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Membrane curvatures and stress-strain full fields of axisymmetric

bulge tests from 3D-DIC measurements. Theory and validation on

virtual and experimental results.

Guilherme Machado · Denis Favier · Grégory Chagnon

Abstract The bulge test is mostly used to analyze equibiaxial tensile stress state at the pole of

inflated isotropic membranes. Three-dimensional digital image correlation (3D-DIC) technique al-

lows the determination of three-dimensional surface displacements and strain fields. In this paper,

a method is proposed to determine also the membrane stress tensor fields for in-plane isotropic ma-

terials, independently of any constitutive equation. Stress-strain state is then known at any surface

point which enriches greatly experimental data deduced from the axisymmetric bulge tests. Our

method consists, first in calculating from the 3D-DIC experimental data the membrane curvature

tensor at each surface point of the bulge specimen. Then, curvature tensor fields are used to inves-

tigate axisymmetry of the test. Finally in the axisymmetric case, membrane stress tensor fields are

determined from meridional and circumferential curvatures combined with the measurement of the

inflating pressure. Our method is first validated for virtual 3D-DIC data, obtained by numerical

simulation of a bulge test using a hyperelastic material model. Afterward, the method is applied

to an experimental bulge test performed using as material a silicone elastomer. The stress-strain

fields which are obtained using the proposed method are compared with results of the finite element
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multiaxial stress and strain fields [6], to study the mechanical properties of human tissues [7, 8]

and to measure the finite load-deformation behavior of a living cells sheet cultured on a mesoscopic

freestanding elastomer membrane [9]. More recently Grolleau et al. [10] combined a Hopkinson bar

system with a conventional bulge test to study the biaxial testing of sheet materials at high strain

rates.

On the theoretical point of view, the bulge test was as well studied in detail. A seminal work

was proposed by Adkins and Rivlin [11] that details the boundary value problem, in the field of

nonlinear elasticity, associated with the Mooney isotropic membrane inflation. Other important

work has come from Hill [12] introducing a theoretical analysis of plastic flow at the pole of a

metal diaphragm, based on the Lévy-Mises stress-strain equations. In an analogous manner, Ross

and Prager [13] showed that the use of Tresca’s yield condition and associated flow rule leads to a

simple theory, where the basic equations can be integrated in closed form even for finite deflections.

Bulge test was mostly conducted as an easy way to determine mechanical behavior of isotropic

materials subjected to equibiaxial tensile stress state. Indeed, due to the axial symmetry of the

problem and respecting the primary assertions of the membrane theory, the equibiaxiality of the

stress and strain is obtained at the top of the inflated sample. Found over the pole neighborhood,

where a spherical cap is supposed to exist, the equibiaxial stress-strain state can be easily calculated.

To achieve this goal the knowledge of the curvature radius, tangential elongation and pressure

recorded during the test are needed. Such approach was recently used to study rubber-like materials

[14, 15], and NiTi superelastic sheets [16]. However, the current shape of the total bulge is rarely

spherical, as shown by Dudderar et al. [17] using the two-source holographic technique. Therefore, if

the pressure and principal curvatures fields are measured, much more information is available from

axisymmetrical bulge test than only stress and strain states at the pole. The membrane stress tensor

can be determined from these data using membrane theory and equilibrium equations without

defining any explicit constitutive equation. However, the accurate experimental measurement of

curvatures is not a simple task. To avoid this difficulty, a relation describing the material behavior

was often used in the past. In this case, the principal curvatures were often written in terms of

the principal stretch ratios and replaced in the Lagrangian form of the equilibrium equations. In a

general manner, this procedure intends to reduce the problem to a first-order system by introducing

new variables [18, 19]. As a consequence, there is also loss in generality in assuming an explicit
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form for the constitutive relation which is chosen to represent the material. See for example the

works [20] for hyperelastic potentials; [21] and [22] for viscoelastic behavior.

In a classical manner, the bulge specimen is supposed to be deformed axisymmetrically and

profiles are measured. In that case, meridional curvature is directly measured and circumferential

curvature is deduced under axisymmetric assumption [23]. The accuracy of this process heavily

depends on the finite number of experimental measurements points, and information data is re-

stricted to a meridional path only. This manner to compute the principal curvatures is restricted

to axisymmetric problems and also a numerical procedure must be employed to solve the coupled

nonlinear differential problem.

In this context, the present work intends to provide useful method to obtain the membrane

stress and strain fields during the bulge test using the three-dimensional digital image correla-

tion (3D-DIC) technique. The 3D-DIC is able to capture three-dimensional surface geometry and

displacements of the deformed surface. This paper explains how these kinematical fields allow to

evaluate the strain and curvatures fields in each point of the membrane. The stress field can also be

deduced using the axisymmetrical hypothesis. Section 2 starts with a brief description of 3D-DIC

technique, where the bases of contour and strain measurement principles are outlined. In the same

section, the theoretical framework to evaluate the first and second fundamental forms of surface and

relations between principal curvatures and membrane stress are emphasized: a method to deter-

mine the curvature fields from 3D-DIC data is thus presented. Then we show that curvature fields

combined with the measurements of the inflation pressure allow calculating the stress fields for an

axisymmetric bulge. In Section 3, a finite element calculation is realized on a Mooney hyperelastic

membrane to emulate experimental data, i.e., generate a virtual 3D-DIC information. These data

allow to validate the curvature calculation method and to estimate errors associated with stress

determination. In Section 4 the method is applied to real experimental data. The experimental

results obtained in the bulge test of a silicone rubber-like material are presented. All precautions

concerning the experimental setup are emphasized. The tridimensional correlation process is not

perfect. In view of missing and outlying values that can occasionally occur, a strategy is invoked

to lead to these occurrences. Finally, the experimental data fields are compared to a finite element

model carried out using a neo-Hookean hyperelastic law fitted on uniaxial and equibiaxial tensile

tests. This allows to highlight the advantages of the proposed method compared to usual methods

used to analyze bulge tests.
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2 Theoretical framework

2.1 A brief outline of 3D-DIC

In the 3D-DIC technique, random gray-value dot patterns on specimen surfaces are observed by

two cameras in a stereoscopic setup. Also called stereo digital image correlation (SDIC), the 3D-

DIC is based on both stereo-vision technique and digital image correlation (DIC). A comprehensive

description of metrological aspects of 3D-DIC technique can be found in the literature, e.g. [24],

[26] and [27]. See [28] for references on applications of stereo-vision and 3D-DIC to experimental

mechanics.

The stereo-vision technique allows to recover the three-dimensional information of a scene from

two different view points. Considering a physical point M of coordinates Xi in a Cartesian reference

frame to be measured (Fig. 1). Forward, Latin indices represent the values 1, 2, 3 and, the Greek

ones the values 1, 2. The stereo-projections of the point M(Xi) on the images planes of two cameras

C1 and C2 are given by MC1(X
α
S1), MC2(X

α
S2), where Xα

S are the camera sensor coordinate system.

Every deviation from the straightness of the projection can be related to the presence of radial and

tangential distortions. Fig. 1 illustrates the epipolar geometry, i.e., the geometry of stereo vision

defined by the pinhole positions Cα, focal lengths fα , and image plane centers Pα. It is convenient

to define a set of coordinate systems to represent the imaging process. The first coordinate system

is the global coordinate system (GCS), with axes (X1,X2, X3). The second coordinate system

typically defined is the camera coordinate system (CCS) located at the pinhole positions Cα. The

third set of axes defines the sensor coordinate system (SCS), with X1
S ,X

2
S in terms of pixels.

The 3D-DIC uses a DIC algorithm to determine point correspondences between two images

of a specimen acquired at the same time from two bounded cameras. The digitized images are

compared to match subsets - so called facets - from one image to another. The facet is a square

area fsize×fsize pixels, centered on the evaluation grid point. This facet is used from the correlation

algorithm in order to identify the corresponding area in the second image. The correlation scores

are computed by measuring the similarity of a fixed facet in the first image to a shifting subset

window in the second one. Knowing of the imaging parameters for each camera and the orientations

of the cameras with respect to each other by a calibration procedure, the position of each object

point in three dimensions is calculated. The minimal facet size (fsize) is limited by the size and

4



roughness of the stochastic pattern on the object surface. Each facet must contain a characteristic

part of the pattern with good contrast features.

As a result, the 3D-DIC provides a set of physical points M in terms of Cartesian coordinates

Xi in a global reference system, arbitrarily defined during the calibration phase. The calibration,

in the commercial system used in this work, is done by taking a series of exposures of a calibration

target with both cameras simultaneously, i.e., both cameras are calibrated as a stereo rig. The

calibration target is a chess pattern with known geometry. This target is put successively into

different spatial orientations with respect to the cameras sensors. The software detects the corners

of the squares. Additional circular markers placed on the target surface define the center and

the orientation of the calibration target. The evaluation algorithm then calculates the intrinsic

parameters (focal length f , image plane center P , radial and tangential distortion parameters)

for each camera. Intrinsic parameters are influenced by focal lens, focal distance and aperture.

These parameters are considered as intrinsic since the cameras remain in fixed positions relative

to each other during the experiment. The evaluation algorithm computes the extrinsic parameters

(translation vector and the rotation matrix between the GCS and the SCS) as well, which in turn

are influenced by the intrinsic parameters and the positions of the cameras. The uncertainties of

the calibration parameters, resulting from the deviations of the detected markers from the model

positions are then calculated. A total number of eight images are typically sufficient to calculate

all calibration parameters accurately [25]. A comprehensive description of the 3D-DIC calibration

method with the mathematical development can be found in [26].

Note that the spatial resolution (Sres) of the discretized surface depends essentially on camera

sensor resolution (Cres) and on the choice of the evaluation grid that defines the distance between

the data points on the object. The grid spacing (Gs) is the distance between the grid points in pixel.

Thus, grid spacing limits the spatial resolution, as each grid point represents one single data point

of the result. Finally, data output is arranged in a matrix representation in the form Xi(u, v) where

the integer values u, v ∈ [1, ⌊Cres/Gs⌉] are respectively lines and columns indices of the matrix

representation for each coordinate (Xi). See the scheme in Fig. 1.

Once the 3D contour has been determined, the next step in digital 3D correlation is the de-

termination of the three-dimensional deformation of the object surface. This process is carried out

by correlation of the images, taken by both cameras in the deformed state, with their original

reference images. To evaluate the 3D displacement field, 3D-DIC determines point correspondences
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Fig. 1 Representation of the epipolar geometry and the coordinates output format.

between the stereo pairs acquired before and after deformation. The correlation algorithm tracks

the observed gray value patterns for each camera and transforms corresponding facet positions in

both cameras into 3D coordinates for each deformation step, resulting in a track of each surface

facet in 3D space and over time. With the known position vectors of each surface point and the

reference contour, the strains can be determined by calculating the gradient of the deformation or

by the distortion of the facets, i.e., strain can be computed either directly by differentiation of the

displacements of adjacent surface points or measured pointwise by analyzing the distortion of each

local facet which was used for correlation [26, 27].

2.2 Errors sources on the 3D-DIC

The evaluation of a 3D correlation measurement results in 3D coordinates, displacements and in-

plane strains on the specimen surface. The corresponding data uncertainties originate from different

sources, which can be divided into three categories [25]: statistical correlation errors, systematical

correlation errors and 3D reconstruction errors. Statistical correlation errors are principally related

to the limited number of pixels and corresponding gray values in each facet, and finally by the
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fact that the facet position has to be determined with subpixel accuracy. Additional potential error

sources are statistical noise of the gray values, different illumination conditions for the two cameras,

image contrast and size of the speckle pattern on the specimen surface. Systematical correlation

errors are introduced by subpixel effects. They might occur if the facet transformation model used

is not appropriate to describe the complexity of the real transformation, e.g., in a curved specimen

surface or for significant lens distortions [29]. Systematical errors is one of the principal limitation

for the resolution of the resulting data [25]. Finally, uncertainties of the calibration parameters

lead to errors when reconstructing the 3D coordinates. Calibration errors appear in a systematical

manner as a function of the facet positions in the camera frames, causing local distortions of the

reconstructed 3D space. However, results from multiple experiments performed in [26] indicate a

typical accuracy for the displacement field on curved or planar specimens on the order of ±0.01pixels

for the in-plane components and D/50000 in the out-of-plane component (where D is the distance

from the object to the camera) for typical stereo-camera arrangements. A point-to-point accuracy

of ±10−4 for the in-plane surface strains is achievable even when the object is subjected to large

rigid-body rotations and arbitrary amounts of rigid-body translations since these motions do not

corrupt the strain measurements.

2.3 Curvature evaluation from coordinates fields measured by 3D-DIC

Using the 3D-DIC, the reference surface Ω0 of the object in question is discretized by a regular grid

that represents the surface curvilinear coordinates Θα. These coordinates are obtained directly from

the grid placed by 3D-DIC using the grid indexes Θ1 = u and Θ2 = v where u and v are respectively

lines and columns indices of the matrix representation Xi(u, v) . This grid maps any discrete point

M0 of the undeformed body, associating a set of curvilinear coordinates, so called Θα–curves. Since

the coordinates Θα are convective, these curves are subjected to the same deformation as the body

and are transformed at time t in a new set of curves that represents the deformed state Ωt, as

presented in Fig. 2. In the same figure, an arbitrary surface in three-dimensional Euclidean space

E3 is considered. The mapping of Ω0 into Ωt is such that the correspondence of the points M0

and M is assumed one to one. The reference and deformed surfaces are defined by S = S(Θα) and

s = s(Θα, t), respectively, with S and s ∈ E3, where Θα are the surface curvilinear coordinates. In
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the following, s is supposed to be single-valued and sufficiently differentiable with respect to both

arguments Θα as many times as required.

Fig. 2 The surface basic geometric variable definition: ei are the unit base vectors related with the orthogonal
Cartesian coordinates Xi and xi; Gi and gi are the covariant basis related with M0 and M respectively.

In order to handle with surfaces, two important pieces of data associated with any surface are

recalled: the first and second fundamental forms of surface. Let M be a point on the surface whose

coordinates are Θα and Q be a neighboring point of the surface with coordinates Θα+dΘα. Defining

ds as the elementary distance between M and Q, the first fundamental form can be expressed by

the quadratic form

(ds)2 = gαβ dΘαdΘβ . (1)

where the elements gαβ = gα · gβ are the covariant components of the surface metric tensor g =

gαβ gα ⊗ gβ . This symmetric and positive-definite tensor can be expressed on covariant, gα, or

contravariant, gα, basis where gβ · gα = δαβ and δαβ is the Kronecker symbol. The first fundamental

form is an invariant of surface and encodes the intrinsic data about the surface without referring

back to the ambient space where the surface lies.

The second fundamental form, on the other hand, is a surface invariant that encodes the infor-

mation about how the surface is curved in the embedding space. From the analysis of the differential
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geometry, it follows that the covariant components of surface curvature tensor b = bαβ gα ⊗ gβ ,

associated with the second fundamental, are given by

bαβ =
∂gα

∂Θβ
· g3 (2)

where

g3 =
g1 × g2

∥g1 × g2∥
= g3. (3)

The interest is focused in the two principal curvatures κI,II at a given point M in the membrane

surface. Considering now the eigenvalue problem in each point M

(
b− κI,IIg

)
vI,II = 0 (4)

where the surface shape operator is given by bg−1. Since the shape operator is self-adjoint on the

tangent plane at the surface in M , the corresponding eigenvalues κI , κII are called the principal

curvatures atM , and vI and vII are the principal curvature directions atM . Recalling the definition

of the Gaussian-curvature, K, and mean-curvature, H, it follows that

K = det(bg−1) = κIκII (5)

and

H = −1

2
trace(bg−1) =

1

2
(κI + κII). (6)

As consequence, the maximal and minimal curvatures resulting from the quadratic form κ2−2Hκ−

K = 0 associated with the surface shape operator are given by

κI , κII = H±
√

H2 −K. (7)

For comprehensive exposition of other definitions, concepts and applications on differential geom-

etry, see for example [30], [31] and [32].

Finally, a MatLab routine (see AppendixA) was developed to perform a two-dimensional nu-

merical differentiation scheme over the Θα coordinates for each time t. Thus, the terms of Eqs. (1)

to (7) are computed and principal curvatures can be determined at each membrane point. Given

that 3D-DIC is able to capture any 3D contour and the curvature tensor is calculated for each sur-
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face point, the presented scheme of curvature calculation is not restricted to shape characteristics

like axisymmetry.

2.4 Meridional and circumferential stress determination

Considering now the axisymmetric bulge test, the equilibrium equations can also be derived directly

by balancing the forces of deformed shape element. Employing the primary assertions of the mem-

brane theory, every material point of the membrane in both reference and deformed configuration

is in a plane stress state [33]. In Fig. 3(a) the initially flat thin planar circular sheet of radius a and

with an uniform thickness h0 is presented. For convenience, to describe the strain field, cylindrical

coordinates (R,Φ,Z = 0) define the position of a material particle M0 in the middle surface of the

stress-free membrane in the reference configuration. Let the pressure p acts in the bottom surface

of specimen, the membrane experiences a deformation. The point M0 moves to the position M ,

and the deformed configuration is defined by the coordinates r(R,Φ), ϕ(R,Φ) and z(R,Φ). Note

that in either configuration, the profile of the membrane has no circumferential dependence. Under

the assumption of material isotropy, the principal directions of both stretch and stress at each

material particle are known ab initio to be the meridional and circumferential directions to the

membrane surface. From this point forward, these directions will be denoted by the subscripts m

and c respectively, as shown in Fig. 3(b).

Assuming quasistatic motion, the equations of equilibrium, at point M , for a thin axisymmetric

isotropic membrane, as adopted by Hill [12], can be expressed as

σm =
p

2h κc
(8)

σc =
p

2h κc

(
2− κm

κc

)
, (9)

where p is the time-dependent normal pressure acting uniformly (dp/dR = 0) and h the current

thickness. The stress components are expressed in Eqs. 8 and 9 directly in terms of pressure and the

current bulge geometry. As mentioned in [18] and [34] a remarkable consequence of membrane theory

is that it admits equilibrium solutions without explicitly requiring a constitutive equation, since the

equilibrium equations are derived directly by balancing forces of an element of the deformed shape.

As consequence they are valid for all classes of in-plane isotropic materials. As pointed out by

Hsu et al. [23], however, principal curvatures κm, κc can be experimentally computed, thus Eqs. (8)
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Fig. 3 (a) The axisymmetric bulge test scheme. (b) A deformed differential element and principal directions of
stresses.

and (9) are very useful for exploiting axisymmetric bulge test data. Given the magnitude of error

associated with the measurement system, errors in the stress determination using these equations

are overwhelmingly the result of membrane theory. This point will be clarified in Section 3.3 where

membrane hypotheses are investigated.

3 Benchmark inflation test using a Mooney membrane

3.1 Experimental data emulation

In order to demonstrate some quantitative predictions of the presented method to obtain the

membrane stress field presented in Sec. 2 the finite element method (FEM) was used to emulate

experimental data similar to that obtained by 3D-DIC. The aim here is to use a regular finite

element mesh that represents the grid used by 3D-DIC to describe the surface geometry. These

virtual data are obviously free from experimental problems such as missing and outlying values

usually encountered in real 3D-DIC.

Using the Mooney hyperelastic model [35], the FEM outputs nodal coordinates and displace-

ments are used as input data. An uniform mesh with an element edge length of 2mm was used

to discretize a square zone inscribed into the circular geometry to obtain a good spatial resolution
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for the curvatures calculation. The Mooney model was arbitrarily chosen; any other constitutive

model could have been used as well. For details of Mooney model and basic equations on large

deformations see [14].

3.2 Finite element model description

Numerical simulations were performed using the finite element code ABAQUS. Assuming an in-

compressible isotropic hyperelastic material behavior, the [35] strain-energy function WM can be

written as

WM (I1, I2) = C10 (I1 − 3) + C01 (I2 − 3) (10)

where C10 and C01 are material parameters. I1 and I2 are the first and second strain invariants of the

right Cauchy-Green deformation tensor C (C = FTF, where F is the deformation gradient tensor).

Due to its mathematical simplicity as well as its prediction accuracy in the range of moderately-

large strains, this hyperelastic model have been widely employed in the description of the behavior

of rubber-like materials.

The model geometry consists in a thin circular plate, of initial radius R(a) = 90mm with

h0 = 2mm of thickness. The circular plate is simply supported and subjected to an uniform in-

flating pressure acting perpendicular to the current configuration. The Mooney hyperelastic model

parameters are those given in [14], where C10 = 0.14MPa and C01 = 0.024MPa for the RTV141

silicone rubber cured at 70 ◦C during 150min. The finite deformation problem was modeled with

the S4R shell elements (4-node doubly curved general-purpose shell, reduced integration with hour-

glass control, finite membrane strains) with eleven Gauss integration points through the thickness.

Fig. 4(a) depicts a sliced sequence of deformed configurations for two pressure loads of 7.5 kPa and

15 kPa, respectively.

3.3 Curvature Method: application to the virtual data

Using the FEM deformed nodal coordinates output, the principal curvatures κm, κc are computed

over all surface, as described in Sec. 2.3, by means of the MatLab implemented post-treatment

routine, presented in AppendixA. To illustrate the curvature evaluation, the isovalues are presented

in Fig. 5 for p = 15kPa. This figure shows clearly the bulge axisymmetry, as curvatures iso-curves
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Fig. 4 Numerical inflation of Mooney behavior membrane. (a) z direction displacements (in mm) for pressure
loads of 7.5 kPa and 15 kPa. Mesh are represented only in reference configuration and the two pressure steps are
superposed; (b) Principal in-plane stress (in MPa) are plotted onto deformed shape and only the regular square
zone is represented. Solid circles represent the meridional path.

Fig. 5 Curvatures of Mooney behavior membrane at p = 15 kPa. (a) Meridional and (b) circumferential isovalues
evaluated using the FEM deformed nodal coordinates output as data.

are perfectly concentric. Stress components can thus be evaluated from Eqs. (8) and (9). Moreover,

since boundary conditions are perfectly balanced over the circumferential perimeter at R(a), a

perfectly spherical cap is obtained, i.e., surrounding the pole a cap of umbilical points κm=κc ̸= 0

can be easily identified. At such points, both principal curvatures are equal and every tangent

vector is a principal direction.

The output fields principal stretches (λm,λc), principal curvatures (κm,κc) and principal stresses

(σm,σc) from the FEM are plotted for a single meridional path in Fig. 6(a), (b) and (c), respectively.

13



Afterward, the principal stresses (σm,σc) computed using Eqs. (8) and (9) were compared with

the Mooney membrane FEM outputs. It can be seen that the results fit very well in Fig. 6(c).

The relative differences between both stress components using the presented method and FEM are

plotted in Fig. 6(d) for 7.5 kPa and 15 kPa. Errors tend to be less than 2% for both stress directions

for maximum pressure level of 15 kPa. On the other hand, errors increase for lower pressure levels.

This result is natural knowing that principal curvatures vanish when the surface becomes flat.

However, the principal explanation in disagreement of the stress results comes from the fact that,

no matter how thin, all structures are three-dimensional and possess some bending stiffness. It

is important to bear in mind that the membrane theory is an approximation. Fig. 7 shows the

variation of FEM principal stresses over the membrane thickness h in the pole (R = 0) and in the

border (R = 0.95a), for an initial ratio radius/thickness of a/h = 45. Note that, bending effects are

more pronounced nearest to the border (R → a) in both configurations. This fact justifies the form

of curves presented in Fig. 6(d). The other important observation from Fig. 7 is that the bending

influence can increase for low pressure levels. A similar result was found by Kyriacou et al. [36]

for an inverse finite element characterization using a bulge test sample with a/h ≈ 30 stretched

at the pole of about 1.3. The authors noticed that the error in the estimated parameter increased

with decrease of the pressure at which the data were generated. Depending on the material and

geometry of the sample, the amount of bending could be non-negligible at small strain levels.

A last important remark arises from the fact that curvatures estimated for real 3D-DIC data

are very sensitive to experimental noise since estimates of partial derivatives of second order are

necessary. Gaussian noise was then introduced into the Xi coordinates of FEM data results to

simulate potential experimental errors. Applying our method to these noisy data leads to very

poor estimation of both circumferential and meridional stresses, as shown in Fig. 8. Smoothing can

be used to reduce experimental additive noise and small-scale information while keeping the most

important imprints of data set. For these cases, a discretized smoothing spline algorithm proposed

by Garcia [37] was implemented. The weighted robust version of the algorithm was used to deal

with occurrences of missing and outlying values of gridded data. The perturbed data were used as

input of post-treatment routines. Curvatures and stresses were recalculated and Fig. 8 presents the

results. Smoothing allows to obtain very close estimated values of the stresses from the noisy data

to those of the original FEM data.
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Fig. 6 Two deformed configurations 7.5 kPa and 15 kPa pressure levels for the incompressible Mooney (C10 =
0.14MPa and C01 = 0.024MPa) membrane. (a) Principal stretches (λm,λc); (b) Principal curvatures (κm,κc);
(c) Cauchy stress (σm,σc) confronted with the finite element results (FEM); (d) Errors with respect to principal
stresses in both deformed configurations.

This numerical study validates the developed post-treatment routines, as the stress results are

quite similar to FEM results by considering the hypotheses presented.
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Fig. 7 Bending stiffness effects in both deformed configurations (7.5 kPa and 15 kPa pressure levels) for the
numerical benchmark. Principal stresses variation (i.e. σm/σm(mean) analogous for σc) over the element thickness
(h) at the sample pole (R(0) = 0mm) and border (R(a) = 90mm).

Fig. 8 Principal stress (σm,σc) results. Original finite element output (FEM), calculated using the artificially
noised data (noised) and calculated using the smoothed data (smoothed).

4 Application of the method to experimental bulge test of a silicone elastomer

4.1 Experimental bulge test

The objective of this section is to experimentally validate the proposed method to determine

curvatures and stresses during a bulge test of a silicone elastomer. Experimental difficulties are
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pointed out and results are confronted with a finite element model. The chosen silicone rubber

is an unfilled formulation produced by Rhodia (RTV 141). Specimens were produced using the

processing described in [14], following the processing route: (i) mixing the two liquid components

(uncured silicone and curing agent with a 10/1 ratio), (ii) putting the uncured mixture under

vacuum for 30 min in order to eliminate undesirable entrapped bubbles, (iii) injecting the liquid

mixture in sheet mold and (iv) putting mold inside an oven at 70 oC for 4 hours to cure the silicone.

Compared to [14], the cure was augmented in order to increase the tear resistance of the material.

This allows to largely swell the membranes. Using the RTV141 silicone, experimental bulge tests

were carried out to determine a non-uniform stress strain state over the membrane surface.

4.1.1 Bulge test setup

The specimen disk dimensions are the same as in Sec. 3 (initial radius R(a) = 90mm; thickness

h0 = 2mm) constrained between two clamping flanges. In the used test machine, a pressurized air

line is connected to the bottom circumferential clamp. Given the small pressures used during the

experiments, a regulator is required to reduce the line pressure to a maximum of 30 kPa. To decrease

the pressure an unloading valve is opened to create a leak. The internal pressure is measured by a

Foxboro 0− 500mbar pressure sensor. A picture of the experimental setup is shown in Fig. 9(a).

4.1.2 3D-DIC setup and experimental difficulties

The Dantec Q-400 commercial 3D-DIC system was used to acquire and correlate the full-field

bulge shape information. Since the silicone sample experiences a large out-plane displacement,

an appropriate focal length setup is absolutely necessary. The CCD cameras, using 20mm focal

length lenses opened at f/16, are arranged so that the pole and border of the circular membrane

are present in both camera image planes. It is important that the object surface shows enough

structure to allow the algorithms to correlate identical points from both cameras. Note that, using

only two cameras, information near to the border will be lost if the membrane experiences large

displacements creating a self-shadow effect in this region. A parameter Rmax has been used to define

the limit of the correlation zone, i.e., the maximum distance from the membrane center which is

seen by the two cameras. A third camera could be added in this case to be able to correlate along

all meridional direction, see [38] for a multiple-camera instrumentation example.
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High spatial resolution is needed to allow an accurate measurement of curvatures. The spatial

resolution achieved in practice depends on a number of factors, including but not limited to cam-

era resolution, lens optical quality, and marker size and quality. Facet size also limits the spatial

resolution strains since the greyscale information within a facet is used for the correlation between

images. An increase of the facet size causes smoothing of the results, decreasing the spatial reso-

lution. In order to obtain independent data points, the facets of neighboring data points should

not overlap. In this work, full camera resolution (Cres) is used (2048 pixels × 2048pixels) with an

evaluation grid size Gs = 12pixels and a facet size fsize = 21pixels, resulting in a spatial resolution

of Sr = 1.45mm over the membrane surface.

Fig. 9(b) presents an example of reconstructed surface. Note that some data are missing in some

small regions on surface. It occurs due to some correlation abnormalities, normally associated with

locally irregular pattern.

Fig. 9 (a) The bulge test experimental setup using 3D-DIC technique; (b) Reconstructed RTV141 membrane
surface.

4.1.3 Test Results

Cyclic inflations were performed, applying p = 30kPa several times, to pre-stretch the specimen

in order to accommodate the material. This is due to the fact that silicone rubber can exhibit

considerable stress softening phenomenon for different loading cases [39]. After a recovery time of
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Fig. 10 Principal curvature κm plotted onto 3D-DIC reconstructed surface. Solid line represents the meridional
path used in Fig. 11

1h and starting from an initially flat surface, inflations were performed from 8kPa to a maximum

pressure of 27.1 kPa. These inflations yielded principal stretches at the pole of about 1.10 and

1.36 respectively. Fig. 10 shows the principal curvature κm plotted onto 3D-DIC reconstructed

surface. This bulge test can be considered as axisymmetric. Plots of the deformed membrane, over

the meridional path, for each of the two inflation states can be found in Fig. 11. The values of z

direction displacements (in mm) and principal stretches (λm,λc) were obtained direct from 3D-DIC

system. Principal curvatures (κm,κc) and principal stresses (σm,σc) were computed using Eqs. (7),

(8) and (9) respectively.

For each of the two inflation states all material points, save the pole (R(0) = 0mm) and the

clamped boundary (R(a) = 90mm), experience both axial and meridional displacements as a result

of their respective finite deformations. The plots of the principal stretches (λm,λc) in Fig. 11(c)

show that each inflation state involves a heterogeneous strain state, i.e., equibiaxial stretch at the

pole, planar stretching at R(a). As expected, the circumferential stretch λc tends to one towards the

clamped boundary, i.e., when R → R(a). With respect to principal curvature distributions (κm, κc),

note that equibiaxial membrane deformations near the membrane pole are associated with an
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Fig. 11 Distributions of experimental (Exp) and numerical (FEM) fields: (a) z direction displacements; (b)
principal curvatures (κm,κc); (c) principal stretches (λm,λc); (d) principal stresses (σm,σc); corresponding to
8 kPa and 21.7 kPa inflation states.

approximately spherical geometry, i.e., κm ≈ κc. The non perfect equality may be explained by the

fact that the umbilical point may not lie exactly on the z direction axis. This subtile difference can

increase for high deformed states. Stress state can be assumed to be approximately balanced-biaxial

at the pole, following by the circumferential stress σc which steadily decreases when R → R(a).
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4.2 Material characterization and numerical simulation

In the previous section, stress and strain fields have been obtained by the presented method which

does not require any constitutive equation and parameter determination. The aim of this section

is to compare these results with usual analysis of bulge tests. This analysis is done thanks to a

numerical simulation implying a modeling of the mechanical behavior of the unfilled silicone rubber

RTV141. It is known that different modes of deformation are required to obtain the constitutive

equation and the parameters that define the stress-strain relationship accurately. The tests used

in this investigation are cyclic uniaxial and equibiaxial tension, completely independent, i.e., they

were performed in parallel to the bulge test described in the last section.

Uniaxial tensile test and equibiaxial test are performed at room temperature at λ̇ = 1.25 ×

10−2 s−1. The material presents a weak hysteresis and a very little strain rate dependency [14].

Nevertheless, a stress softening phenomenon, called Mullins effect [40] appears, contrary to [14] us-

ing a smaller curing time. Mullins effect strongly depends on the maximum previous deformation.

To measure the influence of the previous maximum deformation, increasing cyclic uniaxial tests

were performed at λ = 1.75 and λ = 1.95. Fig. 12(a) highlights that for moderate deformations

λ < 1.40, the second loading curves are nearly the same whatever is the previous maximum strain.

This means that increasing the maximum strain has only a slight effect on the behavior at mod-

erate deformations. Therefore, for the range of deformation, a hyperelastic constitutive equation

is sufficiently accurate to model the mechanical behavior. The neo-Hookean constitutive equation

[41] is chosen to describe mild deformations:

WN (I1) = C10 (I1 − 3) . (11)

The material parameter is fitted on second loading curves for uniaxial and equibiaxial tests, C10 =

0.335MPa is obtained. The results are presented in Fig. 12(a) and (b). This shows that the model

predicts satisfactorily the two loading stress for λ < 1.40.

4.3 Experimental and numerical comparison of bulge test results

Results of FEM using the neo-Hookean model are superposed with the experimental fields (dis-

placement, principal curvatures, principal stretches and principal stresses) in Fig. 11. All numerical

predictions clearly follow the trends calculated from the presented method to obtain the princi-
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Fig. 12 Experimental data and the hyperelastic fitting using the neo-Hookean hyperelastic model: (a) Uniaxial

and (b) equibiaxial tensile tests at λ̇ = 1.25× 10−2 s−1.

pal curvatures applied to the experimental data. For the z displacement field (Fig. 11(a)) a pro-

nounced difference, for the lower pressure value, is observed. Consequently the curvatures evaluation

(Fig. 11(b)) for this same load state is obviously affected. Nevertheless, errors in curvatures deter-

mination decreased with an increase in the strain level as observed in the benchmark of Section 3.

Considering the principal stresses plots, a good agreement is observed in spite of the hyperelastic

constitutive equation simplicity.

It is important to keep in mind the simplicity of the neo-Hookean model, the simple procedure

used for material parameter identification and the precaution taken to accommodate the material

before testing. An interesting characterization method for rubber is proposed in [42], performing

only one heterogeneous mechanical test, measuring the displacement and strain fields using DIC and

applying an inverse method. In such experiment, a large set of heterogenous states was obtained

and results are represented in the I1 × I2 invariants plane, between uniaxial tensile and planar

shear tensile paths. Fig. 13 illustrates the strain states, in the I1 × I2 invariants plane, for the

classical three homogeneous tests used in material parameter identification. In the same figure, the

gray zone represents all the heterogenous states covered in the bulge test, with the advantage of

knowledge about the stress field. Note that, for small values of I1 and I2, bending effects could be

non-negligible and membrane theory fails as explained in Section 3.3. However, there is no simple

rule to estimate these bending effects independently of the tested material and of the geometry of
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the bulge sample. Given a material, an estimation of the magnitude of bending effects could be

done experimentally by varying the geometry of bulge sample.

For the presented material test, the distribution of loading cases in this zone are limited to

Rmax achieved during the correlation step. This zone is represented by a circular hatch pattern in

Fig. 13. As aforementioned, the Rmax depends on the membrane displacements levels and camera

dispositions in order to acquire the information over the border, i.e., the zone dominated by planar

shear tensile state.

Fig. 13 Loading case in I1 × I2 plane. The gray zone represents all heterogeneous deformations states covered
by the bulge test. The Bulge (Rmax) curve refers to the heterogeneous path at Rmax point. The circular hatch
pattern represents the distribution of loading cases for the presented material test.

5 Conclusion

The aim of the present work was to propose a method which enriches greatly the analysis of usual

bulge tests by using the 3D-DIC technique. Firstly, this paper presented a general method to

determine surface curvature tensors from 3D-DIC data. This requires no assumptions regarding

axisymmetry or other shape characteristics of the membrane surface. Secondly, the determination

of the curvature tensor fields allowed to check the axisymmetry of the bulge test, which had to

be obtained for planar-isotropic material and perfect boundary conditions. Once this axisymmetry
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was proved, the proposed method allowed to determine the stress-strain fields associated with the

membrane inflation problem without any constitutive equation. The method was applied in this

paper both on virtual data generated by numerically simulating the bulge test and on real data of

one experiment performed on a silicon elastomer. In this last case, experimental difficulties were

pointed out, particularly the difficulty to obtain the information near to the border for the chosen

material. These two examples showed that bulge test can be used as a very rich heterogeneous

mechanical test which allows to obtain valuable information and can be used to different types

of materials. A wide range of stress-strain states, ranging from equibiaxial to planar tensile stress

state, can potentially be achieved improving the experimental setup to obtain the stress-strain

fields at the border for very large displacements.
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Appendix A

MatLab routine used to evaluate the surface curvatures.

function [K,H, Ki , Ki i ] = scurvature (X,Y, Z , gs )
% scurva ture − compute gaussian , mean and p r i n c i p a l curva tures o f a sur face
%
% [K,H,Ki , Kii ] = scurva ture (X,Y,Z , gs ) , where :
% − X,Y,Z are matrix o f po in t s on the sur face .
% − gs s p e c i f i e s the spacing between po in t s in every d i r e c t i on . ( De fau l t gs=1)
% − K i s the gauss ian curvature .
% − H i s the mean curvature .
% − Ki and Kii are minimum and maximum curva tures at each po in t .
%

% Fi r s t Der i va t i v e s
[Xu,Xv]=gradient (X, gs ) ;
[Yu,Yv]=gradient (Y, gs ) ;
[ Zu , Zv]=gradient (Z , gs ) ;

% Second Der i va t i v e s
[Xuu ,Xuv]=gradient (Xu, gs ) ;
[Yuu ,Yuv]=gradient (Yu, gs ) ;
[ Zuu , Zuv]=gradient (Zu , gs ) ;

[Xuv ,Xvv]=gradient (Xv, gs ) ;
[Yuv ,Yvv]=gradient (Yv, gs ) ;
[ Zuv , Zvv]=gradient (Zv , gs ) ;

% Reshape 2D Arrays in to v ec t o r s
Xu=Xu ( : ) ; Yu=Yu ( : ) ; Zu=Zu ( : ) ;
Xv=Xv ( : ) ; Yv=Yv ( : ) ; Zv=Zv ( : ) ;
Xuu=Xuu ( : ) ; Yuu=Yuu ( : ) ; Zuu=Zuu ( : ) ;
Xuv=Xuv ( : ) ; Yuv=Yuv ( : ) ; Zuv=Zuv ( : ) ;
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Xvv=Xvv ( : ) ; Yvv=Yvv ( : ) ; Zvv=Zvv ( : ) ;

Xu=[Xu Yu Zu ] ;
Xv=[Xv Yv Zv ] ;
Xuu=[Xuu Yuu Zuu ] ;
Xuv=[Xuv Yuv Zuv ] ;
Xvv=[Xvv Yvv Zvv ] ;

% Fir s t fundamental form c o e f f i c i e n t s ( g11 , g12 , g22 )
g11=dot (Xu,Xu , 2 ) ;
g12=dot (Xu,Xv , 2 ) ;
g22=dot (Xv,Xv , 2 ) ;

% Normal vec to r ( g3 )
m=cross (Xu,Xv , 2 ) ;
p=sqrt (dot (m,m, 2 ) ) ;
g3=m. / [ p p p ] ;

% Second fundamental Co e f f i c i e n t s o f the sur face ( b11 , b12 , b22 )
b11=dot (Xuu , g3 , 2 ) ;
b12=dot (Xuv , g3 , 2 ) ;
b22=dot (Xvv , g3 , 2 ) ;

[ s , t ] = s ize (Z ) ;

% Gaussian Curvature (K)
K=(b11 .∗ b22 − b12 . ˆ 2 ) . / ( g11 .∗ g22 − g12 . ˆ 2 ) ;
K=reshape (K, s , t ) ;

% Mean Curvature (H)
H=(g11 .∗ b22 + g22 .∗ b11 − 2 .∗ g12 .∗ b12 ) . / ( 2 ∗ ( g11 .∗ g22 − g12 . ˆ 2 ) ) ;
H=reshape (H, s , t ) ;

%% Princ ipa l Curvatures .
Ki=H+sqrt (H.ˆ2 − K) ;
Ki i=H−sqrt (H.ˆ2 − K) ;

%end scurva ture
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