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Recently, hyperelastic mechanical models were proposed to well capture the aneurismal
arterial wall anisotropic and nonlinear features experimentally observed. These models
were formulated assuming the material incompressibility. However in numerical analy-
sis, a nearly incompressible approach, i.e., a mixed formulation pressure-displacement, is
usually adopted to perform finite element stress analysis of abdominal aortic aneurysm
(AAA). Therefore, volume variations of the material are controlled through the volumet-
ric energy which depends on the initial bulk modulus κ. In this paper, an analytical anal-
ysis of the influence of κ on the mechanical response of two invariant-based anisotropic
models is first performed in the case of an equibiaxial tensile test. This analysis shows
that for the strongly nonlinear anisotropic model, even in a restricted range of deforma-
tions, large values of κ are necessary to ensure the incompressibility condition, in order
to estimate the wall stress with a reasonable precision. Finite element simulations on
idealized AAA geometries are then performed. Results from these simulations show that
the maximum stress in the AAA wall is underestimated in previous works, committed
errors vary from 26% to 58% depending on the geometrical model complexity. In addi-
tion to affect the magnitude of the maximum stress in the aneurysm, we found that too
small value of κ may also affect the location of this stress.

Keywords: Abdominal aortic aneurysm; anisotropic models; numerical analysis;
near-incompressibility.

1. Introduction

In the last two decades, numerous numerical studies1 have been performed in order

to predict the wall stress distribution in abdominal aortic aneurysms (AAA), i.e., to

predict the rupture of AAA. Accurate and reliable numerical stress analysis requires

to take into account the geometrical features (tortuosity, asymmetry...) of AAA,

the wall thickness, the presence of the intraluminal thrombus, the heterogeneity of
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the wall, and the use of appropriate constitutive laws for the AAA material. The

present work mainly concerns this last point. Like many soft tissues, the arterial

wall is assumed to be an incompressible material namely in experimental studies.

Under physiological conditions, this assumption could be justified.2 The majority

of published numerical studies in AAAs1 have been performed using incompress-

ible hyperelastic isotropic models fitted thanks to classical uniaxial tensile tests.3–6

However, biaxial tensile tests are more appropriate to characterize the anisotropic

behavior of aneurismal arterial wall and for the development of suitable material

models. In this way, planar biaxial tensile tests on normal and pathologic human

abdominal aortic tissues were carried out in Ref. 7. The obtained results clearly show

that the degeneration of the aorta leads to an increase in mechanical anisotropy

and also an increase in the circumferential stiffness for AAA tissue as compared

to normal aortic tissue. In order to take into account such features, hyperelas-

tic anisotropic constitutive models were recently proposed using a Green-strain

approach7 or an invariant approach.8,9 In both cases, the strain energy density W

is formulated assuming that the arterial material is incompressible. These models

were then implemented in a finite element code in order to compute both the dis-

tribution and the magnitude of stresses in patient-specific geometries using shell

elements7 or in idealized AAA geometries8 using 3D elements. To perform such

simulations, a nearly-incompressible approach, i.e., a mixed formulation pressure-

displacement implemented in many finite element softwares, is usually adopted.

For that purpose, the strain energy density W is split into an isochoric part W̄

and a volumetric part U : W = W̄ + U . The volumetric function U which depends

on the jacobian J and on the initial bulk modulus κ of the material is used to

control the volume variation.10 In practice, the incompressibility of the material

is nearly reached for large values of κ which is used as a user-specified penalty

parameter.

The main objective of the present work is to emphasize the influence of the

initial bulk modulus κ values on both the magnitude and the distribution of the

stress in an anisotropic AAA wall. To our knowledge, these values of κ as well

as the form of the volumetric function U(J) are rarely specified or discussed in

previous numerical works. For that purpose, the paper is divided into two sec-

tions. In Sec. 2, an analytical analysis of compressibility effects on equibiaxial ten-

sile tests is carried out. Two strain energies based on polynomial or exponential

functions8,9 are considered and a classical quadratic volumetric function is used.

Through a parametric study, the influence of the initial bulk modulus on the

near-incompressibility of the mechanical response of the considered constitutive

models is highlighted. Then, this influence is emphasized on idealized AAA geo-

metrical models, in the last section. For that purpose the model proposed in Ref. 8

was implemented in a finite element code and numerical simulations on the AAA

models were performed. The obtained results are finally compared to those in the

literature.
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2. Analytical Analysis of Compressibility Effects on Equibiaxial

Tensile Tests

2.1. Material models

2.1.1. General framework

Hyperelastic models are often expressed thanks to strain elongations or strain invari-

ants. The isotropic strain invariants I1, I2 and I3 (or J) are defined by:

I1 = tr(C), I2 =
1

2

[

tr(C)2 − tr(C2)
]

, I3 = J2 = det(C), (1)

where C = FTF is the right Cauchy–Green strain tensor and F is the deformation

gradient whose principal components are the elongations λi. For fiber reinforced

materials, an anisotropic approach must be used and a fiber direction vector M

is defined for each fiber orientation. This leads to the introduction of two new

invariants, I4 and I5 which are defined as:

I4 = MCM, I5 = MC2M. (2)

Other invariants can be introduced if there are many reinforced directions.

Many hyperelastic materials, as arterial tissues, are often considered as incom-

pressible. To overcome well-known numerical difficulties associated with the incom-

pressibility condition, a nearly incompressible approach is usually adopted. This

later approach leads to use the isovolume deformation gradient F̄ = J−1/3F. Its

principal components are thus defined by λ̄i = J−1/3λi (i = 1, 2, 3) and it permits

to build incompressible invariants:

Ī1 = I
−1/3
3 I1, Ī2 = I

−2/3
3 I2, Ī4 = I

−1/3
3 I4, Ī5 = I

−2/3
3 I5. (3)

The strain energy density W is thus split into two parts, an isochoric one W̄ and a

volumetric one U :

W = W̄ (Ī1, Ī2, Ī4, Ī5) + U(J). (4)

The volume variation is then controlled by the choice of the volumetric function

U(J) which depends on the initial bulk modulus κ of the material.10 The incom-

pressibility of the material is nearly reached when the volumetric energy U is greater

than the isochoric energy W̄ , i.e., for large values of the bulk modulus κ which in

this particular case serves as a user-specified penalty parameter. This last point is

discussed in the following.

2.1.2. Strain energy densities for artery material

Within this framework, two forms of isochoric strain energy (W̄ ) using exponential8

or polynomial9 functions were proposed in order to describe the experimentally

observed hyperelastic anisotropic behavior of arteries.7 In these models, the material
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Fig. 1. Fibers orientation in the arterial wall.

is considered as a matrix material reinforced with two fiber networks (Fig. 1). Thus,

two vectors are introduced to describe the two distinguished fiber orientations:

M = (cos θ sin θ 0) and M′ = (cos θ′ sin θ′ 0), with θ = −θ′. As a consequence, the

strain energy density (W ) may depend on the following anisotropic strain invariants

defined for the two orientations, as:

Ī4 = I
−1/3
3 MCM, Ī5 = I

−2/3
3 MC2M, Ī6 = I

−1/3
3 M′CM′,

Ī7 = I
−2/3
3 M′C2M′, Ī8 = I

−1/3
3 (MM′)MCM′, I9 = (MM′)2.

(5)

In practice, Ī1, Ī4 and Ī6 are usually sufficient to capture the typical features of

arterial response.8,9,11

In this study, models in consideration are:

• polynomial reinforcement constitutive equation (P6 model)

W = U(J) + c1(Ī1 − 3) + α(Ī1 − 3)2 + k1(Ī4 − 1)6 + k3(Ī6 − 1)6, (6)

where c1, α, k1 and k3 are material parameters. Basciano and Kleinstreuer9

recently proposed a similar form without the isotropic neo-hookean part. In this

particular case, let us remark that there is no initial slope in the stress–strain

curve (c1 = 0), which can lead to numerical difficulties (nonconvergence).

• Rodriguez constitutive equation (R model)8

W = U(J) + c1(Ī1 − 3)

+
k1

2k2
{exp[k2[(1 − ρ)(Ī1 − 3)2 + ρ(Ī4 − Ī0

4 )2]] − 1}

+
k3

2k4
{exp[k4[(1 − ρ)(Ī1 − 3)2 + ρ(Ī6 − Ī0

6 )2]] − 1}, (7)

where k2 and k4 are dimensionless material parameters, ρ is a measure of anisotropy.

Ī0
4 and Ī0

6 correspond to the initial crimping of the fibers. In the first model, the

anisotropic term is assumed to contribute when either Ī4 > 1 or Ī6 > 1, or both.
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Similarly, the term (Īi − Ī0
i ) (i = 4, 6), does not contribute to the strain energy

whether Ī4 ≤ Ī0
4 or Ī6 ≤ Ī0

6 . This last model is equivalent to the model proposed

by Holzapfel et al.11 for ρ = 1 and Ī0
i = 1.

A general form for the volumetric function (Eq. (8)) was proposed in Ref. 10.

U/κ = ((α+1)−1J (α+1) +(β− 1)−1J (1−β))(α+β)−1 − (α+1)−1(β− 1)−1, (8)

where α and β are dimensionless parameters that can be used to obtain the most

common volumetric functions proposed in the literature, α > 0 and β > 1. In

this work, the classical quadratic function12 usually implemented in finite element

analysis codes is chosen for the two material models:

U(J) =
κ

2
(J − 1)2. (9)

It was obtained with α = 1 and β = 0 in Eq. (8). This volumetric function violates

the condition on β, but as the deformation range investigated in this study leads to

very small volume changes (J ≈ 1), all the volumetric functions proposed in Ref. 10

coincide as we can observe in Fig. 2(a). Moreover, the evolution of the derivative of

this ratio with the volume change is also illustrated in Fig. 2(b), since this derivative

is involved in the stress calculation. Table 1 shows the values of α and β for the

different volumetric functions in Fig. 2.

In order to control the material volume variation, one can choose an arbitrary

higher initial bulk modulus. However, since this modulus must be considered as

a material property, linking it to the material parameters seems to be coherent.

For that purpose, we choose to come back to linear elasticity thanks to the well-

known relationship between the initial bulk modulus κ, the Young’s modulus and

the Poisson’s ratio. In the case of orthotropic materials, like the arterial wall, the

initial bulk modulus can be expressed in term of the Poisson’s ratio νij , and Young’s

moduli Ei, Ej and Ek as follow13:

κ =
EiEjEk

3[(1 − 2νij)EiEk + EjEk − EiEj ]
, (10)

where i �= j �= k (i, j = 1, 2, 3). For the sake of simplicity, the classical isotropic

relationship often available in finite element codes is adopted in the following:

κ =
E

3(1 − 2ν)
, (11)

Table 1. Parameters for the volumetric function (Eq. (8)).10

U U1 U6a U6b U6c U6d U6e U6f

α 1 2 0.001 1 0.001 2.3 0.45
β 0 2 3.790 1.001 10 1.4 1.05
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Fig. 2. (a) Evolution of the ratio of the volumetric function to the initial bulk modulus with the
volume change; (b) evolution of the derivative of the ratio of the volumetric function to the initial
bulk modulus with the volume change.10

where E and ν are the Young’s modulus and the Poisson’s ratio. Due to this sim-

plification, by convention we choose the e1 direction (Fig. 1) as reference for deter-

mining the Young’s modulus in infinitesimal deformation of anisotropic materials

under consideration. This choice has no consequence on the following analysis. The

Poisson’s ratio in (Eq. (11)) is a driving representative parameter of the compress-

ibility (which has no physical relevance) and the strict incompressibility is reached
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for ν = 0.5. After some algebraic manipulations, it comes that:

• P6 model

E = 6c1. (12)

• R model

E =
2

1 + 2 ρk1

c1

sin4 θ
[3c1 + 4ρk1(cos4 θ + sin4 θ) − 4ρk1 cos2 θ sin2 θ]. (13)

The material parameters for each model are given in Table 2. The material

parameters for the exponential model were identified in Ref. 8 on biaxial tensile

tests data from Ref. 7. Using these parameters, a Young’s modulus of 264kPa was

obtained with (Eq. (13)). Let us remark that the fibers orientation, θ, in these

models was considered as a phenomenological parameter, so its values have no

physical relevance.8 For P6 model, to have the same Young’s modulus as for R

model, c1 = 44.0 kPa was adopted. Thus, for a given value of the Poisson’s ratio,

we have the same initial bulk modulus for the two material models (Eq. (11)). The

parametric study in the following is achieved with the initial bulk modulus, κ.

2.2. Equibiaxial loading

To study the different constitutive equations, a loading state close to that happens

in arterial walls, i.e., equibiaxial loading, is chosen. The same elongation is imposed

in the two plane directions (λ1 = λ2). The stress states are determined by means

of the derivative of the strain energy density: Wi = ∂W/∂Īi and UJ = ∂U/∂J . The

Cauchy stress formulation can be written as:































σ1 =
2

J
[(λ̄2

1 − λ̄2
3)W1 + (W4 + W6)(λ̄1 cos θ)2]

σ2 =
2

J
[(λ̄2

2 − λ̄2
3)W1 + (W4 + W6)(λ̄2 sin θ)2]

σ3 =
2

3J
[(3λ̄2

3 − Ī1)W1 + Ī4(W4 + W6)] + UJ .

(14)

The third equation is used to determine the third elongation λ3 by imposing a stress

free condition σ3 = 0, the plane stress assumption. For each model, the inversion of

Table 2. Material constants: P6 and R refer to P6 model and R model.

c1(kPa) α(kPa) k1 = k3(kPa) k2 = k4 ρ Ī0

4
= Ī0

6
θ(◦) E(kPa)

P6 44.0 73.996 65500 — — — 44.60 264
R 0.12 — 244.90 1576.20 0.14 1.038 5.00 264
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this later equation was numerically done using Matlab r© for several values of the

initial bulk modulus.

The evolution of the third elongation λ3 versus the first one λ1 for the different

constitutive equations is presented in Figs. 3(a) and 3(b). These figures show that

even if the initial bulk modulus is very large κ ≥ 1 × 1017 kPa, the elongation

may be very far from the incompressible case, namely for the R model. Moreover

for this model, it appears that whatever the value of the initial bulk modulus the

material is thickening after a given value of the deformation (beyond 10%), which

is not physically acceptable. This is due to the fact that the volumetric function

U is not increasing enough compared to the isochoric energy W̄ to satisfy the

incompressibility condition. For the polynomial model, when κ ≥ 4.40 × 106 kPa,

the material response is identical to the incompressible case, in the range of the

considered deformation. These results are reinforced by the evolution of J versus

λ1, presented in Figs. 3(c) and 3(d). It clearly appears that the volume variation can

become very high, even if κ is very large. Nevertheless, the curves also highlight

that the incompressibility hypothesis seems to be verified until a given level of

deformation depending on the constitutive equation.

The near-incompressibility formulation has also a large consequence on the

stress state as illustrated in Figs. 3(e) and 3(f), which show the evolution of

the first principal stress σ1 versus λ1 for the different models. For a given value

of λ1, an important difference can be observed between the incompressible theo-

retical stress, σ1(inc), and the stress calculated for different values of the initial

bulk modulus, σ1(κ). In order to better quantify this difference, the relative error

defined as:

Er =
σ1(inc) − σ1(κ)

σ1(inc)
(15)

for κ = {4.40 × 104, 4.40 × 106} kPa, is plotted in Fig. 4 for the two constitutive

models. All these results point out that to keep a constant volume during strain

hardening, a high volumetric function is needed compared to the isochoric one.

Obviously, this condition depends on both the expression of the volumetric energy

and the value of the initial bulk modulus κ. In the present case, a classical quadratic

expression for U (Eq. (9)) is used. However, the volumetric functions comparison in

Fig. 2 shows that another volumetric function, in the range of deformation investi-

gated, would lead to the same conclusion. Obtained results show that a large value

of κ appears to be sufficient to satisfy the incompressibility condition for the P6

model in this range of deformation. When models become strongly nonlinear, as

R model, large values of κ are sufficient to ensure the incompressibility condition

in a restricted range of deformation. Consequently, numerical simulations outside

this range of deformation can lead to large errors on the estimations of stresses

in arterial wall. This point is illustrated in the next section in the particular case

of AAA.
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Fig. 3. Evolution of λ3, J and σ1 versus λ1(= λ2) during an equibiaxial tensile test for different
values of the initial bulk modulus: (a,c,e) P6 model, (b,d,f) R model, in this last case the gray
filled marks correspond to results from the finite elements analysis.
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3. Compressibility Effects on Abdominal Aortic Aneurysm

Wall Stress Analysis

The aim of this section is to investigate the influence of the near-incompressibility,

i.e., the influence of the initial bulk modulus κ, on AAA wall stress distribution.

For that purpose, the model recently proposed in Ref. 8 (Eq. (7)) was implemented

in a finite element code and numerical simulations on idealized AAA models were

performed.
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3.1. Implementation and validation of the model

The model (Eq. (7)) was implemented in the finite element code Comsol

Multiphysics r©. The near-incompressibility is formulated by using a mixed

formulation — pressure-displacement-, with quadratic displacement and linear pres-

sure Lagrangian’s elements. A direct solver (UMFPACK) was used for all the fol-

lowing simulations. As in Sec. 2, the classical volumetric energy U defined by the

relation (Eq. (9)) is used and the initial bulk modulus is still given by (Eq. (11)).

In order to validate this implementation, equibiaxial tensile tests were first sim-

ulated for several values of the initial bulk modulus, from 220 to 3.96 × 1017 kPa.

Figures 3(b), 3(d) and 3(f) show the evolution of λ3, J and σ1 versus λ1. Let us

remark that the directions (e1, e2, e3) in the biaxial test correspond to (eθ, ez, er) in

the arterial wall. We can observe a perfect agreement between analytical solutions

(continuous line) and finite element results (gray filled marks) in the whole range

of deformation.

3.2. Finite element analysis of AAA wall stress

3.2.1. Geometry

Finite element analysis was performed on idealized AAA models (Fig. 5) whose

mathematical form was proposed in Ref. 8. Briefly, the model is characterized by

the aneurysm dilatation parameter (Fr = Ran/Ra), its eccentricity (Fe = e/((Fr −

1)Ra)) and its aspect ratio (Fℓ = Lan/Ran), where Ra is the healthy aorta radius,

Ran the aneurysm maximal radius, e the deviation of the aneurysm axis from the

the healthy aorta axis and Lan defines the aneurysm length. In the following, the

aneurysm aspect ratio (Fr = 2.5), its total length (L = 100 mm), the wall thickness

(t = 1.5 mm), the healthy aorta radius (Ra = 10 mm) and the dilatation parameter

(Fr = 2.75) are assumed to be constant. This value of the dilatation parameter

corresponds to a maximum diameter of 5.5 cm of the aneurysm. The CAO models

were built in SolidWorks r© and then imported into the finite element analysis

software. In the above model, the middle section in the plane (x, y) constitutes a

plane of symmetry. Therefore, only the upper part of the model was used in the

finite element analysis. The full model can be reconstructed after.

3.2.2. Mesh

As mentioned above, a pressure-displacement (U-P) formulation, inherent to the

near-incompressibility assumption, was adopted. Consequenly, P2-P1 elements (i.e.,

quadratic and linear interpolation for the displacement and the pressure, respec-

tively) are used. These elements are fully integrated which results in zero hourglass

energy.

Mesh-influence studies indicated that the numerical results are less dependent

on the number of elements along the aneurysm axis. On the other side, the number
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Fig. 5. AAA geometrical model and boundaries designation and mesh model.

Table 3. Influence of the mesh discretization (regular mesh)
within the AAA thickness (axisymmetric model).

Number of elements 2 3 4 6 8 10

σ1max (kpa) 565 624 652 676 685 690

of elements in the AAA wall thickness can strongly affect the numerical results.

In order to capture the strong stress gradient within the AAA thickness (close to

the inner surface of the aneurysm in the case of the anisotropic model (7)), several

simulations were performed by increasing the number of elements from 2 to 10 (the

thickness of each element being the same). The obtained numerical results (Table 3)

show that the influence of the mesh becomes negligible (less than 2 %) when the

number of elements is larger than 6. In order to reduce the computational time,

we found that similar results can be obtained by using only three elements but not

with the same size. Precisely a structured mesh was adopted (Fig. 5) with three

elements across the AAA wall thickness, 36 elements in the orthoradial direction

and 60 elements along the AAA axis. The thickness of the element close to the

inner surface of the aneurysm is much thinner (10 times) than the one close to the

outer surface (Fig. 5). Using this type of mesh, we found that σ1max = 698 kPa.

3.2.3. Collagen fibers orientation in nonsymmetric AAA models

The model implementation was validated in § 3.1 for equibiaxial tensile tests. The

difficulty in the case of an aneurysm, namely a nonsymmetric AAA geometrical
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model, is the definition of the fibers orientation in the arterial wall. For that pur-

pose, on the aneurysm internal surface, the two tangential vectors (T1 and T2)

were extruded through the arterial wall thickness to make them available at every

integration point. These two vectors were then used to define a local orientation of

the collagen fiber. This process is accomplished by using the “Extrusion Coupling

Variables” in Comsol Multiphysics r©.

3.2.4. Boundary conditions

The following boundary conditions are applied on the AAA model (Fig. 5):























uz = 0 on Γt and on Γsz

uy = 0 on Γsy

ux = 0 at the corner F

σ · n = Pn on Γi

σ · n = 0 on Γe

. (16)

In the proximal face Γt (z = L/2), a free radial displacement and a zero-axial

displacement (uz = 0) were imposed, instead of embedding boundary conditions

which lead to stresses concentration in this region of the AAA as in Refs. 8 and 14.

A symmetry condition is applied on both the planes Γsz (z = 0) and Γsy (y = 0).

The usual systolic pressure (P = 120mmHg) was applied in the inner surface (Γi)

of the aneurysm and the outer side (Γe) is stress free.

3.2.5. Wall stress in an axisymmetric AAA

In this section, the first principal stress is evaluated in idealized AAA geometries

by using hyperelastic anisotropic model for the arterial wall. The way the near-

incompressibility assumption affects this stress distribution and its maximum value

in the aneurysm is emphasized. For that purpose, the stress evolution and the

material volume variation are studied when the initial bulk modulus (κ), which

controls the material compressibility, varies from its classical values to very large

values.

Figure 6 shows the distribution of the first principal stress σ1 (which is closely

aligned to σθθ) and the jacobian J in the AAA for three different values of κ.

Correspondence between the values of κ and those of ν is given in Table 4. For the

clarity, one-half of the aneurysm reconstructed from 2D-axisymmetric simulations

is shown on these figures. We can observe that:

• both the distribution and the magnitude of the first principal stress σ1 are

strongly affected by the value of κ. When κ = 4.40 × 103 kPa, Fig. 6 illustrates

that the maximum first principal stress σ1max is located in the inner surface at

the junction between the aorta and the aneurysm and does not exceed 393kPa.

By increasing the value of the initial bulk modulus, the location of σ1max moves
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Fig. 6. 3D representation of an axisymmetric simulations results: Distribution of σ1 and J in the
AAA. The arrow indicates the location of σ1max.

Table 4. σ1max in the AAA versus κ (or ν).

κ(kPa) ν Jmax(%) σ1max(kPa) Er(% )

4.40×103 0.49000 3.90 393 44
4.40×104 0.49900 0.70 539 24
4.40×105 0.49990 0.40 675 4.0
4.40×106 0.49999 0.40 698 0.4
3.96×1017 0.5 − 1 × 10−16 0.40 701 —

towards the center of the bulged part of the AAA and its magnitude is almost

multiplied by two for κ = 4.40 × 106 kPa.

• The distribution of the volume variation parameter J (Fig. 6) is also depen-

dent on the initial bulk modulus. As expected, its magnitude decreases with
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increasing κ and tends towards the incompressibility case (J = 1) in the whole

AAA for the largest value of κ. The maximum volume variations which are located

in the bulged part of the AAA are typically the order of 3.9% and 0.04% for

κ = 4.40 × 103 kPa and κ = 4.40 × 106 kPa, respectively.

These results point out that significant errors can be made on the peak wall stress

estimation (magnitude and location) even in a simple AAA geometry when the

incompressibility condition is not fulfilled. Such effects could be amplified in the case

of patient-specific AAA models which present more complex geometric features. The

numerical values deduced from this analysis are summarized in Table 4. Beside the

very small volume variation (less than 1% beyond κ = 4.40×104 kPa), the maximum

first principal stress could deviate with about 24% from the incompressibility case.

This is due to the strong nonlinearity of the mechanical model (Eq. (7)). As Fig. 7

clearly shows, the magnitude of σ1max in the AAA wall rapidly increases with

increasing κ and tends towards a plateau, when κ is larger than κ = 4.40×106 kPa.

This value ensures an estimation of σ1max with an error lower than 1%, whereas a

value of κ = 4.40×105 kPa may lead to errors close 4%. Finally, let us remark that

the maximal first principal stress obtained in Ref. 8 for the same AAA model with

a normal systolic pressure is about σ1max = 520kPa. This value is 26% smaller than

the value at the plateau (Fig. 7). The value of κ = 3.96 × 1017 kPa was assumed

to be the incompressible case since it corresponds to the limit of the numerical

precision of the finite element analysis software used. Anyway, for the anisotropic

model under consideration, we can observe that beyond κ = 4.40 × 106 kPa, σ1max

reaches a stable value.
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Fig. 7. Evolutions of σ1max and errors on its values Er (Eq. (15)) in terms of the initial bulk
modulus κ.

15



3.2.6. Effects of non-symmetrical AAA geometry on the wall stress

The above results were obtained for an axisymmetric AAA model while due to the

surrounded organs, especially the spine, the abdominal aortic aneurysm does not

usually preserves its initial fusiform geometry. The loss of symmetry in the aneurysm

is measured by the eccentricity parameter (Fe) which varies from 0 (axisymmet-

ric model) to 1 (“fully” nonsymmetric model). Figure 8 exhibits σ1 distribution for

Fe = {0.0, 0.5, 1.0}. Unlike the symmetric model, σ1max is located in the posterolat-

eral surface, close to the junction of the bulged part and the healthy aorta. The risk

of the aneurysm rupture is very high in these two locations as reported in Refs. 4 and

15. Here, only results for κ = 4.40×106 kPa are presented since σ1max location does

not change beyond the classical value of the initial bulk modulus (4.40 × 104 kPa,

Fig. 6). However, the magnitude of the first principal stress is strongly modified with

both the aneurysm eccentricity and the initial bulk modulus. Figure 8 shows the

modification of σ1 pattern and the increase of σ1max with the aneurysm eccentric-

ity. This increase is nearly linear for Fe ≤ 0.75 and nonlinear after (Fig. 9). In our

best knowledge, such nonlinearity in σ1max increase with the aneurysm eccentric-

ity was not observed before, precisely when using hyperelastic anisotropic material

model. We also reported values of σ1max obtained by Rodriguez et al.8 in Fig. 9.

With the same geometrical and mechanical models, these authors found a linear

increase of σ1max with the aneurysm eccentricity increase. According to their results,

σ1max increases with 33% from an axisymmetric aneurysm to a fully nonsymmet-

ric one. By contrast, our results exhibit an increase of σ1max of about 135% when

κ = 4.40× 106 kPa. Thus, for this value of κ and for the fully non-symmetric AAA

model, in comparison to Ref. 8 the error committed (Eq. (15)) on the maximum

stress is about 58%. When the same analysis is performed with κ = 4.40× 104 kPa,

we found an increase of 109% for σ1max. In this case, for Fe ≤ 0.5, our results
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Fig. 8. Distribution of the first principal stress σ1 in nonsymmetric AAA geometry when the initial
bulk modulus κ = 4.40 × 106 kPa.
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are the same order of magnitude of those in Ref. 8, see Fig. 9. Therefore, it seems

that their results would correspond to an initial bulk modulus of about 4.40 × 104

kPa. However, even with this value of κ, the discrepancy between the two values

of σ1max, for Fe = 1.0, is about 38%. This could be explained by the fact that in

Ref. 8, σ1max was only considered in the bulged region of the aneurysm.

The material model (Eq. (7)) used in our finite element analysis was identi-

fied in Ref. 8 thanks to experimental data on AAA tissues from Ref. 7. However,

whatever the geometrical model studied here, the obtained maximum stresses are

very large compared to those reported from Ref. 7, about 120kPa. This remark

remains valid for many previous works.7,8,16 Nevertheless, our results are the same

order of magnitude as those obtained by Rissland et al.17 in patient-specific AAA

models (with an anisotropic material model and with a uniform AAA wall thick-

ness of 2mm). Namely in the fully nonsymmetric idealized AAA model (Fe = 1.0),

we found σ1max = 1654kPa while these authors reported a maximum Von Mises

stress of 1555kPa. Finally, let us remark that these peak values of the first prin-

cipal stress are about 30% higher than those measured by Raghavan et al.18 in

orthoradial direction of AAA tissues (σultimate ≈ 1200 kPa, in uniaxial tensile

tests).

4. Concluding Remarks

Accurate and reliable numerical stress analysis of AAA requires suitable consti-

tutive models for the arterial material. For that purpose, hyperelastic anisotropic

models were recently proposed to capture the main features of the experimentally
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observed mechanical response of arterial tissues. In these models, arterial material

are usually assumed to be incompressible and material parameters are identified in

this way. In practice, a nearly incompressible approach, i.e., a mixed formulation

pressure-displacement, to perform finite element simulations is usually adopted.

Consequently, the strain energy is split into an isochoric part W̄ and a volumetric

part U , which depends on J and on the initial bulk modulus κ of the material. This

parameter is used to control the material volume variation.10

In this work, an analytical analysis of the influence of κ on the mechanical

response of two invariant-based anisotropic models was first performed in the case

of an equibiaxial tensile test. In each model, a quadratic volumetric function usu-

ally implemented in many finite element softwares was considered. Analytical results

clearly show that, in that case, large values of κ are sufficient to ensure the incom-

pressibility condition, i.e., to estimate wall stress with a reasonable precision, in a

restricted range of deformations only. Such results were then confirmed through a

finite element stress analysis of idealized AAA geometries by using the model pro-

posed in Ref. 8. Numerical results in the axisymmetric AAA model show that too

small values of κ may lead to important error on the magnitude of the maximum

first principal stress and also on its location. In the present case, it is shown that a

value of the initial bulk modulus larger than 4.40× 106 kPa is sufficient to estimate

wall stresses with an error smaller than 1%. This value of κ is 10 to 100 times larger

than values used in some previous numerical analyzes.11,19

In comparison to the maximum diameter criterion usually adopted for the

aneurysm potential rupture, the maximum stress in the AAA wall is considered

to be a more reliable indicator.20 The above results illustrate that the aneurysm

eccentricity could hugely contribute to this stress increase. However, the wall stress

being mainly evaluated numerically, a particular care may be taken to include

appropriate numerical, mechanical and geometrical parameters in order to obtain

more realistic estimations. As we observed, from an axisymmetric to a fully non-

symmetric AAA models, the maximum stress could increase with about 135% (from

702 kPa to 1655kPa). When the near-incompressibility condition is not fulfilled, the

relative error on σ1max varies from 24% to 44%. To obtain convenient numerical

predictions of the aneurysm wall stress, the above underlined errors must be fixed.

Moreover, material models have to be identified on average patient data.
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337:101–106, 2009.

20. Fillinger MF, Marra SP, Raghavan ML, Kennedy FE, Prediction of rupture risk in

abdominal aortic aneurysm during observation: Wall stress versus diameter, J Vasc

Surg 37:724–732, 2003.

19


