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Abstract— A major hindrance to underwater operations using cam-
eras comes from the light absorption and scattering by the marine
environment, which limits the visibility distance up to a few meters in
coastal waters when using low-end cameras. We propose a complete
preprocessing framework able to handle the entire spectrum of noises
present in underwater images. We show that most, if not all of this
preprocessing can be done with very generic methods that do need any
knowledge of the scene or of the turbidity characteristics of the water,
while still remaining coherent with the underwater images formation
model.

I. I NTRODUCTION

The increasing interest in Remotely Operated Vehicles (ROVs) and
Autonomous Underwater Vehicles (AUVs) for underwater operations
has called for the development of efficient, widely available sensors.
Optical cameras meet such requirements and have the additional
benefit of having an excellent resolution. However, the major obstacle
to their use use is that light, unlike sound, is poorly propagated in
the water. The effective range of visibility is limited to about twenty
meters in clear water and less than three meters in turbid, coastal
waters.

These poor performances are explained by the peculiar propagation
properties of light in the aquatic medium [8], [9], [14]. First, a ray
of light is exponentially attenuated as it travels in the water so the
background of the scene will be poorly contrasted and hazy. The
visibility range may indeed be augmented with artificial lighting.
Unfortunately, water will reflect a significant fraction of the light
power towards the camera before it actually reaches the objects in
the scene. This process, known as backward scattering, causes a
characteristic glowing veil that superimposes itself on the image and
hides the scene. Finally, forward scattering, i.e. randomly deviated
light on its way from an object to the camera, causes blurring of
the image features. One could also consider macroscopic floating
particles (“marine snow”) as being unwanted signal, although they
belong to the scene. In orders of magnitude, backscattering and
marine snow are the greatest degradation factors, attenuation comes
second and forward scattering follows closely. Figure 1 is an example
of a fairly typical underwater image taken in daylight conditions.

When specialized hardware such as range gated light systems [5]
or polarized cameras [12] are not available, image quality must be
improved via software processing. These algorithms deal either via
deconvolution or via generic enhancement methods (GEMs) such
as contrast enhancement that do not rely on any physical model.
Both approaches have their advantages and flaws. Deconvolution is
rigorous but hard to perform in a real situation because the parameters
of the model are unknown. In controlled situations, deconvolution
can be complete, but in natural environments, only deconvolution
of forward scattering with restrictive assumptions on the point of
view have been achieved [7], [10]. GEMs can be used without these
limitations and provide fair results, which explains their popularity
[3]; however they lack the theoretical backup that deconvolution

Fig. 1. A typical underwater image (Picture by Anthony DeLullo).

provides. Therefore GEMs are often used empirically, focusing on
the prominent aspects of noise (contrast inequalities) without really
caring about the fine intricacies of the image formation process. All
in all, the real effect of GEMs on underwater images is unknown,
which sheds doubts on their relevance and performances.

We investigate here the possibility of addressing the whole range of
noises present in underwater images by using a rational combination
of deconvolution and generic enhancement methods. Our paper is
structured as follows. First we present the image formation model
(section II). In section III we describe a preprocessing algorithm
designed to address the whole spectrum of noises present in under-
water images acquired with standard optical cameras. Section IV is
dedicated to the analysis of our results and a discussion on the limits
of our approach. We exhibit promising results using both simulated
and real images.

II. T HE IMAGE FORMATION MODEL

First, let us introduce some notation conventions: the generic
3-D object point will have coordinatesx, y, z and its image has
coordinates(x′, y′) on the image formation plane. We callZ(x′, y′)
the depth map, that is, the distance of the camera to the object that
would be projected in(x′, y′) if the propagating medium is of unit
transmittance (ideal medium).

The scene is represented by thereflectance mapR(x′, y′) which
more or less represents its intrinsic color (we represent it as a gray
level between0, black, and1, white). This is truly the information
we wish to recover.

The perceived light intensity in the camera, when the medium
is ideal, is influenced by the incident light power on the object
point B (beam pattern), the material characteristicsCM (specularity,
diffusivity, etc.) and the lens characteristics (focal length, aperture)



CL. Thus the received light power is:

I(x′, y′) = R.B.CM .CL(x′, y′) = R.F (x, y)

F is called the illumination function.
When the medium is not ideal, such as under water, the semi-

empirical image formation model commonly used [4], [8] states that
the received signalIR is the sum of three components, plus some
noisen:

IR = ID + IFS + IBS + n (1)

The direct componentID is an attenuated version ofI with
distance due to the absorption of light by floating particles:

ID = I.e−cZ (2)

wherec is called the volume attenuation constant, in m−1. Typical
values forc−1 range from 3 m for coastal waters up to 20 m for
clear, deep ocean waters.

However, an elementary volume of water and floating particles
does not only absorb photons but does also deviate incident rays
of light. This process is called scattering. The volume scattering
function, which gives the probability for a ray of light to be deviated
of an angleθ from its direction of propagation, has been determined
experimentally [9].

The forward scattered componentIFS is an attenuated and blurred
version of I due to the random deviation of light on its way to
the camera by floating particles. The point spread function (PSF)
is a Cauchy function, hence its Fourier transform is an inverse
exponential:

IFS = (e−g.Z − e−c.Z)F−1
“
e−B.Z.i.f

”
? I (3)

Here,F−1 stands for the inverse Fourier transform,|g| < c and
B < c are empirical constants,i is a scaling constant to convert
image plane units into meters, andf is the angular frequency in the
image plane.

The last component is thebackscattered component, which cor-
responds to light on their way from the source to the objects of
the scene, that are reflected by the water and floating particles,
then attenuated and forward scattered on their way to the camera.
Backscattering acts like a glaring veil superimposed on the objects in
the scene. Therefore, it is generally seen as the predominant limiting
factor in underwater optics. An exact derivation of the backscattering
may be found in [8], but we do not really need it here. We shall
note that componentIBS and it suffices to know that it is nearly
uncorrelated fromID andIFS , which are directly linked to the signal
coming from the scene.

We illustrate the combined contribution of attenuation, forward
scattering, and backscattering in a simulation with the same setting
than the one proposed by McGlamery [8]. The image is planar
and made of a series of stripes. The camera and the spotlight are
three meters away from the scene, and the spotlight is five meters
away from the camera. For the sake of simplicity, the image is
unidimensional, that is, only the intensity along axisx is given
(fig. 2). The resulting image clearly shows the predominance of
backscattering in the final image (fig. 3). We will use this simulation
as a companion tool in this paper to illustrate the effect of our
processing.

III. D ETAILED ALGORITHM

In this section, we describe our preprocessing algorithm to enhance
images. The algorithm workflow is given by figure 4. First, we de-
scribe the use of GEMs to tackle problems caused by backscattering,
attenuation and lighting discrepancies, and we justify our approach
with respect to the image formation model. The following last

Fig. 2. Simulated configuration (g = 0.195 m−1, g = 0.25 m−1, B =
0.375 m−1)
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Fig. 3. Contribution ofID , IFS andIBS in the final image

stage deals with the removal of remaining noises using an adaptive
smoothing algorithm. Finally, an optional stage helps to remove the
effects of forward scattering.

A. Elimination of attenuation, backscattering and other lighting
discrepancies

The intrinsic illumination pattern of the spotlight, as well as
attenuation with depth and backscattering are the cause to numerous
discrepancies in contrast. Early attempts to enhance contrast involved
histogram equalization; yet as the lighting in the image is unequal,
global histogram equalization does not help much and local methods
are needed. These methods are reviewed in depth by Garcı́a, Nico-
sevici and Cufi [3] and benchmarked empirically (that is, visually)
on a series of images. To enhance contrast in underwater images,
local variations of the histogram equalization such as histogram
equalization on a sliding window can be used, but these methods
generally increase the noise level. Better methods rely on the fact that
the shadows present in the images are spatially slowly varying. Thus
the estimated level of lighting can be estimated using either a very
loose spline approximation, or a series of morphological dilatations
using a large structuring element, or simply using a low-pass filtering
such as a Gaussian blur. Contrast can then be enhanced by subtracting
the estimated shadows to the original image. Instead of subtraction,
division can also be used: this comes essentially to estimating the
reflectance of the image by assuming that the low-pass version is
the illumination field. This last method is certainly reasonable and
efficient to overcome nonuniform illumination caused by auxiliary
lighting systems when water turbidity is low. Nothing, however, gives
guarantees of optimality for this method when backscattering be-
comes important. Consequently, we dedicate the following paragraph
to an analysis its behavior with respect the image formation process.
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We start by stating that the illumination functionF (x′, y′) and
the backscattered component are spatially slowly varying in front of
the reflectanceR(x′, y′). This is most often true, except in some ill-
posed cases, where small objects are in front of a differently colored
background (small fishes over a sandy bottom, for example). Also,
IBS and F are slowly varying in front of the extent of the PSF of
the forward scattered component, so a first approximation of the PSF
of the forward scattered component is a Dirac. Consequently, the
forward scattered component can be approximated by:

IFS ≈ (e−g.Z − e−c.Z).I (4)

Injecting (2) and the above into (1) yields:

IR = e−g.Z .I + IBS + n (5)

When computing a low-pass approximation of the received image
by convolution with a Gaussian functionGσ(x′, y′) of spatial extent
σ very large in front of the spatial variations ofR, we obtain:

ILP ≈ IBS + F.e−g.Z .R̄ = IBS + F ′.R̄ (6)

In this expression, the termF ′ = F.e−g.Z represents an effective
illumination function andR̄(x′, y′) = Gσ ? R(x′, y′) is the local
mean ofR. Now from the above equations, it appears that the natural
method to reject backscattering would consist in subtractingILP to
the received imageIR (subtraction method) :

Isub = IR − ILP ≈ F ′.(R− R̄) + n (7)

The result of the difference effectively eliminates backscattering;
however, the effective illumination factor remains. Consequently the
reconstruction is only good at close distance to the camera, and in
zones where the scene is well lit by the sources.

Another method is the local normalization, also known as the
illumination- reflectance model. It consists in dividing the received
image by its low-pass version1:

1In this paper, multiplication and division used for matrices are element-
wise and not traditional matrix multiplication or division.

Idiv = IR/ILP =
IBS + F ′.R + n

IBS + F ′.R̄
(8)

By introducingV = IBS/(F ′.R̄), which we call theveiling ratio,
the above equation can also be written:

Idiv =
V

V + 1
+

1

V + 1

R

R̄
+

n

ILP
(9)

WhenV → 0, i.e. when no backscattering is present in the image,
then:

Idiv =
R

R̄
+

n

F ′R̄
(10)

which is the reflectance, normalized by the local mean reflectance of
the image, hence the name of the method. On the contrary, when high
backscattering is present,V →∞, constantV/(V +1) tends towards
one and1/(V + 1) tends towards zero. As a result, the intensity
histogram of the divided image tends to be centered around one with
a small dispersion (especially for poorly contrasted images) except
for a few outliers. This is the explanation why contrast equalization
by division is always followed by histogram clipping to reject these
outliers:

Iclip(i, j) =

8<:
i1 if Idiv(i, j) < i1,
i2 if Idiv(i, j) > i2,
Idiv(i, j) else.

(11)

where[i1..i2] is typically the 95% percentile interval of the intensity
distribution ofIdiv. Then the dynamic of the image may be expanded
so that all available intensity levels[0..imax] are occupied:

Iclip(i, j)←
Iclip(i, j)− i1

i2 − i1
.i max (12)

As a crude approximation, histogram clipping amounts to reject
the constant termV/(V + 1) in equation 9.
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Fig. 5. Isub (above) andIdiv (below) for simulated image (after clipping
and scaling)

To decide whether dividing or substracting is the best, we can use
two criteria:i) the proximity of the recovered image to the ideal signal
and ii) the local contrast, which is directly linked to the magnitude
of the gradient of the image. The comparison can be both made on
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a theoretical basis and an experimental basis, using the simulator, so
as to have a ground truth.

Contrast provides an essential means to evaluate the quality of the
restored image. The contrast is directly linked to the gradient of the
image. The greater the gradient, the greater the contrast. Assuming
zero noise, the gradient of the image recovered by the difference
method is:

−→
∇Isub =

−→
∇F ′.R + F ′.

−→
∇R ≈ F ′.

−→
∇R (13)

while for the localy normalized image, it is:

−→
∇Idiv =

F ′.
−→
∇R

IBS + F ′R̄
=

F ′.
−→
∇R

ILP
(14)

The normalized ratio of the two gradients is:

S =
−→
∇Isub/

−→
∇Idiv = F ′R̄ + IBS = F ′.R̄(1 + V ) (15)

Often, gradients are not normalized, so one must multiply it
by factor Kdiv/Ksub, where Kdiv and Ksub are respectively the
amplitude of the values range of the images estimated by division
and subtraction. When the normalized ratio of the two gradients
is greater than one, the image estimated after subtraction has a
greater local gradient than the image estimated after division, so the
subtraction method must be preferred. The opposite is true when the
normalized ratio is inferior to one. We observe that the contribution
of backscattering is better estimated by an additive illumination
field than a multiplicative contribution in well-lighted zones of the
image. Figures 6 and 7 show respectively the fusion ratioS and the
gradient ofIsub andIdiv for the simulated image (after clipping and
normalization); in region 1,S < 1 and indeed,

−→
∇Idiv >

−→
∇Isub. The

inverse is true in region 2.
We propose the following fusion process to have the best com-

promise between these two methods. First, imagesIsub and Idiv are
computed, along with the normalized gradient ratioS, which only
depends on the low-pass version of the imageILP and the ranges
Ksub andKdiv. Next,Isub andIdiv are histogram-clipped so that their
values ranges is about 95% of the confidence interval of their initial
values. The images are then scaled between 0 and 1. The “optimal”
contrast-equalized image is then:

Ieq =
S.Isub+ 1

S
Idiv

S + 1
S

(16)

The clipping and the scaling will ensure that no color disparities
exist between the two fused images.
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B. Rejecting remaining noises

Generally, contrast equalization will raise the noise level in poorly
contrasted areas of the original image. Signal to noise ratio would
stay constant after equalization were the images not quantified;
but the fixed color quantization step induces strong errors in dark
zones. These errors are amplified by histogram clipping, because
the color dynamic is so small that clipping will be equivalent to
crude binarisation. Moreover, macroscopic floating particles which
have images of roughly the size of a pixel induce a strong clutter
after equalization. Although being part of the scene, these particles
are unwanted and can be seen as a local noise. Compared to the
substraction method, the illumination-reflectance model has a slightly
more important effect on noise in dark zones. Indeed, the local gain
of the contrast equalization process is:

G(i, j) =
1

ILP(i, j)
.

imax

i2 − i1
(17)

The standard deviation of the noise at location(i, j) will also be
multiplied byG(i, j); consequently, the lower the intensity, the higher
the noise level. GainG affects all types of noises remaining in the
image, as the additive Gaussian noise of the camera electronics, the
quantification noise, which can both be considered as Gaussian white
noise.

When automatic object recognition is the final goal, good de-
tectability of edges is important and all the previously mentioned
noises may cause false alarms. Although edge detectors such as the
Canny-Deriche algorithm [2] use a smoothing filter to eliminate noise,
this filter is linear and does not adapt itself to the local noise intensity
or the presence of edges. Thus the filtering level is overevaluated on
some parts of the image. This can be prevented if noise is rejected
using an adaptive image smoothing stage after contrast equalization.
The principle behind adaptive smoothing is that the image is filtered
less where edges are present, hence preserving their good visibility.
In an earlier paper [1], we experimented several adaptive smoothing
algorithms and showed that they could significantly improve edge
detection and visibility in heavy backscattering conditions. We have
selected a variation of a denoising algorithm presented by Kovesi
[6], who proposed to use a multiscale denoising algorithm based
on complex-valued log-Gabor wavelets. Compared to real-valued
wavelets, the benefit of using complex wavelets is that we have an
approximation of the amplitude and the phase of the signal at various
scales. Then, only the amplitude of the coefficients is shrunk by the
estimated noise contribution at that scale. As a result, the phase of
the signal and thus good localization of edges is preserved. Most
importantly, this algorithm may be used in a totally automatic way,
because an elegant method exists to determine the amount of noise at
each scale, assuming that the noise is white and Gaussian. Although
this hypothesis does not hold in our case, it is of very negligible



importance in practice. However, unlike Kovesi’s original algorithm,
we do not use a constant threshold over space, but instead correct
it by factor G(i, j) so that heavier filtering is done where the initial
image was dark. A great deal of other adaptive denoising algorithms
exist that may be worth investigating in our context, for example
curvelets [13] or anisotropic filtering [11]. However, when it comes to
choosing the algorithm, we believe that speed and absence of manual
tuning should be priviledged over performance, because performance
is hard to quantify and no significant difference in denoising between
the algorithms is to be expected anyway.

C. Forward scattering rejection

Forward scattering has a blurring effect which depends on the
distance travelled by light. If the scene is assumed to be plane, as
is the case in our simulation, and if the turbidity parameters are
known, then inverse filtering can be performed. However, special
care should be taken during this process, as the inverse filter has the
form f 7→ eb.f , which tends to amplify noise at high frequencies,
even when Wiener filtering is used.

In real-life conditions, the scene is rarely planar; secondly the tur-
bidity parameters are often unknown. Experimentally, it appears that
the first hypothesis is not very important as noticeable improvements
to the sharpness of the edges can be obtained by assuming the scene
to be planar even when it is not. The second problem is the most
limiting, as water turbidity parameters are only scarcely known in
tables. To this date, the best approach to solve this problem in a real
application is perhaps the one proposed by Olmos in her PhD thesis
[10]. The implementation is as follows. Typicala priori values for
the depth and turbidity coefficient are used as starting values in an
iterative process where one optimizes a cost function representing
the contrast of the deconvolved image. Special care must be taken
when designing the optimization process so as not to converge to
local minima. Figure 8 shows the effect of inverse Wiener filtering
on the simulated image where all parameters are known. Although
a fairly noticeable enhancement can be observed when the medium
is moderately turbid, this method does not remove backscattering,
which explains why deconvolution cannot be used alone.
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IV. EXPERIMENTS AND DISCUSSION

Figures 9 to 14 present various stages of our denoising algorithm
applied to the image shown in fig. 1. Only the luminance channel
of the image has been processed. While the contrast is better in the
final equalized image (fig. 11), noise remains; fig. 14 is the image
(in color) after adaptive denoising and deconvolution; notice how the
signal to noise ratio has improved.

The bulk of the work is performed by the contrast equalization step.
Yet this stage can lead to severe problems when contrast equalization

is pushed to its limits. Removing low-frequencies is good because
the local signal mean is a good estimation of the lighting field.
However this introduces bias, as uniform zones of typical size similar
to the size of the low-pass filter kernel will be all normalized to
one; consequently the color of object is lost and only the contrast
of high frequency details is enhanced. Secondly, enhancing high
frequency components is –again– desirable, because they define
the edges. But this corrupts the perceptual relative importance of
edges in the image. This means that slight details pertaining to
the objects texture will become as visible, that is, as significant
than objects contour, which definitely play a bigger role in human
or machine object recognition. These problems are inherent to all
contrast equalization techniques. Furthermore, the use of Gaussian
blurring when estimating the illumination field may be the cause
of halos around strongly contrasted objects of size similar to the
Gaussian kernel (see, for example, the dark fish over the sandy
bottom in our example image). To limit those effects, the width of
the Gaussian kernel must be very large. Here, the standard deviation
of the kernel was 20% of the image diagonal length. In a nutshell,
a very general statement about contrast equalization would be that
it improves the image at its first order and beyond (which explains
why edge detection is better, as the gradient is higher), yet recovery
of the image at the order zero is a hard thing to obtain.

Another interesting question is the importance of deconvolution
in the restoration process and where to put it in the preprocessing
pipeline. When used as the first stage, the noise level increase that
comes with deconvolution should normally be counterbalanced by
the adaptive denoising coming at the end of our algorithm. In fact,
this is not true, as shown in fig. 13, to be compared with fig. 12
where no deconvolution is used. Deconvolution can also be put after
contrast enhancement and denoising. Doing this is avoids noise being
amplified by deconvolution as it was removed before. Yet results
obtained by adding deconvolution at the end of our process (fig.
14) bring only marginally better benefits than without its use. For
all practical purposes, we feel that deconvolution can very often be
safely omitted without any noticeable loss in edge detection.

V. CONCLUSION

We presented a complete preprocessing framework for underwater
images. First, a contrast equalization system was proposed to reject
backscattering, attenuation, and lighting inequalities caused by the
beam pattern. This system does not need any knowledge of the
medium characteristics yet its action on the images is clearly under-
stood and coherent with the image formation process. Then, remain-
ing noises corresponding to sensor noise, floating particles images,
and miscellaneous quantification errors, are suppressed using a very
generic self-tuning wavelet-based algorithm. Finally, we showed that
forward scatteringcould be addressed as well using deconvolution
but that the gains are negligible compared to the effect of previous
stages.

ACKNOWLEDGMENT

Andreas Arnold-Bos would like to thank Thales Underwater Sys-
tems for having welcomed him as a student intern during hisDiplôme
d’Etudes Approfondiesin Signal and Image processing (Supaero,
Toulouse) final project.

REFERENCES

[1] A. Arnold-Bos, J.-P. Malkasse, and G. Kervern. A preprocessing
framework for automatic underwater images denoising. InProceedings
of the Fifth European Conference on Propagation and Systems, Brest,
France, Mar. 2005.

[2] R. Deriche. Using Canny’s criteria to derive a recursively implemented
optimal edge detector.The International Journal Of Computer Vision,
1(2):167–187, May 1987.



0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Fig. 9. Real image:Idiv

−30

−25

−20

−15

−10

−5

0

5

10

Fig. 10. Real image:Isub

[3] R. Garcia, T. Nicosevici, and X. Cufi. On the way to solve lighting
problems in underwater imaging. InProceedings of the IEEE Conference
on Oceans 2002, pages 1018–1024, Oct. 2002.

[4] J. S. Jaffe. Computer modelling and the design of optimal underwater
imaging systems.IEEE Journal of Oceanic Engineering, 15(2), Apr.
1990.

[5] J. S. Jaffe, J. McLean, M. P. Strand, and K. D. Moore. Underwater
optical imaging: Status and prospects.Oceanography, 14:66–76, 2001.

[6] P. Kovesi. Phase preserving denoising of images. InProceedings of
The Australian Pattern Recognition Society Conference DICTA’99, Dec.
1999.

[7] Z. Liu, Y. Yu, K. Zhang, and H. Huang. Underwater image transmission
and blurred image restoration.SPIE Journal of Optical Engineering,
40(6):1125–1131, June 2001.

[8] B. L. McGlamery. A computer model for underwater camera systems.
SPIE Ocean Optics VI, 28, 1979.
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Fig. 11. Fusion ofIdiv andIsub

Fig. 12. Final image after adaptive smoothing (no forward scattering
deconvolution)

Fig. 13. Final image after adaptive smoothing (with forward scattering
deconvolution as first processing stage)

Fig. 14. Final image after adaptive smoothing (with forward scattering
deconvolution as last processing stage


