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WEIERSTRASS APPROACH TO ASYMPTOTIC BEHAVIOR
CHARACTERIZATION OF CRITICAL IMAGINARY ROOTS FOR

RETARDED DIFFERENTIAL EQUATIONS

A. MARTÍNEZ-GONZÁLEZ∗, † , C.-F. MÉNDEZ-BARRIOS∗, S.-I. NICULESCU† , J. CHEN‡ ,

AND L. FÉLIX∗

Abstract. This paper focuses on the analysis of the behavior of characteristic roots of time-
delay systems, when the delay is subject to small parameter variations. The analysis is performed by
means of the Weierstrass polynomial. More specifically, such a polynomial is employed to study the
stability behavior of the characteristic roots with respect to small variations on the delay parameter.
Analytic and splitting properties of the Puiseux series expansions of critical roots are characterized
by allowing a full description of the cases that can be encountered. Several numerical examples
encountered in the control literature are considered to illustrate the effectiveness of the proposed
approach.
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1. Introduction. There exist an abundant literature where the delay phenome-
non has been associated with “undesired” behaviors or bad performance, (as, for
examples, instabilities, oscillations, bandwidth sensitivity), as pointed out by [9] and
the references therein. However, there exist situations where the use of a delay in the
controller may lead to closed-loop stability as remarked in [1], where a simple oscillator
is stabilized by means of a positive delayed output feedback. This idea opens a new
and interesting perspective in using delays as control parameters in order to get a
desired behavior under appropriate assumptions; see [20].

In the spirit of the above observations, the works developed by [4, 5] have deeply
explored such ideas, where, for a general retarded linear time-invariant system with
commensurate delays, the authors have first fully characterized the stability properties
of such a systems by finding a set of critical delay values, at which the system’s
characteristic quasi-polynomial has critical zeros on the imaginary axis. Secondly,
considering the delay as a parameter and by adopting an operator based-approach
the authors have expanded the solutions of the quasi-polynomial in terms of a Taylor
(or Puiseux) series, allowing the characterization of the roots behavior as the delay
varies around a critical delay value.
As discussed in [4], even in the case of a fixed delay, the testing of stability for a time-
delay system is not a simple task. Such a difficulty arises from the fact that for delay
systems the characteristic function is, in fact, a quasi-polynomial (as a consequence
of the presence of delay) which always have an infinite number of characteristic roots
(see, for instance, [10] and the references therein). In the retarded case, by using
the appropriate continuity argument the problem can be reduced to the analysis on
the critical characteristic roots on the imaginary axis. If the case when such roots
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are simple is completely understood and fully characterized, the case of multiple
characteristic roots need a deeper understanding. This paper focuses on this last
problem.

By means of the Weierstrass Preparation Theorem [18] the complexity of the
analysis of the system’s characteristic function can be reduced to analyze some alge-
braic properties of a given polynomial (known as Weierstrass polynomial) with degree
equal to the multiplicity of the critical zero. Furthermore, it is well known that such
Weierstrass polynomial (for further details, see [11]) preserves the full information
concerning the stability behavior. Such an approach has been adopted by [2], where
by means of the calculus of residues (see, for instance, [21]), the authors have proposed
an analytical method to construct such a polynomial. It is worth mentioning that the
corresponding contribution does not focus on deriving an analytical characterization
of the solutions or any characterization of the local behavior of the characteristic roots
with respect to the delay parameter variation. Next, another important contribution
in this direction is proposed by [13], where the authors found a explicit formula (see,
for instance, Theorem 4) to characterize the local behavior for the first-order terms in
the case of a double characteristic root. The asymptotic behavior of multiple critical
roots has also been considered by [17, 16], where, instead of computing the Weierstrass
polynomial, the authors derived the Puiseux series expansion of first-order by a direct
application of the Newton diagram procedure. Their results allow computations in
an efficient way. Finally, more recently, in [15], the asymptotic behavior analysis of
critical solutions with respect to a infinitely many critical delays (including the case
of one delay) has been considered where, in particular, the authors solve the general
invariance property treated under some appropriate constraints in [13].

From the discussion above, it appears that the problem (asymptotic behavior
characterization) received a lot of attention in the open literature during the last
decade but is far from being closed. This paper intends to attack the problem under
a different angle. In essence, the analysis is based on the Weierstrass Preparation
Theorem as well as on the Puiseux Theorem [24] which in conjunction with the New-
ton diagram [3], allow proposing some simple algorithm to construct the Puiseux
series for multiple imaginary roots of a given quasi-polynomial. This approach leads
to a deeper understanding of the asymptotic behavior of critical zeros but also to
determine the analyticity as well as the splitting properties of its branches, leading to
a full characterization of its local behavior. The corresponding critical roots depict
completely regular splitting, regular splitting and non regular splitting properties (for
further details, see, subsection 3.2). Such a classification will be shown to be quite
simple, and extremely useful in analyzing the local behavior as well as to study the
related stability properties. Finally, a higher-order analysis is also presented, which is
necessary to give conditions in order to determine the nature of the series expansion
as a Taylor or Puiseux series. For the latter, by adopting similar ideas than those
developed by [19, 4, 5] we give conditions to determine the crossing directions.

The organization of this work is given as follows: section II introduces some pre-
liminary results and the problem formulation. Section III is devoted to the main
results. More precisely, an algorithm is proposed to compute the Puiseux (or Taylor)
series expansion of a given solution. In addition, this section also presents the splitting
properties and crossing directions and proposes a classification for the critical solu-
tions. Finally, section IV includes some numerical examples illustrating the proposed
results. The contribution ends with some concluding remarks.

Notations: In what follows, the following notations will be adopted: C (RHP,
LHP) is the set of complex numbers (with strictly positive and strictly negative real
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parts), i :=
√
−1. For z ∈ C, arg (z) ∈ [0, 2π), <(z) (=(z)) denote the argument,

real (imaginary) part of z, respectively. Next, R+ denotes the set of positive real
values. The order of a power series f(x, y) =

∑
i,j ai,jx

iyj will be denoted by ord (f)
and defined as the smallest number n = i + j such that ai,j 6= 0. The order of
the power series f with respect to the variable x, will be denoted by ordx (f) and
defined similarly. Finally, given two polynomials f(z) =

∑n
j=0 an−jz

j and g(z) =∑m
j=0 bm−jz

j , the resultant of f and g is defined as

R (f, g) := det



a0 a1 a2 · · · an
a0 a1 · · · · · · an

. . .
. . .

. . .
. . .

a0 a1 · · · · · · an
b0 b1 b2 · · · bm

b0 b1 · · · · · · bm
. . .

. . .
. . .

. . .

b0 b1 · · · · · · bm


.

Remark 1.1. One of the properties of this resultant (see, for instance, [24, 3]) is
that R(f, g) ≡ 0 if and only if f and g have common nonconstant factors.

2. Preliminaries and Problem Formulation.

2.1. Preliminary Results. Consider a retarded linear time-invariant system
described in the state-space form as

(1) ẋ (t) = A0x (t) +

q∑
k=1

Akx (t− kτ) , τ ≥ 0,

or by the differential-difference equation,

(2) y(n) (t) +

n−1∑
`=0

q∑
k=0

ak`y
(`) (t− kτ) = 0, τ ≥ 0,

under appropriate initial conditions. Let f : C × R+ → C be the corresponding
quasi-polynomial given by

f (s, τ) = det

(
sI −

q∑
k=0

Ake
−skτ

)
=

q∑
k=0

pk(s)e−kτs, τ ≥ 0,(3)

where the polynomials pk are given by

p0(s) = sn +

n−1∑
`=0

a0`s
`, pk(s) =

n−1∑
`=0

ak`s
`, k = 1, . . . , q.

The corresponding critical delay values for the imaginary roots can be computed by
following the results presented in [5, 6].

2.1.1. Local Properties of Analytic functions. It it possible to reduce the
analytic properties of f(x, y) to algebraic properties. To this purpose, let us consider
the following result.
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Theorem 2.1 (Weierstrass Preparation Theorem [18, 21]). Let f (z,p) be an
analytic function vanishing at the singular point z0 ∈ C, p0 ∈ Cn, where z = z0 is an
m-multiple root of the equation f (z,p) = 0, i.e.,

f (z0,p0) =
∂f

∂z

∣∣∣∣
(z0,p0)

= · · · = ∂m−1f

∂zm−1

∣∣∣∣
(z0,p0)

= 0,
∂mf

∂zm

∣∣∣∣
(z0,p0)

6= 0.

Then, there exist a neighborhood U0 ⊂ Cn+1 of the point (z0,p0) ∈ Cn+1 in which the
function f (z,p) can be expressed as

(4) f (z,p) = W (z,p) b (z,p) ,

where

W (z,p) = (z − z0)
m

+ wm−1 (p) (z − z0)
m−1

+ · · ·+ w0 (p)

and w0(p),. . . ,wm−1(p), b (z,p) are analytic functions uniquely defined by the function
f (z,p) and wi(p0) = 0, b (z0,p0) 6= 0.

Remark 2.2. The analytic function W (z,p) is known as the Weierstrass poly-
nomial (for further details on Weierstrass polynomials, see, for instance, [11, 21]).

Remark 2.3. It can be seen from Theorem 2.1 that since b(z,p) is an holo-
morphic non vanishing function at (0,0) then there must exist some neighborhood
Ω(0,0) ⊂ Cn+1 at which b(z,p) preserves the same property. Hence, based on this
observation we can ensure that the root-locus of a given quasi-polynomial f in the
neighborhood Ω will be the same as the root-locus of W (z,p).

2.1.2. Newton Diagram Method. Given a known solution (z0,p0) of f (z,p),
the local behavior of the solution z (p) in the neighborhood Cn of p can be obtained
by means of the Newton diagram method. Thus, in order to use such a procedure,
let us introduce the following notation (for more details, see, for instance, [22]). Let
f (x, y) be a pseudo-polynomial in y, i.e.,

(5) f (x, y) =

n∑
k=0

ak(x)yk,

where the corresponding coefficients are given by

(6) ak (x) = x ρk

∞∑
r=0

arkx
r/q,

where ark are complex numbers, x and y are complex variables, ρk are non-negative
rational numbers, q is an arbitrary natural number, an(x) 6≡ 0, and a0(x) 6≡ 0.

Since by simple translation, any point on a curve can be moved to the origin, we
will consider expansions of the solution of (5) f(x, y) = 0 around the origin, in the
following form

(7) y(x) = yε1x
ε1 + yε2x

ε2 + yε3x
ε3 + · · · ,

where ε1 < ε2 < ε3 < · · · , yε1 6= 0. To determine the possible values of ε1, yε1 , ε2, yε2 ,
. . ., it is necessary to consider the Newton diagram.
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Definition 2.4 (Newton’s diagram and polygon). Given a pseudo-polynomial
of the form (5) with coefficients given by (6), plot ρk versus k for k for k = 0, 1, . . . , n
(if ak (·) ≡ 0, the corresponding point is disregarded). Denote each of these points by
πk = (k, ρk) and let

Π = {πk : ak(·) 6= 0}

be the set of all plotted points. Then, the set Π will be called the Newton diagram, and
the Newton polygon associated with f(x, y) will be given by the lower boundary of the
convex hull of the set Π.

For a given pseudo-polynomial f(x, y), Figure 1 simply illustrates Definition 2.4.
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n x
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y

Figure 1. The Newton Diagram for the pseudo-polynomial f(x, y) given in (5).

Theorem 2.5 (Puiseux Theorem, [24, 3]). The equation f(x, y) = 0, with f
given in formal power series such that f(0, 0) = 0, possess at least one solution in
power series of the form

x = tq, y =

∞∑
i=1

cit
i, q ∈ N.

2.2. Problem Formulation. The essential problem addressed in this work con-
cerns the development of an analytical and efficient method to find explicitly the so-
lutions of the equation f(s, τ) = 0 around some critical values. More precisely, in this
paper, we will focus on the following problems:

(i) for a given quasi-polynomial f and a known m-multiple solution (iω∗, τ∗)∈
C × R+, find for the solution s(τ) the first coefficients of its Puiseux series
expansion, i.e., compute γ1, p and q such that

s (τ) = iω∗ + γ1 (τ − τ∗)
p
q + o

(
|τ − τ∗|

p
q

)
, with q ≤ m, p ∈ Z;

(ii) under assumption (i), give conditions on f (s, τ) which describes the splitting
properties of its solutions s (τ): regular splitting, completely regular splitting
and nonregular splitting;

(iii) find the stability crossing directions, that is, determine whether the solution
s (τ) enter to the right half-plane (or to the left half-plane) for τ > τ∗;
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(iv) determine the nature of the series expansion for the solution s (τ) in order to
be able to identify if this solution will be expanded as a Taylor series

s(τ) = iω∗ + c1(τ − τ∗) + c2(τ − τ∗)2 · · · ,

or as a Puiseux series,

s(τ) = iω∗ + c1(τ − τ∗)1/m + c2(τ − τ∗)2/m + · · · .

3. Main Results.

3.1. Asymptotic zero behavior characterization. The asymptotic behavior
of the critical zeros of the quasi-polynomial f(s, τ) will be performed by means of the
Newton diagram procedure. To this end, since any critical solution (s∗, τ∗) can always
be translated to the origin by appropriate shifts s 7→ s−s∗, τ 7→ τ−τ∗, hereinafter we
will assume that (s∗, τ∗) = (0, 0). Hence, for a m-multiple root s = 0 of f at τ = 0,
according to the Weierstrass Preparation Theorem we will have that

(8) f(s, τ) =
(
sm + wm−1(τ)sm−1 + · · ·+ w0(τ)

)
b(s, τ).

Now, with the aim of avoiding unnecessary computations, the following notations
will be useful. For i ∈ {0, 1, . . . ,m − 1}, let ni ∈ N denote the first nonzero partial
derivatives in (s, τ) of f at (0, 0), such that the following relations hold:

(9) f(0, 0) =
∂if

∂si

∣∣∣∣
(0,0)

= · · · = ∂i+ni−1f

∂si∂τni−1

∣∣∣∣
(0,0)

= 0,
∂i+nif

∂si∂τni

∣∣∣∣
(0,0)

6= 0.

Even though the following result is a straightforward application of the Taylor series,
it will be extremely useful in what follows.

Lemma 3.1. Let s = 0 be a m-multiple root at τ = 0 of the quasi-polynomial
f(s, τ), and let f = Wb be defined as in (4). Then, the following statements hold:

(i) the first nonzero partial derivatives with respect to τ are given by

∂n0f

∂τn0

∣∣∣∣
(0,0)

=
∂n0w0

∂τn0

∣∣∣∣
(0,0)

b(0, 0);

(ii) the first nonzero partial derivatives with respect to s and τ for i = 1, . . . ,m−1
are given by

∂i+nif

∂τni∂si

∣∣∣∣
(0,0)

=

i∑
j=0

[
j!

(
i

j

) ni∑
k=0

(
ni
k

)
∂ni−kwj
∂τni−k

∂i−j+kb

∂τk∂si−j

]∣∣∣∣∣∣
(0,0)

;

and,
(iii) the m-derivatives with respect to s at the multiple critical point satisfy

∂mf

∂sm

∣∣∣∣
(0,0)

= m!b(0, 0).

Proof. According to Theorem 2.1, we have that f admits the representation given
in (8). Based on the previous observations, let us consider in the remaining ni as given
in (9).
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(i) It is not difficult to see that the first r-partial derivatives with respect to τ
are given by

∂rf

∂τ r
=

r∑
j=0

(
r

j

)
∂r−jw0

∂τ r−j
∂jb

∂τ j
+

∂r

∂τ r

m−1∑
j=1

wjs
jb.

Now, observe that

∂r

∂τ r

m−1∑
j=1

wjs
jb

∣∣∣∣∣∣
(0,0)

≡ 0 ∀r ≥ 0, and

r∑
j=0

(
r

j

)
∂r−jw0

∂τ r−j
∂jb

∂τ j

∣∣∣∣∣∣
(0,0)

≡ 0 ∀r < n0.

Thus, it is clear that for r = n0 and (s, τ) = (0, 0), we get the desired result.
(ii) Following similar steps to those presented in (i), one gets

∂r+nf

∂τn∂sr
=

r∑
j=0

[
j!

(
r

j

) n∑
k=0

(
n

k

)
∂n−kwj
∂τn−k

∂r−j+kb

∂τk∂sr−j

]
+

∂n

∂τn

r∑
j=0

(
r

j

) m−1∑
k=j+1

k!

(k − j)!
wks

k−j +
m!

(m− j)!
sm−j

 ∂r−jb
∂sr−j

.

Hence, for r = i, n = ni, and by evaluating at the critical point (0, 0) we have

∂i+nif

∂τni∂si

∣∣∣∣
(0,0)

=

i∑
j=0

[
j!

(
i

j

) ni∑
k=0

(
ni
k

)
∂ni−kwj
∂τni−k

∂i−j+kb

∂τk∂si−j

]∣∣∣∣∣∣
(0,0)

.

(iii) The first nonzero partial derivatives in s of f are given by

∂mf

∂sm
=

m−1∑
j=0

wj

[
∂mb

∂sm
+jm

j∑
k=1

∂m−kb

∂sm−k
sj−k

]
+m

m−1∑
k=1

(k+1)!
∂m−kb

∂sm−k
sm−k+

∂mb

∂sm
sm+m!b.

By evaluating it at the origin, it becomes m!b(0, 0).

Proposition 3.2. Let s = 0 be a m-multiple root at τ = 0 of the quasi-polynomial
f(s, τ), and assume that n0 < ∞. Then, the Newton diagram of f at (0, 0) is given
by Π = {(0, n0), . . . , (m− 1, nm−1), (m, 0)}.

Proof. First note from the Weierstrass Preparation Theorem, the definition of ni
and Lemma 3.1 that the Newton diagram of f has the end points at (0, n0) and (m, 0).
Moreover, around the singular point (0, 0), f can be written as

(10) f(s, τ) =

∞∑
i=0

 1

i!

∞∑
j=i

(
j

i

)
∂jf

∂si∂τ j−i
τ j−i

 si,

or equivalently as

f(s, τ) =

m−1∑
i=0

 1

i!

∞∑
j=ni+1

(
j

i

)
∂jf

∂si∂τ j−i
τ j−i

 si+

∞∑
i=m

 1

i!

∞∑
j=i

(
j

i

)
∂jf

∂si∂τ j−i
τ j−i

 si.

Hence, from Lemma 3.1-(ii), the remaining (m− 2)-points of the Newton diagram of
f are given by the set {(1, n1) . . . , (m− 1, nm−1)}, which concludes the proof.
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Example 3.1. In order to illustrate the previous result, let us consider the fol-
lowing quasi-polynomial (borrowed from [2]):

(11) f(s, τ) = −
(π

2
s5 +

π

2
s3 + s2

)
+
(π

2
s3 − s2 +

π

2
s+ 1

)
e−sτ + e−2sτ ,

with s = i a multiple root at τ = π of multiplicity m = 3. First, let us derive the
constants ni considered in (9):

∂f

∂τ

∣∣∣∣
(i,π)

= 0,
∂2f

∂τ2

∣∣∣∣
(i,π)

= −2 ⇒ n0 = 2,
∂2f

∂s∂τ

∣∣∣∣
(i,π)

= 2 + iπ,⇒ n1 = 1,

∂3f

∂s2∂τ

∣∣∣∣
(i,π)

= −
(
5π + i(4π2 + 6)

)
⇒ n2 = 1,

∂3f

∂s3

∣∣∣∣
(i,π)

= −3π(−6− 5iπ + π2).

Summarizing, we have (n0, n1, n2) = (2, 1, 1). Thus, according to Proposition 3.2, we
have Π = {(0, 2), (1, 1), (2, 1), (3, 0)}.
Under some appropriate considerations, the leading terms of the Weierstrass polyno-
mial can be derived by means of the Taylor expansion of f(s, τ). In other words, the
first nonzero partial derivatives of f evaluated at(0, 0) can determine the first terms of
the Weierstrass polynomial; we formalize this discussion through the following result.

Proposition 3.3. Let ni <∞ be defined as in (9), such that it satisfies

n0 > n1 > · · · > nm−1.

Then, the coefficients wi(τ) of the associated Weierstrass polynomial W have order
ord (wi(τ)) = ni. Moreover, the leading terms are given by

wi(τ) =

 m!

i!ni!
∂mf
∂sm

∣∣∣
(0,0)

∂i+nif

∂τni∂si

∣∣∣∣
(0,0)

 τni + o(τni), i = 0, 1, . . . ,m− 1.

Proof. According to Theorem 2.1, we have that

f(s, τ) = W (s, τ)b(s, τ),

where b(0, 0) 6= 0. Now, by applying Lemma 3.1-(ii) to the above expression and from
the fact that n0 > · · · > ni, we deduce that:

∂i+nif

∂τni∂si

∣∣∣∣
(0,0)

= i!

ni∑
k=0

(
ni
k

)
∂ni−kwi
∂τni−k

∂kb

∂τk

∣∣∣∣∣
(0,0)

(12)

⇒ (b(0, 0)i!)
∂niwi
∂τni

∣∣∣∣
(0,0)

=
∂i+nif

∂τni∂si

∣∣∣∣
(0,0)

.(13)

Next, from (9) we have that ordτ (wi) ≡ ni and since we know from Theorem 2.1 that
wi(τ) are analytic functions, this implies that

(14) wi(τ) = wi,0τ
ni + o(τni).

Then, it is clear to see from (13) and (14) that

∂i+nif

∂τni∂si

∣∣∣∣
(0,0)

= i!ni!wi,0b(0, 0).

Finally, from Lemma 3.1-(iii) we get the desired result.
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Remark 3.4. Note that it is possible to have some κ ∈ N for which n0 = n1 =
· · · = nκ−1 = ∞. Then, under this situation, the Newton diagram method cannot be
applied directly. However, it is worth noting that since wi are analytic functions, the
previous situation is equivalent to wi(τ) ≡ 0 for 0 ≤ i ≤ κ−1. Hence, f will be locally
given by

f(s, τ) = sκ
[
sm−κ + wm−κ(τ)sm−κ−1 + · · ·+ wκ(τ)

]
b(s, τ).

Thus, there are κ-invariant solutions s = 0 for all τ and m− κ solutions of the form

si(τ) =

∞∑
j=1

cjτ
j/mi ,

where mi < m. Moreover, under this consideration the Newton polygon will be given
by Π = {(κ, nκ), . . . , (m, 0)}. If such number κ does not exist (i.e., if such situation
does not happen), then κ will be simply defined as κ := 0.

3.2. Splitting Properties. The main goal of this subsection is to explore some
qualitative properties of the solutions s (τ) of the quasi-polynomial f (s, τ) around the
m-multiple critical pair (0, 0). Hence, as discussed by [24], it is possible to characterize
the root locus of f by its branches. In fact, the equation f(s, τ) = 0 defines a solution
curve C ∈ C2 which is composed by the finite union of r-branches sj

(
τ1/mj

)
; each of

these branches can be expressed as a Puiseux series:

(15) sjσ(τ) = cjστ
1
mj + o

(
|τ |

1
mj

)
, j = 0, . . . , r − 1, σ = 1, . . . ,mj ,

where each branch has multiplicity mj such that m = m1 + m2 + · · · + mr. In the
case when r = 1, then sjσ and cjσ will be simply denoted by sσ and cσ, respectively.
We have the following.

Definition 3.5. We say that there is a complete regular splitting (CRS) property
of the solution s∗ = 0 at τ∗ = 0 if cjσ 6= 0 ∀j. For the regular splitting (RS) property,
some of the coefficients cjσ for which mj = 1 may be equal to zero. In the remaining
cases of the coefficient cjσ we say that nonregular splitting property is present.

Remark 3.6. The above definition, illustrated in Figure 2, was inspired by the
matrix case introduced in [14] (see also [12]).

The proposed approach to deal with the splitting properties is based on the New-
ton diagram method applied in conjunction with the Weierstrass polynomial and the
Puiseux Theorem. To this end, we will use the definitions introduced in the previous
sections, in particular the notion of Newton polygon Π.
Along these lines, based on the Newton procedure introduced in subsection 2.1.2 we
propose Algorithm 1.
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(a) Nonregular splitting
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(b) Regular splitting
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(c) Complete regular Splitting

Figure 2. Splitting properties.

Algorithm 1 Auxiliary Puiseux Series Expansion

Let f(s, τ) have a critical pair such that s∗ = iω∗ is a m-multiple root at τ = τ∗.
Consider the initial values as r := 0, i−1 := κ and `−1 := nκ.
while ir−1 < m do

set Er :=
{
`−`r−1

ir−1−i : (i, `) ∈ Π, and i > ir−1

}
;

let βr := max Er and Π(r) :=
{

(i, `) ∈ Π : βr ≡ `−`r−1

ir−1−i

}⋃
{(ir−1, `r−1)};

set (ir, `r) ∈ Π(r) such that ir ≥ i, ∀(i, `) ∈ Π(r);
set mr := ir − ir−1 and r = r + 1.

Example 3.2. With the aim of illustrating the simplicity of the algorithm, let
us apply it to the quasi-polynomial (11) (Example 3.1 above). First, observe that
according to Remark 3.10 we have that κ = 0, implying that the initial conditions
for the Algorithm 1 are (r, i−1, j, k) = (0, 0, 0, n0) and Π, where this last set has been
determined in Example 3.1. Thus, for the first iteration we have that E0 =

{
1, 1

2 ,
2
3

}
⇒

β0 = 1 and Π
(0)

= {(0, 2), (1, 1)}. According to step 3 we have (i0, `0) = (1, 1), which
implies that the algorithm will end in the next iteration. Table 2 summarizes the
results.

Table 1
Results summary for the quasi-polynomial (11).

Initial data Algorithm output

m = 3, n0 = 2 r = 1, m0 = 1, β0 = 1

Π={(0, 2), (1, 1), (2, 1), (3, 0)} Π
(0)

= {(0, 2), (1, 1)}
r = 2, m1 = 2, β1 = 1

2

Π
(1)

= {(1, 1), (3, 0)}

We have the following.

Proposition 3.7. Let s∗ = iω∗ at τ = τ∗ be a m-multiple critical root of the
quasi-polynomial f(s, τ). Assume that r, βj, (ij , `j), mj and Π(j), for j = 0, 1, . . . , r−
1 are given by Algorithm 1. Then, the following properties hold:
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(i) if mj · βj ≡ 1 ∀j ∈ {0, 1, . . . , r − 1}, then the solution (iω∗, τ∗) of f(s, τ) has the
completely regular splitting property;

(ii) if some βj satisfies mj · βj > 1 for mj > 1, then non regular splitting property
for the solution (iω∗, τ∗) occur;

(iii) if the pairs (mk, βk) that do not fulfill (i), satisfy the inequality βk ≥ mk ≡ 1,
then the solution (iω∗, τ∗) of f(s, τ) has the regular splitting property;

(iv) let Ω0 be a neighborhood of (0, 0) ∈ C2, and assume that R
(
W, ∂∂sW

)
6= 0 ∀s ∈

Ω0 \ {(0, 0)}. Then, there are m-different Puiseux series solutions gi(τ
1
ni )

such that

f(s, τ) =

m∏
i=1

(
s− gi

(
τ

1
ni

))
b(s, τ),

where ni is arranged in terms of mj as

n1 = n2 = · · · = nm1︸ ︷︷ ︸
ni1=m1

, nm1+1 = · · · = nm2︸ ︷︷ ︸
ni2=m2

, · · · , nm1+···+mr−1+1 = · · · = nm1+···+mr︸ ︷︷ ︸
nir=mr

with
∑
mi = m.

Proof. First of all, observe that r in Algorithm 1 corresponds to the number of
branches for the solution (iω∗, τ∗) and mj the multiplicity associated to each branch.
(i) In this case, we have that βj = 1

mj
; then from the Newton procedure we know that

the rational numbers βj are associated to the first exponents in the solutions,
since we have r branches, thus the root locus of f(s, τ), is given by

sjσ(τ) = cjστ
1
mj + o

(
τ

1
mj

)
, j = 0, . . . , r − 1 σ = 1, . . . ,mj

Since cjσ are related to the nonzero solution of a polynomial formed with the
coefficients of the convex hull, clearly cjσ 6= 0. Then, the solution (iω∗, τ∗)
has the CRS property.

(ii)-(iii) These follow in similar lines those presented in (i).
(iv) (See [3]). This case can be stated by induction. To this end, from the Puiseux

Theorem we known that there exists a Puiseux series g1

(
τ1/ni

)
such that

f(g1, τ) = 0; then the factor s1 can be taken out such that f = g1f1. Assume
now that the above factorization is valid for some k ∈ N, i.e., the following
relation holds:

f(s, τ) = g1(τ) · · · gk(τ)fk(s, τ).

Then the quotient fk has order m−k in s. Applying the induction hypothesis
to fk, then we get m different factors gi such that:

f(s, τ) = g1(τ) · · · gm(τ)fm(s, τ),

where fm(s, τ) has order ordτ (fm) = 0.

Corollary 3.8. Consider the same hypothesis as in Proposition 3.7. Assume
that n0 = 1. Then at τ = τ∗ the m-roots of f (s, τ) have the CRS property; i.e., these
roots can be expanded as

(16) sσ (τ) = iω∗ + cσ (τ − τ∗)
1
m + o

(
|τ − τ∗|

1
m

)
, for σ = 1, 2, . . . ,m.

Moreover, the following properties hold:
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(i) if m = 2 and < (cσ) 6= 0 with σ ∈ {1, 2}, then for τ > τ∗ sufficiently close to τ∗,
one of the zeros sσ (τ) will enter the RHP, whereas the other one will enter
the LHP;

(ii) if m > 2, then at least one of the zeros sσ (τ) will enter the RHP.

3.3. Crossing Directions Characterization. As mentioned in the introduc-
tion, the Weierstrass polynomial will be our main tool to analyze the stability behav-
ior of the critical characteristic roots. In the same spirit as [5], we have the following
result.

Proposition 3.9. Let n0 < ∞ and s∗ = iω∗ be a m-multiple root of f(s, τ) at
τ = τ∗. Assume that r, βj, (ij , `j), mj, and Π(j) for j = 0, 1, . . . , r − 1 are given by
Algorithm 1. Then, at τ = τ∗ the m-zeros of f(s, τ) can be expanded as

(17) sjσ(τ) = iω∗ + cjσ (τ − τ∗)βj + o
(
|τ − τ∗|βj

)
for j = 0, 1, . . . , r − 1, σ = 1, . . . ,mj, and m = m0 + · · ·+mr−1, where cjσ are roots
of the polynomial Pj : C 7→ C,

(18) Pj(z) :=

ij∑
k=ij−1

ak,0z
k−ij−1 , s.t. (k, ηk) ∈ Π(j),

where the coefficient ak,0 ∈ C is given by

(19) ak,0 =

 m!

k!ηk! ∂
mf
∂sm

∣∣∣
(0,0)

 ∂k+ηkf

∂τηk∂sk

∣∣∣∣
(0,0)

.

Furthermore, for τ > τ∗ sufficiently close to τ∗, the zeros sjσ(τ) will enter the right
half-plane (or to the left half-plane) if

(20) <{cjσ} > 0(< 0).

Proof. By taking into account the Newton procedure and applying Algorithm 1 to
f(s, τ), it is clear to see that the solution sjσ can be expanded as in (17). Now, observe
that proving that the coefficients cjσ are given by the solutions of Pj is equivalent to
prove that the coefficients of the Weierstrass polynomial W that lies on the Newton
polygon are given by (19) modulus some constant factor. Thus, in order to show this
fact we first notice that, according to Lemma 3.1-(i), ordτ (w0) = n0. Moreover, from
the definition of ni, it is clear to see that ordτ (wi) = ni. Next, since by Theorem 2.1
we have that f = Wb with b(0, 0) 6= 0, and according to Lemma 3.1-(ii) we know that
the first ` derivatives in s and the ñ derivatives in τ are given by

∂`+ñf

∂τ ñ∂s`
=
∑̀
j=0

[
j!

(
`

j

) ñ∑
k=0

(
ñ

k

)
∂ñ−kwj
∂τ ñ−k

∂`−j+kb

∂τk∂s`−j

]
+(21)

∂ñ

∂τ ñ

∑̀
j=0

(
`

j

) m−1∑
k=j+1

k!

(k − j)!
wks

k−j +
m!

(m− j)!
sm−j

 ∂`−jb
∂s`−j

.
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Let υj , αυjN ∪ 0 such that (υj , αυj ) ∈ Π(j); then clearly these points will lie on the
Newton polygon. Furthermore, such points satisfy the relation αυj > αυk for υj < υk.
Therefore, by taking ` = υj and ñ = αυj in (21) it is clear to see from (13) and (14)
that

∂υj+αυj f

∂ταυj ∂sυj

∣∣∣∣
(0,0)

= υj !αυj !wυj ,0b(0, 0).

Then, (19) follows by noting that k = υj and ηk = αυj . Finally, the direction of
crossing follows straightforwardly by condition (20).

Remark 3.10. It is worth mentioning that in the above result, it is not necessary
to assume that n0 < ∞ (i.e., κ 6= 0). In fact, in order to relax such an assumption,
i.e., to consider κ > 0, we have just assume that the j-index will take values in the
set {κ, κ+ 1, . . . , r− 1} and that the solution sjσ will be arranged in (r− κ)-branches
of Puiseux series.

3.4. Higher-Order Analysis. In some situations, the first-order expansion
does not give enough information to analyze the stability of a given solution. Such
situations occur when (20) does not hold, that is, when the coefficient of the first-order
term is purely imaginary. Thus, in order to cope with such a case study and inspired by
the results developed by [23], in the following, we will consider a higher-order analysis.

Let βj , (ij , `j) ∈ Π(j) be given by Algorithm 1. It is not difficult to see that,
in order to compute higher-order terms for the solution sjσ(τ), we can make use of
the change of variables s 7→ τβj (cjσ + s1) in f(s, τ) to get the function f1(s1, τ), and
repeat the same procedure presented in the previous section for this function f1. In
this vein, the solution sjσ can be expressed as

(22) sjσ(τ) = c1τ
βj + c2τ

βj+β
(1)
j + c3τ

βj+β
(1)
j +β

(2)
j + · · · ,

where β
(1)
j is the output of the Algorithm 1 for the function f1, and so on. Now,

according to the Newton procedure, we have that any arbitrary pair (i, ηi) belonging
to the set Π(j) must satisfy ηi + iβj = νj , with a fixed νj ∈ Q. Hence, in order to find

some insights over c2 and β
(1)
j let us define the associated Weierstrass polynomial W1

as W1(s1, τ) := τ−νjW (τβj (cjσ + s1), τ). Then, from all these facts, W1 will be given
as:

W1 (s1, τ)=τ−νj
[
τmβj (c1 + s1)

m
+ wm−1(τ)τ (m−1)βj (c1 + s1)

(m−1)
+ · · ·+ w0(τ)

]
.

Now, since for the first-order term of the solution sjσ, we only need to consider the
terms on Π(j), according to Proposition 3.9, we have that the main coefficients of W
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falling on Π(j) are denoted by al,0, therefore W1 can be rewritten as:

W1(s1, τ) = τ−νj
ij∑

l=ij−1

al,0τ
ηl+lβj (c1 + s1)

l

︸ ︷︷ ︸
=:W

(m)
1 (s1,τ)

+

τ−νj

 ij∑
l=ij−1

(wl − al,0τηl) τ lβj (c1 + s1)
l

+
∑

h6∈Π(j)

whτ
hβj (c1 + s1)

h


︸ ︷︷ ︸

=:W
(r)
1 (s1,τ)

.(23)

Taking into consideration that ηl + lβj = νj , the first summation in (23) can be
reduced as follows:

ij∑
l=ij−1

al,0τ
nl+lβj (c1 + s1)

l
= τνj (c1 + s1)

ij−1 Pj (c1 + s1) ,

= τνj (c1 + s1)
ij−1 sµ1ψ (c1 + s1) ,(24)

where, according to Proposition 3.9, c1 is in general a µ−multiple solution of Pj and

ψ(c1) 6= 0. Thus, W
(m)
1 will be expressed as

W
(m)
1 (s1, τ) = c

ij−1

1 ψ(c1)sµ1 +
(
ij−1c

ij−1−1
1 ψ(c1) + c

ij−1

1 ψ′(c1)
)
sµ+1

1 + · · · .

From the above discussion, it is clear to see that ordτ

(
W

(m)
1

)
≡ 0. Now, since

c
ij−1

1 ψ(c1) = constant 6= 0, we have that W1 can be expressed as:

(25) W1(s1, τ) = w
(1)
0 (τ) + · · ·+ w(1)

µ (τ)sµ1 + · · ·+ w(1)
m (τ)sm1 ,

with ordτ

(
w

(1)
µ

)
= 0, implying that the end point for the Newton polygon of W1 will

be (µ, 0). Bearing in mind these facts, we have the following:

Proposition 3.11. Let s∗ = iω∗ be a m−multiple root of f(s, τ) at τ = τ∗.
Assume that βj and mj for j = κ, κ + 1, . . . , r − 1 are given by the Algorithm 1. If
βj = 1, then the following statements hold:

(i) the equation f(s, τ) = 0 has mj−solutions of the form

(26) sjσ(τ) = iω∗ + cjσ (τ − τ∗) + o (|τ − τ∗|) , σ = 1, . . . ,mj ,

where cjσ is a root of the polynomial Pj defined in (18);
(ii) if cjσ is a simple root of Pj then, there are mj−solutions expanded as a Taylor

series in the form

sjσ(τ) = iω∗ + cjσ (τ − τ∗) + c
(1)
jσ (τ − τ∗)1+β

(1)
j + · · · ,

where β
(1)
j ∈ N.

Proof. Let mj and βj be given by the Algorithm 1.
(i) Since by hypothesis βj = 1, the condition (26) follows straightforwardly from

the Newton procedure.
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(ii) Next, by hypothesis, we have that cjσ is a simple root of Pj . Thus, using the
same arguments as in the previous discussion, we have that µ ≡ 1 implies
that (25) can be written as

W1(s1, τ) = w
(1)
0 (τ) + w

(1)
1 (τ)s1 + · · ·+ w(1)

m (τ)sm1 ,

where ordτ

(
w

(1)
1

)
= 0. Now, since:

w
(1)
0 (τ) = τ−νj

(
w0(τ) + cjσw1(τ)τ + · · ·+ cm−1

jσ wm−1(τ)τm−1 + cmjστ
m
)
,

we have that w
(1)
0 (0) ≡ 0⇒ ordτ

(
w

(1)
0

)
≥ 1. Thus, since according to Theo-

rem 2.1 we know that w
(1)
i are analytic functions, and since ordτ

(
w

(1)
0

)
≥ 1

one gets β
(1)
j ∈ N.

Proposition 3.12. Let s∗ = iω∗ be a m−multiple root of f(s, τ) at τ = τ∗.
Assume that βj, mj and (ij , `j) ∈ Π(j) for j = 0, 1, . . . , r − κ − 1 are given by the
Algorithm 1. If βj = 1/mj, then f(s, τ) = 0 has mj−solutions given by

sjσ(τ) = iω∗ + cjΘσ (τ − τ∗)1/mj + o(|τ − τ∗|1/mj ), σ = 1, . . . ,mj ,

where Θσ = exp
(
i
θj+2π(σ−1)

mj

)
, θj = arg(c

mj
j ) and cj =

∣∣aij−1,0/aij ,0
∣∣1/mj .

Proof. The proof follows straightforwardly from Proposition 3.7.

Proposition 3.13. Let s∗ = iω∗ be a m−multiple root of f(s, τ) at τ = τ∗. Let
βj, mj and (ij , `j) ∈ Π(j) for j = 0, 1, . . . , r − κ − 1 be given by the Algorithm 1.

Assume that βj = 1, cjσ is a mj−multiple root of Pj and dνj+1

τνj+1 f (cjστ, τ)
∣∣∣
τ=0
6= 0,

with νj = nij−1
+ ij−1. Then, there are mj−solutions expanded as a Puiseux Series

in the form

sjσ(τ) = iω∗+cjσ (τ − τ∗)+c
(1)
jσ (τ − τ∗)1+1/mj +o

(
|τ − τ∗|1+1/mj

)
, σ = 1, . . . ,mj ,

where c
(1)
jσ is a solution of the polynomial Pj given in (18), associated to W1.

Proof. Let mj , βj and (ij , `j) be given by the Algorithm 1. First, note that since
βj ≡ 1 clearly the mj−solution will be expanded as:

sjσ(τ) = iω∗ + cjσ (τ − τ∗) + o (|τ − τ∗|) , σ = 1, . . . ,mj .

Now, using similar arguments to the previous case study we have that µ ≡ mj , implies
that (25) can be written as:

W1(s1, τ) = w
(1)
0 (τ) + · · ·+ w(1)

mj (τ)s
mj
1 + · · ·+ w(1)

m (τ)sm1 ,

where ordτ

(
w

(1)
mj

)
= 0. Thus, in order to have β

(1)
j = 1/mj , ordτ

(
w

(1)
0

)
= 1 must be

fulfilled. To see that such a condition hold, note that w
(1)
0 (τ) = τ−νjW (cjστ, τ), and

by Theorem 2.1, we have that f = Wb, where ord (b) = 0 ⇒ ordτ (Wb) = ordτ (W ).
Since

ordτ

(
w

(1)
0

)
= 1⇔ ∂

∂τ
w

(1)
0

∣∣∣∣
τ=0

6= 0,
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we have that
∂

∂τ
w

(1)
0

∣∣∣∣
τ0

6= 0⇔ ∂

∂τ

(
τ−νjf (cjστ, τ)

)∣∣∣∣
τ=0

6= 0.

Finally, by noticing that

∂

∂τ

(
τ−νjf (cjστ, τ)

)∣∣∣∣
τ=0

6= 0⇔
(
τ−νjf ′ − νjτ−νj−1f

)∣∣
τ=0
6= 0,

and since,

(
τ−νjf ′ − νjτ−νjf

)∣∣
τ=0
6= 0⇔ dνj+1

τνj+1
f (cjστ, τ)

∣∣∣∣
τ=0

6= 0,

the proof is completed.

Remark 3.14. Since the Weierstrass polynomial W is derived using the quasi-
polynomial f , thus, instead of considering W1 in Proposition 3.13, it is possible to
consider f1 (s1, τ) := τ−νjf

(
τβj (cjσ + s1) , τ

)
.

4. Numerical Examples. In order to illustrate the effectiveness of the proposed
methodology, in the sequel we propose several examples. Such examples have been
performed by means of the software package DDE-BIFTOOL (see, for instance, [8, 7]).

Example 4.1. As a first example, let us consider the quasi-polynomial given in
Example 3.1. Thus, Table 2 summarizes the results obtained by applying the Algo-
rithm 1 in conjunction with Proposition 3.2 and Proposition 3.9.

Table 2
Results summary for the quasi-polynomial (11).

Initial Data Algorithm Output Z := {z ∈ C : Pj(z) = 0}

m = 3, n0 = 2 r = 0, m0 = 1, β0 = 1 P0(z) := − 4+2iπ
π(−6−5iπ+π2)z + 2

π(−6−5iπ+π2)

Π={(0, 2), (1, 1), (2, 1), (3, 0)} Π
(0)

= {(0, 2), (1, 1)}
{
c0,1 = 1

2+iπ

}
r = 1, m1 = 2, β1 = 1

2 P1(z) := z2 − 4+2iπ
π(−6−5iπ+π2)

Π
(1)

= {(1, 1), (3, 0)}
{
c1,` = −(−1)` 1+i√

π(π−3i)

}

According to Proposition 3.9, the solutions of the quasi-polynomial (11) around
the critical point (i, π), split into two branches:

s0,1(τ) = i +
1

2 + iπ
(τ − π) + o(τ),

s1,`(τ) = i− (−1)
` 1 + i√

π(π − 3i)
(τ − π)1/2 + o(τ1/2), ` = 1, 2.

Finally, since for the solution s∗ = i at τ∗ = π we have that β0 = 1/m0 and
β1 = 1/m1, according to Proposition 3.7, such a solution has the CRS property.
Furthermore, since the solutions are given in two branches with multiplicities m0 and
m1, thus by Propositions 3.11 and 3.12, one root will behave as a Taylor series (s0,1

in Figure 3-(b)), whereas the other branch will behave as a Puiseux series (s1,1 and
s1,2 in Figure 3-(b)).
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Example 4.2. Consider the following quasi-polynomial (borrowed from [13]):

(27) f(s, τ) = (s4 + 2s2 + 2) + 2e−sτ + e−2sτ ,

with a critical point at (s∗, τ∗) = (i, π), and multiplicity m = 2. Now, in order to
determine the constants ni, we compute (9) and thus, one gets:

∂f

∂τ

∣∣∣∣
(i,π)

= 0,
∂2f

∂τ2

∣∣∣∣
(i,π)

= −2 ⇒ n0 = 2,

∂f

∂s

∣∣∣∣
(i,π)

= 0,
∂2f

∂τ∂s

∣∣∣∣
(i,π)

= 2iπ ⇒ n1 = 1,

and since n0 < ∞, this implies that κ = 0. Then, the points on the Newton polygon
for the quasi-polynomial f at the critical point (i, π) are given by the following set:

Π = {(0, n0), (1, n1), (2, 0)} = {(0, 2), (1, 1), (2, 0)}.

After applying the Algorithm 1, we obtain the results summarized in Table 3.

Table 3
Results summary for the quasi-polynomial (27).

Initial Data Algorithm Output Z := {z ∈ C : Pj(z) = 0}

m = 2, n0 = 2 r = 1, m0 = m = 2 β0 = 1 P0(z) := z2 + 4iπ
2π2−8z −

2
2π2−8

Π = {(0, 2), (1, 1), (2, 0)} Π
(0)

= {(0, 2), (1, 1), (2, 0)}
{
c0,1 = − i

π+2 , c0,2 −
i

π−2

}
Since n0 > n1 we are able to use Proposition 3.3, to obtain the first approximation

of the Weierstrass polynomial W (s, τ) = s2 + w1s+ w0. Thus, the coefficients wi(τ)
are given by

w0(τ) =
−2

2π2 − 8
τ2 + o(τ2), w1(τ) =

4iπ

2π2 − 8
τ + o(τ).

Now, following Proposition 3.7 the solutions of the quasi-polynomial f(s, τ) (27)
around the critical pair (s∗, τ∗) = (i, π) have only one branch (r = 1). Moreover,
since β = 1 and the solutions of P0, c0,1 and c0,2 are simple roots (µ = 1), Proposi-
tion 3.11 implies that the solutions can be expanded as the following Taylor series:

s0,1(τ) = i− i

π + 2
(τ − π) + o(τ), s0,2(τ) = i− i

π − 2
(τ − π) + o(τ).

Finally, we have that m0 = 2 and β0 = 1 > 1/m0 then the solution s = i posses
the NRS property. The asymptotic behavior is illustrated in Figure 3-(a).

Example 4.3. Consider the following quasi-polynomial:

(28) f(s, τ) =
(
s4 + 3s2 + 2

)
+
(
s2 + 1

)
e−sτ ,

with critical root at (i, π) and multiplicity m = 2. For this example we have that:

∂n0f

∂τn0
≡ 0, ∀n0 ∈ N⇒ n0 =∞, ∂2f

∂τ∂s

∣∣∣∣
(i,π)

= −2⇒ n1 = 1.
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Figure 3. Root locus behavior: (a) for quasi-polynomial (27) and, (b) quasi-polynomial (11).

Since n0 is not bounded and n1 is finite, we have that κ = 1, implying that we have
1−invariant solution at s = i (denoted as sκ,1 in Figure 3a). Therefore, under these
conditions the Weierstrass polynomial associated to f(s, τ) at (i, τ) is given by

W (s, τ) = (s− i) ((s− i) + w1(τ)) .

For the remaining solution, we apply Algorithm 1. Table 4 summarizes the results.

Table 4
Results summary for the quasi-polynomial (28).

Initial Data Algorithm Output Z := {z ∈ C : Pj(z) = 0}
m = 2, n1 = 1 r = 1, m0 = 1, β0 = 1 P0(z) := z − 4

−8+4iπ

Π={(1, 1), (2, 0)} Π
(0)

= {(1, 1), (2, 0)}
{
c0,1 = 1

−2+iπ

}
Next, in the light of Proposition 3.9, we have:

s1(τ) = i− 2 + iπ

4 + π2
(τ − π) + o(τ).

In addition, since β = 1 and c0 is a simple root of P0, by a direct application of
Proposition 3.11 we conclude that s1 can be expanded as a Taylor series. Such a
behavior is illustrated in Figure 3a.

Example 4.4. Consider the quasi-polynomial,

(29) f(s, τ) =
(
s6 + 3s4 + 3s2 + 2

)
+ 2e−sτ + e−2sτ ,

where s = i is a double root at τ = π. As in the previous examples, we have:

∂2f

∂τ2

∣∣∣∣
(i,π)

= −2⇒ n0 = 2,
∂2f

∂τ∂s

∣∣∣∣
(i,π)

= 2iπ ⇒ n1 = 1.

After applying Algorithm 1 along with Proposition 3.9, Table 5 summarizes the results:
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Figure 4. Root locus behavior: (a) for quasi-polynomial (28) and, (b) quasi-polynomial (29).

Table 5
Results summary for the quasi-polynomial (29).

Initial Data Algorithm Output Z := {z ∈ C : P(z) = 0}

m = 2, n0 = 2 r = 1, m0 = 2, β0 = 1, i−1 = 0 P0(z) := z2 + 2i
π z −

1
π2

Π = {(0, 2), (1, 1), (2, 0)} Π
(0)

= {(0, 2), (1, 1), (2, 0)}
{
c0,1 = −i

π

}
Observe that since <(c0,1) ≡ 0 we do not have enough information to determine

the crossing directions. Now, from Table 5, it can be seen that β0 = 1 and c0,1 is
a multiple solution of P0 with multiplicity m0 = 2. Hence, in the light of Proposi-

tion 3.13, we compute dνj+1

τνj+1 f (cjστ, τ). Taking into account that ν0 = ni−1
+ i−1 = 2,

we have:
d3

dτ3
f

(
−iτ

π
, τ

)∣∣∣∣
τ=0

=
48

π3
.

Since we fulfill all hypothesis of Proposition 3.13, we are able to compute the higher-
order terms. For this purpose, let us consider the function f1 (see Remark 3.14);

(30) f1 (s1, τ) :=
1

τ2
f

(
τ

(
s1 −

i

π

)
, τ

)
,

where we assumed that the critical point (i, π) has been shifted to the origin. Thus, a
direct application of Algorithm 1 to f1 gives the results summarized in Table 6.

Table 6
Results summary for the quasi-polynomial (30).

Initial Data Algorithm Output Z := {z ∈ C : P(z) = 0}

m = 2, n0 = 1 r = 1, m0 = 2, β
(1)
0 = 1/2 P0(z) := z2 + 8

π5

Π = {(0, 1), (1, 1), (2, 0)} Π
(0)

= {(0, 1), (2, 0)}
{
c0,σ = − (−1)

σ
i
(

8
π5

)1/2}
According to Proposition 3.13, the solutions of (11) can be expanded as:

sσ(τ) = i− i

π
(τ − π) + (−1)

σ
i

√
8

π5
(τ − π)1+1/2 + o

(
τ2
)
, σ = 1, 2.
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Finally, since β0 = 1 > 1/m0 the solution s = i has the NRS property, this behavior
is illustrated in Figure 4b.

Example 4.5. Our final example considers the quasi-polynomial,

(31) f(s, τ) = p0 (s) + p1 (s) e−τs − 195.5224416e−2sτ ,

where

p0 (s) := 7.5132152s4 − 15.793592s3 + 387.1503697s2 − 398.192295s+ 4273.394627,

p1 (s) := 13.11465971s2 − 13.78421751s− 305.3204884.

In this case, for τ∗ = 1.902851533, f has two critical roots at ±iω1 = ±i4.059829001
and ±iω2 = ±i5.73041116, both of multiplicity m = 2. Following similar steps as in
the previous examples, we have for both critical points:

∂f

∂τ

∣∣∣∣
(iω1,τ∗)

= 2474.67− i1038.15⇒ n
(1)
0 = 1,

∂2f

∂τ∂s

∣∣∣∣
(iω1,τ∗)

= −5622.84 + i3865.69⇒ n
(1)
1 = 1,

∂f

∂τ

∣∣∣∣
(iω2,τ∗)

= −3750.89− i3039.38⇒ n
(2)
0 = 1,

∂2f

∂τ∂s

∣∣∣∣
(iω2,τ∗)

= 5674.11 + i11481.4⇒ n
(2)
1 = 1.

In the above computations we have adapted the notations n
(`)
i , where the super index

` relates the critical root iω`, for ` ∈ {1, 2}. After applying Algorithm 1 along with
Proposition 3.9, Table 7 summarizes the results for both roots:

Table 7
Results summary for the quasi-polynomial (31).

Initial Data Algorithm Output Z := {z ∈ C : Pj(z) = 0}

m = 2, n
(1)
0 = n

(2)
0 = 1 r = 1, m0 = m = 2, β0 = 1

2 P0(z) := z2 + (0.290279− i2.24248)

Π= {(0, 1), (1, 1), (2, 0)} Π
(0)

= {(0, 1), (2, 0)} {c0,σ = (−1)
σ

(0.9927 + i1.12948)}
Π= {(0, 1), (1, 1), (2, 0)} r = 1, m0 = m = 2, β0 = 1

2 P0(z) := z2 + (0.290279− i3.16524)

Π
(0)

= {(0, 1), (2, 0)} {c0,σ = (−1)
σ

(1.20172 + i1.31697)}

According to Proposition 3.13, both solutions of (31) can be expanded as:

s1,σ(τ) = i4.0598 + (−1)
σ

(0.9927 + i1.1294) (τ − 1.9028)
1/2

+ o
(
|τ − 1.9028|1/2

)
,

s2,σ(τ) = i5.7304 + (−1)
σ

(1.2017 + i1.3169) (τ − 1.9028)
1/2

+ o
(
|τ − 1.9028|1/2

)
,

where σ ∈ {1, 2}. Finally, since in both cases β0 = 1/2 and m0 = m, we conclude that
both solutions have the CRS property. Moreover, since the solutions have the CRS
property, according to Corollary 3.8 (i), we know that one of the solutions (for each
iω`) will enter the RHP, whereas the other one will enter the LHP. Now, it is worth
mentioning that the periodicity of eiω implies that iω` will be also a critical root for
all τ ∈ {τ∗ + 2kπ

ω`
: k ∈ N}. However, in such a case the critical roots will be simple.

We have shown several solutions s`,k (τ) , k ∈ N, ` ∈ {1, 2} all of them simples, for
τ ∈ (2.7, 5.1) and each s`,k touches the imaginary axis exactly at the critical delay
values τ (`, k) = τ∗ + 2kπ

ω`
.
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5. Concluding Remarks. This paper is devoted to the analysis of the asymp-
totic behavior of multiple imaginary roots for quasi-polynomials of retarded-type. The
presented approach is based on the Weierstrass Preparation Theorem which allows to
deeply analyze the local behavior of a given critical solution. Some algebraic proper-
ties have been presented to characterize the branch structure for all critical solutions
of the quasi-polynomial f(s, τ). In addition, we have shown that the leading terms of
the Puiseux (or Taylor) expansions can be derived in a simple manner by computing
the solutions of a given polynomial Pj . We have also presented a characterization
for the critical solutions (CRS, RS, NRS). Such classification have been shown to
be extremely useful in analyzing the stability behavior of such a solutions. Finally,
we gave some insights concerning the higher-order terms for the Puiseux (or Taylor)
expansion of the critical solutions. Such a characterizations have been shown to be
very convenient to determine the series expansion nature.
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