[t+1]

)
4. (a) Ψ[t+1]

i, j =
1
N

[
u[t+1]

i
′
u[t+1]

j + tr(Ti, j)σ
2[t]
e

]
and G[t+1] = Ψ[t+1] ⊗ IN

(b) σ2[t+1]
e =

1
n

[∣∣∣∣∣∣y − Xβ[t+1] − Zu[t+1]
∣∣∣∣∣∣2 + σ2[t]

e

(
Nq − σ

2[t]
e tr

(
TG−1[t]

))]
end

We choose to initialize Algorithm 3.1 in the same way as Algorithm 2.1.
In the following we propose to combine Algorithm 2.1 with a method that does not require a tun-
ing parameter, namely the mht.bol method [22]. The mht.bol method sequentially tests multiple
hypotheses and determines statistically the set of relevant variables in the linear model y = Xβ+ε
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where ε is an i.i.d Gaussian noise. This method consists of two steps. First, variables are ordered
taking into account the observations y and then, in the second step, multiple hypotheses are tested
to distinguish between relevant and irrelevant variables. The mht.bol method has proved to be
powerful under certain conditions as reported in [22].

3.2. Generalizing the model to different grouping variables

Assume that there are q random effects corresponding to q grouping factors (q ≥ 1), where
some grouping factors may be identical. The levels of the factor k are denoted {1, 2, . . . ,Nk}. The
ith-observation belongs to the groups (i1, . . . , iq), where for all l = 1, . . . , q, il ∈ {1, 2, . . . ,Nl}. It
should be noted that two observations can belong to the same group for a given grouping factor
and to different groups for another grouping factor.

In this setting, the total number of observations is n =
∑Nk

i=1 ni,k,∀k ≤ q, where ni,k is the
number of observations within group i from the grouping factor k. We therefore have N =∑q

k=1 Nk.
The linear mixed model can be written as

y = Xβ +

q∑
k=1

Zkuk + ε, (5)

the differences with model (1) being that

• For k = 1, . . . , q, uk is a Nk-vector of the random effect for grouping factor k, ,

• For k = 1, . . . , q, Zk is a n × Nk incidence matrix for grouping factor k.

Both Algorithms 2.1 and 3.1 apply for Model (5) when random effects are considered to be
independent. We make the common assumption of a null covariance matrix between two random
effects pertaining to two different grouping variables. The matrix G is therefore block-diagonal,
each block corresponding to one grouping variable. Within each block, a covariance structure Ψ
can be considered as previously. A particular case is when all random effects correspond to dif-
ferent grouping variables, implying a diagonal G matrix. This will be the case in the application
to real data considered in Section 5.

A naive selection of the random effects can be performed when the variance of a random
effect drops close to 0. When Ψk,k is too small at some step t of the ECM algorithm, the random
effect uk is removed from the model.

In Section 4, we show that the combination of Algorithm 3.1 and the mht.bol method per-
forms well on simulated data.

4. Simulation study

The purpose of this section is to compare different methods that aim at selecting the correct
fixed effects coefficients in a linear mixed model (1). Our methods are implemented into the R
language [21] through the MMS package, available on CRAN (http://cran.r-project.org/).
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4.1. Methods used

We compare four methods, the lmmLasso method of [24], Algorithm 2.1 (designated as
Lasso+), the combination of the adLasso method [29] and Algorithm 3.1 (designated as ad-
Lasso+) and the combination of the mht.bol procedure [22] and Algorithm 3.1 (designated as
mht.bol+). The lmmLasso method was computed using the lmmLasso R-package, available on
CRAN (http://www.cran.r-project.org).
The initial weights of the adLasso+ are set to 1/|β̃i| where for all i ∈ {1, . . . , p}, β̃i is the Ordinary
Least Squares (OLS) estimate of βi in the model y = Xiβi + ε.

The second step of the mht.bol method performs multiple hypothesis testing via an estima-
tion of unknown quantiles related to the matrix X. Computing these quantiles at each iteration of
the convergence process would make the combination of the mht.bol method and Algorithm 3.1
almost impossible to run. However, the quantiles remain unchanged throughout the algorithm
since no changes occur in the data matrix X. The mht.bol method could therefore be run sev-
eral times on the same data set with unvarying quantiles. This results in a considerable gain in
computational time. Some parameters of the mht.bol method are changed in order to limit the
time of each iteration of the convergence process. The parameter m that denotes the number of
bootstrapped samples used to sort the variables (first step of the mht.bol method) is set to 10.
The number of variables arranged in order during the first step of the mht.bol method is set to
40. The mht.bol+ method is set with a user-level of α = 0.1, which reflects for the level of the
testing procedure.
For all methods requiring tuning, the tuning parameter is set using the Bayesian Information
Criterion as described in Section 2.4.

4.2. Simulation study design

We set X1 to be the vector of Rn in which coordinates are all equal to 1 and then consider four
models. For each model, the response variable y is computed via y =

∑5
j=1 Xi jβi j +

∑q
k=1 Zkuk +ε,

where J = {i1, . . . , i5} ⊂ {1, . . . , p}, with q random effects being Gaussian and ε being a vector
of independent standard Gaussian variables (σ2

e = 1). For each model, we have for all j =

2, . . . , p:
∑n

i=1 X j,i = 0 and 1
n
∑n

i=1 X2
j,i = 1. For k = 1, . . . , q, the random effects regression

matrix Zk corresponds to the design matrix of the interaction between the kth column of X and
the grouping factor, which gives a n × N matrix. The design of the matrices Zk’s means that
the q grouping variables generates both a fixed effect (for the βk’s) and a random effect (for the
uk’s). As recommended in Schelldorfer et al. [24], the variables that generate both a fixed and a
random effect do not undergo feature selection to avoid shrinkage of the fixed effect coefficients
for those variables towards 0. The models are defined as follows:

• M1: n = 120, p = 80, βJ = 3/4, q = 3 and Ψ = I3. For all j = 2, . . . , p, X j are i.i.d. with
X j ∼ Nn(0, In). N = 20 and ∀i ∈ {1, .., 20} ni = 6

• M2: n = 120, p = 300, βJ = 3/4, q = 2 with var(u1) = var(u2) = 1 and cov(u1,u2) = 0.5.
The covariates are generated from a multivariate normal distribution with mean zero and
covariance matrix Σ with the pairwise correlation Σkk′ = ρ|k−k′ | and ρ = 0.5. N = 20 and
∀i ∈ {1, .., 20} ni = 6

• M3: n = 120, p = 600, βJ = 3/4, q = 2 and Ψ = I2. The covariates are generated from a
multivariate normal distribution with mean zero and covariance matrix Σ with the pairwise
correlation Σkk′ = ρ|k−k′ | and ρ = 0.5. N = 20 and ∀i ∈ {1, .., 20} ni = 6
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• M4: n = 120, p = 600, βJ = 3/4, q = 2 and Ψ = I2. For all j = 2, . . . , p, X j are i.i.d. with
X j ∼ Nn(0, In). The two grouping variables are different: N1 = 20,∀i ∈ {1, .., 20} ni,1 = 6
and N2 = 15,∀i ∈ {1, .., 15} ni,2 = 8

For all models we set J = {1, 2, i3, i4, i5} where {i3, i4, i5} ⊂ {3, . . . , p}; in addition, i3 = 3 for
model M1. In each model, the matrices X and Zk are generated once and for all. A hundred
replications are performed by generating different random effects uk and different random noise
ε according to the settings defined for M1 − M4.

The designs M1 − M4 were chosen to study the influence of several settings on the perfor-
mance of the variable selection procedures: effect of the dimension p of the vector β, effect of
the correlation between the random effects, effect of a linear dependency between the covariates
and the effect of various grouping variables for the different random effects. Model M1 is the
simplest one with a small dimension (p < n) and independent random effects. The covariates X j

are quasi-orthogonal: they are generated once and for all by independent Nn(0, In). Model M2
addresses the high dimension (p > n) and correlated random effects. Compared with M1, the
way the covariates are generated induces linear dependences between them; these dependences
make the estimation of β harder. In model M3, the dimension is even higher, but the random
effects are independent. Model M4 addresses the question of different grouping factors.

The aim is to recover the set of relevant fixed effects coefficients J for each model as well as
to estimate these coefficients and the variance matrix of both the random effects and residuals.
To evaluate the quality of the methods, we use several criteria: the proportion of runs where the
true set of variables is recovered (Ĵ = J), the proportion of runs where the true set of variables
is included in the selected set (J ⊂ Ĵ), the proportion T P of true variables that are recovered
(|Ĵ ∩ J|/|J|) as well as the false discovery rate FDR (|JC ∩ Ĵ|/|Ĵ|), the estimation of Φ and
the mean squared error mse calculated as an `2 error rate between the real value Xβ and the
estimation Xβ̂. We also determined the Signal-to-Noise Ratio (SNR) as ||Xβ||22/||

∑q
k=1 Zkuk +ε||22

for each of the replications.

4.3. Comments on the results

Detailed results of the simulation study are available in Appendix B. A summary of the main
results is shown in Figure 1. It should be noted that the lmmLasso method of the lmmLasso
R-package, available on CRAN, could not be computed for model M4 because the function does
not support different grouping variables.

For all models, lmmLasso and Lasso+ gave almost identical results. This is not really surpris-
ing since both methods are based on a `1-penalization of the log likelihood. The result in terms of
true model recovered were not satisfactory for these methods because the False Discovery Rate
(FDR) is too high. However, both methods exhibited a high percentage of ‘J ⊂ Ĵ’ related to a
high number of True Positive (TP).
Regarding the adLasso+ method, it provided a better mse result than the Lasso+ method, but in
the meantime the FDR was higher and the number of TP was lower.

The best results were obtained when Algorithm 3.1 was combined with the mht.bol method
(mht.bol+). This combination provided by far the greatest percentage of true model recovered,
the percentage of TP was slightly lower than for the other methods but the FDR was much lower
and close to 0. In addition, the estimated fixed effects were the closest to real values and the
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Figure 1: Summary of the results of the simulation study for models M1 − M4 (X axis). For each model: (a) Empirical
probability of recovering the exact set of parameters (Ĵ = J), (b) Mean Squared Error, (c) False Discovery Rate, and (d)
proportion of true positives.

mse was the lowest among the tested methods. Nevertheless, mse results for both Lasso+ and
lmmLasso could easily be improved by using a linear mixed model estimation as described in
Section 2.3 (see Table B.6 in Appendix B). Interestingly, the mht.bol+ method always converged
in our simulations.

All the results presented in this section were obtained following specific initialization of the
algorithms. The next paragraph focuses on the impact of such initialization.

4.4. Impact of initializing our algorithms

Both Algorithm 2.1 and Algorithm 3.1 start by initializing the parameter Φ = (β,G, σ2
e), as

mentioned previously in Section 2.3.
We tested different initializations and found that the algorithms always converged towards

the same point, whatever the initialization of Φ (not shown). However, the further Φ[0] was set
from the true value of Φ, the higher the number of iterations needed to converge.

5. Application on a real data-set

In this section we analyze a real data set previously described in [23]. The aim of this anal-
ysis is to pinpoint metabolomic data that describe a phenotype taking into account all available
information such as the breed, the batch effect and the relationship between individuals. In the
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present case, we study the Daily Feed Intake phenotype (DFI). We model the data as follows:

y = XBβB + XMβM + ZEuE + ZFuF + ε, (6)

where y is the DFI phenotype and XB, XM , ZE , ZF are the design matrices of the breed effect,
the metabolomic data, the batch effect and the family effect, respectively. As mentioned in the
Introduction, XB is of size 506 × 3, XM is of size 506 × 375, ZE is of size 506 × 8 and ZF is of
size 506 × 157.

We consider two random effects, the batch and the family effects, and consider that each
level of these factors is a random sample drawn from a much larger population of batches and
families, contrary to the breed factor. Since the grouping variables are different, we assume that
the random effects are independent. We denote by G the block diagonal matrix with blocksσ2

E IN1

and σ2
F IN2 , with N1 = 8,N2 = 157 and where σ2

E and σ2
F are the variances of the batch and the

family effect respectively. Note that the coefficients βB do not undergo feature selection.
We compare several methods using the linear mixed model defined by (6): Lasso+, adLasso+ and
mht.bol+ (see Section 4). These methods are benchmarked to some feature selection procedures
developed for classical linear models, such as Lasso, adLasso and mht.bol, to investigate the
potential advantages of including random effects on the real data. In the case of linear model, the
methods are fitted to y = XBβB + XMβM + ε.

Both methods mht.bol and mht.bol+ were set with a user-level of α = 0.1. The results are
presented in Table 1.

|Ĵ| σ̂2
e σ̂2

E σ̂2
F

Lasso 14 3.8 × 10−2 - -
adLasso 21 3.4 × 10−2 - -
mht.bol 11 4.1 × 10−2 - -
Lasso+ 11 3.2 × 10−2 3.2 × 10−3 6.4 × 10−3

adLasso+ 10 3.3 × 10−2 2.5 × 10−3 6.5 × 10−3

mht.bol+ 5 3.4 × 10−2 5.9 × 10−3 6.5 × 10−3

Table 1: Parameters estimation for the real data set

When random effects were considered, we observed a decrease in both the residual variance
and the number of selected metabolomic variables.

The computational time for one run when only the batch effect is considered (in order to
compute the lmmLasso) was 0.80 seconds for the Lasso+ method and 24.28 seconds for the
lmmLasso method. As can be seen, when a large number of observations were included, the
Lasso+ method was much faster than the lmmLasso method (due to the inversion of the matrix
of variance V at each step of the convergence process). This simulation was performed on a
2.80GHz CPU with 8.00Gb of RAM with a regularization parameter that selects the same model
for both methods.

Further investigation will include biological analysis and interpretation of the variables se-
lected by the different models.

13



6. Conclusion

In this paper, we proposed to add a `1-penalization on the complete log-likelihood to allow
the selection of the fixed effects in a linear mixed model. A multicycle ECM algorithm was used
to minimize the objective function. This algorithm provides the same results as the lmmLasso
method described in [24], but is much faster to run than the latter. Theoretical results obtained
in this paper were identical to those found in [24] when the variances are known. One advantage
of our algorithm is that it can be combined with any variable selection method built for linear
models. The combined mht.bol method gave good results when tested on simulated data and
outperformed other approaches. It selected most of the relevant variable and had a very small
False Discovery Rate.
We applied all of these methods to a real data set and demonstrated that the residual variance
could be reduced - even with a smaller set of selected variables.
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Appendix A. The ECM algorithm

Appendix A.1. First E-step

By definition,

Eu|y,Φ=Φ[t] (ε′ε) =
∣∣∣∣∣∣Eu|y,Φ=Φ[t] (ε)

∣∣∣∣∣∣2 + tr
(
Varu|y,Φ=Φ(t) (ε)

)
.

Eu|y,Φ=Φ[t] (ε′ε) can be further detailed as:

Eu|y,Φ=Φ[t] (ε′ε) =
∣∣∣∣∣∣∣∣y − Xβ[t] − ZE

(
u|y,Φ = Φ[t]

)∣∣∣∣∣∣∣∣2 + tr
(
ZVar

(
u|y,Φ[t]

)
Z′

)
. (A.1)

Let us denote u[t+1/2] = E
(
u|y,Φ = Φ[t]

)
. As designated by Henderson [12], u[t+1/2] is the BLUP

(Best Linear Unbiased Prediction) of u for the vector of parameters Φ equal to Φ[t]. According
to Henderson [12],

u[t+1/2] = (Z′Z + σ2[t]
e G−1[t])−1Z′

(
y − Xβ[t]

)
.

Appendix A.2. M-Step for β

See main text.

Appendix A.3. Second E-Step

See main text.

Appendix A.4. M-step for (G, σ2
e)

Variance matrices G and R are updated based on the minimization of Q1 and Q0, respectively.
Let us recall that G = Ψ ⊗ IN . We can therefore write Q1(G;Φ[t]) = Nq log(2π) + N log(|Ψ[t]|) +

tr(Ψ−1[t]Ω[t]), where Ω[t] = {ω[t]
i, j = E(u′iu j|y,Φ = Φ[t])}. Thanks to the lemma reported in [1],

the minimization of Q1 with respect to Ψ gives Ψ[t+1] = Ω[t]/N. Thus, for all 1 ≤ i, j ≤ q,
Ψ

[t+1]
i, j = E

(
u′iu j|y,G[t], σ2[t]

e ,β[t+1]
)
/N.

Besides, for all 1 ≤ i, j ≤ q

E
(
u′iu j|y, σ2[t]

k , σ2[t]
e ,β[t+1]

)
= u[t+1]

i
′
u[t+1]

j +

N∑
k=1

covu|y,σ2[t]
k ,σ2[t]

e ,β[t+1] (uk
i , u

k
j).

Moreover, we can use the following results of [12] that gives us the expression of the covari-
ance matrix covu|y,σ2[t]

k ,σ2[t]
e ,β[t+1] (ui,u j) from which the coefficient covu|y,σ2[t]

k ,σ2[t]
e ,β[t+1] (uk

i , u
k
j) can be

extracted,
covu|y,σ2[t]

k ,σ2[t]
e ,β[t+1] (ui,u j) = Ti, jσ

2[t]
e ,
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where Ti, j is defined as follows:

(
Z′Z + σ2[t]

e G−1[t]
)−1

=


Z′1Z1 + σ2[t]

e Ψ1,1[t]IN Z′1Z2 + σ2[t]
e Ψ1,2[t]IN . . . Z′1Zq + σ2[t]

e Ψ1,q[t]IN

Z′2Z1 + σ2[t]
e Ψ2,1[t]IN Z′2Z2 + σ2[t]

e Ψ2,2[t]IN . . . Z′2Zq + σ2[t]
e Ψ2,q[t]IN

...
...

. . .
...

Z′qZ1 + σ2[t]
e Ψq,1[t]IN Z′qZ2 + σ2[t]

e Ψq,2[t]IN . . . Z′qZq + σ2[t]
e Ψq,q[t]IN


−1

=


T1,1 T1,2 . . . T1,q
T′1,2 T2,2 . . . T2,q
...

...
. . .

...
T′1,q T′2,q . . . Tq,q

 ,
with 

Ψ1,1 Ψ1,2 . . . Ψ1,q

Ψ2,1 Ψ2,2 . . . Ψ2,q

...
...

. . .
...

Ψq,1 Ψq,2 . . . Ψq,q

 =


Ψ1,1 Ψ1,2 . . . Ψ1,q
Ψ2,1 Ψ2,2 . . . Ψ2,q
...

...
. . .

...
Ψq,1 Ψq,2 . . . Ψq,q


−1

.

Thus,

Ψ
[t+1]
i, j =

1
N

[
u[t+1]

i
′
u[t+1]

j + tr(Ti, j)σ2[t]
e

]
.

The minimization of Q0 with respect to σ2
e gives: σ2[t+1]

e = Eu|y,Φ=Φ[t] (ε′ε)/n. From (A.1), we
have

σ2[t+1]
e =

1
n

[∣∣∣∣∣∣y − Xβ[t+1] − Zu[t+1]
∣∣∣∣∣∣2 + tr

(
Z(Z′Z + σ2[t]

e G−1[t])−1Z′
)
σ2[t]

e

]
.

Let us denote T =
(
Z′Z + σ2[t]

e G−1[t]
)−1

. Since

tr
(
Z

(
Z′Z + σ2[t]

e G−1[t]
)−1

Z′
)

= tr
((

Z′Z + σ2[t]
e G−1[t]

)−1
Z′Z

)
= Nq − tr

[(
Z′Z + σ2[t]

e G−1[t]
)−1

σ2[t]
e G−1[t]

]
= Nq − σ

2[t]
e tr

(
TG−1[t]

)
,

we have
σ2[t+1]

e =
1
n

[∣∣∣∣∣∣y − Xβ[t+1] − Zu[t+1]
∣∣∣∣∣∣2 + σ2[t]

e

(
Nq − σ

2[t]
e tr

(
TG−1[t]

))]
.

Appendix B. Results of the simulation study

In the following tables, we present the results obtained from 100 runs. The first row gives the
proportion of runs where the true model is recovered (Ĵ = J). The proportion of runs where the
true set of variables is included in the selected set is given in the second row (J ⊂ Ĵ). T P denotes
the proportion of true variables that are recovered: |Ĵ ∩ J|/|J|. FDR is the false discovery rate :
|JC ∩ Ĵ|/|Ĵ|. Averages over the 100 runs of T P, FDR and of the parameter estimates are given,
as well as the mean squared error (MSE). Standard errors are given between parentheses.
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Table B.2: Results for model M1. The signal to noise ratio is equal to S NR = 0.60(0.12).
Ideal Lasso+ lmmLasso adLasso+ mht.bol+

Ĵ = J 1 0.34 0.36 0.31 0.78
J ⊂ Ĵ 1 0.98 0.98 0.93 0.78
T P 1 0.99(0.03) 0.99(0.03) 0.99(0.05) 0.95(0.09)

FDR 0 0.17(0.14) 0.17(0.16) 0.18(0.17) 0.00(0.00)
σ̂2

e 1 1.05(0.11) 1.09(0.22) 1.00(0.12) 1.03(0.13)
σ̂2

1 1 0.97(0.42) 0.98(0.40) 0.93(0.41) 0.95(0.40)
σ̂2

2 1 1.13(0.49) 1.12(0.47) 1.04(0.48) 1.06(0.45)
σ̂2

3 1 0.94(0.39) 0.95(0.38) 0.91(0.39) 0.94(0.37)
σ̂2

12 0 -0.02(0.37) 0.14(0.24) -0.02(0.34) 0.00(0.34)
σ̂2

23 0 -0.00(0.34) 0.16(0.25) 0.00(0.32) -0.00(0.35)
σ̂2

13 0 -0.06(0.30) 0.10(0.20) -0.06(0.30) -0.07(0.31)
β̂1 0.75 0.73(0.24) 0.73(0.23) 0.74(0.23) 0.74(0.24)
β̂2 0.75 0.62(0.29) 0.62(0.29) 0.66(0.29) 0.71(0.31)
β̂3 0.75 0.74(0.28) 0.74(0.27) 0.75(0.28) 0.76(0.28)
β̂4 0.75 0.46(0.13) 0.46(0.13) 0.57(0.17) 0.72(0.20)
β̂5 0.75 0.39(0.14) 0.40(0.14) 0.52(0.20) 0.66(0.34)

MSE 0 0.45(0.22) 0.45(0.21) 0.37(0.23) 0.37(0.30)

Table B.3: Results for model M2. The signal to noise ratio is equal to S NR = 0.90(0.19).
Ideal Lasso+ lmmLasso adLasso+ mht.bol+

Ĵ = J 1 0.28 0.30 0.33 0.97
J ⊂ Ĵ 1 1.00 1.00 0.99 0.98
T P 1 1.00(0.00) 1.00(0.00) 1.00(0.02) 1.00(0.03)

FDR 0 0.23(0.18) 0.22(0.18) 0.22(0.20) 0.00(0.02)
σ̂2

e 1 1.12(0.16) 1.16(0.21) 1.00(0.14) 0.99(0.11)
σ̂2

1 1 0.94(0.39) 0.93(0.39) 0.90(0.37) 0.95(0.38)
σ̂2

2 1 0.98(0.38) 0.97(0.38) 0.95(0.37) 0.99(0.37)
σ̂2

12 0 0.47(0.27) 0.48(0.27) 0.46(0.26) 0.48(0.27)
β̂i1 0.75 0.84(0.23) 0.84(0.23) 0.83(0.23) 0.80(0.23)
β̂i2 0.75 0.70(0.29) 0.70(0.29) 0.71(0.28) 0.74(0.29)
β̂i3 0.75 0.51(0.12) 0.51(0.12) 0.62(0.13) 0.75(0.11)
β̂i4 0.75 0.47(0.12) 0.47(0.11) 0.56(0.15) 0.74(0.15)
β̂i5 0.75 0.49(0.11) 0.49(0.11) 0.60(0.13) 0.75(0.11)

MSE 0 0.39(0.18) 0.39(0.18) 0.28(0.17) 0.18(0.16)
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Table B.4: Results for model M3. The signal to noise ratio is equal to S NR = 0.92(0.20).
Ideal Lasso+ lmmLasso adLasso+ mht.bol+

Ĵ = J 1 0.04 0.07 0.01 0.75
J ⊂ Ĵ 1 0.95 0.96 0.89 0.78
T P 1 0.99(0.04) 0.99(0.04) 0.98(0.07) 0.93(0.14)

FDR 0 0.36(0.16) 0.35(0.17) 0.42(0.17) 0.03(0.08)
σ̂2

e 1 1.16(0.18) 1.23(0.27) 1.01(0.17) 1.04(0.20)
σ̂2

1 1 0.98(0.44) 0.97(0.42) 0.93(0.40) 0.97(0.41)
σ̂2

2 1 0.92(0.46) 0.92(0.43) 0.89(0.42) 0.94(0.44)
σ̂2

12 0 0.01(0.31) 0.13(0.19) 0.01(0.31) 0.00(0.32)
β̂i1 0.75 0.79(0.26) 0.78(0.26) 0.78(0.27) 0.78(0.27)
β̂i2 0.75 0.69(0.26) 0.69(0.25) 0.69(0.24) 0.74(0.26)
β̂i3 0.75 0.28(0.14) 0.28(0.14) 0.35(0.19) 0.62(0.30)
β̂i4 0.75 0.41(0.12) 0.40(0.12) 0.53(0.13) 0.70(0.21)
β̂i5 0.75 0.41(0.12) 0.40(0.12) 0.51(0.18) 0.69(0.26)

MSE 0 0.54(0.21) 0.55(0.21) 0.41(0.21) 0.32(0.34)

Table B.5: Results for model M4. The signal to noise ratio is equal to S NR = 0.86(0.16).
Ideal Lasso+ lmmLasso adLasso+ mht.bol+

Ĵ = J 1 0.18 - 0.24 0.71
J ⊂ Ĵ 1 0.97 - 0.90 0.72
T P 1 0.99(0.07) - 0.97(0.09) 0.91(0.16)

FDR 0 0.25(0.17) - 0.38(0.20) 0.01(0.03)
σ̂2

e 1 1.29(0.29) - 1.06(0.29) 1.32(0.41)
σ̂2

1 1 0.90(0.46) - 0.88(0.41) 0.88(0.43)
σ̂2

2 1 0.95(0.53) - 0.90(0.48) 0.76(0.39)
β̂1 0.67 0.80(0.25) - 0.78(0.24) 0.77(0.24)
β̂2 0.67 0.69(0.29) - 0.68(0.28) 0.73(0.29)
β̂3 0.67 0.36(0.13) - 0.48(0.18) 0.68(0.27)
β̂4 0.67 0.36(0.11) - 0.44(0.18) 0.66(0.27)
β̂5 0.67 0.34(0.14) - 0.48(0.19) 0.62(0.31)

MSE 0 0.60(0.25) - 0.46(0.26) 0.42(0.42)
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Table B.6: Results for model M2 when a linear mixed model estimation is added after the convergence of the
algorithm. The signal to noise ratio is equal to S NR = 0.90(0.19).

Ideal Lasso+ lmmLasso adLasso+

Ĵ = J 1 0.28 0.30 0.33
J ⊂ Ĵ 1 1.00 1.00 0.99
T P 1 1.00(0.00) 1.00(0.00) 1.00(0.02)

FDR 0 0.23(0.18) 0.22(0.18) 0.22(0.20)
σ̂2

e 1 0.90(0.13) 0.91(0.17) 0.92(0.13)
σ̂2

1 1 0.92(0.38) 0.99(0.40) 0.87(0.36)
σ̂2

2 1 0.97(0.36) 1.04(0.38) 0.92(0.36)
σ̂2

12 0 0.47(0.28) 0.50(0.29) 0.45(0.26)
β̂i1 0.75 0.81(0.23) 0.81(0.23) 0.81(0.23)
β̂i2 0.75 0.74(0.29) 0.74(0.29) 0.72(0.28)
β̂i3 0.75 0.72(0.12) 0.71(0.13) 0.71(0.12)
β̂i4 0.75 0.72(0.12) 0.72(0.12) 0.72(0.14)
β̂i5 0.75 0.72(0.13) 0.72(0.13) 0.70(0.11)

MSE 0 0.31(0.20) 0.31(0.21) 0.31(0.24)

Appendix C. Proof of Proposition 2.2

G and R are assumed to be known. Thus the minimization of our objective function g reduces
to the minimization of the following function in (β,u):
h(u,β) = (y − Xβ − Zu)′R−1(y − Xβ − Zu) + u′G−1u + λ|β|1.
Let us denote (û, β̂) = argmin

(u,β)
h(u,β). Since the function h is convex, we have:

(û, β̂) =


u(β) = argmin

u
h(u,β)

β̂ = argmin
β

h(u(β),β)

û = u(β̂)

.

Since
∂h(u,β)
∂u

exists, we can explicit the minimum of h in u:

(û, β̂) =


u(β) = (Z′R−1Z + G−1)−1Z′R−1(y − Xβ)
β̂ = argmin

β
h(u(β),β)

û = u(β̂)

.

Thus, we obtain:

h(u(β),β) = (y − Xβ − Zu(β))′R−1(y − Xβ − Zu(β)) + u′G−1u + λ|β|1

= (y − Xβ)′R−1(y − Xβ) − (y − Xβ)R−1Zu(β) − (Zu(β))′R−1(y − Xβ)
+(Zû)′R−1Zu(β) + u(β)′G−1u(β) + λ|β|1

= (y − Xβ)′
[
R−1 − R−1Z(Z′R−1Z + G−1)−1Z′R−1

]
(y − Xβ) + λ|β|1.

We denote by W = R−1 − R−1Z(Z′R−1Z + G−1)−1Z′R−1. We can show that W = (Z′GZ +

R−1)−1 = V−1. This result comes from the equivalence between the resolution of Henderson’s
equations [12] and the generalized least squares. To conclude, we obtain

(û, β̂) =

(Z′R−1Z + G−1)−1Z′R−1(y − Xβ̂), argmin
β

(y − Xβ)′V−1(y − Xβ) + λ|β|1

.
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