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VAPOUR-LIQUID PHASE TRANSITION AND METASTABILITY

Hala Ghazi1, Francois James2 and Hélène Mathis1

Abstract. The paper deals with the modelling of the relaxation processes towards thermodynamical
equilibrium in a liquid-vapour isothermal mixture. Focusing on the van der Waals equation of state,
we construct an constrained optimization problem using Gibbs’ formalism and characterize all possible
equilibria: coexistence states, pure phases and metastable states. Coupling with time evolution, we
develop a dynamical system whose equilibria coincide with the minimizers of the optimization problem.
Eventually we consider the coupling with hydrodynamics and use the dynamical system as a relaxation
source terms in an Euler-type system. Numerical results illustrate the ability of the whole model to
depict coexistence and metastable states as well.

Introduction

This paper deals with the modelling of vapour-liquid phase transition and the relaxation towards the thermo-
dynamical equilibrium in liquid-vapour mixture. Focusing on isothermal problems, vapour bubbles may appear
in a liquid through a decompression process, which leads to a pressure decrease below the saturation pressure
and cavitation. If the process of depressurization is slow or weak enough, then the system may remain entirely
liquid, although the pressure is below the saturation pressure. There is a delay in the phase transition, which
may be shortened by a (strong enough) dynamic perturbation. This liquid state is commonly called metastable.
A similar behavior holds in a vapour system submitted to a compression. All these phenomena result from
the coupling between hydrodynamics and thermodynamics, the former inducing dynamical perturbations of
thermodynamical equilibrium states.

Our purpose is therefore to provide a characterization of thermodynamical equilibria which on the one hand
copes with coexistence (that is saturation of liquid and vapour), pure phases and metastable states, on the
other hand can be coupled in a consistent way to the equations of hydrodynamics, in the present case the
isothermal Euler system. In a first step, we obtain a static characterization of the equilibrium states of a
fluid described by a single nonconvex energy, namely the van der Waals equation of state. Following Gibbs’
formalism, this is described by a constrained minimization problem, introducing heterogeneity in the system.
In doing so, we recover mathematical formulations of classical results in thermodynamics, such as the Gibbs
phase rule and the Maxwell equal area construction. In a second step, we proceed towards the coupling to time
evolution equations by providing an alternative characterization, precisely in terms of dynamical perturbations.
Pure phases, metastable states and coexistence states are now attractive points of a carefully chosen dynamical
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system, with specific basins of attraction. In particular, metastability corresponds to some competition between
two such basins.

In the first section of this paper we describe the Gibbs formalism for the van der Waals equation of state, and
give the static characterizations of equilibrium states. The second section is devoted to the study of dynamical
fluctuations around these states, with a particular focus on the precise description of the basins of attraction.
Finally, in Section 3 we provide numerical illustrations of the coupling between thermodynamics and the Euler
equations, following a strategy of relaxation with the thermodynamically consistent model previously developed.

The model we propose here is a variant of the one described in [8], and brings some precisions on the
analysis of the dynamical system. We refer to this paper for complementary results, in particular concerning
the coupling, and a more complete reference list.

1. Thermodynamical setting

This section is devoted to the description of the Gibbs formalism to describe thermodynamical equilibria. We
show how to go from simple, homogeneous systems, which obviously cannot describe two-phase fluids, to more
complex, heterogeneous systems. We investigate the notion of stable equilibria and give their characterization
through the minimization of a nonconvex function.

1.1. Simple system modelling

Consider a single fluid with mass M > 0 and volume V > 0, assumed to be homogeneous and at rest, at a
fixed temperature T . Then its description is completed by another quantity called the Helmholtz free energy
F . According to the Gibbs’ formalism, we say that the fluid is at equilibrium if its Helmholtz free energy is a
function, also denoted by F , of its mass M and volume V :

F : (M,V ) 7→ F (M,V ). (1)

All the variables involved here are extensive, which means that they have the same scaling as the volume V : this
corresponds to the notion of homogeneity of the sample. As a consequence, the function F has to be positively
homogeneous of degree 1:

∀λ > 0, F (λM,λV ) = λF (M,V ). (2)

Without loss of generality, we assume here that F is of class C2 with respect to V and M .
Two fundamental quantities can then be considered, namely the pressure p and the chemical potential µ,

defined by

p = −∂F
∂V

(M,V ), µ =
∂F

∂M
(M,V ). (3)

Notice that these quantities are defined only when the system is at equilibrium. We recover the classical
thermodynamic relation for isothermal fluids

dF = −pdV + µdM. (4)

From homogeneity, we obtain the so-called Euler relation, which is known in this context as Gibbs’ relation:

F (M,V ) = ∇F (M,V ) ·
(
M
V

)
= µM − pV. (5)

An immediate computation shows that the pressure and the chemical potential are positively homogeneous
of degree 0. In other words, they do not scale with the volume. Such quantities are called intensive quantities,
typical other ones, which are defined out of equilibrium as well, are the specific volume τ = V/M , and the
density ρ = M/V .
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In the sequel, we shall work with intensive variables, so we rewrite all the preceding relations in terms of the
density ρ. We first introduce the Helmholtz free energy per unit volume f

f(ρ) = f

(
M

V

)
=

1

V
F (M,V ) = F

(
M

V
, 1

)
. (6)

Keeping the same notations p and µ, the pressure and the chemical potential as functions of the density ρ are
given by

p(ρ) = p

(
M

V

)
= −∂F

∂V

(
M

V
, 1

)
, µ(ρ) = µ

(
M

V

)
=

∂F

∂M

(
M

V
, 1

)
. (7)

Thus we obtain the intensive form of the Gibbs relation (5)

f(ρ) = ρµ(ρ)− p(ρ), (8)

together with the following relations

µ(ρ) = f ′(ρ), p(ρ) = ρf ′(ρ)− f(ρ), ρµ′(ρ) = p′(ρ). (9)

A formula relating a thermodynamical quantity (e.g. the free Helmholtz energy or the pressure) to the mass
and volume, or to the density, is called an equation of state (EoS). Usually equations of state are given in an
incomplete way, for instance we only know the pressure law p(ρ), as in the usual perfect gases law: p(ρ) = RTρ,
T being the given temperature and R the gas constant. The formalism we use here requires the complete
equation of state, that is the energetic representation (1). Recovering such a representation from a partial
equation of state can be a challenge, see e.g. [1, 2]. In the simple case of the perfect gas law, the function f is
convex, which turns out not to be appropriate to represent phase transitions.

We shall use in the following the so-called reduced complete van der Waals equation of state. The van
der Waals law is not a physically relevant EoS, but it enjoys the basic properties that allow a toy-model for
phase transitions. It is the first example of so-called third order equations of state [13]. It consists of a family
of functions of ρ, depending on the temperature T as a parameter. There exists a critical temperature TC
above which this function is convex (the pressure is monotone), and below which it is not convex: there are
two inflexion points at densities ρ− < ρ+, between which the pressure is a decreasing function. For T = TC ,
there exists a unique inflexion point, which defines a critical density ρC and a critical pressure pC . Considering
normalized critical quantities, that is setting ρC = 1, pC = 1 and TC = 1, the reduced van der Waals EOS reads

f(ρ) = −3ρ2 +
8

3
ρθ (log(3ρ/(3− ρ))− 1) ,

p(ρ) = −3ρ2 +
8ρθ

3− ρ
,

µ(ρ) = −6ρ+
8

3
θ log(3ρ/(3− ρ)) +

8

3
θρ/(3− ρ)

(10)

for 0 < ρ < 3. For more details on this classical nonconvex EoS, we can refer among many references to [1, 9].

1.2. Inhomogeneity and equilibria

In the previous description we assumed homogeneity of the system. This is obviously no longer relevant to
cope with phase transition, so that we introduce inhomogeneity into the model, and therefore have to investigate
its thermodynamical stability. For given mass M and volume V , we split the system into an arbitrary number
I ≥ 1 of simple subsystems, each one being described by the same EoS. Each subsystem has a mass Mi, a volume
Vi and its free energy is given by F (Mi, Vi), with the same F function, describing the fluid under consideration.
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Assuming immiscibility of the subsystems, we recover total mass and volume by

M =

I∑
i=1

Mi, V =

I∑
i=1

Vi, (11)

and the total free energy is given by
∑I
i=1 F (Mi, Vi).

Among these decompositions, we have to select the physically admissible ones: this is the notion of thermo-
dynamical stability. According to the Gibbs’ formalism, the stable states are those which minimize the total
Helmholtz free energy F under the constraints (11). Thus we have to solve

argmin

{
I∑
i=1

F (Mi, Vi), I ≥ 1, V =

I∑
i=1

Vi, M =

I∑
i=1

Mi

}
. (12)

It is more convenient to reformulate the problem in terms of intensive variables, introducing the partial densities
ρi = Mi/M and volume fractions αi = Vi/V , 0 ≤ αi ≤ 1. A straightforward computation leads to the equivalent
formulation of problem (12):

argmin

{
I∑
i=1

αif(ρi), I ≥ 1,

I∑
i=1

αi = 1,

I∑
i=1

αiρi = ρ

}
. (13)

Two remarks are in order here. First we do not take into account the positivity constraints on the densities
and volume fractions here, we choose to treat them in a second step, see below. Next, and more important, the
number of subsystems I itself is a varying parameter in the optimization problem.

This last problem is actually related to the so-called Gibbs phase rule, which gives an upper bound to the
number of possibly coexisting phases [1, 10]. A mathematical analogue of this rule results from the analysis of
the minimization problem, more precisely from Carathéodory’s theorem which states that the set of minima for
the problem (13) for a general function f in Rn is a (possibly degenerate) simplex. In other words, for n = 1 as
in our case, we have I ≤ 2, that is at most two subsystems may coexist, which are now called phases, namely
the vapour phase and the liquid phase. For more details, see for instance [11] in the general context and [4, 8]
for the application to thermodynamics.

Following this, we consider now I = 2 and define the Helmoltz free energy of the system by

F(α1, α2, ρ1, ρ2) = α1f(ρ1) + α2f(ρ2). (14)

Then the minimization problem rewrites

argmin {F(α1, α2, ρ1, ρ2), α1 + α2 = 1, α1ρ1 + α2ρ2 = ρ} . (15)

Since the value of I is fixed now, we can recover the case I = 1 in (15) either by αi = 0 or ρ1 = ρ2. Notice that
if ρ1 6= ρ2, we can solve for αi in the constraints above:

α1 =
ρ2 − ρ
ρ2 − ρ1

, α2 =
ρ− ρ1
ρ2 − ρ1

. (16)

Without loss of generality, we can assume ρ2 > ρ1, so that the positivity of αi amounts to ρ1 ≤ ρ ≤ ρ2.
Introducing the Lagrange multipliers λα and λρ corresponding to the constraints in (15), we obtain straight-

forwardly the optimality conditions for the minima in (15)

(i) f(ρ1) + λα + ρ1λρ = 0, (iii) α1(µ(ρ1) + λρ) = 0,
(ii) f(ρ2) + λα + ρ2λρ = 0, (iv) α2(µ(ρ2) + λρ) = 0.

(17)
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For two states a and b we introduce the relative Helmholtz free energy of a with respect to b:

f(a|b) = f(a)− f(b)− µ(b)(a− b). (18)

Lemma 1.1. The equilibrium states are

(1) Pure states:
• ρ1 = ρ2 = ρ, αi undetermined
• α1 = 0, α2 = 1, ρ2 = ρ > ρ1 and ρ1 = ρa1 solution to f(ρa1 |ρ) = 0,
• α1 = 1, α2 = 0, ρ1 = ρ < ρ2 and ρ2 = ρa2 solution to f(ρa2 |ρ) = 0.

(2) Coexistence states: ρ1 < ρ < ρ2, with αi given by (16) and

µ(ρ1) = µ(ρ2) = µ∗ and p(ρ1) = p(ρ2) = p∗, (19)

which uniquely define the couple of saturation densities ρ∗1 < ρ− < ρ+ < ρ∗2, as well as the saturation
pressure p∗ and saturation chemical potential µ∗.

Proof. In the pure state case, if ρ1 = ρ2 = ρ, the solution to the optimality conditions is trivial. Assume
ρ2 6= ρ1, then we can use (16) to compute αi. If α1 = 0, then ρ2 = ρ and α2 = 1, so that µ(ρ2) = −λρ from
(17)-(iii) and (iv). From this we get f(ρ1) − f(ρ2) − µ(ρ2)(ρ1 − ρ2) = 0, that is f(ρ1|ρ) = 0. The last case
in item (1) is treated in the same way. For the coexistence case, we use first (17)-(iii) and (iv) which gives
µ(ρ2) = −λρ = µ(ρ1) since αi 6= 0. Next we report this in (17)-(i) and (ii) to obtain f(ρi)− ρiµ(ρi) = −λα, the
equality of pressures follows then from (9). �

The above equality of pressures and chemical potentials (19) can be rewritten in two equivalent ways:

• equality of the relative free energies:

f(ρ∗2|ρ∗1) = f(ρ∗1|ρ∗2) = 0; (20)

• Maxwell’s area rule on the chemical potential, see [8]:∫ 1

0

µ(ρ2 + t(ρ1 − ρ2))dt = µ(ρ∗1) = µ(ρ∗2). (21)

The first property will be used to study the dynamical systems in the following section. The second one is
another classical characterization of coexistence states. Indeed the van der Waals Helmoltz free energy is non-
convex in the so-called spinodal zone. In the pressure-density plane, for a temperature T below the critical
temperature TC , the spinodal zone corresponds to the domain where the pressure decreases with the density. It
is delimited by the densities ρ− and ρ+, see Figure 1-left. It is well-known that states belonging to the spinodal
zone are unstable. A classical regularization of the van der Waals EOS consists in replacing the function f by
its convex hull, or equivalently by its Fenchel biconjugate f∗∗, which turns out to be characterized precisely by
the minimization problem (15)

f∗∗(ρ) = inf {α1f(ρ1) + α2f(ρ2), α1 + α2 = 1, α1ρ1 + α2ρ2 = ρ} . (22)

Once again, we refer to [11] for the general mathematical results and to [2,6] for applications in thermodynam-
ics. The computation of f∗∗ amounts to define the two saturation densities ρ∗1 < ρ∗2 satisfying (19), for the
temperature T , and replace both pressure and chemical potential by the constants p∗ and µ∗ , for all states in
between ρ∗1 and ρ∗2, see Figure 1. These are the so-called Maxwell lines, and for the chemical potential the areas
above and below this line are equal: this is the meaning of (21). These states correspond to coexistence states,
and the set of all coexistence densities defined for all temperatures below TC is called the saturation dome. The
metastable zones correspond to the states belonging to the saturation dome outside the spinodal zone. Observe
that the metastable zones [ρ∗1, ρ

−] and [ρ+, ρ∗2] correspond to monotone branches of the van der Waals pressure.
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Figure 1. Characteristic parameters for T = 0.85.
Saturation densities: magenta |ρ∗1 = 0.31972996451885, red |ρ∗2 = 1.8071403273364

Inflexion densities: blue |ρ− = 0.5810799446067, cyan |ρ+ = 1.4888047089018
Maxwell lines: green — p(ρ∗1) = p(ρ∗2) = 0.504491649787487, µ(ρ∗1) = µ(ρ∗2) = −3.97717851100986

We emphasize that the necessary conditions in Lemma 1.1 include all equilibrium states, regardless of their
stability. In particular, we recover in item (1) the complete van der Waals curve, including physically unstable
states (spinodal zone), metastable states and pure stable states. To proceed further a classical way consists in
studying the local convexity of F in (14). We prefer here, following [8], to introduce a relaxation towards the
equilibrium states, by means of a dynamical system.

2. A revisited dynamical system and its attraction basins

To build the appropriate dynamical systems, we impose two basic criteria, namely

• long-time equilibria coincide with the physically relevant equilibria in Lemma 1.1,
• the free Helmholtz energy is dissipated along trajectories.

Such dynamical systems in some sense simulate the fluctuations in the thermodynamical system. Since the
number of degrees of freedom in the constraints is 2, we need only to provide a dynamical system of dimension
2. Several choices are possible to define the set of extended variables. We propose here to use the partial
densities (ρ1, ρ2), which are naturally involved in the minimization problem. Even within this set, the choice of
the dynamical system is not unique.

2.1. Defining the dynamical system

We set r = (ρ1, ρ2), and want to use relation (16) to define αi(r) and thus reduce the number of variables
to 2. As mentioned before, to ensure in addition the positivity of the volume fractions, we must assume in this
section that

0 <ρ1 ≤ ρ ≤ ρ2 < 3 and ρ1 < ρ2. (23)

In this context, the Helmholtz free energy of the system becomes a function of r, still denoted by F :

F(r) = α1(r)f(ρ1) + α2(r)f(ρ2). (24)

Using

∇α1(r) = −∇α2(r) =
1

ρ2 − ρ1

(
α1(r)
α2(r)

)
,
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we obtain

∇F(r) =
1

ρ2 − ρ1

(
α1(r)

(
p(ρ2)− p(ρ1)− ρ2(µ(ρ2)− µ(ρ1))

)
α2(r)

(
p(ρ2)− p(ρ1)− ρ1(µ(ρ2)− µ(ρ1))

)) =
1

ρ2 − ρ1

(
− α1(r)f(ρ2|ρ1)
α2(r)f(ρ1|ρ2)

)
, (25)

where f(ρ2|ρ1) is the relative energy of ρ2 with respect to ρ1, as defined in (18). Both F and ∇F are defined
only for ρ1 < ρ2, however we have the following result.

Lemma 2.1. The function F has a C1 extension in r̄ = (ρ, ρ)T . Still denoted by F , it is defined by

F(r̄) = f(ρ), ∇F(r̄) =

(
0
0

)
.

Proof. For 0 < αi < 1, we note that ρi − ρ = O(ρ2 − ρ1) and then f(ρi) = f(ρ) + µ(ρ)(ρi − ρ) + o(ρ2 − ρ1), so
that F(r) = f(ρ) + o(ρ2 − ρ1).

Now concerning the gradient of F , we have f(ρ2|ρ1) = f(ρ2)−f(ρ1)−µ(ρ1)(ρ2−ρ1) = O((ρ2−ρ1)2) provided
f is C2. Therefore

α1(r)f(ρ2|ρ1) =
ρ2 − ρ
ρ2 − ρ1

f(ρ2|ρ1) = (ρ2 − ρ)O(ρ2 − ρ1),

which tends to 0 as (ρ1, ρ2)→ (ρ, ρ). The same holds true for the second component. �

We address the dissipation of the free energy along its trajectories: d/dtF(r(t)) = ∇F(r) · ṙ(t) ≤ 0. Then the
most obvious choice would be ṙ = −∇F(r), which gives d/dtF(r(t)) = −|∇F(r)|2 ≤ 0. However this right-hand
side is defined only for ρ1 < ρ2 and this may lead to numerical issues close to the pure phase equilibrium point
(ρ, ρ). A slight modification is obtained by multiplying the rhs by ρ2 − ρ1, leading to{

ρ̇1 = + (ρ2 − ρ)f(ρ2|ρ1),

ρ̇2 = − (ρ− ρ1)f(ρ1|ρ2),
(26)

which yields d/dtF(r(t)) = − α2
1f(ρ2|ρ1)2 − α2

2f(ρ1|ρ2)2 ≤ 0. This dynamical system has exactly the same
equilibrium states as the minimization problem, but its drawback is that it does not preserve the positivity of
αi. So in the end, we turn to {

ρ̇1 = + (ρ− ρ1)f(ρ2|ρ1),

ρ̇2 = − (ρ2 − ρ)f(ρ1|ρ2),
(27)

which leads to
d

dt
F(r(t)) = ∇F(r) · ṙ(t) = − α1(r)α2(r)

(
f(ρ2|ρ1)2 + f(ρ1|ρ2)2

)
≤ 0, (28)

provided αi remain nonnegative for all times. But this is immediate from the structure of the right-hand side.
Notice also that the diagonal {ρ1 = ρ2} is preserved in time since then, obviously, f(ρ1|ρ2) = f(ρ2|ρ1) = 0.
Hence the inequality ρ2 > ρ1 is also preserved for all times.

Proposition 2.2 (Equilibrium states). The equilibrium states for system (27) are

(1) Coexistence states: r∗ = (ρ∗1, ρ
∗
2)T , α∗1 =

ρ∗2 − ρ
ρ∗2 − ρ∗1

, α∗2 =
ρ− ρ∗1
ρ∗2 − ρ∗1

, for ρ∗1 ≤ ρ ≤ ρ∗2.

(2) Pure phases:
(a) r̄ = (ρ, ρ)T , αi undefined, ∀ρ ∈]0, 3[,
(b) r̄1 = (ρ, ρ̄2)T where ρ̄2 > ρ satisfies f(ρ|ρ̄2) = 0, ᾱ2

1 = 1, ᾱ2
2 = 0, for ρ− ≤ ρ ≤ ρ∗2 or ρ > ρ+,

(c) r̄2 = (ρ̄1, ρ)T where ρ̄1 < ρ satisfies f(ρ|ρ̄1) = 0, ᾱ1
1 = 0, ᾱ1

2 = 1, for ρ∗1 ≤ ρ ≤ ρ+ or ρ < ρ−.
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Proof. Let F(r) be the right-hand side of (27), the equilibria of the dynamical system are given by F(r) = 0, so
that we have three cases:

• ρ1 = ρ with
– ρ2 = ρ, which leads to case (2a);
– ρ2 > ρ and f(ρ|ρ2) = 0, this is case (2b). Since f(b|a) = 0 means that the tangent to the graph

of f in a intersects the graph of f in b, a solution to f(ρ|ρ2) = 0 may exist only in two situations,
namely

ρ+ < ρ2 < ρ∗2, for ρ∗1 < ρ < ρ+, (29)

ρ− < ρ2 < ρ+, for ρ < ρ−; (30)

• ρ2 = ρ, by similar arguments to the previous case, we recover on the first hand the case (2a), on the
second hand the case (2c);

• ρ2 > ρ > ρ1 and f(ρ2|ρ1) = f(ρ1|ρ2) = 0. This leads to ρi = ρ∗i , that is the coexistence case (1).

�

We emphasize here that the equilibrium states r̄ = (ρ, ρ) are valid for all values of ρ and go over the whole
van der Waals curve. This is in accordance with the definition of thermodynamical equilibrium. To go further
and identify the physically admissible equilibrium states, we must investigate their stability and attractivity.

Proposition 2.3 (Attractivity). The equilibrium states are classified as follows:
• r̄ = (ρ, ρ) is a strongly degenerate critical point,
• r∗ = (ρ∗1, ρ

∗
2) is an attractive point,

• r̄i, i = 1, 2 are unstable hyperbolic points.

Proof. We compute the Jacobian matrix of F:

DrF(r) =

(
−f(ρ2|ρ1) 0

0 f(ρ1|ρ2)

)
+

(
−(ρ− ρ1)(ρ2 − ρ1)µ′(ρ1) (ρ− ρ1)

(
µ(ρ2)− µ(ρ1)

)
(ρ2 − ρ)

(
µ(ρ2)− µ(ρ1)

)
−(ρ2 − ρ)(ρ2 − ρ1)µ′(ρ2)

)
. (31)

In the coexistence case (1) in Proposition 2.2, we have f(ρ∗2|ρ∗1) = f(ρ∗1|ρ∗2) = 0 and µ(ρ∗1) = µ(ρ∗2), so that the
eigenvalues λi(r

∗), i = 1, 2 read

λ1(r∗) = −(ρ− ρ∗1)(ρ∗2 − ρ∗1)µ′(ρ∗1) < 0, λ2(r∗) = −(ρ∗2 − ρ)(ρ∗2 − ρ∗1)µ′(ρ∗2) < 0

So this is an attractive equilibrium point.
In case (2a) of pure phases, one has ρ1 = ρ2 = ρ, then DrF(r̄) = 0 and we have a strongly degenerate

equilibrium point.
Finally, the case (2b) leads to

DrF(r̄1) =

(
−f(ρ2|ρ) 0

0 0

)
+

(
0 0

(ρ2 − ρ)
(
µ(ρ2)− µ(ρ)

)
−(ρ2 − ρ)2µ′(ρ2)

)
.

The eigenvalues are therefore λ1(r̄1) = −f(ρ2|ρ) and λ2(r̄1) = −(ρ2 − ρ)2µ′(ρ2).
Thus in the case (29), we have λ1(r̄1) > 0 and λ2(r̄1) < 0 (again by convexity arguments), while in the case

(30), we have λ2(r̄1) > 0 and λ1(r̄1) < 0. In both cases we have an hyperbolic equilibrium. Case (2c) is treated
in a similar way. �

To complete the study of equilibrium states, in particular to cope with the degenerate state r̄, we investigate
the attraction basins for r̄ and r̄∗, which turn out to represent the physically interesting states, namely the
pure phases including the metastable states and the coexistence states. We do not consider here the hyperbolic
equilibrium states, since they are unstable.
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We introduce the following functions, where the index P stands for Pure phase and C for Coexistence:

GP (r) = F(r)− ρµ(ρ) + p(ρ) = F(r)− f(ρ), (32)

GC(r) = F(r)− ρµ∗ + p∗ = F(r)− f∗∗(ρ), (33)

where f∗∗ is the convex hull of f , as given by (22). Notice that for all r, we have GP (r) = GC(r) for ρ /∈]ρ∗1, ρ
∗
2[,

and GP (r) ≤ GC(r) for ρ ∈ [ρ∗1, ρ
∗
2]. These two functions are candidates to be Lyapunov functions, and we have

indeed the following proposition.

Proposition 2.4 (Basins of attraction). The basins of attraction of the equilibrium states are given by the
following Lyapunov functions and their domains of definition.

• In the spinodal zone, that is ρ ∈]ρ−, ρ+[, GC is a Lyapunov function on the whole domain ]0, ρ[×]ρ, 3[.
• In the pure stable zones, that is ρ ≤ ρ∗1 or ρ ≥ ρ∗2, GP is a Lyapunov function on the whole domain

]0, ρ[×]ρ, 3[.
• In the metastable zones, that is ρ ∈ [ρ∗1, ρ−] or ρ ∈ [ρ+, ρ

∗
2], there are two basins of attraction:

– a pure phase basin ΩP where GP is a Lyapunov function,
– a coexistence basin ΩC = (]0, ρ[×]ρ, 3[) \ ΩP where GC is a Lyapunov function.

More precisely, in the case of metastable vapour, ρ ∈ [ρ∗1, ρ−], we have

ΩP =]0, ρ
1
[×]ρ, 3[∪]ρ

1
, ρ[×]ρ, ρ2(ρ1)[,

where ρ
1

is defined by ρ2(ρ
1
) = ρ̄2 defined in in Proposition 2.2-(2b), and ρ2(ρ1) is an implicit function

associated to

ϕ(ρ1, ρ2) = (ρ2 − ρ)
(
f(ρ1)− f(ρ)

)
− (ρ1 − ρ)

(
f(ρ2)− f(ρ)

)
, (34)

A similar characterization holds in the liquid metastable zone.

Proof. Three properties of Lyapunov functions are satisfied by construction:

• GP (r̄) = 0 and GC(r̄∗) = 0,
• since ∇GP (r) = ∇GC(r) = ∇F(r), we obtain as well ∇GP (r̄) = ∇GC(r∗) = 0,

• for the same reason, and using (28), we have
d

dt
GP (r(t)) =

d

dt
GP (r(t)) ≤ 0.

Thus we are left with positivity, which we study for the three above zones.
Spinodal zone: ρ ∈]ρ−, ρ+[. By definition of f∗∗ we have GC(r) > 0 if r 6= r∗. Then the attraction

basin corresponds to the set of states r satisfying (23), that is ρ ∈]ρ∗1, ρ
∗
2[. Notice that for any ρ in this region

GP (r) < 0 in a neighbourhood of r̄.
Pure stable zones: ρ ≤ ρ∗1 or ρ ≥ ρ∗2. First we rewrite GP (r) = α1(r)f(ρ1|ρ) + α2(r)f(ρ2|ρ). Direct

investigations show that f(ρ1|ρ) > 0 and f(ρ2|ρ) > 0 for such values of ρ. Hence GP (r) > 0 for ρ1 < ρ < ρ2.
Therefore GP is Lyapunov function on the domain 0 < ρ1 < ρ < ρ2 < 3.

Metastables zones. We study the domain where GP is positive. Notice that GP (ρ, ρ2) = GP (ρ1, ρ) = 0
for any ρ1 and ρ2. Then one can rewrite GP (r) = α1(r)

(
f(ρ1) − f(ρ)

)
+ α2(r)

(
f(ρ2) − f(ρ)

)
. Thus we have

GP (r) > 0 if and only if
f(ρ1)− f(ρ)

ρ1 − ρ
<
f(ρ2)− f(ρ)

ρ2 − ρ
. (35)

The inequality (35) holds true in a neighbourhood of ρ, provided that ρ belongs to a zone of strict convexity
of F , that is ρ ∈]0, ρ−[∪]ρ+, 3[. It is in particular the case in the two metastable zones. We study in more
details the attraction basins of the metastable vapour zone ρ ∈]ρ∗1, ρ−[, the proof being similar for the liquid
metastable zone. The question is now to specify the domain of r such that ρ1 < ρ < ρ2 and GP (r) > 0. To do
so, we consider the equation

f(ρ1)− f(ρ)

ρ1 − ρ
=
f(ρ2)− f(ρ)

ρ2 − ρ
. (36)
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First we notice that when ρ1 → ρ, the left-hand side goes to µ(ρ). Then the solution tends to ρa2 , defined
by f(ρa2 |ρ) = 0, see Lemma 1.1 item (1). Now when ρ1 decreases to 0, we observe that ρ2(ρ1) increases
up to a value ρ2 such that the line with slope (f(ρ1) − f(ρ))/(ρ1 − ρ) is tangent to the graph of f , that is
µ(ρ2) = (f(ρ1) − f(ρ))/(ρ1 − ρ). From (36), we obtain µ(ρ2) = (f(ρ2) − f(ρ))/(ρ2 − ρ), that is f(ρ|ρ2) = 0,
which determines ρ̄2 as in Proposition 2.2-(2b). Therefore

• for ρ1 ∈]ρ
1
, ρ[, (35) holds (that is GP (r) > 0) if and only if ρ2 < ρ2(ρ1);

• for ρ1 ∈]0, ρ
1
[, (35) is satisfied for any ρ2 > ρ.

More insight on the function ρ2(ρ1) is obtained by rewriting (36) as

ϕ(ρ1, ρ2) = (ρ2 − ρ)
(
f(ρ1)− f(ρ)

)
− (ρ1 − ρ)

(
f(ρ2)− f(ρ)

)
= 0.

The partial derivatives of ϕ read

∂ρ1ϕ = (ρ2 − ρ)µ(ρ1)−
(
f(ρ2)− f(ρ)

)
, ∂ρ2ϕ = f(ρ1)− f(ρ) + (ρ− ρ1)µ(ρ2).

Convexity properties of f ensure that µ(ρ1) <
(
f(ρ1) − f(ρ)

)
/(ρ1 − ρ) =

(
f(ρ2) − f(ρ)

)
/(ρ2 − ρ). Then

∂ρ1ϕ < 0. On the other hand, ∂ρ2ϕ = 0 for ρ1 = ρ and r = (ρ
1
, ρ̄2) as defined above. It remains to

study the sign of ∂ρ2ϕ on ]ρ
1
, ρ[. Let ρ2 → ρ. Since f is convex in a neighbourhood of ρ, it holds µ(ρ2) >(

f(ρ2)− f(ρ)
)
/(ρ2 − ρ) =

(
f(ρ1)− f(ρ)

)
/(ρ1 − ρ). Then ∂ρ2ϕ < 0. Thus the implicit function theorem applies

and ρ′2(ρ1) = −∂ρ1ϕ/∂ρ2ϕ < 0 for ρ1 ∈]ρ
1
, ρ[, with infinite derivative in ρ

1
and ρ. In conclusion GP is a

Lyapunov function for the attraction basin defined by ]0, ρ
1
[×]ρ, 3[∪]ρ

1
, ρ[×]ρ, ρ2(ρ1)[. �
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Figure 2. Stable equilibrium states and attraction basins for (27): pure gaseous zone (left) –
pure gaseous metastable zone (center) – spinodal zone (right). The blue areas refer to nonat-
tainable states according to (23). The stable equilibrium points appear in red. The attraction
basins are in white, except for the metastable basin in green.

3. Isothermal Euler system

In this section we propose an example of coupling between the above thermodynamical model and hydrody-
namics. This toy-model allows us to explore through examples the ability of the system to catch metastable
and coexistence states.
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3.1. Model and numerical scheme

Following [8], we consider a relaxation model for the isothermal Euler system by adding the two variables
ρ1, ρ2, and using the dynamical system (27):

∂tρ+ ∂x(ρu) = 0 (37)

∂t(ρu) + ∂x
(
ρu2 + π(ρ, ρ1, ρ2)

)
= 0 (38)

∂tρ1 + ∂x(ρ1u) = +
1

ε
(ρ− ρ1)f(ρ2|ρ1) (39)

∂tρ2 + ∂x(ρ2u) = − 1

ε
(ρ2 − ρ)f(ρ1|ρ2), (40)

where u is the fluid velocity and π(ρ, ρ1, ρ2) = α1(r)p(ρ1) + α2(r)p(ρ2) is the pressure.
The system can be written in a more compact way as

∂tW + ∂xF (W ) = R(W )

where W = (ρ, ρ1, ρ1, ρu)T , and F (W ) = (ρu, ρ1u, ρ1u, ρu
2 + π)T . The system is complemented by initial data

W (0, x) = W 0(x), W 0 being a given vector-valued function.
Notice that recombining the equations in ρ, ρ1, ρ2 we obtain the following relaxation equation on the volume

fraction α1:

∂tα1 + u∂xα1 =
α1α2

ε

(
f(ρ1|ρ2)− f(ρ2|ρ1)

)
. (41)

This kind of equation is classical at least for the transport operator, see for instance [3, 7], the right-hand side
is specific to the relaxation model we use.

In system (37), ε is a characteristic time, which compares the relaxation time to thermodynamical equilibrium
with respect to the hydrodynamical time. Three regimes can be considered here. First the infinite relaxation
regime, where ε = +∞, so that only the convective part of (37) is involved, the thermodynamics is too slow
to affect the hydrodynamical motion. At the opposite, the instantaneous relaxation corresponds to ε = 0, so
that (ρ1, ρ2) and (α1, α2) in (37) are given by the long time limit of the dynamical system (27). In this regime,
also known as quasi-static regime, the thermodynamical relaxation is instantaneous, giving rise to a quasilinear
system. In between, finite values of ε lead to an actual relaxation system.

The question of hyperbolicity of the homogeneous part has been addressed in [8]. We merely recall here that
there are four eigenvalues

λ1 = u− c ≤ λ2 = λ3 = u ≤ λ4 = u+ c,

where c(ρ) =
√(

α1ρ1p′(ρ1) + α2ρ2p′(ρ2)
)
/ρ is the sound velocity, defined provided α1ρ1p

′(ρ1)+α2ρ2p
′(ρ2) ≥ 0.

The non-hyperbolicity zone includes, and is larger than, the spinodal zone (where p′(ρi) ≤ 0). Fields 1 and 4
are genuinely nonlinear, fields 2 and 3 are linearly degenerate.

We now address the numerical discretization. Being given a time step ∆t and a space step ∆x, we denote
as usual by Wn

j an approximation of W (tn, xj), where tn = n∆t and xj = j∆x, n ≥ 0, j ∈ Z. This is

complemented by discrete initial data W 0
j , j ∈ Z. System (37) is discretized using a time splitting approach.

First the convective part of (37) is approximated by a conservative finite volume scheme whose generic form is

W̃n+1
j = Wn

j −
∆t

∆x
(Fnj+1/2 − F

n
j−1/2),
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where Fnj+1/2 is determined by a numerical flux F (Wn
j ,W

n
j+1). We choose here the so-called HLLC numerical

flux. Recall the classical HLL flux [5] for to states WL and WR reads

FHLL(WL,WR) =


F (WL), if 0 ≤ sL,
sRF (WL)− sLF (WR) + sLsR(WR −WL)

sR − sL
, if sL ≤ 0 ≤ sR,

F (WR), if 0 ≥ sR,

(42)

where
sL = min(uL − cL, uL + cL), sR = min(uR − cR, uR + cR).

The HLLC variant consists in taking into account the eigenvalue u, see e.g. [12] for a general presentation. We
define the 1st and 4th components of the HLLC flux by FHLLC1,4 (WR,WL) = FHLL1,4 (WR,WL), and the 2nd and
3rd components by

FHLLC2,3 (WR,WL) =


FHLL2,3 (WR,WL) · (W2,3)R

(W1)R
if s∗ < 0,

FHLL2,3 (WR,WL) · (W2,3)L
(W1)L

if s∗ ≥ 0,

where

s∗ =
F4(WR)− F4(WL)− sRρRuR − sLρLuL

ρR(uR − sR)− ρL(uL − sL)
.

In a second step we treat the relaxation source terms of (37). We consider instantaneous relaxation with ε = 0.
In practice one determines in which basin of attraction r̃n+1

j belongs to and defines rn+1
j as the corresponding

equilibrium state, according to Proposition 2.4. Since the different equilibrium states belong to hyperbolicity
regions of the system (37), loss of hyperbolicity is not a concern.

All the following examples are Riemann problems on [0, 1], with W 0(x) = WL1x<1/2(x) +WR1x>1/2(x), WL

and WR being two constant vectors. They are computed with 10000 space steps, that is ∆x = 10−5, the time
step being computed at each time iteration by the CFL condition

∆tn = σCFL
∆x

max
j∈Z ,k∈{1,2,3,4}

(
|λk(Wn

j )|
) ,

where 0 < σCFL < 1 is a constant which was taken equal to 0.95.

3.2. Nucleation by compression

We begin with an example of compression of a pure vapour state, for different values of the velocity u. Initial
data for all the cases we consider involve constant densities on [0, 1] and opposite velocities:

ρ1 = 0.18, ρ = 0.2, ρ2 = 0.24, uL = −uR > 0,

so that the initial perturbation remains within the pure vapour phase. We apply successively four values of uL:

• very weak compression, uL = 0.55,
• weak compression uL = 0.91,
• strong compression uL = 1.2,
• very strong compression uL = 1.5.

For both very weak and weak compression rates, we obtain a solution which remains in the pure vapour
phase, with creation of a metastable intermediate state for uL = 0.91, see Fig. 3. The system actually behaves
like a simple Euler system with a monotone pressure law.

For a stronger compression, uL = 1.2, we observe the apparition of a liquid droplet centered at x = 0, where
the density is higher than the value ρ∗2. Two remarkable features are first the presence of a metastable zone
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Figure 3. Nucleation by symmetric compression at t=0.1, very weak compression uL = 0.55 =
−uR (left) – weak compression uL = 0.91 = −uR (right).

surrounding the bubble, second a very thin zone of mixture (ρ1 = ρ∗1, ρ2 = ρ∗2). It is very clearly evidenced on
the the volume fraction α profile, see Figure 4 - center left, but appears as “kinks” for instance on the velocity
or partial densities pictures.

If we increase the compression, with uL = 1.5, we observe that the metastable zone eventually disappears,
while the tiny mixture zone is still present, see Figure 5.

3.3. Cavitation by decompression

In a somehow symmetric way, we can obtain cavitation, that is creation of a vapour bubble from a liquid
initial condition. More precisely, we consider initial densities ρ = 1.9 > ρ∗2, with ρ1 = 1.87 and ρ2 = 1.92. To
these data we apply a velocity uL = −uR < 0. As in the compressive case, for small values values of the velocity
we deal with a classical Riemann problem for the Euler system with a monotone pressure law. These results are
not shown here. We focus on higher values of the velocity for which a bubble appears, namely uL = −0.4 = uR
(strong decompression, Figure 6) and uL = −2 = uR (very strong decompression, Figure 7).

The situation here is more complex than in the compression case. First notice that there is no intermediate
metastable state. Next, it seems that the rarefaction induced by the decompression gives rise to composite
waves, see Figure 7. The tiny mixture zone exists in both cases, see Fig. 6 and 7 - center left the void fraction
α1. The situation is more sensitive to the CFL condition: notice the overshoots in the pressure profile in
Figure 7 - center left: they should not go over p∗ in the coexistence zone. If we reduce the CFL condition (e.g.
σCFL = 0.65), the pressure remains bounded by p∗.
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Figure 6. Cavitation by symmetric decompression at t=0.1, strong decompression uL =
−0.4 = uR.
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Figure 7. Cavitation by symmetric decompression at t=0.1, very strong decompression uL =
−2 = uR.
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