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Abstract

In this paper, we present a motion compensation algorithm dedicated to video processing during neurosurgery. After craniotomy,
the brain surface undergoes a repetitive motion due to the cardiac pulsation. This motion as well as potential video camera motion
prevent accurate video analysis. We propose a dedicated motion model where the brain deformation is described using a linear
basis learned from a few initial frames of the video. As opposed to other works using linear basis for the flow, the camera motion is
explicitly accounted in the transformation model. Despite the nonlinear nature of our model, all the motion parameters are robustly
estimated all at once, using only one singular value decomposition (SVD), making our procedure computationally efficient. A
Lagrangian specification of the flow field ensures the stability of the method. Experiments on in vivo data are presented to evaluate
the capacity of the method to cope with occlusion or camera motion. The method we propose satisfies the intraoperative constraints:
it is robust to surgical tools occlusions, it works in real time, and it is able to handle large camera viewpoint changes.

Keywords: motion compensation, image registration, subspace learning, brain surgery, real time video processing, extended direct
linear transform

1. Introduction

Optical imaging is a modality of choice for surgery assis-
tance: it is inexpensive, it has high temporal and spatial reso-
lution and, as opposed to magnetic resonance or computational
tomography, it implies only limited constraints on the surgical
material and room. This is why even simple devices such as true
color camera are often used for assistance or monitoring during
surgical intervention or radiotherapy for a variety of body parts:
brain [24], heart [27] or abdomen [34] for example. Analy-
sis of videos from these camera can be used for brain surface
strain estimation [15], brain surface 3D reconstruction [18, 22],
to investigate the deformation of the exposed cortical surface
[16], to measure hemodynamic response [24, 38, 35, 33, 20].
In all these works, motion compensation is used during some
stage of the processing workflow with general purpose routines
such as Horn and Schunck [11] or Farnebäck [6] optical flow
routines, demons registration [37] or the Matlab1 Medical Im-
age Registration Toolbox. It is indeed mandatory to have very
stable image in the surgical microscope when pixel-wise post-
processing is needed. Even if the microscope is rather stable,
this is not the case of the patient brain. Heart and respiratory
pulsativities make the brain surface move. Furthermore awake
surgery, used for example to investigate languages brain areas,
implies strong instability of the patient head and larger motion
should be accounted for. The motion compensation can be im-
proved by exploiting the specificity of the data and, as opposed
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to standard nonrigid registration methods, it should also be able
to account for occlusions (of surgical tools for example). In this
work, a motion compensation method is proposed that satisfy
three important properties required to work in surgical condi-
tions: the method is real time, it is robust to occlusions and the
object motion is disentangled from the camera motion.

1.1. State of the Art

Literature on image registration is vast, allowing, for in-
stance, multimodality registration with statistical cost func-
tion [17] or to guarantee that the deformation is invertible
[19, 2, 30, 31]. When it comes to motion estimation on video
camera data, the high temporal resolution and the contrast in-
variance assumption simplify the problem: Methods used for
this problem are mostly based on the optical flow equation (see
[8] a recent review).

In the problem of brain motion estimation during neuro-
surgery the same object is always present and undergoes a
repetitive (but non periodic) nonrigid motion. By repetitive,
we mean that the same deformation occurs repeatedly in the
time, which is the case for the brain when the skull is opened.
We do not make the stronger assumption of the motion period-
icity. This allows accounting for temporal changes in the de-
formation caused for example by cardiac or respiratory rhythm
changes. As the brain surface motion is similar all along the
video timecourse, it should be possible to express the motion
with a low degree of freedom model. This led us to consider
subspace learning to estimate a low dimensional space to de-
scribe this motion. Subspace learning has already been used
in several works [3, 7, 13, 29, 26, 39, 32], to find a good rep-
resentation of the deformable motion. It is assumed that the
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motion in each frame belong to the same affine space. The ba-
sis of this space is found using a principal component analysis
(PCA) on the motion estimated on similar video. The dimen-
sion of the motion is reduced from twice the number of pixels
to the number of principal components kept (up to 500 in [39]).
This enables the reconstruction of the full motion from a re-
duced number of sparse keypoints. To be robust to occlusion or
tracking failures, M-estimation [12, 26], expectation maximiza-
tion [29] or iterated reweighted least square (IRLS) [39] can be
used.

In a previous work on the same application [32], the motion
is modeled using the sum of an affine transform (for the cam-
era motion) and a deformable transformation (for the object
deformation) which lies in an affine subspace estimated with
a PCA. The camera image formation process implies however
that the camera motion is a composition and not an addition to
the deformable brain motion. The affine camera model used
is also very restrictive compared to the more realistic perspec-
tive model. In this work, solutions are proposed to these two
problems.

1.2. Contributions

There are several contributions in this work. 1) We propose
a motion model dedicated to the compensation of the repetitive
brain motion during neurosurgery. The model explicitly dis-
tinguishes between the camera motion and the nonrigid brain
motion. We assume and experimentally check that the nonrigid
brain motion lies in a low dimensional affine space that can be
learned from a few frames. 2) The main contribution is the reso-
lution procedure. While the model is nonlinear, we will see that,
with adequate variable changes, the equations involved to find
our model parameters become considerably easier to solve: an
original extension of the direct linear transform (DLT) [1, 10]
is proposed, involving only one singular value decomposition.
These variable changes allow avoiding local minima considera-
tions and to estimate the motion parameters easily. 3) From the
robustness point of view, we propose a simple preprocessing of
the keypoints using temporal consistency to detect outliers be-
fore parameters estimation. This enables us to robustly estimate
the parameters with only one fit. We also propose a procedure
to correctly handle keypoints tracking under large camera view-
point change.

Evaluation on real in vivo data has been done to investi-
gate the influence of the parameters of our model and to com-
pare our method to standard optical flow routines. The pro-
posed procedure has also been evaluated into the framework of
an in vivo protocol for intraoperative identification of somato-
sensory brain areas during neurosurgery.

2. Theory

2.1. Transformation Model

To the best of our knowledge, when a linear model is used
for the optical flow as in [3, 7, 26, 39], no global motion com-
ponent accounts for camera or global subject displacements. In
this work, the camera motion is explicitly integrated into the

model. A Lagrangian representation is adopted and the geo-
metric transformation between the initial and the tth frame is
modeled by

T (x, t) = U(t)Td(x, t) (1)

where x ∈ R2 is the spatial position of a given pixel in the initial
frame, t ∈ R is the time and T (x, t) gives the position of x in the
tth frame, Td(x, t) is the deformable part of the transform while
the U(t) transform accounts for the camera and global subject
motion at time t. In this work, the pinhole camera model is used
for the projection of the 3D scene on the camera and U(t) is a
homography (objects are approximated as planar surfaces). Us-
ing homogeneous coordinates [36] T (x, t) and Td(x, t) are in R3,
the homography U(t) is a 3 × 3 matrix with 8 degrees of free-
dom and the homography applied to Td(x, t) is a simple matrix
vector product.

It is assumed that the object deformable motion lies in a
low dimensional affine space. This assumption will allow us-
ing mostly linear expressions in our derivation and to have only
a limited few parameters to estimate. We consequently express
the deformation Td as a weighted sum of basis transformations:

Td(x, t) = x + Tµ(x) +

K∑
k=1

λk(t)pk(x). (2)

Tµ is the average local deformation, pk are the stationary basis
vectors of the deformation and λk ∈ R are the time dependent
deformation coefficients. We want to stress again that despite
the linear dependency of Td on its parameters λk, it represents a
nonlinear deformation of the image. The low dimensional affine
subspace assumption has been made in several works on optical
flow estimation. It is especially well adapted for the application
we are interested in, because the object undergoes a repetitive
deformation over time. It also allows accounting for the camera
motion separately from the brain surface motion and to learn a
specific basis for each subject.

Once the basis vector pk and Tµ are known, only 8 + K de-
grees of freedom are left for the estimation of the transforma-
tion at a given timepoint: 8 for the homography and K for the
λk coefficients. For our application, K is very low, around 5 in
practice. The number of parameters to estimate is consequently
reduced from twice the number of pixels for a standard optical
flow routine to 8 + K, less than 15.

Compared to other works using affine subspaces, the cam-
era motion and the object deformable motion are explicit in our
model. As the full transformation is the composition of these
two terms, it depends nonlinearly on the parameters U and λ.
At a first sight, this may seem problematic as it implies solving
nonlinear optimization problems to estimate these parameters.
We propose to use a first variable change to eliminate this prob-
lem. If V(t) = U−1(t), equation 1 becomes

V(t)T (x, t) = Td(x, t). (3)

We will see in the following sections that, consequently, all the
steps of the registration process can be solved using linear alge-
bra routines only.
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2.2. Estimation of the Transformation
Assuming the deformation basis (Tmu, pk) is known, (details

will be given in section 2.3), the transformation between the
first frame and a new frame is estimated by fitting the param-
eters U and λk (or equivalently V and λk). In this section, the
fitting procedure is described and as we will see, it is both effi-
cient (only one SVD) and robust to occlusions.

2.2.1. Sparse Parameter Estimation with Extended DLT
As the degree of freedom for a transformation is now very

low, it is not necessary to use all the pixels to estimate the pa-
rameters V and λk. In a manner similar to [26, 39], Harris key-
points [9] are detected on the first frame and tracked along the
frames with a sparse version of the Lucas and Kanade method
[4]. A more uniform distribution of the keypoint is obtained
by setting the Harris threshold to 0 and by imposing a minimal
distance between keypoints. A zero Harris threshold also makes
the detection invariant to a global illumination change (see [5]).
One can consider now that for each keypoint xl detected on the
first frame, its position at time t, T (xl, t), is known. In the figure
1, a frame is presented with the keypoint overlaid.

Using equation 3 on the keypoints at given time t, we obtain:

VT (xl) −
K∑

k=1

λk pk(xl) = x + Tµ(xl), (4)

where the dependency on t has been dropped for readability.
From this set of equations (two for each keypoints), the trans-
formation parameters V and λk can be estimated using the orig-
inal extension of the DLT method proposed below.

Extended DLT estimation. The DLT [1, 10] is a standard
method to find a homography given a set of corresponding
points in two images. To solve the equation 4, although the
correspondences are known, the DLT cannot be used out of the
box to estimate V due to the unknown λk variables. The fol-
lowing extended DLT enables the estimation of V and (λk)k all
at once. For each point x, let’s define T ′µ(x) = x + Tµ(x). Let
c ∈ {1, 2} indexes the two scalar components of the 2D equation
4 and let’s use superscript to denote the component of vector
variables. (For space reason, see fig. 3 for the derivation of the
linear equation of the generalized DLT).

Considering all the keypoints x and c ∈ {1, 2}, we end up with
a linear system Rv′ = 0 where the unknown vector v′ ∈ R9+3K

is v′ = (v, λ′) =
(
vi j, λ

′l
k

)
and λ′lk = λkv3,l. Like v, v′ is defined up

to a scale factor. As with the standard DLT, for a given weight
matrix W, v′ is chosen as the solution of

min
‖v′‖=1

‖Rv‖W ,

which is given by the eigenvectors corresponding to the small-
est eigenvalue of RT W2R. If v̄′ = (v̄, λ̄′) is one such eigenvector,
the initial unknown parameters can be retrieved by solving the
overdetermined system:{

vi j = v̄i j

λkv3l = λ̄′lk

An analytical solution is available, if the first set of equation
is solved exactly for v and the second set is solved in the least
square sense for λ:  v = v̄

λc
k =

∑
l v̄3,lλ̄

′cl
k∑

l v̄2
3,l
.

2.2.2. Tracking Keypoints Under Large Camera Motion
The transformation model (equation 1) proposed in this work

explicitly includes perspective transform and thus, it already al-
lows large camera motions.

However, in a Lagrangian setting, the Lucas and Kanade al-
gorithm can be problematic when the camera undergoes a large
rotation: the windows used to solve the optical flow equations
can be significantly rotated. While it is reasonable to assume
a small change between successive frames, this assumption is
false between the initial and the current frame. If a known ho-
mography globally realign the two images, the following simple
tracking procedure denoted as LRLK for Large Rotation Lucas
and Kanade algorithm is applied: the second image is resam-
pled and the starting value adjusted with the homography, the
standard Lucas and Kanade algorithm is run with these new
data and the resulting position is sent back with the homogra-
phy. Thanks to its Lagrangian formulation, this procedure is
stable: the errors do not accumulate from one frame to another.
Similarly to the Eulerian approach, it allows large rotations and
large camera motions in general. If for two images I1 and I2

q2 = LK(I1, q1, I2, q0
2)

denotes the position in the image I2 of the points q1 ∈ I1 as
given by the sparse Lucas and Kanade algorithm run with q0

2 as
starting value, the procedure is formally described in algorithm
1 and illustrated in fig. 4.

Algorithm 1 Large Rotation Lucas and Kanade’s algorithm
1: procedure LRLK(I1, q1, I2, q0

2,U)
2: Ī2(x) = I2(Ux)
3: q̄0

2 = U−1(q0
2)

4: q̄2 = LK(I1, q1, Ī2, q̄0
2)

5: q2 = Uq̄2
6: return q2

As the global perspective transform between the initial and
the current frame appears explicitly in our model (variable U in
the equation 1), this procedure fits well within our framework:
the homography estimated at the previous frame is used for the
LRLK routine. The keypoints positions at time t, q(t) are com-
puted by

LRLK (I(., 0), q(0), I(., t), q(t − 1),U(t − 1)) .

2.2.3. Outliers Detection
If equation 4 is solved using a standard unweighted least

square, the L2 norm will make this estimation sensitive to out-
liers. Keypoints are outliers if their tracking fails for some rea-
son, for example, due to the occlusion of the scene by an exter-
nal object. In related works, the outliers problem is accounted
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Figure 1: A frame with the Harris keypoints used for the track-
ing (distance between keypoints is hd = 6).

w=0

0,01

0,1

w=1

Figure 2: Keypoints (with hd = 18) color-coded by their weight w in the presence of
an occlusion.

Each scalar component of equation 4 can be written as:

vc1T 1(x) + vc2T 2(x) + vc3

v31T 1(x) + v32T 2(x) + v33
= T ′cµ (x) +

K∑
k=1

λk pc
k(x),

or equivalently:

vc1T 1(x) + vc2T 2(x) + vc3 =
(
v31T 1(x) + v32T 2(x) + v33

) T ′cµ (x) +

K∑
k=1

λk pc
k(x)


vc1T 1(x) + vc2T 2(x) + vc3 = v31T 1(x)T ′cµ (x) + v32T 2(x)T ′cµ (x) + v33T ′cµ (x)

+

K∑
k=1

(
λkv31T 1(x)pc

k(x) + λkv32T 2(x)pc
k(x) + λkv33 pc

k(x)
)
.

For brevity, let’s define T ′′ic(x) = T i(x)T ′cµ (x) and p′ick (x) = T i(x)pc
k(x). To eliminate the nonlinear interaction between λk and v3l

another variable change is done by defining: λ′lk = λkv3l. The equations then become linear:

vc1T 1(x) + vc2T 2(x) + vc3 = v31T ′′1c
µ (x) + v32T ′′2c

µ (x) + v33T ′cµ (x)

+

K∑
k=1

(
λ′1k p′1c

k (x) + λ′2k p′2c
k (x) + λ′3k pc

k(x)
)

Figure 3: Derivation of the generalized DLT.

using robust fit such as M-estimator [26, 39], or IRLS [29, 32].
In this work, we propose to use the temporal smoothness of the
transformation to detect the outliers before the fit. Concretely,
for a given keypoint xl, equation 4 is weighted to remove the
influence of points whose position changes abnormally fast. V
and λk are estimated with a weighted least square fit where the
xl point equation for the fit at time t is weighted by:

wl(t) = exp
−‖T (xl, t) − T (xl, t − 1)‖22

2σ2
O

 (5)

where σO is used to set the tolerance of what is an acceptable
displacement between two frames. To summarize, when traking
fails for some keypoints, they are given a lower weight in the
fit. Motion parameters are estimated without these bad points

while the global PCA model enables the recovery of the whole
image deformation. Just a single IRLS iteration is necessary to
robustly estimate the transformation parameters even with the
presence of outliers. We will see however in section 3.4, that
a few reweighting iterations have a low computational impact
and can produces results that are more visually pleasing. In fig-
ure 2, a frame with occlusion is presented with the keypoints
colorcoded by their weight. It can be clearly seen that the sim-
ple weighting scheme proposed allows the detection of tracking
failure due to occlusions.

2.2.4. Full pipeline summary
To summarise, the brain motion compensation method pro-

posed in this paper can be decomposed in two steps.
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I(x, 0)

I(x, t) I(Ux, t)

warp

Standard
Lucas

Kanade
Tracking

I(Ux, t) I(x, t)

back
project

Figure 4: LRLK, algorithm 1: Frame at t is warped using the homography U = U(t − 1), the standard Lucas and Kanade is used on the globally realigned images,
keypoint are projected back in I(x, t). LRLK is effective because, with U = U(t − 1), neighborhoods of the keypoints are approximatelly oriented after warping.

I(t)

I(0)

x(t − 1)

U(t − 1)

LRLK
Keypoint
Tracking
algo. 1

x(t)
Extended

DLT
section 2.2.1

U(t), λ(t)

p,Tµ
(learnt)

Motion model
eq. 1 T (t)

Figure 5: Pipeline of real time motion estimation method after training. I: image frame, x: set of keypoints positions, U:camera motion, Tµ, p: motion basis learned
on initial frames, λ: deformable brain motion parameters, T :dense motion.

The first step is to learn the affine subspace to which the brain
motion belongs. To do so, the motion is estimated using a stan-
dard routine on a few initial frames of the video. The raw brain
motion is then extracted from each dense motion vector (section
2.3) and the principal modes of the brain motion are estimated
with a PCA.

Once the brain motion basis is estimated, our fast method can
be applied (see the pipeline on figure 5). Keypoints detected on
the first frame are tracked with the LRLK algorithm (algorithm
1). The extended DLT (section 2.2.1) is then used to recover
the motion parameters. These parameters enables the computa-
tion of the full dense motion (given by equation 1) in the given
frame.

2.3. Learning the Nonrigid Transformation Basis

The first Ntr frames of the video are used to learn the affine
subspace in which Td lies, i.e. to estimate Tµ and pk. First,
(T (., ti))i∈[1,Ntr] are estimated with a standard motion estimation
routine from the literature. Then, to extract the brain motion
Td(., ti) from T (., ti), the camera motion is estimated by solving

min
V(ti)

1
2

∑
x∈P

‖V(ti)T (x, ti) − x‖22 , (6)

where P is a set of pixels and small deformations are assumed.
Here again, Harris keypoints are used to reduce the computation
time.

Equation 6 is a least square problem solved with standard
geometric transform estimation routine for each timepoint.

Once the V(ti) are estimated, the deformable training trans-
forms are given by

Td(x, ti) = V(ti)T (x, ti)

for i ∈ [1,Ntr]. These deformable transformations are assumed
to lie in a low dimensional affine space. A basis of this subspace
is estimated using a PCA to retain the space that best captures
the variability of these vectors: Tµ is the mean of the (Td(., ti))i
vectors and pk are the K first eigenvectors of their covariance
matrix. An example of mean deformation and basis images is
presented in figure 6.

3. Experiments and Results

In this section, the proposed method in this paper has been
evaluated on real neurosurgical videos taken in the operating
suite. Experiments were done in the neurosurgery service of
the Hospices Civils de Lyon. Twelve videos from three patients
have been used in the experiments. The participating patients
signed written consent. The study respects the Hospices Civils
de Lyon local research ethics committee rules. Inclusion cri-
teria were preoperative diagnosis of low grade glioma or high
grade glioma; tumor judged suitable for open cranial resection;
age equal to or older than 18 years; and patient ability to pro-
vide written consent. A 3-chip RGB CCD camera mounted on a
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0.5

Tµ p0 p1 p2

Figure 6: Images learned to model the brain deformable motion Td (eqn. 2): mean displacement Tµ and three first eigenimages pk . First row is for displacement
along x, second row is for displacement along y.

clinical surgical microscope (Zeiss OPMI Pentero) was used to
record the video of opened brain areas. The microscope objec-
tive was positioned around 25 cm above the brain. The image
plane was positionned to correspond to the plane tangent to the
center of the brain area exposed. The brain was illuminated by
a xenon lamp with a direction making a small angle with the
optical axis to optimize the light collection and specular reflex-
ion attenuation compromise. Each video lasts between 30 and
90 seconds, has a frame rate of 25 fps and a frame size of either
511x388 or 720x576.

The Farnebäck method [6], denoted as GF, and the total vari-
ation Perez method [23], denoted as TV, as implemented in
OpenCV 3.02, were used for comparison. The GF method
was also used as the motion estimation routine on the train-
ing frames for the subspace estimation. The GF method has
been chosen for its availability in CPU version in OpenCV and
its relative efficiency. Note that other methods could have been
chosen for comparison as long as they are also used for the
training. For all but the training size investigation experiment,
the 25 initial frames of each video were used as training set.

In section 3.1, the low dimensional affine model has been
validated and the influence of its most important parameters has
been investigated. In section 3.2, the robustness to occlusions
of our method is evaluated. The robustness to large camera mo-
tions is finally evaluated in section 3.3. CPU considerations are
presented in section 3.4. Finally, the use of our method into the
framework of an in vivo protocol for intraoperative identifica-
tion of somato-sensory brain area is illustrated in section 3.5.

3.1. Parameter Analysis

As no ground truth is available, a really satisfying and abso-
lute error metric cannot be used. As it is often the case for this
kind of work, we have to rely on a derivative error measure.
Here, the error is measured by

Err(T ) =
1

n|B|

n∑
t=1

∑
x∈B

‖T (x, t) − TGF(x, t)‖ ,

2http://opencv.org

where n is the number of frames in the video and B is a brain
mask manually segmented on the initial frame and TGF is the
transformation obtained using the GF method. In the absence
of ground truth, this measure is an indication of the adequacy
of the model to the problem and that transformations obtained
with high degrees of freedom methods can be represented by
our low dimensional model.

In figure 7, the average error is plotted against the number of
principal components for several values of the minimal distance
(hd) allowed between the Harris keypoints, with and without
weighted fit (eqn. 5). As expected, the method gives better re-
sults when hd is the lowest, or equivalently, when the number of
keypoints is the highest. One can also see that, regarding K, the
number of principal components, a plateau is quickly attained:
the deformable component of the transformation indeed lies in
a low dimensional affine space. However, when hd is too high,
the method seems less stable and the error tends to increase
again with K. Although there were no occlusions on the video
we used, the weighting (eqn. 5) of the keypoints does improve
the estimation considerably. The error globally decreases and
stability is preserved with less keypoints.

The mean error as a function of the number Ntr of training
frames is presented in figure 8 with K = 5 and hd = 6. The er-
ror quickly decreases for low Ntr, the decrease is less important
when Ntr is greater than 40. Setting this parameter is a compro-
mise between the desired accuracy and the training time: while
a higher Ntr improves the accuracy, it also implies heavier use
of the slower standard optical flow routine and that the high
dimensional PCA will be done on a larger set.

For reference, the average difference between GF and TV is
0.27 ± 0.10. There is a priori no reason why GF or TV would
be better but these results show that the difference between the
proposed method and GF seems within the range of differences
between established optical flow methods.

3.2. Video with Occlusion

In this section3, a black rectangle has been placed in the cen-
ter of the brain after 3 seconds until the end of the video to

3A video showing results under occlusion is given in additional materials.
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Figure 7: Mean error versus number of PCA components for several minimal distance between the keypoints (hd). Results are given when outliers weighting (eqn.
5) is used (Weighted) or not (Unweighted).

mimic the apparition of an object in the field of view of the
camera. The experiment has been reproduced with a rectangle
size varying from 10% to 80% of the brain. The error between
the GF transform computed with no occlusion and the result of
the motion estimation algorithms with occlusions is measured
and presented in figures 10 and 11.

Snapshots of a motion compensated video are displayed in
figure 9. Our method with the weighted fit produces videos with
no artifacts while the unweighted estimation implies strong ar-
tifacts all over the image. While maybe less visible on the snap-
shots, the video processed with the GF method presents smooth
distortion artifacts in the vicinity of the rectangle. The video
compensated using TV also presents artifacts in a smaller re-
gion and more sharply defined.

In the previous section, we saw that weighting the fit with
equation 5 enables to lower the error and to improve stability
with larger inter keypoints distance. On figure 10, one can see
that this weighting is necessary when foreign objects enter the
field of view. The fit fails even when the size of these objects is
small with respect to the brain size due to the high instability of
the L2 norm to outliers. GF also fails in the presence of occlu-
sions but to a lower extent. While not as robust as our method,
TV is clearly more robust than GF. As expected, the results pre-
sented in figure 11 confirm that stability is better with low hd.
It is however reassuring to see that even for quite large hd (30
pixels), the motion compensation still resists to about 60% or
70% of occlusions. In these cases, even if the motion compen-
sation fails, in our experience, the fit get backs to normal when
the object disappears.

3.3. Large Camera Motion

To assess both the validity of our model (eqn. 1) and the
LRLK tracking (algorithm 1), we simulated camera motions by
adding rotation, scaling or viewpoint changes to the input video

after a few seconds. We stress that the initial nonrigid motion
is still present in the video with additional motion. The mean
intensity difference (MID) between the current and the initial
frame in the brain mask

MID(t) =
1
|B|

∑
x∈B

‖I(x, t) − I(x, 0)‖RGB ,

where ‖.‖RGB is the Euclidean norm in the RGB space, is used
to compare GF, TV and variants of our method.

Pure rotation experiment results are presented in figure
12. A time dependent rotation is added to the initial video,
the MID after compensation is plotted for GF, TV and our
method with variants of Lucas and Kanade keypoint track-
ing: LK Lag is the tracking with a Lagrangian setting
q(t) = LK(I(0), q(0), I(t), q(t − 1)), LK Euler for an Eu-
lerian specification q(t) = LK(I(t − 1), q(t − 1), I(t), q(t −
1)) and LRLK is the algorithm 1 keypoint tracking q(t) =

LRLK (I(0), q(0), I(t), q(t − 1),U(t − 1)). To assess the benefit
of using the new physically meaningful composition model, we
also included our previous additive model [32] in the compar-
ison: the camera motion is an affine transform that is added to
the deformable brain motion. This model, denoted as LRLK-
add is used with the LRLK tracking.

One can see on figure 12 that both GF and LK Lag rapidly
explode. While TV is better than GF, it is not resistant to even
the slightest rotations. One can however notice that TV goes
back to normal at every full rotation. In ”Lucas and Kanade
like” methods, even if the transformation is correctly initialized
from the previous frame, the local window around each pixel
does not rotate and ends up being really different. The known
drawback of the Eulerian estimation is visible: the LK Euler
error does not explode but is slowly but surely increasing. With
LRLK, the error is stable and stays at the level before the ro-
tation begins. This performance is the result of the combina-
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Figure 8: Mean error as a function of the number of training frames (using
K = 5, hd = 6).
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Figure 9: Snapshot of the motion compensated video for several percent-
age of occlusion. Results are presented for the opencv GF and TV meth-
ods and our method when outliers weighting (eqn. 5) is used (W) or not
(NW).
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Figure 10: log10 mean error versus percentage of brain occlusion. Results
are given for the opencv GF and TV methods and for our method when
outliers weighting (eqn. 5) with hd = 6, K = 5. is used (W) or not (NW).
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Figure 11: log10 mean error versus percentage of brain occlusion for sev-
eral minimal distances between the keypoints (hd). Results are given
when outliers weighting (eqn. 5) is used.

tion of two ingredients: the Lagrangian setting which provides
the stability and the camera motion estimation and resampling
which allows the large global perspective changes. One can also
see that using the physically meaningful composition model is
essential: despite the tracking is done with LRLK, the additive
model LRLK-add fails for very small affine camera motion.

In figure 14 are displayed snapshots of motion compensation
results when not only rotation but also scale changes (from 0.5
to 2) have been added4. Results of the previous paragraph are
visually confirmed: neither GF, TV nor LK Lag are able to esti-
mate the rotational motion of the camera; LK Euler is far better

4The video and the results are given in additional materials.

at first sight but on long time course, errors accumulate;when
the tracking is done with LRLK, the motion estimation stays
correct and the video is not artifacted even for a full rotation
and scale changes.

For the next experiment, we simulated a viewpoint change
in which the camera is moved around the pulsating brain. The
MID is plotted in figure 13 as a function of the viewpoint an-
gle. Our model with an orthographic camera (Aff.) and with a
pinhole model (Persp.) is compared to TV and GF. For Aff, the
only difference in our framework is to replace the homography
U by an affine transform. Note that in this case, the extended
DLT is not necessary: the equation 4 is linear and can be solved
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Figure 12: MID when the original video is rotated around the camera
axis. Results are presented for the opencv Farnebäck routine (GF) and for
our method when the tracking is done from one frame to the next (Euler
LK), from the initial to the current (Lag LK), using our previous additive
model (LRLK-add) and the proposed LRLK routine.
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Figure 13: Average difference between the current and the initial frame
when a time dependent viewpoint change is added to the video (in ab-
scissa: the viewpoint angle). Results are presented for the opencv GF and
TV routine and for our method with an orthographic (Aff.) or perspective
(Persp.) camera model.
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Figure 14: Snapshot of the motion compensation results when additional rotation/scale are added to the original video. Results are presented for the opencv
Farnebaäck routine (GF) and for our method when the tracking is done from one frame to the next (LK Euler), from the initial to the current (LK Lag) and using the
proposed LRLK routine.

with linear least square routine. Both TV and GF perform rea-
sonably well up to ±45◦. TV performs better than GF for high

viewpoint changes but still, the results are not acceptable. One
can see that the use of a perspective camera in our model is very
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important here: while the error is very high from the first view-
point change degree with the orthographic camera, the pinhole
camera model is very robust up to very large viewpoint changes.

One can also remark that real life camera motions will in-
clude pure viewpoint change mixed with rotation and scaling.
Errors from the different camera motion experiments will be
added and the discrepancy between our method with a perspec-
tive model and the other methods should be even clearer.

3.4. CPU Time
CPU measurements have been done on a Dell desktop with

Intel Xeon E5-2640 2.40GHz processors. Measurements have
been done using a single or 4 cores. The number of frames
processed per second (fps) has been reported in table 1 for sev-
eral variants of our method and the GF and TV method. Frame
rate measurements includes reading from the input file, motion
compensation and writing results to disk. Measurements have
been done on 720 × 576 images. Frame rate of the input video
was 25 fps.

Depending on the parameters chosen for our method, it is
around 3 to 4 time faster than the GF method and these param-
eters can be chosen to have a real time motion compensation.
The TV method is really expensive. The CPU criterion clearly
discards this method for use in real clinical condition, even as
the routine used for the training frames.

Among the two parameters hd and NIRLS of our method, only
the minimal distance between keypoints hd has a real influence
on the computation time. This parameter is directly linked to
the number of keypoints used in the processing. Although the
processing involved with NIRLS also depends on the number of
keypoints, its influence on computation time is low because it
does not depend on the LK tracking which represents a large
part of processing time. The PCA to compute the Td basis takes
about 2 GF iterations.

Although the efficiency of our multi core implementation is
only around 40%, it is sufficient to be clearly above the real time
frame rate of 25 fps with only 4 processors and to be able to
add further processing for the analysis of the video for clinical
parameter extraction.

3.5. Application to intraoperative brain areas identification
As an illustration of the relevance of the proposed motion

compensation method in a real clinical application, its use for
the intraoperative identification of somato-sensory brain areas
during tumor resection in neurosurgery has been investigated.
These areas are so far often identified using the potentially risky
(epilepsy) electrostimulation method: brain surface areas are
stimulated, if the stimulation of a given area triggers a finger
motion, then the ’finger motion area’ is identified. This identifi-
cation method is used as gold standard and compared to a purely
optical method: finger motions are applied to the anesthetized
patient with a 30s rest; 30s stimulation; 30s rest paradigm.
Variations in the hemodynamic parameters were then assessed
based on the model described in [14], for blood variation as-
sessment. This allows to compute a hemodynamic map to iden-
tify the somato-sensory cortex area corresponding to the finger
motion.

Figure 15 shows the variations in total hemoglogin concen-
tration between the first rest period and the stimulation period
for each pixel. The activated area has been identified by the
gold standard in clinical practice, that is electrical stimulation.
Fig 15 illustrates that our motion compensation method is ef-
fective to dramatically decrease artifacts appearing all over the
image and showing artificial hemoglobin variations. In particu-
lar the motion compensated image shows mainly green/yellow
(no/slight variations) or red (hemoglobin increase due to brain
activation) events, as opposed to the non-compensated image
which exhibits very noisy red and blue events. Therefore, while
a red area corresponding to gold standard (electrical simulation)
appears when the motion compensation is used, no clear acti-
vated brain areas can be identified without the motion compen-
sation.

4. Conclusion

In this paper, we proposed a real-time motion estimation
method to compensate repetitive brain motion on videos ac-
quired during neurosurgery. Our method uses an original low
degree of freedom transformation model defined as the com-
position of a perspective transformation and a nonrigid defor-
mation lying on a low dimensional affine space. Despite the
nonlinear nature of the transformation, two variable changes
transform the nonlinear parameter estimation into a much sim-
pler problem solved with only a single SVD computation. The
motion is estimated with the tracking of only a sparse set of
keypoints for efficiency and using a Lagrangian specification
for stability. Using the perspective part of our transformation
model, we also proposed an adaptation of the Lucas and Kanade
procedure able to reliably track the keypoints under large rota-
tion of the camera around its axes and more generally, under
large viewpoint change. Outliers are handled by weighting the
least square: a single fit is sufficient to handle occlusions caused
by foreign objects entering the field of view. Few reweighting
iteration of the least square fit has however very little impact on
the computation time. Although the experiments in the paper
have been done without these iterations, we found that in some
extreme cases, adding these few iterations can help to produce
visually better results at negligible cost.

As a clinical application of the proposed method we show its
relevance as a preprocessing step in the intraoperative identifi-
cation of brain areas during tumor resection. The usefulness of
the proposed method is very clear to discriminate between real
physiological hemodynamic events from noisy camera motion
driven events. This step is then mandatory to realize a robust
identification of brain areas in this demanding clinical context.
The model used for areas identification was taken from [14].
Further works will consist in the improvement of this conver-
sion model to get hemodynamic parameters from colorimetric
variations.

In this article, the videos considered for illustration were
acquired with an incoherent white light to produce RGB re-
flectance images of the human brain. Other optical setup using
coherent light from lasers have also been reported to be use-
ful during neurosurgery. This includes Laser Doppler imaging
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Single Core Multi Core
hd GF TV NIRLS = 1 NIRLS = 4 NIRLS = 1 NIRLS = 4
6

6.99 0.12
23.81 21.74 56.13 49.28

18 26.67 25.97 59.15 57.40
30 28.17 27.40 63.27 61.34

Table 1: Number of frame per seconds for the OpenCV GF and TV methods, and our method with different parameters: NIRLS is the number of least square
re-weighting (all other experiments have been done with NIRLS = 1), hd is the minimal distance between the pixels.
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Figure 15: The screenshot of a video (left) and the corresponding hemodynamic maps computed with (middle) and without (right) our motion compensation
method as pre processing. The map without motion compensation presents motion artefact near the blood vessels. Colorbar show variations in total hemoglobin
concentration in arbitrary units. The black arrow reveals the somato-sensory cortex identified by cortical stimulation during surgery; it corresponds to area of high
value in our maps.

and Laser speckle imaging which can produce perfusion maps
[25, 28, 21]. With such optical imaging modalities the blood
vessels are also visible and the brain surface is highly textured.
Therefore, the keypoints detection and tracking is possible and
the real time motion compensation algorithm presented here
could a priori also be applied with success in this extended field
of brain imaging for neurosurgery.

The method has been evaluated on video recorded in neuro-
surgical unit. The motion estimation routine proposed in this
paper can be done in real time, robustly and accounting for
large viewpoint changes. This opens the way to further tempo-
ral analysis of these videos to help neurosurgeon in their action.
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C., Dreier, J.P., Lindauer, U., Kohl-Bareis, M., 2009. Imaging of cortical
haemoglobin concentration with RGB reflectometry, in: European Con-
ference on Biomedical Optics, Optical Society of America. p. 7368 13.

[36] Szeliski, R., 2010. Computer vision: algorithms and applications.
Springer Science & Business Media.

[37] Thirion, J.P., 1998. Image matching as a diffusion process: an analogy
with maxwell’s demons. Medical image analysis 2, 243–260.

[38] Villringer, A., Chance, B., 1997. Non-invasive optical spectroscopy and

imaging of human brain function. Trends in neurosciences 20, 435–442.
[39] Wulff, J., Black, M.J., 2015. Efficient sparse-to-dense optical flow es-

timation using a learned basis and layers, in: IEEE Conf. on Computer
Vision and Pattern Recognition.

12


