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Abstract— A major hindrance to underwater operations using cam-
eras comes from the light absorption and scattering by the marine
environment, which limits the visibility distance up to a few meters in
coastal waters when using low-end cameras. We propose a complete
preprocessing framework able to handle the entire spectrum of noises
present in underwater images. We show that most, if not all of this
preprocessing can be done with very generic methods that do need any
knowledge of the scene or of the turbidity characteristics of the water,
while still remaining coherent with the underwater images formation
model.

I. INTRODUCTION

The increasing interest in Remotely Operated Vehicles (ROVs) and

Autonomous Underwater Vehicles (AUVs) for underwater operations

has called for the development of efficient, widely available sensors.
Optical cameras meet such requirements and have the additionakig' 1

benefit of having an excellent resolution. However, the major obstacle

to their use use is that light, unlike sound, is poorly propagated in
the water. The effective range of visibility is limited to about twentg‘
{

A typical underwater image (Picture by Anthony DeLullo).

meters in clear water and less than three meters in turbid, coa: %avides. Therefore GEMs are often used empirically, focusing on
' € prominent aspects of noise (contrast inequalities) without really

waters. . SO . :
. . caring about the fine intricacies of the image formation process. All
These poor performances are explained by the peculiar propagation

. . ;i ) . . in all, the real effect of GEMs on underwater images is unknown,
properties of light in the aquatic medium (8], [9], [14]. First, a ra hich sheds doubts on their relevance and performances.

of light is exponentially attenuated as it travels in the water so theW . tigate here th ibility of add ina the whol f
background of the scene will be poorly contrasted and hazy. The € Investigate here the possibiiity ot addressing the whole range o

visibility range may indeed be augmented with artificial IightingrIOISBS presen_t n underwate_r images by using a rational comblnatlo_n
of deconvolution and generic enhancement methods. Our paper is

Unfortunately, water will reflect a significant fraction of the light tured foll First {the i p i del
power towards the camera before it actually reaches the objectssmJC urea as Toflows. FIrst we present the image formafion moce
In section Il we describe a preprocessing algorithm

the scene. This process, known as backward scattering, cause( egtlon ).

characteristic glowing veil that superimposes itself on the image a 83|gn.ed to addregs the Who'e spectrum.of noises presentlln undgr-
hides the scene. Finally, forward scattering, i.e. randomly deviat @ter images acquired with standard optical cameras. Section IV is
light on its way from an’ object to the cam;ara causes blurring dicated to the analysis of our results and a discussion on the limits

the image features. One could also consider macroscopic float rgour approach. We exhibit promising results using both simulated

particles (“marine snow”) as being unwanted signal, although th&/d real images.

belong to the scene. In orders of magnitude, backscattering and

marine snow are the greatest degradation factors, attenuation comes Il. THE IMAGE FORMATION MODEL

second and forward scattering follows closely. Figure 1 is an example

of a fairly typical underwater image taken in daylight conditions. ~ First, let us introduce some notation conventions: the generic
When specialized hardware such as range gated light systems35} object point will have coordinates,y, 2 and its image has

or polarized cameras [12] are not available, image quality must pgordinategz’, ") on the image formation plane. We callz’,y')

improved via software processing. These algorithms deal either (@ depth mapthat is, the distance of the camera to the object that

deconvolution or via generic enhancement methods (GEMs) sutRuld be projected ir(z’,y’) if the propagating medium is of unit

as contrast enhancement that do not rely on any physical modginsmittance (ideal medium).

Both approaches have their advantages and flaws. Deconvolution i$he scene is represented by tleflectance magR(z’, y') which

rigorous but hard to perform in a real situation because the paramet®gre or less represents its intrinsic color (we represent it as a gray

of the model are unknown. In controlled situations, deconvolutidavel betweerD, black, andl, white). This is truly the information

can be complete, but in natural environments, only deconvolutigye wish to recover.

of forward scattering with restrictive assumptions on the point of The perceived light intensity in the camera, when the medium

view have been achieved [7], [10]. GEMs can be used without theseideal, is influenced by the incident light power on the object

limitations and provide fair results, which explains their popularitpoint B (beam pattern), the material characteristits (specularity,

[3]; however they lack the theoretical backup that deconvolutiadiffusivity, etc.) and the lens characteristics (focal length, aperture)



Camera focal point

Cr. Thus the received light power is:
I(z',y") = R.B.Cy.Cr(2',y) = R.F(x,y)
Spotlight
F'is called the illumination function. (virtul) image formation plane ‘
When the medium is not ideal, such as under water, the semi- / \
empirical image formation model commonly used [4], [8] states that
the received signalr is the sum of three components, plus some
noisen;:
Ir=Ip+Irs+Ips+n N

The direct component/p is an attenuated version af with x SIS /////
distance due to the absorption of light by floating particles: ////////////

Ip=1e 2
_ ) ) ) Fig. 2. Simulated configurationy(= 0.195 m~!, g = 0.25 m~!, B =
wherec is called the volume attenuation constant, im'mTypical (.375 m~1)

values forc™' range from 3 m for coastal waters up to 20 m for
clear, deep ocean waters.

However, an elementary volume of water and floating particles et D)
does not only absorb photons but does also deviate incident rays Backscattered \
of light. This process is called scattering. The volume scattering /

x10"

Total

function, which gives the probability for a ray of light to be deviated 7
of an angled from its direction of propagation, has been determined
experimentally [9].

Theforward scattered componefit-s is an attenuated and blurred
version of I due to the random deviation of light on its way to il /
the camera by floating particles. The point spread function (PSF)
is a Cauchy function, hence its Fourier transform is an inverse
exponential: 7 o00ne

—1500 1000 -500 0 500 1000 1500 15—1000 -500 0 500 1000
9.2 _ _—cZ\p—1( —B.Zi.
Ips = (797 —e™“)F (e Zf)*[ (3)

Fig. 3. Contribution ofip, Irs andIgg in the final image
Here, 7! stands for the inverse Fourier transforfp] < ¢ and
B < ¢ are empirical constants, is a scaling constant to convert
image plane units into meters, ayfds the angular frequency in the stage deals with the removal of remaining noises using an adaptive
image plane. smoothing algorithm. Finally, an optional stage helps to remove the
The last component is thibackscattered componenthich cor- effects of forward scattering.
responds to light on their way from the source to the objects of
the scene, that are reflected by the water and floating partlcl@‘s Elimination of attenuation, backscattering and other lighting
then attenuated and forward scattered on their way to the caméligcrepancies
Backscattering acts like a glaring veil superimposed on the objects inThe intrinsic illumination pattern of the spotlight, as well as
the scene. Therefore, it is generally seen as the predominant limitatgenuation with depth and backscattering are the cause to numerous
factor in underwater optics. An exact derivation of the backscatteringscrepancies in contrast. Early attempts to enhance contrast involved
may be found in [8], but we do not really need it here. We shallistogram equalization; yet as the lighting in the image is unequal,
note that componenizs and it suffices to know that it is nearly global histogram equalization does not help much and local methods
uncorrelated fronip andIrs, which are directly linked to the signal are needed. These methods are reviewed in depth byi&Gadico-
coming from the scene. sevici and Cufi [3] and benchmarked empirically (that is, visually)
We illustrate the combined contribution of attenuation, forwardn a series of images. To enhance contrast in underwater images,
scattering, and backscattering in a simulation with the same settingal variations of the histogram equalization such as histogram
than the one proposed by McGlamery [8]. The image is planagualization on a sliding window can be used, but these methods
and made of a series of stripes. The camera and the spotlight gemerally increase the noise level. Better methods rely on the fact that
three meters away from the scene, and the spotlight is five metére shadows present in the images are spatially slowly varying. Thus
away from the camera. For the sake of simplicity, the image tbe estimated level of lighting can be estimated using either a very
unidimensional, that is, only the intensity along axisis given loose spline approximation, or a series of morphological dilatations
(fig. 2). The resulting image clearly shows the predominance u$ing a large structuring element, or simply using a low-pass filtering
backscattering in the final image (fig. 3). We will use this simulatiosuch as a Gaussian blur. Contrast can then be enhanced by subtracting
as a companion tool in this paper to illustrate the effect of oudhe estimated shadows to the original image. Instead of subtraction,
processing. division can also be used: this comes essentially to estimating the
reflectance of the image by assuming that the low-pass version is
the illumination field. This last method is certainly reasonable and
In this section, we describe our preprocessing algorithm to enhareficient to overcome nonuniform illumination caused by auxiliary
images. The algorithm workflow is given by figure 4. First, we ddighting systems when water turbidity is low. Nothing, however, gives
scribe the use of GEMs to tackle problems caused by backscatteriggarantees of optimality for this method when backscattering be-
attenuation and lighting discrepancies, and we justify our approachmes important. Consequently, we dedicate the following paragraph
with respect to the image formation model. The following lasio an analysis its behavior with respect the image formation process.

Ill. DETAILED ALGORITHM



FLOWCHART

REJECTED NOISES

Original image

Est. light field

‘ Clipping ‘

Adaptive
smoothing

E

Attenuation
Backscattering
Lighting discrepancy due to beam pattern

Noise amplified in previous stages
Macroscopic floating particles
Other misc. noises

Igs+F .R+n
Igy = Ig/Ipp = —————— 8
div =Ir/ILP Ins + /.1 (8)

By introducingV = Izs/(F’.R), which we call theveiling ratio,
the above equation can also be written:
1% 1 R n
=0+ =+ 7— 9
V+1 V+1R + Irp ( )
WhenV — 0, i.e. when no backscattering is present in the image,
then:

Ty

_ R n
“RTFER
which is the reflectance, normalized by the local mean reflectance of
the image, hence the name of the method. On the contrary, when high
backscattering is preserit, — oo, constant’/(V 41) tends towards

one andl/(V + 1) tends towards zero. As a result, the intensity
histogram of the divided image tends to be centered around one with
a small dispersion (especially for poorly contrasted images) except
for a few outliers. This is the explanation why contrast equalization

Tgiv (10)

by division is always followed by histogram clipping to reject these
outliers:
Entanced N it if Taiv (i, 7) <1,

Toip(,5) = § 2 if Taiv (7, ) > iz, (11)
Iyiv(i,5) else.

Fig. 4. Block diagram of our underwater denoising framework
where[i1..i2] is typically the 95% percentile interval of the intensity
distribution of Igj,. Then the dynamic of the image may be expanded

We start by stating that the illumination functiafi(z’,y’) and s that all available intensity levels..imad are occupied:
the backscattered component are spatially slowly varying in front of

the reflectanceR(z’, y'). This is most often true, except in some ill-
posed cases, where small objects are in front of a differently colored
background (small fishes over a sandy bottom, for example). Also
Ips and F' are slowly varying in front of the extent of the PSF of,[h
the forward scattered component, so a first approximation of the PS

of the forward scattered component is a Dirac. Consequently, the 1 us
forward scattered component can be approximated by: 09 06
0.8 0.7
Ips ~ (e_g'z — e_C'Z).] 4) 07 08
Injecting (2) and the above into (1) yields: Z: O'j
Ir=e 97T+ 1Ips+n (5) 04
When computing a low-pass approximation of the received image Zz 12
by convolution with a Gaussian functia#, (z’, y') of spatial extent ' ’
. . . . . 0.1 14

o very large in front of the spatial variations &, we obtain:

0 15
—-2000 -1000 0 1000 2000 -1000 -500 0 500 1000

. Teip(2,7) — i1
[clip(%J) A S |p'( J). - -2 max (12)
2 — 11
'As a crude approximation, histogram clipping amounts to reject
I(:a constant tern¥/(V + 1) in equation 9.

Inp =~ Ips —|—F.e_g'Z.R = Ips + FI.R

®) 1 .

0.9 0.6

In this expression, the terfi’ = F.e~9-% represents an effective 08 o7

illumination function andR(z',y’) = G, * R(z,y’) is the local o o8

mean ofR. Now from the above equations, it appears that the natural 06 00
method to reject backscattering would consist in subtracfing to

0.5 1
the received imagér (subtraction method) : 0s u
0.3 12

Isw=Ir —Ip~F.(R—R)+n @)

0.2 13

The result of the difference effectively eliminates backscattering; 01 14
however, the effective illumination factor remains. Consequently the
reconstruction is only good at close distance to the camera, and in

zones where the scene is well lit by the sources. Flgd. 5. I'ISUb (above) andly;, (below) for simulated image (after clipping
Another method is the local normalization, also known as tHe' scaling)
illumination- reflectance model. It consists in dividing the received

image by its low-pass versibn

0 15
—-2000 -1000 0 1000 2000 —-1000 -500 0 500 1000

To decide whether dividing or substracting is the best, we can use
two criteria:i) the proximity of the recovered image to the ideal signal

1In this paper, multiplication and division used for matrices are elemer@d i) the local contrast, which is directly linked to the magnitude
wise and not traditional matrix multiplication or division. of the gradient of the image. The comparison can be both made on
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a theoretical basis and an experimental basis, using the simulatorBsdRejecting remaining noises
as to have a ground truth. Generally, contrast equalization will raise the noise level in poorly
Contrast provides an essential means to evaluate the quality of gomtrasted areas of the original image. Signal to noise ratio would
restored image. The contrast is directly linked to the gradient of teeay constant after equalization were the images not quantified;
image. The greater the gradient, the greater the contrast. Assurtog the fixed color quantization step induces strong errors in dark
zero noise, the gradient of the image recovered by the differengenes. These errors are amplified by histogram clipping, because
method is: the color dynamic is so small that clipping will be equivalent to
crude binarisation. Moreover, macroscopic floating particles which
gjsub: YF.R n F YR~F. VR 13) have imag(_es (_)f roughly the si_ze of a pixel induce a strong clu_tter
after equalization. Although being part of the scene, these particles
are unwanted and can be seen as a local noise. Compared to the
substraction method, the illumination-reflectance model has a slightly
— — more important effect on noise in dark zones. Indeed, the local gain
F'VR  F'.VR

N o .
YV L, — _ 14) of the contrast equalization process is:
dv Ips+ F'R Irp (14)

while for the localy normalized image, it is:

1 imax
= TN 3 17
Ip(i,4) iz — i1 ()

The normalized ratio of the two gradients is: G(i, j)

— — . , = The standard deviation of the noise at locat{@ny) will also be
S = Vlisu/Vigy = F R+ Ips = F.R(1+V) (15) multiplied by G(%, j); consequently, the lower the intensity, the higher
) . _ the noise level. Gairtz affects all types of noises remaining in the
Often, gradients are not normalized, so one must multiply ihage, as the additive Gaussian noise of the camera electronics, the

by factor Kqiv/Ksun Where Kqy and Ksyp are respectively the guanification noise, which can both be considered as Gaussian white
amplitude of the values range of the images estimated by divisiggise.

and subtraction. When the normalized ratio of the two gradientsv\/hen automatic object recognition is the final goal, good de-

is greater than one, the image estimated after subtraction hag@apility of edges is important and all the previously mentioned
greater I_ocal gradient than the image estimated after_dlwsmn, SO Plises may cause false alarms. Although edge detectors such as the
subtrac_ﬂon me_thc_)d_mus_t be preferred. The opposite is true V\{her_l &'ﬁnny-Deriche algorithm [2] use a smoothing filter to eliminate noise,
normalized ratio is inferior to one. We observe that the contributiqps filter is linear and does not adapt itself to the local noise intensity
of backscattering is better estimated by an additive illuminatiogy {he presence of edges. Thus the filtering level is overevaluated on
fleld thaq a multiplicative contrlbutlon. in weII-Ilght.ed zones of thg;ome parts of the image. This can be prevented if noise is rejected
image. Figures 6 and 7 show respectively the fusion réitend the i5ing an adaptive image smoothing stage after contrast equalization.
gradient of/syp and Iy for the simulated image (after clipping andrpe principle behind adaptive smoothing is that the image is filtered
normalization); in region 15 < 1 and indeedV Igiy > V Isub The |ess where edges are present, hence preserving their good visibility.
inverse is true in region 2. In an earlier paper [1], we experimented several adaptive smoothing
We propose the following fusion process to have the best comtgorithms and showed that they could significantly improve edge
promise between these two methods. First, imafggsand Igiy are  detection and visibility in heavy backscattering conditions. We have
computed, along with the normalized gradient ratipwhich only selected a variation of a denoising algorithm presented by Kovesi
depends on the low-pass version of the imdge and the ranges [6], who proposed to use a multiscale denoising algorithm based
Ksupand Kgiv. Next, Isyp and gy are histogram-clipped so that theiron complex-valued log-Gabor wavelets. Compared to real-valued
values ranges is about 95% of the confidence interval of their init%\/eh:’\ts’ the benefit of using complex wavelets is that we have an
values. The images are then scaled between 0 and 1. The “optimghproximation of the amplitude and the phase of the signal at various
contrast-equalized image is then: scales. Then, only the amplitude of the coefficients is shrunk by the
estimated noise contribution at that scale. As a result, the phase of
the signal and thus good localization of edges is preserved. Most
importantly, this algorithm may be used in a totally automatic way,
because an elegant method exists to determine the amount of noise at
The clipping and the scaling will ensure that no color disparitiesach scale, assuming that the noise is white and Gaussian. Although
exist between the two fused images. this hypothesis does not hold in our case, it is of very negligible

S Isup+ & Laiv

16
S+ 3 (16)

qu:



importance in practice. However, unlike Kovesi's original algorithmis pushed to its limits. Removing low-frequencies is good because
we do not use a constant threshold over space, but instead cortket local signal mean is a good estimation of the lighting field.
it by factor G(i, j) so that heavier filtering is done where the initiaHowever this introduces bias, as uniform zones of typical size similar
image was dark. A great deal of other adaptive denoising algorithos the size of the low-pass filter kernel will be all normalized to
exist that may be worth investigating in our context, for examplene; consequently the color of object is lost and only the contrast
curvelets [13] or anisotropic filtering [11]. However, when it comes tof high frequency details is enhanced. Secondly, enhancing high
choosing the algorithm, we believe that speed and absence of maritequency components is —again— desirable, because they define
tuning should be priviledged over performance, because performatite edges. But this corrupts the perceptual relative importance of
is hard to quantify and no significant difference in denoising betweelges in the image. This means that slight details pertaining to
the algorithms is to be expected anyway. the objects texture will become as visible, that is, as significant
than objects contour, which definitely play a bigger role in human
) ) i or machine object recognition. These problems are inherent to all
_Forward scattering has a blurring effect which depends on t@8nirast equalization techniques. Furthermore, the use of Gaussian
distance travelled by light. If the scene is assumed to be plane, fgrring when estimating the illumination field may be the cause
is the case in our simulation, and if the turbidity parameters &g halos around strongly contrasted objects of size similar to the
known, then inverse filtering can be performed. However, specighssian kernel (see, for example, the dark fish over the sandy
care should be taken during this process, as the inverse filter hasgBgom in our example image). To limit those effects, the width of
form f — eb‘f’ which tends to amplify noise at high frequenciesyhe Gaussian kernel must be very large. Here, the standard deviation
even when Wiener filtering is used. of the kernel was 20% of the image diagonal length. In a nutshell,
_In real-life conditions, the scene is rarely planar; secondly the tW-yery general statement about contrast equalization would be that
bidity parameters are often unknown. Experimentally, it appears thafmproves the image at its first order and beyond (which explains
the first hypothesis is not very important as noticeable lmprovemeq\;ﬁy edge detection is better, as the gradient is higher), yet recovery
to the sharpness of the edges can be obtained by assuming the sgefg, image at the order zero is a hard thing to obtain.
to be planar even when it is not. The second problem is the mosianqiher interesting question is the importance of deconvolution
limiting, as water turbidity parameters are only scarcely known if} the restoration process and where to put it in the preprocessing
tables. To this date, the best approach to solve this problem in a rgglejine. When used as the first stage, the noise level increase that
application is perhaps the one proposed by Olmos in her PhD thegifnes with deconvolution should normally be counterbalanced by
[10]. The implementation is as follows. Typical priori values for {he adaptive denoising coming at the end of our algorithm. In fact,
the depth and turbidity coefficient are used as starting values in @i is not true, as shown in fig. 13, to be compared with fig. 12
iterative process where one optimizes a cost function representjjgere no deconvolution is used. Deconvolution can also be put after
the contrast of the deconvolved image. Special care must be tak@Rrast enhancement and denoising. Doing this is avoids noise being
when designing the optimization process so as not to convergeyigjified by deconvolution as it was removed before. Yet results
local minima. Flgqre 8 shows the effect of inverse Wiener filteringyzined by adding deconvolution at the end of our process (fig.
on the simulated image where all parameters are known. Althouglly pring only marginally better benefits than without its use. For
a fairly noticeable enhancement can be observed when the medigractical purposes, we feel that deconvolution can very often be

is moderately turbid, this method does not remove backscatterng;g,fmy omitted without any noticeable loss in edge detection.
which explains why deconvolution cannot be used alone.

C. Forward scattering rejection

V. CONCLUSION

500 0.5

We presented a complete preprocessing framework for underwater
images. First, a contrast equalization system was proposed to reject
backscattering, attenuation, and lighting inequalities caused by the
beam pattern. This system does not need any knowledge of the
medium characteristics yet its action on the images is clearly under-
stood and coherent with the image formation process. Then, remain-
ing noises corresponding to sensor noise, floating particles images,
and miscellaneous quantification errors, are suppressed using a very
generic self-tuning wavelet-based algorithm. Finally, we showed that
forward scatteringcould be addressed as well using deconvolution
but that the gains are negligible compared to the effect of previous
stages.
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