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CNRS, TIMC-IMAG, F-38000Grenoble, France

Abstract

Soft tissues are mainly composed of organised biological media giving them an anisotropic me-
chanical behavior. Soft tissues also have the ability to undergo large elastic reversible deformations.
Many constitutive models were developed to describe these phenomena. In this chapter, we dis-
cuss several varying models and their constitutive equations which are defined by means of strain
components or strain invariants. The notion of tangent moduli will be plotted for two well-known
constitutive equations, and, we will illustrate how to implement explicitly a structural kinematics
constraint in a constitutive law to derive the resulting Cauchy stress tensor.

Keywords: Hyperelasticity, Anisotropy, Kinematics constraint, Lagrange multiplier,
Strain-Energy density functions

1. Introduction

In the last decades there has been a significant growth in interest to characterize the pas-
sive anisotropic mechanical properties of soft incompressible biological tissues based on nonlinear
continuum theory. Such constitutive approach is suitable to describe a wide variety of physical
material behaviors in which the strain may be large [1, 2, 3, 4, 5]

Biological tissues are heterogeneous composite materials made of different media as epithelial,
connective, muscular, neuronal... [6]. In these composite materials, the distributions of the internal
constituents are assumed to be locally uniform on the continuum scale. These tissues are often
regarded as oriented cells surrounded by an extra cellular matrix, the whole behaving as anisotropic
continuum media reinforced by different families of fibres of distinct orientations. The proportion
of matrix and fibres, as their orientations, depend on the type of soft tissues (artery, skin, cornea,
muscle ). All these materials present a complex mechanical behavior [7, 8],and can often support
large reversible deformations and strains. They can also present some other physical phenomena
as viscoelasticity [9, 10], stress softening [11, 12], strain hardening [13].

It is the aim of constitutive theories to develop mathematical models reproducing the real
behavior of biological tissues. Based on the nonlinear continuum mechanics theory, the anisotropic
constitutive law of the soft tissue can be derived from a strain-energy density function (SEDF)
W, which is defined per unit of reference volume. Such SEDF is expressed as a function of the
deformation gradient (F) or the Green-Lagrange strain tensors (E)) (i.e. W = W/(F)) = W(E))).
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Two main formulations are used in the literature to express a SEDF. The first is based on the use
of the Green-Lagrange strain tensor components, while in the second is expressed in term of strain
invariants. For these two approaches, many constitutive models have been proposed in literature
[14]. And although a thorough review and classification of all models is beyond the scope of this
chapter, we will present and highlight some specific and pioneer models.

In this chapter, we will first introduce the notion of hyperelasticity. We will then present several
well-known pioneer constitutive models using the two SEDF formulations. Additionally, we will
exemplify how a constitutive stress-strain law can account for a kinematics constraint. And finally,
by using two well-known SEDF's we will discuss the changes of the tangent elasticity moduli during
uniaxial extension tests. The relationships between the parameter of these two SEDFs and the
linear elasticity constant in small deformations will also be provided. Such relationships could be
used to improve the identification method that needs to be conducted to quantify the material
constants.

2. Mechanical formulation

2.1. Description of the deformation

The deformation of soft tissues is often described by means of the right and left Cauchy-
Green tensors defined as: C = F'F and B = FFT, where F is the deformation gradient. The
principle components of the right or left Cauchy-Green tensors are A7 with i = 1..3; ); are called
the stretches. The logarithmic strains are simply expressed as ¢; = In(}\;) in the principal basis.
The Green-Lagrange strain tensor is directly defined in function of the right strain tensor by
E = (C —1I)/2, where I is the identity tensor, and its components are noted E;; with 7,5 = 1...3.
As the strain tensor components values depend on the basis in which they are written, some use
the stain invariants to express them. These invariant are defined for isotropic media as:

I =tr(C), I, = % [tr(C)* — tr(C?)], and I3 = det(C) (1)

where ”tr” is the trace operator, and ”det” the determinant operator. It is to note that for
incompressible materials I3 = 1.

To describe the mechanical properties of a reinforced fibrous material, it is necessary to define
fibre orientations. The fibres families are numbered i from 1 to ¢. An unit vector N is introduced
to describe the initial orientation of the i*" fibre. An initial orientation tensor is defined as A(®) =
NGO @ NO. During deformation process, each material direction is transformed into n(® = FN®,
it represents the orientation of the fibre in the current state but n® is not a unit vector.

The introduction of such directions leads to the definition of additional invariants relied to each
direction. The invariant formulation of anisotropic constitutive equations is based on the concept
of structural tensors [15, 16, 17]. The invariants I, and I5 can be defined for one direction i as:

1) = tr(CAD) = NO . CN® | and I = tr(C2A®) = NO . C2N®). (2)

In the literature, in the case of two fibre directions (1) and (2), a notation I and Ig is often used
for soft tissues [18] instead of Iil) and If) (or I and I7 instead of Iél) and IE()2)).

These invariants depend only on one direction but it is possible to take into account the inter-
action between the different directions, by introducing a coupling between directions (i) and (j)
by means of two other invariants:

[éifj) = (N® . NOYNO.cND),  and [éifj) = (N® . N0U))2, (3)
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Iéi’j ) does not depend on C and therefore does not affects the stress tensor components. Its values
corresponds to the value of I, ém ) for C = I, i.e. for no deformation. It is to note that other invariants
were also proposed in the literature [19, 20, 21] even if they are few used for the description of soft

tissue mechanical behaviour.

2.2. Strain-stress relationships

Living tissues are often considered as incompressible, thus the equations are written in a pure
incompressible framework, i.e. I3 = 1. The second Piola-Kirchhoff stress tensor can be directly
calculated by derivation of the strain energy function written in function of the whole invariants:
W (I, I, 17, 10, 1809 1§09y with i, 5 = 1..¢:

q ) ) ) q . . . ) .
S=2|(Wy1+LWa)l—WeC+ Y WYND@ND + Y wh) (N(’) ®CN? + NOC g N<Z>)

+ Z W’(Siﬁj)(N(i) NOYND NGO + NO) g N(’i))] +pC! (4)
i#j

where W, = STVZ, and p is the hydrostatic pressure. The Eulerian stresses, i.e., the Cauchy stresses
are directly obtained by the Push-forward operation [3]. To ensure that the stress is identically
zero in the non-deformed configuration, it is required that for each fibre orientation:

vi Wi +2wd <o, (5)

for zero deformation [22].

The use of these equations in a finite element codes imposes to use a quasi-incompressible
framework with a decomposition into volumetric and isochoric parts of the energy density. Details
about the elasticity tensors are given in [23, 24, 25, 26]. A particular attention should be focused
on the choice of the volumetric function in order to avoid any non-physical response [27, 28, 29].

2.8. Stability

The strain energy density cannot be chosen without restriction, the strong ellipticity condition
must be verified. For three-dimensional problems [30], the strong ellipticity was characterised for
compressible isotropic materials [31], and for incompressible ones [32]. The generic condition to
verify for the strain energy in the absence of body forces [33, 34, 35] can be written as:

1 *W

jFerqunpnqmimj >0 with m # 0 and n # 0, (6)
ird’ss

where m and n are arbitrary two non-zero vectors. Nevertheless, this condition is always difficult

to verify. Thus, some proposed another way to tackle the strong ellipticity condition. It is known

that polyconvexity implies ellipticity [36, 37, 38]. As a consequence, the polyconvexity in the sense

of Ball [39, 40] is used, even if it is more restrictive than strong ellipticity.



3. Constitutive equations for soft biological tissues

Even if soft tissues are made of cells and fibres, when the quantity of fibres is weak or when their
mechanical influence can be neglected, an isotropic modelling can be efficient. Most of isotropic
constitutive equations were not developed for soft tissues but for rubber like materials and used
for soft tissues, they are listed in [41, 42]. Nevertheless, soft tissues often present a larger strain
hardening than rubber like materials. This implies to the development of specific constitutive
equations, the clue for the constitutive equations is to present an important change of slope in the
strain-stress curve for moderate deformations. This leads to the development of many constitutive
equations with exponential form. In an isotropic point of view, Demiray et al [43] proposed:

c c

W = —l{exp [—2(I1—3)2] —1} (7)
C2 2

where c1, co are material parameters. Similar exponential forms can be proposed for the second

invariant [44] but this invariant is very rarely used for soft tissues. Nevertheless, the use of isotropic

approach is very limited, anisotropic modelling are necessary to capture the real behaviour of many

soft tissues.

3.1. Introduction to anisotropy

The anisotropy of the tissues depends on the characteristics of its components i.e. fibres,
matrix and the interaction between them. It exists some modelling that tend to describe the
soft tissues from a statistical point of view. It relies on the study of the collagen network and
it uses an upscaling method [45, 46]. A collagen molecule is defined by its length, its stiffness
and its helical structure. Some studies come from approaches developed for rubber like material
[47, 48, 49]. Unlike polymer chains in rubber which are uncorrelated nature, collagen chains in
biological tissues have to be classified as correlated chains for a statistical point of view. It this
way, different theories are considered to represent the chains, as for example wormlike chains with
a slight varying curvature [50], or sinusoidal, zig-zag or circular helix representations [51, 52, 53].
This leads to the development of constitutive equations that need numerical tool for integration in
space. A good use of these models necessitates specific experimental measures of the physiological
properties of the soft tissues.

In this chapter, it is decided to focus more on phenomenological equations that are directly
expressed by means of strain components or strain invariants. But the choice of the number of fibre
directions depends on the morphology of the tissue. The easiest formulation is with one direction
to represent transverse isotropic behaviour but in other cases, more directions are needed. For
example, in the first modelling of arteries mechanical behaviour, two fibre directions were used
[54], before being extended to four directions [55, 56] and to n directions [57] and used for example
with eight directions for cerebral aneurysms [58]. The reinforced directions can also be used as
equivalent mechanical behaviour without any physical meaning, this means that model directions
do not correspond to real fibre directions. Even if it is possible to describe the mechanical behaviour
with this representation, the physical meaning is lost.

3.2. Green-Lagrange tensor components to describe anisotropy

An easy way to create an anisotropic constitutive equation is to write it as a sum of the
contribution of the components of the strain tensor. Finally a weight is chosen for each component.
As previously explained, soft tissues present an important strain hardening so an exponential form
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Kaliske [71] W = crso(ly — 1)F
Ruter et al. [78] W =30 Chimn(ll — 3)8 (I — 3){(1y — )™ (I5 — 1)
Horgan et al [79] W =30 Crimn(ll — 3)F [(I — 3) — 3(I; — 3)]

(Iy —1)™(I5 — 21, + 1)
Humphrey et al [80] W =3 com(l1 —3)F (VI —1)™
Jemolio et al [81] W =300 Chimn(lh — 3)% (I — 3)% (Ig — 1)°m (I — 1)%n
Jemolio et al [81] W= Chtmn (10 — 39%) (I3 — 30) (16 — 1)(I¢» — 1)

Table 1: Some infinite I4, I5 series developments proposed to model transverse isotropic soft tissues where ag, bg,
Cky Ak, Ckm and crimn are material parameters (It is to note that coo10=0, cooo1=0 for [787 79]).

is often chosen. Fung and co-authors conducted several studies [59, 60, 61] using the following
global form of SEDF W = §(exp@ — 1). @ is here a function of the strain components that can
be written as QQ = A;juE;jEr where A;j; are material parameters. Different formulations were
written in two and three dimensions. A review about the different equations can be found in [62].
These constitutive equations were often used for cardiovascular soft tissues (i.e. heart, arteries...)
and are often written in cylindrical coordinates. Different constitutive equations have proved their
efficiency for different biomedical applications. In this chapter, the example of Guccione et al [63]
is selected. The constitutive equation for one fibre reinforcement is written as:

Q= be%I + by (B3, + E§3 + E%?, + E§2) + bfs(E%2 + B3 + E%3 + E§1) (8)

where by, by and bys are material parameters. It is to note that the exponential form is not the
only that is used even if it is largely spread. Some other forms as polynomial [64, 65, 66] or inverse
function [67] have also been proposed. For all these models, the main difficulty is that the material
parameters have no physical meaning and their fit needs to be perform carefully [68, 69, 54].

8.8. Strain invariants formulation
8.8.1. Classical formulation

The idea is here to express the constitutive equation by means of all the invariants which
are more numerous in an anisotropic context. A good way to describe any function is to use a
series development. It represents a generalisation to anisotropy of Rivlin series [70]. Nevertheless,
it is to note that different authors proposed to write the series developments in different ways.
Some expressions are detailed in table 1. The term k = 2 of Kaliske model [71] corresponds to
the standard reinforcing model [72, 73, 74, 75], not initially proposed for soft tissues but which
represents the most simple function in I that can be used. It is to note that the use of v/I; permits
to obtain a model that represents the behaviour of a linear spring with the quadratic formulation
[76, 77]. As for isotropy, the series cannot be used in a infinite version and a main point to discuss
is the choice of the terms that must be kept. Some discussions about particular cases are reported
in [72, 82, 22, 80]. Let us mention that few SEDF's involving the I5 invariant have been proposed.
In most of the cases, expressions limited to I, are preferred. But the use of only I or I5, instead
of the both invariants is a still questionable as it leads to the same shear modulus in direction and
orthogonal to the reinforced direction [22]. Moreover today, no series development using Is was
proposed.



The description of a behavior with strong strain hardening using polynomial SEDFs needs too
many terms. To avoid this, other forms based on exponential functions were proposed. It consists
in increasing largely the strain energy for the material when stretched in fibre direction. A first
exponential constitutive equation was proposed by Humphrey and Yin [83]:

W = ci(exp(ea(v/Is = 1)) = 1) (9)

This expression was later expressed by means of I4 instead of 1/I; by Holzapfel et al [54]:

1
W = p(l —3) + %, [exp(ca(Iy — 1)%) — 1] (10)
This model was widely used for different soft tissues. Later, it has been extended to take into
account the isotropic and anisotropic parts ratio by introducing a weighting factor between the
contributions of I; and Iy [84]. This factor k represents a measure of dispersion in the fibre
orientation (it is noted HGO model in the rest of the paper):

W = u(l; —3) + 2%12 {exp (c2 (1 = K)(I1 — 3)% + k(14 — 1)2) - 1)} (11)

In the three previous SEDFs (9,10,11), u, c1, c2 and k are material parameters. The form of the
term/s in the exponential function has/have largely evolved and many other expressions have been
proposed. The reader can refer to [85, 86, 87, 88, 89, 90, 91] for example. Recently, a general form
for the SEDF was proposed by Penia et al [92]:

. , .
W= el = 3)°) = fulha)] + (@ — 19)) = o1, 13, ). (12)
(2
The choice of the functions f; and g permits to generalise many different models. v, 1, a, b, ¢;,
d; and I are material parameters, I{ represents the threshold to reach for the fibre to become
loaded. To our knowledge, only few SEDF involving also I5 was proposed for soft tissue [93]:

W =a(l; —3) +b(Iz — 3) + % (exp{ca(ls — 1)} —1) + 2%1 (exp {es(Is — 1)} —1) (13)

where a, b, ¢1, ¢2, ¢ and ¢4 are material parameters. Even if this constitutive equation was initially
developed for arteries [94, 95, 96], it was also used for different biological tissues, as for example
human cornea [97], erythrocytes [98], the mitral valve [99], trachea [100, 101], cornea [102, 103],
collagen [104], abdominal muscle [105].

Nevertheless, the constitutive equations for soft tissues could be written using other mathe-
matical functions instead the exponential one. As for rubber like materials, several mathematical
functions have been proposed. Using an exponential function supposes a strong strain hardening
effect. To overcome such limitation several different constitutive equations can also be used for soft
tissues as they present similar abilities. Some equations are detailed in table 2. It is to note that
these equations developed for composite materials are also written with I5. The first equations
were proposed for soft tissues and use In or tanh functions. The second part of the table lists
a series of SEDFs that were proposed to describe the mechanical behaviour for fibres reinforced
materials but not soft tissues. But as explained previously, many soft tissues are fibres reinforced
materials as a consequence all these SEDF's could also be used for soft tissues and can bring new
abilities for teh modelling.



Non classical constitutive equations with square root, tanh and In functions.

Dorfmann et al. [106]
Limbert and Middleton [107]
Calvo et al. [108]

W = cp |1 - cgtanh (151

W = 265\/H + cq 111([4)
W = 2C5\/ﬂ + cq 111(]4) + c7

)| [exples(ta = 1)?) — 1]

Constitutive equation initially d

evelopped for reinforced materials

Horgan and Saccomandi [79]
Horgan and Saccomandi [79]
Horgan and Saccomandi [79]
Horgan and Saccomandi [79]
Horgan and Saccomandi [79]
Ruter and Stein [78]

Ogden and Saccomandi [109]
Markert et al. [110]
Demirkoparan et al [111, 112]

Lurding et al. [113]

Chui et al. [113]

c1+co (1471)

I/VA T T esrea(la—1)tes(Ia—1)%+es(Is— 214 +1)
- c1+c (I *1)

Wa=—CramT

W = —coc3 <I4 — 1+ Cgln (1 _ Ié;l))

W = —%c3ln (1 - %

W = —cicolog (1 - %)

W = ¢ (cosh(ly — 1) — 1)

W:—%c;;ln(l—%)
c c2/2 1/2
W:é(lf/ —1)—01111(]4/)
2 (1 c
W= (425 -3)
chl(ll—3)+C2(Il_3)(14_1)"_63([1%_[5)

+C4(\/T4 — 1)2 + ¢51n(1y)
W = c1In(1-T)+c5(1—3)%+c(14—1)%+c7(I1—3) (I —1)

with T = co(I1 — 3)% + e3(Iy — 1)% + ca(I; — 3)(Iy — 1)

Table 2: Some original forms of constitutive equations using I4 and I5, where ¢; with ¢ = 1...7 are material parameters.




3.3.2. Coupling influence

The detailed SEDFs of the previous paragraphs do not take into account the coupling that
can exist between the different fibre families. The additive decomposition that is used implies
a superposition principle. A first way to create a coupling is to propose constitutive equations
presenting multiplicative terms between the different directions. In this spirit, an anisotropic
SEDF W with two fibre families was proposed for pneumatic membranes [114]:

w =" (1{" -1) N (18" - 1)52 + e (1P - 1)71 + P (1P - 1)72

"D (1, — gy (If) - 1)62 + (1) (If) - 1)” (If) - 1)" .(14)

This strain energy allows coupling between the different directions, but the additive decomposition

+e) (1; — 3)% (If) - 1)

of the constitutive equation permits to fit separately the different parameters CEJ ), 6; and (;. The
coupling between the two directions is given by the parameter cgl’2). This series development can
be imagined with any terms and any powers to change the coupling. More recently and in the same
spirit, Holzapfel and Ogden [115] develop an interesting structurally based orthotropic model of
the passive myocardium that accounts for muscle fibre direction and the myocyte sheet structure.

Another method consists in coupling invariants from different directions [37], a new quantity
is created taking into account the contribution of the different directions, the following invariant

expression was proposed:
21?1 oa(1 = )1V + (1 — )21 with a e [0,1]. (15)

« represents a material parameter. This expression permits to measure the deformation in two di-
rections with only one invariant. Nevertheless, this has not yet been used in constitutive equations.
A simple additive decomposition of the invariants in a same function can create the coupling [116]
and can be used [117] as in the exponential form:

W= % [exp (2 (1) + 1 = 2) ) = e (1" + 1) + 20 - 1] (16)

A generalised weighted expression of the constitutive equation was also developed [118, 119]:

e e () o))

(17)

with P5 = tr(Cof(C)A®) where Cof is the cofactor operator, j,, B, 7 and «, are material
parameters.

These models are coupling the stretches of the different fibres but do not take into account
the shear in the matrix due to the presence of fibres. To handle such limitation we need to
account for Iéi’j ) and Iggi’j ). The idea is thus to add terms in the strain energy taking into account
these invariants. Few constitutive equations were proposed in the literature, but one example was
proposed for oesophageal tissues where a quadratic function was added [120]:

W = Zexples(li —3)] + 2 expes(I2 — 3)]

C
C.

4 {expler (1 = 1)] = er(1f —1) - 1} (18)
2

2 {exples(r? = 1)] (1 = 1) = 1} o [107 — 1]

8
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where ¢; with ¢ = 1...9 are material parameters. For annulus fibrous tissues, the influence of the

interaction between the layers was modelled [121] with a term taking into account I il), f) and

18(1’2):
2
C1 18(172)

=— |exp| e 5 —
209 (Iil)liz)lél’2)> /

i 1=1]. (19)

A similar form from exponential model was proposed also for Ig [122]:

712)°
Cc1 8
W = g exXp CQW —11. (20)
9

In the two previous models c¢; and co are material parameters. Few invariant-coupling models were
used for biological tissues, but they are proposed for composite material [123, 124]. In comparison
with other models, these approaches take into account the shear strain in the material whereas the
first models couple the deformations of the different fibres.

In a classical approach, as in plasticity or viscoelasticity, one proposes to decompose the strain
energy into three parts W = W™ + W/ + Wf™ [125], where the three terms are the strain energy
of the matrix, of the fibres and of the interactions between fibres and matrix, respectively. The
decomposition of the strain energy function into different parts permits to analyse the loading states
and to propose constitutive equations reproducing the strain endured by the fibre, the matrix and
the interface. This leads to the construction of different function families [126]:

W™ = ey f(Is) (I —23);
W/ = c1g1(14) <15[—414> ; (21)

WIm = ¢1g9(14) <I1 — %) :

Another basic form was also proposed for the interaction between the fibres and the matrix [125]:

Iy 2

me = g2(14) |:I3(I5 — LI+ IQ) — 1] , (22)
where f, g1 and go are functions to define and ¢; is a material parameter. The first function
corresponds a generalisation of the neo-Hookean model [127]. Few functions for f, g1 and g¢o
have been proposed for the moment, the first propositions are based on exponential functions
[126, 128, 129].

4. About some specific constitutive equations

In this section, two well known constitutive equations, one expressed in term of strain compo-
nents [63] and the other in term of strain invariants [84] are detailed on classical uniaxial mechanical
tests.



Figure 1: Representation of the orientation of the fibres for the two examples (a) uniaxial fibre reinforcement for
Guccione et al model (b) biaxial fibre reinforcement for HGO model.

4.1. Transversely isotropic model of Guccione et al.

For this first example, a soft tissue with one reinforcement fibre orientation is considered as
presented in figure 1(a). The fibres are oriented along direction 1. The equation of the model is
presented in eq (8). Three uniaxial tensile tests are simulated in each direction of the framework
(i.e. 1, 2 and 3). The stress-strain relationships are directly obtained by derivation of the energy
density by each Green-Lagrange component. The uniaxial tension in direction 1 is easy to obtain
as the behaviour of directions 2 and 3 are identical, the strain in these two directions is imposed
by the incompressibility and the Lagrange multiplier unknown (which ensures incompressibility)
is obtained to impose zero stress in these directions. For tension tests in direction 2 (or 3), the
problem is slightly more complicated, as the strain in the two other directions are not identical
due to the presence of fibres. A minimizing problem is written to ensure incompressibility and to
impose zero stress in the two other directions.

The parameters used for the simulations are those proposed in [63], i.e. ¢ = 0.876kPa, by =
18.48, by = 3.58 and by, = 1.627. The three curves corresponding to an uniaxial tensile test in each
direction are presented in figure 2 (a). The curves present the Cauchy stress in function of the
logarithmic strain. To highlight the strain hardening of the material, the slopes of the curve, i.e.
the tangent moduli are also plotted in figure 2 (b). The tangent modulus is calculated by the slope
of the Cauchy stress, logarithmic strain curve. It strongly appears that the moduli and especially
the one in fibre direction are rapidly evolving with the strain. A linearization of the stress-strain
relationships allows us to obtain the analytical expressions of whole initial material constants:

B = g(zbf +by), (23)

Cbt (2bf + bt)
(by + br)

By calculating the ratio between the different strains, the initial Poisson ratios can be obtained:

Ey=FE3 = (24)

V19 = V13 = 0.5, (25)
by

= = 26

V31 21 (bf T bt)’ ( )
by

Vg =Vi3 = —"—. 27

12 =08 = G (27)
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Figure 2: Guccione et al model (a) representation of the strain-stress curves for three different tensile tests, (b)
representation of the tangent moduli for the same tests (¢ is the Green-Lagrange strain and o the Cauchy stress).

By simulating shear tests, the initial shear moduli can also be obtained:

cb
pi2 = j113 = Tf (28)
cb
H23 = 7t (29)

It is important to notice that these initial material parameters are no longer constant values in
large strains and thsee relationships (cf. Eq 23-29) are only valid for strain amplitudes lower than
approximately 2%. However, one can take advantage of such relationships, to improve the perfor-
mance of the identification method that needs to be conducted to obtain the material parameters
from experimental data. Two steps are necessary to obtain the material constants. In a first
step, one can use these linear relationships to quantify some material constants based on the small
strain experimental responses. In the second step, the previous determined set of initial mate-
rial constants can be used to partially initiate the optimization process conducted on the entire
experimental responses including in the large strain domains.

4.2. HGO orthotropic model

In this section, a material presenting two reinforced directions is used. A representation of
the material is presented in figure 1(b). The two fibre families are in the plane (1-3), they are
symmetric with respect to the plane (2-3) and present an angle ¢ relative to axe 1. The equation
of the HGO model was presented previously (eq 11). The parameters identified for media artery
are used, p = 1.27kPa, k1 = 21.6kPa, ko = 8.21, ¢ = 20.61, p = 0.25 [84]. Different hypotheses
exist in the literature about the contribution of the fibres in compression; some consider that
they act whereas some consider that they do not contribute to the stress. In this example, it is
considered that the fibres can be compressed and have the same parameters as in tension. The
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same simulations as in the previous section are performed, i.e. three uniaxial tensile tests in the
three axis 1, 2 and 3. Due to the orientation of the fibres, a minimizing scheme is necessary for
each test (the transverse strains should verify the incompressibility hypothesis and the stress null
in the transverse directions). A simulation of the three tensile tests is presented in figure 3 (a).
Moreover, the tangent moduli are also presented in figure 3 (b). The conclusions are similar to the
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Figure 3: HGO model (a) representation of the strain-stress curves for three different tensile tests, (b) representation
of the tangent moduli for the same tests (¢ is the Green-Lagrange strain and o the Cauchy stress).

previous model with tangent moduli that are increasing exponentially with strain. As previously,
the linearization permits to determine the initial moduli and Poisson ratio, and the following values
can be obtained:
3u + 4dkip (sm4 ¢ + cos* ¢ — sin? ¢ cos? qb)
E1 =2 5 SN2 , (30)
w+kip (sm ¢ — cos ng)
3u+ 4kip (sm4 ¢ + cos* ¢ — sin? ¢ cos? ¢)

FEy =2u , 31
? p+ kipsint ¢ (31)

By = 2 3u + 4kip (sm4 ¢ + cos? ¢ — sin? ¢ cos? ¢) , (32)
i+ kipcost ¢
p— 2kipsin® ¢ (cos ¢ — sin? ¢)
2 (u + k1 p (sin® ¢ — cos? ¢)2) ,

p+ 2k1 psin? ¢ cos® ¢

V23 = - 4 ) (34)

2 (,u + k1psin gé)
u+ 2k psin? ¢ cos® ¢

2(p + kipcost §)
In the same way as tangent moduli, the Poisson ratios are evolving with the strain and are
affected by the energy to compress the fibres. As previously pointed out at the end of the section
4.1, the performance of the identification method that needs to be conducted to obtain the material
parameters from experimental data could be improved by taking advantage of such relationships.

12

V12 =

V39 = (35)



4.8. About the two models

These two constitutive equations, even if they are not written in the same formalism, present
very similar tendencies. It is to note that these models are elaborated to present an important
strain hardening leading to a large increase of the tangent moduli when the material is stretched.
Even if links with the initial moduli exists, these links should be used very carefully. They cannot
be used to fit the model, these values are not constant for the models. They represent a linearization
at the starting point. Moreover, it is often very difficult to obtain the experimental data near zero
deformation due to experimental errors and due to the difficulty to identify the zero configuration of
the samples. Nevertheless, the values of these linearized parameters highlight that the parameters
of the models act on every components of the elasticity tensor and thus on the tangent elastic
tensor.

A key point in the modelling is to define when the fibres start to resist when stretched. Many
authors considered that the fibres must reach a threshold before opposing a stress. In this way, a
threshold parameter can be introduced in all the constitutive equations presented in this review. It
consist in replacing (I;—1) by (I3 —13), or (v/I1—1) by (v/Ts—+/I?) into the constitutive equations.
I 2 corresponds to the needed deformation to generate stress, see for example [84, 92, 108, 130]. This
new parameter permits to control easily the beginning of the strain hardening. Its value strongly
depends on the choice of the reference on the zero state of the experimental data. This zero state
is always difficult to identify and vary between post-mortem and in-vivo states and can depend
on the person who performs the test. The addition of such parameter can strongly influence the
figures presented in this paragraph.

According to the hypothesis that is used with the fibres in compression (they generate or not
stresses), some strong changes of slopes can also be observed when the fibres change of loading (ten-
sion to compression or compression to tension). This phenomenon can appear even in monotonic
loadings due to the rotation of the fibres during the deformation process.

5. How to account for a kinematics constraint in a constitutive law?

In this example, we illustrate how a kinematics constraint may be explicitly included in a passive
stress-strain constitutive law. Extrapolations from cardiac muscle fibre arrangement to myocardial
stress are realistic when we also account for the effects of the connective tissue. It is hypothesized
that a part of that connective tissue, surrounding group of myocytes, affects the stress in the
perpendicular direction of the muscle fibres running on the tangential plane of the ventricular wall.
Based on the previous scanning electron microscope observations [131], we proposed a connective
tissue organization illustrated in Fig. 4. We assumed that the myocytes are roughly cylindrical
and that two oriented groups of myocytes (idealized as two cardiac fibres) are surrounded by
inextensible collagen networks. So, during the passive compression in the fibre direction of an
incompressible myocardial sample, the myocyte diameters increase and because the surrounding
"belts” of collagen are inextensible, the adjacent muscle cells become closer. Such kinematic relation
between the muscle fibre and cross-fibre extension ratios (named Ag, and A fib respectively) is given
by:

— a —1/2)\ _
h(Afo,Af&)_1—Af&+5(w—2) (1—)\1% )=0 (36)
with D = 4a + d where a is the initial myocyte radius and d is the initial distance between the
two cells (Fig. 4). Notice that this kinematics constraint exists only if the cardiac fibre is under
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Figure 4: Schematic illustrations of a myocardial sample and the kinematic constraint induced by the collagen
network surrounding the muscle fibres. A) Before compression (reference state). B) After or during the uniaxial
compression in the fibre direction (deformed state). fi: fibre direction define by the unit vector fy ; ¢ — fi: cross-fibre
direction in the tangential plane define by the unit vector £ ); ¢ — fi*: cross-fibre direction perpendicular to the
tangential plane (adapted from [133]).

compression (i.e. if Ay, < 1). In terms of strain invariants, this kinematics constraint becomes:

— 12 @ —1/4\ _ .
h (I4f0,14f&) —1-L + 5 (r-2) (1 1 ) — 0 if Iy <1 (37)
with
Lij, = fo- (Cfo) and I = fy - (Cfy) (38)

where fp and fOL are two unit vectors given in the reference configuration. These vectors are
parallel and perpendicular to the muscle fibres, respectively. Both vectors are running on the
tangential plane of the ventricular wall. To satisfy this kinematic constraint the SEDF of the
passive incompressible tissue needs to be split into a material term Wy, (E) and a kinematics
contribution Wy, (E) :

W (E) = Winat (E) + Wiin (E) (39)

with :
1
Whin (E) = —5qh (I4f07[4f0l> (40)

The scalar function q introduced in Eq. 40 serves as an additional indeterminate Lagrange multi-
plier to insure the kinematics condition given by Eq. 37. As a result, the expression of the Cauchy
stress tensor o, is given by (see Chapter 2 of this book):

OWnat (E)

_F
o OE

FT + opin — pl (41)
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with

in=F FT = fQf freft 42
Tk OE 1 oIy, ® oI, ® (42)
and
oh <I4fo, _74]%) _ i(ﬂ B 2)1_5/4 (43)
0lys, 4D 4fo
Oh (Lgy, Iy r1
< 0 fo ) _ _11—1/2 (44)

1 L
5I4f0 2 4f5

where f = Ffy, f+ = Ffoi, p is a second Lagrange multiplier associated with the kinematics
incompressibility constraint det(F) = 1, and I is the identity matrix. An extended active version
of this model has been proposed to explain the observed left ventricular wall thickening during the
ejection phase of the cardiac cycle [132, 133].

6. Passive hyperelastic SEDFs used in the book chapters

In this book, several strain energy density functions (SEDF's) were used to model biological
tissues. For compressible and quasi-incompressible media the SEDF can be given in decoupled
form as:

w (C) = Wiso (é) + Wool (J)

where W, and W, are SEDFs describing the volumetric and isochoric response of the material,
respectively, J is the volume ratio (J = det F', where F' is the deformation gradient), C = FT . F is
the right Cauchy-Green strain tensor and C' = J~2/3C is the modified right Cauchy-Green strain
tensor. Once we know the form of the SEDF, the 2nd Piola-Kirchhoff stress tensor can be derived
[134] as:

S = Siso + Svolv

with Sy = 2%% and S5, = 2%: % . For purely incompressible material (J = 1), the
2nd Piola-Kirchhoff stress tensor adopts the following form:

aI/Viso

oC
where p is the Lagrange multiplier introduced to enforce incompressibility. In the Table 3 one
lists the main passive hyperelastic SEDFs Wi, (C'), used in this book to model the biomechanical
behavior of living organs, when assuming purely incompressible biological tissues. The SEDFs for
quasi-incompressible biological tissues are, in general, given as function of the invariants referred
to C (here denoted Iy, k = 1,...,5 and k = 8). However, in literature some SEDF's are given with
the help of the invariants referred to E (here denoted I,k = 1,...,5 and k = 8). The relationship
between these two families of invariants is:

S =2 —pC~!
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Tr(E) =
% <T7‘ (E)2 —Tr (E2)> =
det £ = E

(l1—3)

N

(—2]1 + Iy + 3)

(11—12-1-13—1

oo

E:f@f:%([rn with £+ f = 1
E2:f®f=i(l5—214+1)

1
E1f®S=§Ig, with f-s=0
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Organs/Chapters

Orthotropic SEDF's

Coronary /2, 9

Holzapfel et al., 2005,Am J Physz’ol 289:H2048-2058

Aorta/8 W=p(l —3)+37, 2k2 {exp [kg (( —p) (L —3)? + p(Iu; — 1)2)] - 1}
Skin/16 Holzapfel et al., 2001, J. Elasticz'ty 61 1-48
W— (I, —3) +/LZZ 1 2k {exp[ wo(tr(H; - C) —1) ]—1}
with H; = ;I + (1 — 3/61)61 X es
Esophagus/7 Fung et al.;1979. Am J of Physiology, 237:H620-H631
Aorta/8 W =S {exp(Q) — 1} with

Small intestine/13

Q = alEgg + (ZQEEZ + agETQT + 2a4FEgpF .,
+2a5EZZETT + 2a6E99E7"7’ + CL?EGZEZH + Q8ErzEzT + CL9ET9E91"

Heart/2 Holzapfel and Ogden, 2009. Philos Trans A Math Phys Eng Sci. 367:3445-3475
W= g {explbo(h —3)]— 1} + 5L {exp [bf (Ly—1)?] -1
g {exp |y (I = 1% = 1} + 5= {exp g2, | -1
Esophagus/7 Sommer et al., 2013. Acta Biomater. 9:9379- 9391
W = ([1 — 3) + Wani with Wy = 2k2 ie1 {exp [k2(14z — 1 ] — 1}
Aorta/8 Gasser et al., 2006, JR Soc Interface, 3:15-23
W = C()(Il — 3) + Zf\il C1 {exp [CQEZQ] — 1} with Ez = (/{I + (1 — 3/43)]02 ® f,) :C -1
Aorta/8 Holzapfel and Gasser, 2001. Comp. Meth. Appl. Mech. Eng. 190:4379-4403
W =co(l1 —3) + Z c1i {exp [CQZ(I4Z -1) ] - 1}
Aorta/8 Basciano and Kleinstreuer, 2009. J. Biomech. Eng. 131:021009
W = Co(Il — 3) + Z?:l 01(142' — 1)6
Aorta/8 Celi and Berti, 2012, in Biomechanics and modeling of aneurysm, Murai Y. Ed. in

Tech
W =32 coi(lh —3)' + X7 eri(ly; — 1)
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Organs/Chapters

Transversely isotropic SEDF's

W = % [exp@ — 1], (Fung et al.,1979. Am J of Physiology, 237:H620-H631)

Heart/2, 21 Guccione et al., 1991. J. Biomech. Engineering , 113:42-55
Q = cFj; +c3 (B + By + 2B Bns) + 2¢4 (EfsEsp + EpnEny)
= 3 (Iik2 + 2[;) + (02 — Cg)[jf + 2(64 — Cg)Ig
Heart/21 Bovendeerd et al. 1992, J. Biomech 25:1129-1140
Q = a (EL+E},) + (a1 +a2)E3, + 201 (EfsEsp + EsnEns + EfnEny)
= ay (If? + 213) + aol}
Abdomen/12 Calvo et al., 2009. J. Biomech 42:642-651
W = Cl(Il — 3) + Wani
0 I4 < 140
Wani = e {exp [ca(ly — Lao)] — ca(ls — Lao) — 1} Iao < Iy < Iyrey
05\/H+%61n14+07 1 >I4ref
Aorta/8 Riveros et al., 2013, Ann. Biomed. Eng. 41:694-708
W =co{exp|ci(l1 —3)] — 1} + ca {exp [e3(Lls — 1)] — 1}
Heart/21 Based on Kerckhofs et al., 2003. Ann Biomed Eng 31:536-547 and Bovendeerd et
al., 2009. Am J Physiol 297:H1058-H1068
W = ap(exp@Q—1) +as (exp {a4Ej2cf} — 1) with E?f =I
QO = a (E]%f B2 4 Efm) + 21 Eap B + (201 + a3) (BB + EpnEny)
= ay (If? + 213) + as I}
Breast/10 Han et al., 2014. IEEE Transactions on Medical Imaging 33(3): 682-694

WZ%(Il—B)-i-g(Ll—l)Z

Skeletal muscle/17

Blemker et al. this book
W =Gy <% — 1) + Go (cosh*1 {%})2
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Organs/Chapters

Isotropic SEDFs

General form of the polynomial model
(including Neo-Hookean Yeoh and Mooney-Rivlin models)

W= Zi+j>0 Cij (11 - 3)i (L2 — 3)j

Skin/16 Hendriks et al., 2003. Skin Research and Technology, 9:274-283
W = Cyo (Il — 3) + Co1 (_[2 —3) + C11 (Il — 3) (I2 — 3)
+Coo (I = 3)* + C30 (I; — 3)°
Tongue/19 Gerard et al., 2003. Recent Research Developments in Biomechanics, Transworld
Research Network, 1:49-64
W = Cyo (Il — 3) + Co1 (Ig — 3) + C11 (Il — 3) (12 — 3)
+C9 (Il — 3)2 + Coo (IQ — 3)2
Brain/6 Laskari et al., 2012. J. Biomech., 45:642-646
W = Cio (Il — 3) + Co1 (_[2 — 3) + C11 (Il — 3) (Ig — 3)
Brain/6 Schiavone et al., 2009. Medical Image Analysis, 13:673-678
Tongue/19

W = Cio (Il — 3) + C3g (Il — 3)3

Calf/24 (deep tissue)
Tongue/20,19

W = Cio (I — 3) + Coo (I — 3)?

Face/20,18

LarynX/ZO W = Cp1 (IQ — 3) + Cy (11 — 3)2

Liver/11 N=2, Fu et al., 2013, J. Mech Behav Biomed Mater. 20:105-112
N=3, Umale et al., 2013. J. Mech Behav Biomed Mater. 17:22-33

Tongue/19 Wilhelms-Tricarico, 1995. J. Acoust. Soc. Am, 97:3085-3098

W = ¢ {exp [01 (I; — 3)2 +eo (=20 + I + 3)] — 1}
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Organs/Chapters

Isotropic SEDF's, continued

Breast/10 -
Uterus/15 - Foot/25
(heel,skin, fat,

muscle) - Calf/24
(surface tissue)
Spine/22  (Ground
substance of annu-
lus  bulk, nucleus
pulposus)

Neo-Hookean: W = Cyo (11 — 3)

Thigh,/23
Face/18 - Tongue/19
Spine/22  (Ground
substance of annu-
lus  bulk, nucleus
pulposus)

Mooney-Rivlin W = C1g (Il - 3) + Co1 (IQ — 3)

Liver/11

Spine/22  (ground
substance of annulus
bulk)

Aorta/8

Yeoh model W = Zszl Cy (I — 3)*

Skin/16 - Liver/11 -
Rectum/14 - Blad-
der/14 - Spine/22

Ogden model W = ZkN Z*Z (A% £ A2% 1A% — 3)

(Ligaments)
Aorta/8 Ogden, 1972. Proc. R. Soc. Lond. A 326:565-584
W =co Zi:l()\% -1

Liver/11 Bogen model (special case of the Ogden model)
W =E8(AT+ A5+ 2§ —3)

Liver/11 Demiray, 1981. J. Biomech. Eng. 103:73-78

Aorta/8 W = 2%2 {exp [Co (I1 — 3)] — 1}

Tongue/19
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Organs/Chapters Isotropic SEDF's, continued

Tongue/25 Whilems-Tricarico, 1995. J. Acout. Soc. Am. 97:3085-3098
W =cg (exp [cl(Il —3)2 + (=20 + I + 3)] — 1)

Liver/11 Logarithmic model
W =-C; ln{l — (s ()\(111 + /\32 + )\?3 — 3)}

Liver/11 Exponential model
W = Ci{exp[C1 (AT + A3 + A3 —3)] — 1}

Liver/11 Veronda and Westmann, 1970. J. Biomech. 3:111-124
W =C; {exp [03(11 — 3)] — 1} + o (Iz — 3)

Skin/16 Gambarotta et al., 2005. J. Biomech. 38:2237-2247
W = a1 I{? + asli + agexp [asl{? + a513]

Table 3: Non exhaustive list of passive hyperelastic SEDFs presented in this book to model the
biomechanics of living organs. I; (C),i = 1,2,3 are the invariants of the right Cauchy-Green tensor; I4; =
C: (fi® fi) is the 4*" invariant given by the contraction of C and the structural tensor f; ® f; where f; is
the direction of the i'* family of fibers in the reference configuration; similarly, we define the 5" invariant as
Isi = C*: (f; ® f:); finaly, we also define Is;; = C: (fi ® f;) with i # j. \;,i = 1,2,3 are the principal stretches;
FE;; denote the components of the Green-Lagrange strain tensor E. Subscript used in the expression of the F;; refer
either (i) to the cylindrical coordinate system (r, 6, z), (ii) to the global coordinate frame (1,2, 3) or (iii) to the locally
orthogonal frame (f, s,n) where f is the fiber direction and s is the direction orthogonal to f but in the fiber plane.
I¥,k = 1,2,3 are the invariants of the Green-Lagrange tensor E. I and I, are, respectively, E: (f; ® fi) and

E* (fi®f).

21



7. Discussion

The number of constitutive equations is quite large, some interesting equations were listed in
this chapter. A more exhaustive review can be found in [14]. Moreover, it exists other modelling
approaches with a new class of elastic solids with implicit elasticity [135] that can also describe the
strain limiting characteristics of soft tissues [136]. These theories are also elastic as they do not
dissipate energies even if they are written in terms of strain rate and stress rate.

The question of the choice of the constitutive equation is a key point as it has large consequences
on the simulations that can be performed. The links betwwen the initial material constants with
the hyperelastic SEDF parameters are presented in this chapter for two classical models, but it is
important to keep in mind that these relationship can only be used to initiate the identification
optimization process.

Even today, for some applications, isotropic constitutive equations are abusely used to describe
the mechanical behaviour of different soft tissues. In most of the cases, this simplifed models are
misleading and inappropriate as most of soft tissues present a fibre structure that must be taken
into account.

The use of anisotropic strain energy necessitates introducing fibre directions to model the
mechanical properties of the soft tissue. Two ways of thinking exist, some consider that the fibre
orientation should be physically motivated, i.e. that it represents the real orientation of fibres in
the material, whereas some consider that the orientation of the fibre is one material parameter
more. In this case the angle is just a mathematical parameter in a phenomenological model and
the best fit is not necessarily obtained for the angle having a physical meaning.

In practise, the invariants I and I5 are often neglected. Their role in the strain energy is always
difficult to identify [80]. Nevertheless, in some cases, their role can be very important [137]. A main
difficulty relies on the fact that with only one mechanical test (for example only uniaxial test, or
only equibiaxial test...), these invariants are linked to I; and I4. That means that it is impossible
to separate the contribution of each invariant. An important problem of the different constitutive
equations is that it is difficult (or impossible) to separate the contribution of the matrix, the fibres
and the interactions. The form of the equations does not present those parameters. Nevertheless,
some authors try to separate the contribution of the isotropic and anisotropic parts [138]. To avoid
such representations, physical approaches try to represent the repartition of fibres in space, but
two difficulties must be considered, the knowledge of the distribution function of the fibres in space
and the mechanical properties of a single fibre.

Nevertheless, the main difficulty is maybe not to have the best constitutive equation but to have
experimental data in which one can be confident. One important problem is that the dispersion
is often very large due to different patients, because of the age, the illness or other parameters.
Another difficulty is that the definition of the boundary conditions is always very complicated and
generates important errors on experimental data. As a consequence, one can wonder if the key
point is to obtain the best fit for a very specific experimental database, or if the most important
is to represent globally the mechanical behaviour keeping in mind the physics of the soft tissues.
Anyway to correctly fit experimental data, it is crucial to have the maximum of different load-
ing conditions to analyse the role of the different parameters of the constitutive equation. The
equations are often implemented in finite element codes to describe any loading conditions. These
conditions can be very far from uniaxial or biaxial loadings. In this case, it is important to choose
a constitutive equation that can be fitted with few experimental data that do not simulate non-
physical response for any loading. Generally, it is better to limit the number of invariants and
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of material parameters. Moreover, the simplest functions are often the less risky as they cannot
create non-physical responses even if their fitting is not the best. Another limitation is that, very
few in vivo experimental data are available, they would be a benefit to the experimental fit [139].

8. Conclusion

It is difficult to compare two constitutive equations, the comparison depends on the studied soft
tissues and the conclusions will strongly depend on the chosen experimental data. Nevertheless,
some comparisons between anisotropic strain energies were realised in particular cases, see for
example [54, 62, 66, 140, 141, 142].

This chapter presents only the basis of the hyperelasticity modelling, but soft tissues present
a lot of other phenomena, that should be taken into account in the modelling according to the
medical problem that is simulated, one can quote the activation of muscle (see chapter II of this
book) or the viscoelasticity of the tissues (see chapter III of this book) [143, 9, 144, 145, 146] or
the stress softening [12, 26] for example. Nevertheless, the hyperelasticity representation remains
the starting point in a modelling and should be described as well as possible before introducing
other phenomena.
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