
HAL Id: hal-01974265
https://hal.science/hal-01974265

Submitted on 8 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MOMDP solving algorithms comparison for safe path
planning problems in urban environments

Jean-Alexis Delamer, Yoko Watanabe, Caroline Ponzoni Carvalho Chanel

To cite this version:
Jean-Alexis Delamer, Yoko Watanabe, Caroline Ponzoni Carvalho Chanel. MOMDP solving algo-
rithms comparison for safe path planning problems in urban environments. 10th Workshop on Plan-
ning, Perception and Navigation for Intelligent Vehicles, Oct 2018, Madrid, Spain. pp.1-6. �hal-
01974265�

https://hal.science/hal-01974265
https://hal.archives-ouvertes.fr

�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	���
��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/21417

 https://project.inria.fr/ppniv18/files/2018/10/paper2.pdf

Delamer, Jean-Alexis and Watanabe, Yoko and Ponzoni Carvalho Chanel, Caroline MOMDP solving algorithms

comparison for safe path planning problems in urban environments. (2018) In: 10th Workshop on Planning,

Perception and Navigation for Intelligent Vehicles, 1 October 2018 (Madrid, Spain).

MOMDP solving algorithms comparison for safe path planning
problems in urban environments

Jean-Alexis Delamer1 and Yoko Watanabe2 and Caroline P. Carvalho Chanel3

Abstract— This paper tackles a problem of UAV safe path
planning in an urban environment where the onboard sensors
can be unavailable such as GPS occlusion. The key idea
is to perform UAV path planning along with its navigation
an guidance mode planning where each of these modes uses
different set of sensors and whose availability and performance
are environment-dependent. It is supposed to have a-priori
knowledge in a form of gaussians mixture maps of obstacles and
sensors availabilities. These maps allow the use of an Extended
Kalman Filter (EKF) to have an accurate state estimate. This
paper proposes a planner model based on Mixed Observability
Markov Decision Process (MOMDP) and EKF. It allows the
planner to propagate such probability map information to the
future path for choosing the best action minimizing the expected
cost.

I. INTRODUCTION

Safe navigation of autonomous vehicles in urban environ-
ment is a challenging problem. These vehicles rely on their
onboard sensors to navigate through the environment. Their
navigation performance depends directly on the onboard
sensors whose availability and precision can vary with the
environment. For example, the GPS localization precision
depends on the satellites constellation and their visibilities.
It is, however, possible to predict its localization precision,
called Dilution of Precision (DOP), for a given environment
[12]. Such information can be used as a priori knowledge in
the path planning task, to ensure the safety under uncertainty.

In this context, this paper tackles such safe path planning
problem for autonomous vehicles in urban environments,
in particular for UAVs (Unmanned Aerial Vehicles). [18]
and [1] have addressed UAV path planning problems, by
considering the localization uncertainty which is propagated
along a planned path in function of its environment. For
instance, [18] applies the A* algorithm and makes use of
uncertainty corridor to evaluate the plan for choosing the
most efficient and safe path. [7] and [1] propagate the
position uncertainty during path search by using RRBT
algorithm. However, any of these approaches consider the
complete GNC (Guidance, Navigation, and Control) closed-
loop vehicle kinematics model into the decisional process.

The UAV safe path planning problem, addressed in this pa-
per, is modeled as a particular Mixed-Observability Markov

*This work was not supported by any organization
1Jean-Alexis Delamer, Information Processing and Sys-

tems Departement (DTIS), ONERA, Toulouse, France
jean-alexis.delamer@onera.fr

2Yoko Watanabe, Information Processing and Systems Departement
(DTIS), ONERA, Toulouse, France yoko.watanabe@onera.fr

3Caroline P. Carvalho Chanel, Design and Control of Aerospace Vehicles
Departement (DCAS), ISAE-SUPAERO - University of Toulouse, France
caroline.chanel@isae.fr

Decision Process (MOMDP) [16]. MOMDP is an extension
of the classical Partially Observable Markov Decision Pro-
cess (POMDP) [11], that allows the factorization of the state
variables into fully and partially observable state variables. It
holds in a smaller belief state space dimension, accelerating
policy computation. The transition and observation functions
of the MOMDP are built on the vehicle GNC model, and
on the a priori knowledge of the environment given as
probability grid maps of obstacles or sensor availabilities, re-
spectively. Through these complex functions which combine
continuous state variables transitions with discrete grid maps
for sensor availability observations, the resulting updated
belief state has a particular form. To address this difficulty,
the belief state is approximated by a Gaussian Mixture Model
(GMM) using the Expectation-Minimization (EM) algorithm
[2].

Moreover, another particularity of this planning problem
arises with the cost function proposed in this paper. It
holds in having a non piecewise linear and convex (non-
PWLC) value function [11], which prevents from using
classical MOMDP solvers [16], [3]. Consequently, this paper
presents two algorithms which do not require the PWLC
property. The first algorithm is based on (L)RTDP (Labelled
Real-Time Dynamic Programming) [5] and RTDP-bel [6]
algorithms. (L)RTDP [5] improves the convergence of RTDP
(and RTDP-bel in consequence) by labeling the already
converged states. RTDP-bel use an hash-table only defined
for belief states visited during policy learning. The second al-
gorithm is based on POMCP [17], a Monte-Carlo tree search
algorithm for partially observable environments. POMCP,
as UCT (Upper Confidence bounds applied to Trees) [13],
applies the UCB1 (Upper Confidence Bounds) greedy action
selection strategy. POMCP approaches the value of a belief
state by the average of evaluated costs during simulations
which have started from this belief state, allowing this to
generate a policy tree.And, as far as we know, RTDP-bel and
POMCP are the only POMDP [11] algorithms that allows to
approximate a value function in any format.

This paper is organized as follows: firstly the MOMDP
model for this application case is presented. After, the
belief state GMM representation learning is discussed. Then,
the two algorithms: (L)RTDP-bel and POMCP-based are
proposed; the results are shown in order to compare their
performances. Finally, future work is discussed.

II. UAV SAFE PATH PLANNING PROBLEM

This paper addresses a problem of finding a naviga-
tion and guidance strategy (path and modes) which makes

Policy Navigation
module

Guidance
module

Sensors

Vehicule
motion
model

Belief state
update

Maps

bsc
sv

Observation
s′v

b
s′v
a

a

GNC

sv

bs′c

p(s′v | s′c)

Fig. 1: System architecture diagram. The GNC closed-loop vehicle
model is incorporated into the MOMDP transition function. Apriori
information forms a set of probability grid maps of the environment
and the sensor availabilities.

autonomous vehicles reach a given destination safely and
efficiently in a cluttered environment. Autonomous vehicles
are equipped with different sensors, such as INS and GPS,
which are used in its GNC system to execute a path (Fig.
1). The work here presented can be applied to any type of
autonomous vehicles, as long as their GNC model is well-
defined. To illustrate the approach, this paper focuses on
the UAV model proposed by [10], where the GNC closed-
loop system is modeled as a transition function of the
continuous vehicle state vector x (position, velocity, etc.).
The navigation filter estimates this state x and its error
covariance P for a selected navigation mode (or sensor).
The guidance and control module executes a selected path
by using (or not, depending on a selected guidance mode) the
navigation solution. The execution precision is given by the
execution error covariance Σ, which may depend on P . A
priori knowledge on the environment is assumed to be given
as a set of probability grid maps of obstacles and availability
of each of the sensors. These maps are used in planning task
to predict the path execution accuracy, and then to evaluate
obstacle collision risk with respect to it given a path.

III. MOMDP MODEL

The Mixed Observability Markov Decision Process
(MOMDP) proposed by [3] and [16] is a variant of the
POMDP (Partially Observable Markov Decision Process).
The state is not partially observable, but a part of the state is
known at each epoch. In this problem, an UAV always knows
the current sensor availabilities which are considered as a
part of the state. Consequently, MOMDP is applied to model
this problem. But, in contrast to a classical MOMDP model
[16], there is no partial observable state in this application
case. The vehicle state vector x is unobservable from the
planning model point of view, since there is neither partial
nor direct observation on it. The only outputs considered
from the GNC closed-loop model is the localization and
execution error covariances P and Σ. Figure 1 illustrates
the system architecture with different modules.

The MOMDP is defined as a tuple
{Sv,Sc,A,Ω, T ,O, C, b0}, where Sv is the bounded
set of fully observable states; Sc is the bounded set of
non observable continuous states; A is the bounded set
of actions; Ω is the bounded set of observations; T is
the state transition function; O is the observation function
such as : O(o, a, s′c, s

′
v) = p(o|s′c, s′v, a) = 1 if o =

s′v, or 0 otherwise; C : B×B×A→ R is the cost function,

with B, the belief state space defined over |S|= |Sv|×|Sc| ;
and b0 = (s0

v, b
0
Sc), where b0Sc ∈ Bc is the intial probability

distribution over the non observable continuous states,
conditioned to s0

v ∈ Sv , the initial fully observable state.
The visible state sv ∈ Sv is defined as a tuple containing

the fully observable booleans of the sensor availability [0; 1],
with N the number of sensors, the boolean on the collision,
and the P the localization error covariance matrix propagated
by the navigation module in function of a selected navigation
sensor/mode in a given decision step. The sv is define such
as sv = {Fsensor1, . . . , FsensorN, FCol, P}. It is assumed that
the collision flag FCol is observable either by measuring or
estimating a force of contact.

The non observable continuous state sc ∈ Sc is defined
such as sc = x, recalling that x is the continuous vehicle
state vector (position, velocity, etc.).

An action a ∈ A is defined as a tuple {d,mn,mg}: the
discretized path direction d ∈ D; the navigation mode mn ∈
Mn and the guidance mode mg ∈Mg .

The transition function T (sv, s
′
v, a, s

′
c, sc) is composed of

two functions: a transition function TSc such as:

TSc(sc, sv, a, s
′
c) = fs′c(s

′
c|sc, sv, a) ∼ N(s̄′c,Σ

′(sv)),

which is based on the GNC closed-loop model, given that
the probability distribution of a predicted state s′c follows
a normal distribution N(s̄′c,Σ

′(sv)), which in turn, is a
function of the previous state sc and the action a; and
a transition function TSv such as TSv (s′c, s

′
v) = p(s′v|s′c),

which represents the transition to s′v and depends on the
sensor availability maps and therefore depends only on the
next state s′c. Concretely,

TSv (s
′
v |s′c) =

N+1∏
i=1

p(s′v(i)|s′c) (1)

where N is the number of sensors, thus N+1 is the number
of flags (booleans) in sv , and s′v(i) the i-th flag. Then, the
transition function becomes:

T (sv , s
′
v , a, s

′
c, sc) = TSc (sc, sv , a, s

′
c)× TSv (s

′
c, s

′
v)

= p(s′v |s′c)fs′c (s
′
c|sc, sv , a)

(2)

Note the execution error covariance matrix Σ from the GNC
transition model represents the uncertainty envelope of the
unobservable state sc (represented by bsc in the Fig. 1),
instead of P , the localization error covariance matrix. The
belief state is updated after an action a followed by a
perceived visible state o′ = s′v . The belief state update is
decomposed into two functions. The first one corresponds to
the GNC closed-loop transition function belief propagation:

bs′c (s
′
c) =

∫
Sc
fs′c (s

′
c|sc, sv , a)bsc (sc)dsc (3)

The second one is the probability of s′v (given by the
probability grid maps) that is computed based on bs′c :

p(s′v |b, a) =
|G|∑
i=1

p(s′v |s′c ∈ ci)p(s′c ∈ ci|b, a) (4)

at r(st, at)

st

svt

sct

st+1

svt+1

sct+1

ovt ovt+1

oct oct+1

(a) Classical transition model for a
MOMDP [3]

at

state
space
S:Sv×Sc

st

stv

stc

st+1

st+1
v

st+1
c

belief
state
space
B:Sv×Bc

bt bt+1

ot+1 = st+1
v

C(bt, bt+1, at)

(b) proposed MOMDP transition
model with Ω = Sv .

Fig. 2: Difference between the transition model

where ci corresponding to the ith cell of the probability map
and |G| is the number of cells in the map. Finally, the belief
state update function is defined as :

b
′s′v
s′c,a

(s′c) =
p(s′v |s′c)

∫
Sc fs′c (s

′
c|sc, sv , a)bsc (sc)dsc

|G|∑
i=1

p(s′v |s′c ∈ ci)p(s′c ∈ ci|b, a)
(5)

a) Why a MOMDP model instead of a classical
POMDP model?: The choice of modelling this application
case as a MOMDP instead a POMDP (Partially Observable
Markov Decision Process) is twofold: (i) the MOMDP model
offers the possibility of factorizing the state space, resulting
the policy computation complexity, as the belief state prob-
ability distribution can be defined over a small belief state
space Bc (which refers to the Sc space instead of the com-
plete S space, such that b = (sv, bSc)) – see Fig. 2 ; (ii) as
the state space is factorized, one can factorize the observation
space too. In this particular application case, the observation
set which corresponds to Sc is empty. Therefore, the only
observation set relies on Sv . Given that O(o, a, s′c, s

′
v) =

p(o|s′c, s′v, a) = 1 iff o = s′v, or 0 otherwise, one can
compute expectations directly over this variable (cf. Eq. 4
and 5).

A. Belief state representation learning

Figure 3a illustrates a belief state update step. The future
belief state ba is calculated after an action a from an initial
belief state b (see also Fig 1). If b is Gaussian, ba returned
by the GNC transition function is also Gaussian. Then, in
this example, an observation sv is perceived, such that a
probability p(sv|ba) > 0 only in the blue shaded cells. By
using this observation and (Eq. 5), the belief state ba is
updated to bsva . The shape of this new belief is no longer
Gaussian. Consequently, future belief states will not be
Gaussian neither.

Gaussian belief states allow algorithmic simplifications.
The Gaussian property allows planning algorithms to handle
belief states directly, unlike previous works which approach
belief states with Monte-Carlo particle filters [4], [17], thus
reduces computation time. Therefore, this paper proposes to
apply a machine learning technique to calculate a Gaussian
Mixture Model (GMM) to approximate the new belief bsva .

The EM algorithm [2] is used in this work. EM learns
a GMM belief state representation for a fixed number Ng

of Gaussian functions. The ideal Ng is unknown; then it is
necessary to compare the GMMs learned for different Ng’s.
So firstly, a sufficient number of samples sc is generated from
bsva . Then, for each Ng , the GMM is trained (it runs the EM
algorithm). To decide on which GMM best fits the belief
state, the Bayes Information Criterion (BIC) [2] is used,
due to its interesting property of penalizing the complexity
of the learned model (i.e., Ng). The GMM with smallest
BIC score is selected. Note that the maximum Ng and the
number of samples are problem-dependant and need to be
tested empirically beforehand. Figures 3b and 3c show an
example of the GMM learning result, where the initial belief
state ba (black dotted ellipse) is updated by an observation
sv of non-collision (the white part of the figure 3b).Then
EM is applied to learn GMMs with different Ng from 1 to
7, and that with Ng = 2 (shown in red and blue ellipses) was
selected according to the BIC score comparison (Fig 3c).

B. Cost function

The GMM approximation allows us to analytically com-
pute the cost C of the belief state transition. The cost function
calculates the volume of the uncertainty corridor (see [18] for
more details on this volume computation) between two belief
states (ensuring the safety and efficiency of the path). A fixed
collision penalty cost multiplied by collision probability is
also added to the cost function. Then:

C(bt, bt+1) =
∑
g∈bt

∑
g′∈bt+1

U(g, g′)p(g′ | b′sva , g)w(g)w(g′)

+K × s′v(Collision)).

(6)

where bt is the initial GMM belief, bt+1 is the learnt GMM
belief, U(g, g′) is the volume of the uncertainty corridor
between two Gaussian functions from the mixtures, p(g′ |
b′sva , g) the probability of being in g′ after an action a from
g, w(g) the weight of the Gaussian function provided by
the EM algorithm and K the collision cost. Note the GMM
approximation helps to compute the belief state transition
cost (Eq. 6). The cost can be analytically computed, avoiding
the application of particles filtering or Monte-Carlo cost
evaluation.

C. Value function

The value function V π(b) is defined as the expected total
cost (weighed by time using γ) the agent will receive from
b0 when following the policy π [11].

V
π

(b) = Eπ
[∞∑
t=0

γ
tE [C(bt, bt+1, π(bt))] |b0 = b

]
. (7)

As the value function is built based on an expected sum of
costs, one needs to pay attention to the form of the cost

b

bsva

ba
a

(a) Deformation of the
ba during update.

(b) GMM learning result
with Ng = 2.

(c) BIC score for different
Ng’s

Fig. 3: Example of the GMM learning algorithm result.

function. Also note that the cost function does not directly
depend on the action, but this last has an indirect impact:
the uncertainty of a state depends on the execution error
covariance Σ affected by the navigation and guidance modes
chosen. The optimal policy π∗ is defined by the optimal value
function V π∗, such as :

V
π∗

(b) = min
π∈Π

E
[∞∑
t=0

γ
tE [C(bt, bt+1, π(bt))] |b0 = b

]
(8)

Opening the sum in (Eq. 8), it holds to a Bellman’s equation,
which allows the application of dynamic programming. For
example:

V (b) = min
a∈A

E
[
C(b, bsva) + γV (b

sv
a)
]

= min
a∈A

∑
sv∈Sv

p(sv|b, a)(C(b, bsva)) + γV (b
sv
a)),

(9)

when the value (Eq. 9) converges for all reachable belief
states, within an ε error, one can extract the related optimized
(partial-)policy [14].

IV. ALGORITHMS

The cost function defined in (Eq. 6) depends on belief
state transitions and is no more piecewise linear and con-
vex (PWLC). In this case, the use of classical MOMDP
algorithms, such as SARSOP [14] which uses α-vectors to
represent the value function, is no more possible.

A. (L)RTDP-bel

The proposed algorithm is based on (L)RTDP and RTDP-
bel, because RTDP-like algortihms do not require to have
a PWLC value function. The idea is to directly evaluate
the belief states (and not the states as in RTDP-bel) while
exploring the convergence improvement of (L)RTDP.

Therefore, some functions and definitions need to be
adapted. In particular, the residual function which calculates
the difference between the value of the belief state and the
result of the Q-value of b for a greedy action a. Then the
residual is defined as :

R(b) =

∣∣∣∣∣∣V (b)− min
a∈A

∑
sv∈Sv

p(sv|b, a)(C(b, bsva)) + γV (b
sv
a)

∣∣∣∣∣∣ (10)

As in (L)RTDP, it is considered that a belief state has con-
verged (and consequently solved being marked as Labelled)
if the following definition is verified.

A value function V (b) converges for a given belief state
b relative to parameter ε > 0 when R(b) ≤ ε.

(L)RTDP-bel, shown in Alg. 1, takes in entry an initial
belief state b0 and an ε parameter. While the initial belief
is not solved, it will continue to simulate the greedy policy
(performing trials). A trial in (L)RTDP-bel is very similar
to the one of (L)RTDP, but there is an important difference
(besides working with belief states instead of the states):
during the update of the belief state of (L)RTDP-bel, the
EM algorithm is used to learn a Gaussian mixture model
to represent the belief state. When the goal is reached1 the
algorithm checks if each of the value of the belief states has

1it considers that it has reached the goal when the position of the goal
belongs to the ellipsoid (3σ) defined by the current belief state.

Algorithm 1: (L)RTDP-bel
1 Function (L)RTDP-BEL(b0,ε)
2 while b0 not solved do
3 (L)RTDP-BEL-TRIAL(b0,ε)

4 return π∗b0
5 Function (L)RTDP-BEL-TRIAL(b0,ε)
6 visited ←− ∅; b←− b0
7 while b not solved do
8 visited ←− b
9 if b /∈ Goal then

10 abest ←− argmin
a∈A

QVl (b, a)

11 Vl(b)←− QVl (b, abest)
12 ba ←− execute abest in b
13 sv ←− sample sv from p(sv|ba)
14 bsva ←− update(ba, sv)
15 b←− bsva

16 while visited 6= ∅ do
17 b←− pop(visited)
18 if !CHECK-SOLVED(b,ε) then
19 break

converged (i.e solved). This check is done by the Check-
Solved algorithm which does not differ from the Check-
Solved algorithm of (L)RTDP. To obtain more details on
these algorithms, please refer to [5], [6].

B. POMCP

The POMCP algorithm [17] is a Monte-Carlo Tree Search
algorithm for partially observable environments. POMCP
works by sampling a state s in the current belief state
(belief node or history h) and simulating sequences of action-
observation (rollout procedure) to construct a tree, then
calculates the average reward (or cost) for a belief node based
on the average reward of children nodes. The algorithm keeps
in memory the number of times a node was explored N(h)
and the number of times an action was chosen N(ha) in
this given node. As UCT [13], it applies the UCB1 greedy
action selection strategy that is based on a combination of
two characteristics: an approximation of the action’s Q-value
and a measure (given by c

√
logN(h)
N(ha)) of how well-explored

the action is, given this history (or belief node).
However, due to the particularities of the model addressed

in this work and to the fact that this is a goal-oriented prob-
lem, the POMCP algorithm needs to be modified. Starting
with an initial belief state b0 (line 3), the algorithm (Alg.
2) will expands the tree for a given timeout duration. If the
belief state is the goal (line 6), it returns, else it tests if the
belief state is in the tree. If not, (line 8) the belief state is
added. For each pair of action-observation, the next belief bsva
is also added to the tree (line 11). Note that, contrary to the
classical POMCP algorithm, no state is sampled because the
algorithm works directly on the belief state (specially for cost
and Q-value functions computation). Thus, the next action is
chosen using the UCB1 greedy action selection strategy (line
12). After, an observation sv is sampled, and the belief state
is updated (EM algorithm). The tree is expanded with this
new belief state, and the Q-value (recursively) updated.

Algorithm 2: POMPC
1 Function POMPC(b0, c, γ)
2 while !Timeout do
3 Expand(b0, c, γ)

4 a∗ ← argmin
a∈A

V (b0)

5 Function Expand(b, c, γ)
6 if b ∈ Goal then
7 return 0

8 if b /∈ T then
9 for a ∈ A do

10 for sv ∈ Sv do
11 T (bsva)← (Ninit(b

sv
a), Vinit(b

sv
a), ∅)

12 ā← argmin
a∈A

Q(b, a)− c
√

logN(b)
N(bā)

13 sv ∼ G(bā) /* Random generator */
14 bsva ← update(bā, sv)
15 Expand(bsvā , c, γ)
16 N(b)← N(b) + 1
17 N(bā)← N(bā) + 1
18 Q(b, ā)′ ←

∑
sv∈Sv

p(sv|b, ā) (C(b, bsvā) + γV (bsvā))

19 Q(b, ā)← Q(b, ā) +
Q(b,ā)′−Q(b,ā)

N(bā)

20 V (b)← min
a∈A

Q(b, a)

C. Belief state value initialization

As the MOMDP value function results from the appli-
cation of dynamic programming minimization operator, the
expert needs to ensure that the initial value of a belief state
(or initialization heuristic value, as in Alg. 2 with Vinit) must
be an upper bound (or lower bound for a maximization
operation) in order to preserve algorithm convergence - in
particular the contraction property [8].

The belief state value initialization proposed in this paper
explores the A* shortest path solution on the obstacle grid
map. The execution error Σ is propagated over this path for
the navigation and guidance modes with sensors most likely-
available. Then the cost-minimizing navigation and guidance
mode is selected among all the available modes. This value
approximation gives a tighter upper bound than a worst-case
navigation and guidance strategy.

V. SIMULATION RESULTS

The two MOMDP algorithms have been tested on a
benchmarking framework for UAV obstacle field navigation
2 [15], which provides environments with different obstacle
configurations. The UAV model (is the one model described
in Section III). Here two different maps have been selected:
”Cube baffle” which contains two cube obstacles and ”Cube”
which contain one cube obstacle both with a grid size of
100×100×20. To perform these tests, it has been considered
only two sensors onboard an UAV: INS and GPS. While INS
is known to be available anywhere, a probability grid map of
GPS availability was created based on a DOP map calculated
by using a GPS simulator. For each test the initial belief
state was b0 = (s̄c,Σ, sv), where s̄c = [5, 5, 7, 0, 0, 0, 0, 0, 0],
Σ = diag(1, 1, 4, 0.01, 0.01, 0.04, 0.01, 0.01, 0.01), sv =
[1, 1, 0, P], with P = Σ (note this is true only on initial
belief state, even after the first action Σ and P differs) and

2benckmark framework from: www.aem.umn.edu/people/
mettler/projects/AFDD/AFFDwebpage.htm

CubeBaffle Cube
(L)RTDP-bel POMCP (L)RTDP-bel POMCP

Success Rate 96% 95% 96% 96%
Average cost 3393.84 3072.67 5892.91 4093.24
Average cost in % 0% -9.47% 0% -30.54%

TABLE I: Performance comparison between (L)RTDP and POMCP.

the goal was in (90, 90, 7). To obtain representative results,
1000 simulations have been run for each algorithm policy
on two different maps. The parameters for the (L)RTDP-
bel were γ = 0.9,K = 1000 and for the POMCP policy :
γ = 0.9, T ime = 180min, c = 200,K = 1000.

The average simulation results are given in Table I. In
terms of performance, the success rate is almost similar for
each algorithm and map. However the average path cost is
different between the algorithms, it can be seen that POMCP
is more efficient than (L)RTDP. For the ”Cube baffle” map
the difference is smaller than for ”Cube,” POMCP reduces
the cost of 9.45% for the first counter 30.54% to this last.

In Figure 4 some simulated paths are illustrated. The first
column (Figures 4a, 4c, 4e and 4g) represent the simulated
paths in 2D and the second column (figures 4b, 4d, 4f
and 4h) represent the belief states of the most likely path.
Regardless of the test map, the paths are perfectly within
the bounds of the belief state calculated with the policies.
The only exception is for the figures 4a and 4b, where
different observations were perceived by the UAV during the
simulations resulting in different paths. Thus for the sake of
understanding only the belief states of the most likely path
have been represented on the figure 4b. This supports the
idea that representing belief states as GMM is a good idea
to simplify cost computation and ensure the generalization
of the MOMDP model with the GNC model.

Moreover, the paths simulated with the two algorithms
are almost similar. This is because the test maps are sim-
ple and thus the shortest and safest path is straightfor-
ward to compute. However, it can be observed that the
simulated trajectory with the POMCP policy is smoother.
And more specifically with the ”Cube” map, the POMCP
has better-anticipated sensor availability and collision risk
than (L)RTDP-bel. It was expected, because (L)RTDP-bel
is greedier during policy computation and do more local
optimization. (L)RTDP-bel optimizes better for belief states
are closer to the obstacle than the POMCP which explores
more uphill in the search tree. In the ”Cube” map case the
path simulated with the POMCP policy starts to avoid the
obstacle much sooner resulting in lesser cost than the paths
simulated with the (L)RTDP policy.

The 2D representation gives a good idea of the paths
simulated, but it is interesting to analyze them in a 3D
perspective. Figure 5 presents the simulated paths on the
”Cube baffle” map Fig. 5a shows the paths obtained with
the (L)RTDP-bel policy and Fig. 5b those with the POMCP
policy. The first consideration is the paths are more scattered
in height than in width. It is expected in these tests because
GPS uncertainty is four time higher on height than on the
other axes. It explains why the policies computed do not push
the UAV to go above the obstacles because the maps are
limited in height. Another consideration is that the POMCP

(a) Path simulated with the (L)RTDP
policy on ”Cube baffle”.

(b) Beliefs state representation of the
(L)RTDP results.

(c) Path simulated with the POMCP
policy on ”Cube baffle”.

(d) Beliefs state representation of
POMCP results.

(e) Path simulated with the (L)RTDP
policy on ”Cube”.

(f) Beliefs state representation of the
(L)RTDP.

(g) Path simulated with the POMCP
policy on ”Cube”.

(h) Beliefs state representation of
POMCP results.

Fig. 4: Path simulated on the two maps for each algorithms.

policy (Fig. 5b) anticipate uncertainty around the obstacle by
avoiding it and getting high.

From these results, it is possible to say that both algorithms
compute an acceptable policy. But POMCP has calculated a
more effective policy due to its better convergence properties
[17].

VI. CONCLUSION AND FUTURE WORK

This paper presented a MOMDP model to solve safe
path planning problem in urban environments, a belief state
representation as Gaussian Mixture Models is presented, two
algorithms are proposed, and results are compared. This
problem can be viewed as a large MOMDP domain, as the
non-observable state is continuous. Even when considering
a discrete set of actions the problem is complex. The current
results show that with goal-oriented algorithms it is possible
to obtain significant results on simple maps. More evalua-
tions are necessary, especially on real urban environments

(a) Path simulated with the (L)RTDP
policy on ”Cube baffle”.

(b) Path simulated with the POMCP
policy on ”Cube baffle”.

Fig. 5: 3D representing of the path simulated with each policy on
the ”Cube baffle” map.

[15].
Further work will include an extension to deal with a

continuous action space. It is also planned to apply learning
algorithms for value function and policy representation. So
that, one can generalize the value (or policy) for belief states
not visited during the optimization phase. Gaussian Process
Dynamic Programming [9], for example, could be a potential
solution to this interesting point.

REFERENCES

[1] M. W. Achtelik, S. Lynen, S. Weiss, M. Chli, and R. Siegwart. Motion-
and uncertainty-aware path planning for micro aerial vehicles. Journal
of Field Robotics, 2014.

[2] D. W. Andrews and B. Lu. Consistent model and moment selection
procedures for gmm estimation with application to dynamic panel data
models. Journal of Econometrics, 2001.

[3] M. Araya-López, V. Thomas, O. Buffet, and F. Charpillet. A closer
look at momdps. In 22nd IEEE International Conference on Tools
with Artificial Intelligence (ICTAI), 2010.

[4] H. Bai, D. Hsu, W. S. Lee, and V. A. Ngo. Monte carlo value
iteration for continuous-state pomdps. In Workshop on the algorithmic
foundations of robotics, 2010.

[5] B. Bonet and H. Geffner. Labeled rtdp: Improving the convergence
of real-time dynamic programming. In ICAPS, 2003.

[6] B. Bonet and H. Geffner. Solving pomdps: Rtdp-bel vs. point-based
algorithms. In IJCAI, 2009.

[7] A. Bry and N. Roy. Rapidly-exploring random belief trees for motion
planning under uncertainty. In 2011 IEEE International Conference
on Robotics and Automation (ICRA), 2011.

[8] O. Buffet and O. Sigaud. Processus décisionnels de markov en
intelligence artificielle, 2008.

[9] M. P. Deisenroth, C. E. Rasmussen, and J. Peters. Gaussian process
dynamic programming. Neurocomputing, 2009.

[10] J.-A. Delamer, Y. Watanabe, and C. P. C. Chanel. Towards a momdp
model for uav safe path planning in urban environment. In IMAV
2017, 2017.

[11] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning
and acting in partially observable stochastic domains. Artificial
intelligence, 1998.

[12] F. Kleijer, D. Odijk, and E. Verbree. Prediction of gnss availability
and accuracy in urban environments case study schiphol airport. In
Location Based Services and TeleCartography II. Springer, 2009.

[13] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In
ECML, 2006.

[14] H. Kurniawati, D. Hsu, and W. S. Lee. Sarsop: Efficient point-based
pomdp planning by approximating optimally reachable belief spaces.
In Robotics: Science and Systems, 2008.

[15] B. Mettler, Z. Kong, C. Goerzen, and M. Whalley. Benchmarking
of obstacle field navigation algorithms for autonomous helicopters.
In 66th Forum of the American Helicopter Society:” Rising to New
Heights in Vertical Lift Technology”, AHS Forum 66, 2010.

[16] S. C. Ong, S. W. Png, D. Hsu, and W. S. Lee. Planning under un-
certainty for robotic tasks with mixed observability. The International
Journal of Robotics Research, 2010.

[17] D. Silver and J. Veness. Monte-carlo planning in large pomdps. In
Advances in neural information processing systems, 2010.

[18] Y. Watanabe, S. Dessus, and S. Fabiani. Safe path planning with
localization uncertainty for urban operation of vtol uav. In AHS Annual
Forum, 2014.

