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Abstract
A well-known problem for which it is difficult to improve the textbook algorithm is computing
the graph diameter. We present two versions of a simple algorithm (one being Monte Carlo
and the other deterministic) that for every fixed h and unweighted undirected graph G with n

vertices and m edges, either correctly concludes that diam(G) < hn or outputs diam(G), in
time O(m + n1+o(1)). The algorithm combines a simple randomized strategy for this problem
(Damaschke, IWOCA’16) with a popular framework for computing graph distances that is based
on range trees (Cabello and Knauer, Computational Geometry’09). We also prove that under
the Strong Exponential Time Hypothesis (SETH), we cannot compute the diameter of a given
n-vertex graph in truly subquadratic time, even if the diameter is an Θ(n/ log n).
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1 Introduction

We refer to [5] for any undefined terminology. Graphs in this study are finite, simple,
connected and unweighted. For every graph G = (V, E), let n := |V | and m := |E|. The
distance distG(u, v) between any two vertices u, v ∈ V is defined as the minimum number
of edges on a uv-path in G. A layer is any set Li(v) := {u ∈ V | distG(u, v) = i} for some
v ∈ V and integer i ≥ 0. Finally, the eccentricity of vertex v, denoted eccG(v), is equal to
maxu∈V distG(u, v), and the diameter of G, denoted diam(G), is equal to maxv∈V eccG(v).

Computing the diameter of a graph is a fundamental problem with countless applications
in computer science and other domains. As every undergraduate student (should) know, this
problem can be solved in roughly quadratic time by running a single-source shortest-path
algorithm from every vertex of the graph. It has been asked repeatedly whether one could
improve on this textbook algorithm, in order to achieve truly subquadratic-time computation
of the diameter. Unfortunately, the answer to that question seems to be ‘No’ [15]. Specifically,
under SETH it is already hard to recognize split graphs with diameter 2, and this holds even

© Guillaume Ducoffe;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 12; pp. 12:1–12:7

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.ducoffe@ici.ro
https://doi.org/10.4230/OASIcs.SOSA.2019.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


12:2 Computing Giant Diameters with Breadth-First Search and Range Queries

if their clique-number is an Θ(log n) [6]1. Small diameter graphs are usually said to be the
hardest case for the problem, in the sense that as the diameter gets polynomial in n we
can obtain an almost optimal (1− n−O(1))-approximation in truly subquadratic time [3, 10].
However, the exact computation of such “giant” graph diameters has been less studied.

In [11], Damaschke asked whether one can compute the graph diameter in nearly linear
time assuming it is a large fraction of the number of vertices. His question seems relevant to
the study of chain-like structures, e.g., in road networks or chain molecules. Specifically, we
consider the following problem in this note:

I Problem 1 (h-Diameter).
Input: A graph G = (V, E); a constant h ∈ (0; 1).
Output: The exact diameter of G if it is at least hn (otherwise, any value < hn).

As a partial answer to Problem 1, Damaschke presented a deterministic linear-time
algorithm for the special case h > 1/2. The latter is based on the decomposition of a graph
by its biconnected components and a delicate removal procedure of irrelevant subgraphs. As
noted by Damaschke himself, qualitatively different methods are needed to solve the general
case. In [11], he also presented a Monte Carlo O(m + n log n)-time algorithm for the case
h > 1/3. The probability of a correct result depends on the simultaneity of several random
events. Recently in a master’s thesis [4] some of Damaschke’s students generalized his ideas
to any h, thereby obtaining a (not so simple) O(n2)-time algorithm for the general case. The
“big-oh” notation hides a large constant-factor in h.

1.1 Our results
We answer positively to the open question of [11]. Specifically, we first present a Monte Carlo
algorithm that runs in time O( 1

h · (m + 2O( 1
h )n1+o(1))) and that, given as entry a graph G

such that diam(G) ≥ hn, outputs with constant probability its diameter (Theorem 3).
For that, we follow the same general (and quite intuitive) strategy as in [11, 4]: finding a
separator of size O(1/h) that disconnects the two ends of some arbitrary diametral path.
Such a separator can be easily computed, with constant probability, by performing a BFS
from a random vertex v and choosing a smallest layer Li(v) := {u ∈ V | distG(u, v) = i}
in the range i ∈ {hn/3, . . . , 2hn/3}. Although a similar approach was used in [11, 4] our
proofs are, in our opinion, cleaner and more direct than the ones given in these previous
works. In particular, the correctness of our algorithm only depends on the random choice
of the starting vertex v.
Then, once we computed a separator as described above, we are left with computing the
maximum distance between two vertices it disconnects. Previous works [11, 4] reduce this
computation to a new problem called Largest Mixed Sum. Instead, we can directly
apply a popular framework for computing graph distances that is based on a range tree [8].
Doing so, we give a new simple application of this textbook data-structure.
Finally, we remark that in order to make our algorithm deterministic, it suffices to run
a BFS from every vertex v into some (hn/c)-distance dominating set, for some small
constant c (instead of picking this vertex randomly). We end up observing that such a
distance dominating set of size

( 1
h

)O(1) can be computed by using a few BFS (Theorem 5).

1 The logarithmic bounds on the clique-number are not explicitly stated in [6]. Nevertheless, they can
be deduced from an easy application of the Sparsification Lemma, as noted e.g. in [1] for similar
constructions.
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For nonconstant h, our algorithm still outperforms the textbook algorithm for Diameter
provided h = ω(1/ log n). Perhaps surprisingly, we prove this is (conditionally) optimal: any
truly subquadratic algorithm for computing the diameter of a given n-vertex graph would
falsify SETH, even if the diameter is an Θ(n/ log n) (Theorem 6).

2 Preliminaries

In what follows is a simple observation that is the cornerstone of our algorithms: in any
consecutive subsequence of Θ(n) layers in a BFS-tree, there must be one of size O(1).

I Lemma 1. Let G = (V, E) be a graph of order n, let 0 < p < q < r < 1, and let v ∈ V

have eccG(v) ≥ rn. There exists i ∈ {dpne , . . . , bqnc} such that the layer Li(v) := {u ∈ V |
distG(u, v) = i} contains < 1−r

q−p + 1 vertices.

Proof. The number of layers Li(v) to be considered is:

bqnc − dpne+ 1 = b(q − p)nc+ 1 > (q − p)n.

We also know that there are ≥ (rn − bqnc) + dpne ≥ (r − q + p)n vertices that are not
contained into any of these layers. Therefore, the maximum number of vertices a smallest
such layer can contain is:

<
(1− r + q − p)n

(q − p)n = 1− r

q − p
+ 1.

J

Then, assume one such layer disconnects the two ends of an arbitrary diametral path
of the graph. In order to compute the diameter of the graph, we only need to compute
the maximum distance between two vertices this layer disconnects. This is a routine that
naturally appears in the computation of the diameter and the Wiener index of bounded
treewidth graphs [1, 7, 8], and as such there already exists a standard method for solving this
problem:
I Proposition 1 (implicit in [7]). Let G = (V, E) be a graph and S ⊆ V be a separator,
where |S| ≤ k. We can compute DS := max{distG(x, y) | S is an xy-separator} in time
O(k · (m +

(
k+1+dlog ne

k+1
)
2kn)), that is in O(k · (m + 2O(k)n1+o(1))).

For the sake of completeness, let us give some intuition of how this above problem relates
to range trees. Let S = {s1, s2, . . . , sk} and C1, C2, . . . , C` be the connected components
of G \ S. For every i ∈ {1, . . . , k} we search for the furthest pair x, y such that: (a) S is
an xy-separator, and (b) distG(x, si) + distG(si, y) = distG(x, y), as follows. We first map
every v ∈ Cj to the (k + 1)-dimensional point P i

v = (pi
v,0, pi

v,1, . . . , pi
v,k), where pi

v,0 = j,
pi

v,t = distG(v, st) − distG(v, si) for every t ≥ 1, and we associate to this point the value
fi(v) = distG(v, si). To understand why, note that if x ∈ Cj , y ∈ Cj′ are such that j < j′

and distG(x, si) + distG(si, y) = distG(x, y), then we have distG(x, si) + distG(si, y) ≤
distG(x, st) + distG(st, y)⇐⇒ −pi

x,t ≤ pi
y,t for any t ≥ 1. Therefore, given x ∈ Cj , in order

to find a furthest vertex y ∈
⋃

j′>j Cj′ from x, it suffices to compute a point P i
y such that:

pi
x,0 < pi

y,0; −pi
x,t ≤ pi

y,t for every t ∈ {1, . . . , k}; and fi(y) is maximized.

The (k + 1)-dimensional range tree is a classical data-structure that can be used in order
to solve this above computation. Specifically, given that there are |V \ S| = O(n) points
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P i
v to store, we can construct such a range tree in time O(k

(
k+1+dlog ne

k+1
)
n) in such a way

that for every x /∈ S, the corresponding query (computation of P i
y) can be answered in time

O(2k
(

k+1+dlog ne
k+1

)
) [14]. We stress that the analysis of this construction is involved, but its

implementation is quite straightforward (e.g., see [7] for details).

Comparison with previous work. Damaschke’s students solved a variant of the above
problem in O(kn2)-time by reducing it to a new problem they called Largest Mixed
Sum [4]. Roughly, their solution consists in a brute force range searching. We use range
trees in order to improve their running time, although in doing so we sacrifice analytical
simplicity. A potential drawback of our algorithms compared to [4] is that the range tree
data-structure has relatively high preprocessing and storage costs, that make it less practical
for moderate values of k [2]. Some way to address this issue could be the use of alternative
data-structures for range searching [2, 9].

3 Monte Carlo algorithm

We present in this section a simple algorithm for the computation of graph diameters
that are at least a fixed fraction of the number of vertices. Unlike previous works [11,
4], we use randomization only to choose the starting vertex of our BFS run (Algorithm
GiantDiameter). Our algorithm is correct assuming this starting vertex is sufficiently
close to an end of some (arbitrary) diametral path. We prove next that it happens with
constant probability.

I Lemma 2. Let G = (V, E) be a graph and assume diam(G) ≥ hn. For every vertex v ∈ V

that is drawn u.a.r., the following holds with probability ≥ 2h/3: There exists a diametral
pair x, y ∈ V such that distG(x, v) ≤ hn/3 (and so, distG(y, v) ≥ 2hn/3).

Proof. Fix an arbitrary diametral path P with ends x, y ∈ V . Every vertex v ∈ V (P ) such
that either distG(v, x) ≤ hn/3 or distG(v, y) ≤ hn/3 satisfies the desired property, and there
are exactly 2hn/3 such vertices. J

GiantDiameter
Input: graph G = (V, E), h.
Output: a lower-bound on diam(G).
1: Let v ∈ V picked u.a.r.
2: if eccG(v) < 2hn/3 then
3: return eccG(v). // this occurs with proba. ≤ 1− 2h/3 if diam(G) ≥ hn.
4: Find a layer i ∈ {dhn/3e , . . . , b2hn/3c} s.t. |Li(v)| ≤ 3/h.
5: Compute Di := max{distG(x, y) | Li(v) is an xy-separator}.
6: return max{Di} ∪ {eccG(u) | u ∈ Li(v)}.

I Proposition 2. Let G = (V, E) be a graph and assume diam(G) ≥ hn. Algorithm
GiantDiameter correctly computes diam(G) with probability ≥ 2h/3.

Proof. By Lemma 1 (applied with p = h/3 and q = r = 2h/3), a small-size layer Li(v)
as requested by the algorithm always exists if eccG(v) ≥ 2hn/3. Then, the algorithm is
correct if there exists a diametral pair x, y ∈ V such that there is no connected component of
G \Li(v) that both contains x, y (possibly, x ∈ Li(v) or y ∈ Li(v)). This is always the case if
min{distG(v, x), distG(v, y)} ≤ hn/3 (and so, max{distG(v, x), distG(v, y)} ≥ 2hn/3), and
by Lemma 2 the latter happens with probability ≥ 2h/3. J
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The bottleneck of Algorithm GiantDiameter is the computation of Di. Using Proposi-
tion 1, we can conclude as follows:

I Theorem 3. Let h be a fixed constant. In time O( 1
h · (m + 2O( 1

h )n1+o(1))), we can either
conclude a given graph G has diameter < hn, or compute its diameter, with probability of
correctness ≥ 2h/3.

Proof. We run Algorithm GiantDiameter, whose output is correct with probability ≥ 2h/3
by Proposition 2. The dominant step for the algorithm is the computation of Di, that can
be done in time O( 1

h · (m + 2O( 1
h )n1+o(1))) by Proposition 1. J

As usual, the probability of correctness can be increased to 1 − n−O(1) by running
Algorithm GiantDiameter O(log n/h) times and outputting the maximum distance we
obtained.

4 Deterministic algorithm

Next, we show how to derandomize our algorithm from the previous section. We recall that
we use randomization only to choose the starting vertex v of some BFS run. Furthermore,
the latter vertex v is correctly chosen if it is at a distance ≤ hn/3 from an end of some
arbitrary diametral path. Hence, instead of choosing v at random, we can try all the vertices
contained into some (hopefully small) (hn/3)-distance dominating set. We prove next that
there always exists such a set of size polynomial in 1/h.

I Lemma 4. Let G = (V, E) be a graph. In O(m + n)-time, we can output a set S where
|S| = O(1/h) and such that distG(v, S) ≤ hn/3 for every vertex v ∈ V .

Proof. We use the constructive proof of Meir and Moon on k-distance dominating sets in
trees [13]. Specifically, let T be an arbitrary spanning tree of G. Such a tree can be computed
in O(n + m)-time by using, say, a breadth-first search. For any integer k ≥ 0, we will explain
next how to construct a k-distance dominating set of size

⌈
n

k+1

⌉
for T (and so, also for G)

in time O(n). By setting k = bhn/3c, this will prove the lemma.
For that, we first compute the two ends of a diametral path in T , that can be easily

done in time O(n) using two BFS [12]. Let x be any one of these two ends. If n ≤ k + 1 or
more generally, diam(T ) ≤ k then, we can output S = {x}. Otherwise, we compute in time
O(n) a breadth-first search from x in T . For every i ∈ {0, 1, 2, . . . , k}, let Si := {v ∈ V |
distT (x, v) ≡ i (mod k + 1)}. Note that Si 6= ∅ for every i since we assume diam(T ) > k.
Furthermore as proved in [13, Theorem 5], Si is a k-distance dominating set of T for any fixed
i. Since there are exactly k + 1 possibilities for i, there exists a i0 such that |Si0 | ≤

⌊
n

k+1

⌋
.

We output S = Si0 . J

I Theorem 5. Let h be a fixed constant. In time O( 1
h2 · (m + 2O( 1

h )n1+o(1))), we can either
conclude a given graph G has diameter < hn, or compute its diameter.

Proof. We apply Lemma 4 in order to compute an (hn/3)-distance dominating set S of size
O(1/h). Then, we apply Algorithm GiantDiameter for every v ∈ S, and we output the
maximum distance we obtain after these |S| runs. J
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5 Conditional Lower-bound

Our GiantDiameter algorithm still runs in truly subquadratic time if h = ω(1/ log n). It
would be interesting to compute in truly subquadratic time the exact diameter of a graph
when it is an Θ(n/ log n). We prove that it cannot be done under standard complexity
assumptions.

I Theorem 6. Under SETH, there exists a function h(n) = Θ(1/ log n) such that the
following problem cannot be solved in time O(n2−ε), for any ε > 0: Given an n-vertex graph
G, either correctly decide diam(G) < h(n)n, or compute diam(G).

Proof. Let G = (K ∪ S, E) be a n-vertex split graph such that K induces a clique of size
|K| = O(log n) and S induces a stable set. We construct a graph G′ = (V ′, E′) as follows.
The vertex-set of G′ is partitioned into two disjoint copies S0, S1 of the stable set S and n

disjoint copies K1, K2, . . . , Kn of the clique K. For every s ∈ S we denote by s0 and s1 the
respective copies of s in S0 and S1; in the same way, for every v ∈ K and i ∈ {1, 2, . . . , n}
we denote by vi the copy of vertex v in Ki. Furthermore, every copy Ki induces a clique, we
add an edge {vi, vi+1} for every v ∈ K, 1 ≤ i < n, and the two edges {s0, v1}, {s1, vn} for
every s ∈ S, v ∈ K such that {s, v} ∈ E. By construction, G′ has order O(n log n) and size
O(n log2 n). We also have:

• For u, v ∈ K, distG′(ui, vj) = |j − i| if u = v, and |j − i|+ 1 otherwise.
• For s ∈ S, v ∈ K, distG′(s0, vi) = distG′(s1, vk−1+i) = i if {s, v} ∈ E, and i + 1 otherwise.
• For s, s′ ∈ S, distG′(s0, s′0) = distG′(s1, s′1) = distG(s, s′) ≤ 3.

• For s, s′ ∈ S, distG′(s0, s′1) = n− 1 + max{2, distG(s, s′)}.

As a result, n + 1 ≤ diam(G′) ≤ n − 1 + diam(G) ≤ n + 2. In particular, diam(G′) =
n−1+diam(G). This implies that computing diam(G′) is Õ(n)-time equivalent to computing
diam(G), that cannot be done in truly subquadratic time under SETH [6, 15]. J
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